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Abstract— This paper presents a novel method, combining
new formulations and sampling, to improve the scalability
of sum-of-squares (SOS) programs-based system verification.
Region-of-attraction approximation problems are considered
for polynomial, polynomial with generalized Lur’e uncer-
tainty, and rational trigonometric multi-rigid-body systems.
Our method starts by identifying that Lagrange multipliers,
traditionally heavily used for S-procedures, are a major culprit
of creating bloated SOS programs. In light of this, we exploit
inherent system properties such as continuity, convexity, and
implicit algebraic structure, and reformulate the problems
as quotient-ring SOS programs, thereby eliminating all the
multipliers. These new programs are smaller, sparser, less
constrained, yet less conservative. Their computation is further
improved by leveraging a recent result on sampling algebraic
varieties. Remarkably, solution correctness is guaranteed with
just a finite (in practice, very small) number of samples.
Altogether, the proposed method can verify systems well beyond
the reach of existing SOS-based approaches (29 states); on
smaller problems where a baseline is available, it computes
tighter solution 2-3 orders faster. Source code is included.

I. INTRODUCTION

We consider the fundamental verification problem of
region-of-attraction (ROA) approximations for polynomial,
polynomial with generalized Lur’e uncertainty, and multi-
rigid-body systems. Sum-of-squares programs are widely
accepted as a standard approach to this problem. Powered
by semidefinite programs (SDP)s, SOS provides a systematic
way to optimize over polynomial Lyapunov functions’ sub-
levelsets for these approximation tasks [1], [2].

Despite the popularity and rich theories, the problems
solved by these approaches are still of only modest dimen-
sion (10-15 states) [3]. This is limiting, as many interesting
real-world applications, e.g., mechanical systems consisting
of many rigid bodies, are well beyond that scale.

What, then, could be causing the scalability challenge?

Typical scale-improving techniques, rightly so, identifies
the low-level SDPs as a computational bottleneck. However,
the SDPs are far from the only issue; in fact, we argue that
they are, to a large extent, a scapegoat for the inefficient
high-level problem formulations.

Specifically, traditional formulations heavily rely on the
recipe of (in)equality implication, S-procedure, and auxiliary
high-degree Lagrange multipliers. These multipliers not only
introduce a large number of auxiliary decision variables and
possibly extra expensive constraints, they inflate the problem
dimension or degree as well, all of which responsible for
creating bloated SDPs. If the dynamics are not exactly
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Fig. 1: The proposed method significantly reduces both
formulation and computation overhead. One resulting im-
provement is visualized above on the ROA approx. of the
van der pol. Traditional methods typically involve conditions
on, e.g., the set of all states enclosed within the yellow line,
and solving an optimization globally. Our method, provably
correct and less conservative, only needs to examine few
random samples, shown as blue dots, on the yellow line.

polynomial, like the Lur’e-uncertain or rigid-body dynamics
that we consider, auxiliary indeterminates are additionally
necessary, aggravating the complexity even further [4].

Motivated to eliminate all these multipliers (and most of
the auxiliary indeterminates), we exploit inherent system
properties — continuity in polynomial, convexity in Lur’e
uncertain, and implicit algebraic structure in rigid-body sys-
tems — and reformulate the ROA approximation problems
as quotient-ring SOS programs. These are programs that di-
rectly reason on algebraic varieties (objects defined by poly-
nomial equations; for example, the yellow line in Figure 1
is a variety) without relying on multipliers. Basic algebraic
geometry properties imply these reformulated programs are
smaller, sparser, less constrained, yet less conservative.

The computation of the new quotient-ring SOS programs
is further improved, significantly, by leveraging a sampling
algebraic variety approach. The method, recently introduced
in [5], reduces a quotient-ring SOS program to sampled
instances on the defining variety, resulting in small SDPs
with low-rank data and better numerical conditions. Remark-
ably, solution correctness is guaranteed with just a finite (in
practice, very small) number of such samples.

Combining the new formulations and sampling, the pro-
posed method can verify systems well beyond the reach
of existing SOS-based approaches (29 states). On smaller
problems where a baseline is available, it computes tighter
solution 2-3 orders faster.

Finally, while this paper focuses on ROA verification, ex-
tensions to the closely related problems such as reachability
analysis or barrier certification [2] are immediate.
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Fig. 2: Standard SOS-based verification pipeline and the traditional overhead. We follow the same pipeline but use different
ingredients throughout. Thus, unlike most scale-improving methods that are SDP-oriented, we reduce all these overhead.

Our general contributions are:

(i) We present three new quotient-ring SOS programs,
one for each ROA approximation problems considered.
Different inherent system structures are exploited, all
leading to smaller yet stronger formulations.

(ii)) We apply the efficient sampling variety approach from
polynomial optimization to the context of general non-
linear system verification.

To our knowledge, all of these are proposed for the first time.

A. Related Work

SOS programs have had success in verification for a wide
variety of systems and tasks, from polynomial to hybrid,
deterministic to stochastic, and stability to robustness to
safety [1], [2], [6], [7], [4], and not only theoretically but
demonstrated on hardware [3] as well.

All these work essentially follow a standard pipeline, as
illustrated in Fig. 2. While we follow the same pipeline,
our ingredients differ from the beginning, e.g. our Lyapunov
or Lur’e conditions are not the usual inequality implica-
tions. These new conditions lead us to smaller yet stronger
quotient-ring SOS programs; multipliers, traditionally needed
to segue to conformed convex and polynomial but bloated
programs, are thereby eliminated entirely.

These new quotient-ring SOS programs also allow us to
take advantage of [5] and improve the downstream computa-
tion differently. Existing methods commonly assume special
structures such as compositional [8], low-rank solution [9],
or chordal sparse [10] in SDPs, or symmetry or sparsity in
polynomials [11], [12]. Other methods, while general, either
approximate the semidefinite cone with linear or second-
order cones [3], or rely on first-order methods such as
the augmented Lagrangian [13]; scalability are therefore
achieved at the cost of conservatism or accuracy.

In contrast, via sampling, [5] exploits the inherent geomet-
ric structure in our quotient-ring SOS programs. It constructs
orthogonal and low-dimensional (implicit) Grobner basis,
and produces SDPs that are small, better conditioned, and
of low-rank (data, not solution). Remarkably, efficiency is
significantly increased, without sacrificing the program’s
generality, correctness, and less-conservatism.

II. PROBLEM STATEMENT AND APPROACH

Given a continuous-time closed-loop nonlinear system
with dynamics & = f(x) and a fixed positive definite
polynomial Lyapunov candidate V' (), we consider the task
of quantitatively verifying if the system is locally asymp-
totically stable around the fixed point (assumed to be the

origin). Concretely, we are interested in finding a sub-levelset
E(V,p) == {z | V(z) < p} whose volume grows with p.
The connected component of £ that includes the origin is an
inner approximation of the ROA if the constraint in

max p

: 1
st V@ = pw <o vwee v op

is satisfied. The cost on p encourages enlarging the sub-
levelset, thus providing a tighter approximation.

We consider solving the ROA approximation on three sub-
problems; they differ in the dynamics characterization.

Polynomial problem: the “vanilla” case where f(z) is
polynomial in z.

Lur’e problem: The dynamics is a nominally polynomial
fo(z) subject to additive uncertainty

f(@) = folz) +0(),

where O(x) satisfies a generalized Lur’e type condition
(a(z) — §(2))(B(x) — d(x)) < 0 with a(z) and B(x) both
polynomial in z.

Rigid-body problem: The dynamics of rigid-body mechan-
ical system, which come from the equations of motion, are
given as

f(z) = M~ (@)F(a),

where both M (z) and F(z) include terms like sin(z), thus
f(z) is rational trigonometric.

The overall approach in this paper is two-pronged: refor-
mulate the three ROA verification problems as simpler yet
stronger quotient-ring SOS programs, and apply the efficient
sampling algebraic variety method to solve them.

We begin by describing the complete solution to the
polynomial problem. For Lur’e and rigid-body problems, we
focus on illustrating their tailor-made formulations only, as
the sampling subroutine is identically applied.

III. FORMULATION - POLYNOMIAL PROBLEM

A. Existing formulations

There are two known SOS programs formulations for
the polynomial problem. The more popular one, which we
call program (IE), is based on a straightforward inequality
implication V < p = vV <0, S-procedure and multipliers:

find A(z)
IE) s.t.

M) (V(z) — p) — V(z) is SOS
A(z) is SOS



Note that, this is a feasibility program and requires a line-
search of a fixed p since otherwise the program would be
bilinear (non-convex) in p and .

An alternative equality constrained formulation can be
found in [1], [3]. In particular, under the assumption that the
Hessian of V' is negative definite at the origin, the following
is also sufficient for problem Eq. (1):

max
p,QA(z) )
(E) st. (@) (V(z) = p) = Az)V(z) = ...
m'(2)Qm(z) VY
Here we explicitly write out the SOS factorization constraint
on the right-hand side (for easy reference later); m(x)
denotes the standard monomial basis of appropriate degree.

Both formulations need to optimize over auxiliary multi-
pliers A(z). When the A are of the same degree choices, the
SOS programs translate to SDPs of similar dimension and
lead to similar optimal p. However, the equality constrained
(E) is much simpler to solve due to the elimination of the
SOS condition on the multipliers and the line-search.

B. Proposed formulation

The proposed formulation is closely related to (E). How-
ever, since it was given in the references without proof, some
important and subtle questions were left un-addressed. For
example, what is the formulation based on? and what is
the purpose of the (2’ x)d term? To answer these, we first
reverse-engineer the formulation to discover its underlying
implication, described below.

Theorem 1: Under the assumption that the Hessian of 14
is negative definite at the origin, the implication condition

V(z)=0=V(z)>porz=0 2)
is a sufficient condition for Eq. (1).

Proof: The Hessian condition ensures that V' (0) = 0
is a local maximum. Therefore, locally around the origin,
we must have V' < 0. If V is negative definite, the system
is globally asymptotically stable, and Eq. (2) gives p = oo
which in turn correctly implies Eq. (1). The more interesting
case is when the system is locally stable, implying that at
some states V> 0. Since V and f are both polynomial by
assumption, so is V(x) and it is thus continuous. Given this
continuity, and that 1%4 changes sign eventually, zero-crossing
event(s) must have occurred at some states.

If at all such states where V(x) = 0, the evaluation of
V' > 0 or it is precisely the origin, as encoded by Eq. (2),
then by contraposition, it is equivalent to

ref{r|Vz)<pzr#0}=V(x)£0

Given the local behavior of V around the origin, the con-
nected component of the p sub-levelset that includes the
origin, must have V<0 (except for the origin itself). [ ]

An interactive visualization of the proof idea is available
online'. Figure 1 shows a snapshot of it, where the yel-
low line precisely defines those important non-origin zero-
crossings V (z) = 0.

Thttp://web.mit.edu/shenshen/www/VDP-animation.html

With Theoreml in place, it should be clear that Formula-
tion (E) is a multiplier-based sufficient condition for Eq. (2),
therefore sufficient for Eq. (1) as well. Note the importance
of the negative definite Hessian condition?, it sufficiently
implies the local maximum condition needed in the proof.
Note also the importance of the (2'z)" term, where d is
a strictly positive integer user chooses. Without this term,
the optimization (E) is meaningless because it would always
return the trivial solution p = 0. To see this, plug in x = 0.
The left-hand side become 0 — p — 0 which has to match a
non-negative right-hand side; the maximal value of p must
be zero.

Our formulation is a direct application of algebraic ge-
ometry on Eq. (2), using basic objects such as affine variety,
quotient ring, and Grobner basis (due to space limitation, we
prioritize making the high-level idea clear, and refer to [14]
Chapter 1 for the background and definitions).

In particular, simply by defining an algebraic variety V :=
{z|V(z) = 0}, a sufficient condition to Eq. (2) is given by
the following quotient-ring SOS program (Q):

max p

Q .
st.  (2x)"(V —p) =n'(2)Qn(z), Yz €V
where n(x) is a Grobner basis.

(Q) and (E) may seem trivially equivalent and only differ
in terminology; after all, they stem from the same high-level
polynomial equality constraint Eq. (2). However, there are
four facts that make the reformulation (Q) more appealing.

(i) The decision variable A(x) is eliminated
(ii) The basis n(z) in (Q) is of lower dimension than m(x)
in (E), due to Grobner basis (see [14], Chapter 2);
(iii) The fixed degree d can be lower in (Q), due to the
elimination of the \(z)V (x) term;
(iv) (Q) is intrinsically stronger than (E), i.e., optimal solu-
tion of (E) is in general only suboptimal to (Q).

The last fact is important but subtle. It is due to that (E)
relies on degree-bounded multiplier whereas (Q) relies on
geometric description of the variety. An explicit example to
make this distinction clear:

Degree-bounded multipliers are “bounded”: Suppose
we need to check if this implication x+1 = 0 = 2—-1<0
is true. Multiplier-based formulation would search for a A(x)
such that (22 — 1) + A(z)(z + 1) < 0, Vz. This optimization
can not be feasible if )\ is limited to be a constant, even
though the implication is true. It takes at least an affine
multiplier, for example A(z) = —(x—1) to make the problem
feasible. In contrast, quotient-ring formulation interprets the
left-hand side of the implication as x = —1, so the right-hand
side becomes 12 — 1 = 0 < 0 which is trivially true.

To recap, facts (i)-(iii) mean that the quotient-ring SOS
program (Q) leads to a much smaller SDP; yet it is also
stronger (unless the multipliers can be of infinite degree) due
to fact (iv). Therefore, (Q) is a strictly better formulation,
in theory. The only downside, in practice, is that Grobner

2even though one reference does not make this assumption explicit and

the other has a sign flip



basis themselves may be challenging to find, especially when
the defining equations for the variety get complicated or
high-dimensional. To overcome this potential difficulty, we
leverage an efficient sampling-based method.

IV. SAMPLING ON ALGEBRAIC VARIETIES

We apply the sampling algebraic varieties method intro-
duced in [5] to solve the quotient-ring problem (Q). The
high-level idea is rather straightforward: instead of solving
the optimization for all real-valued = with Grobner basis,
solve it at only a set of sampled numerical instances {z;}:

max p
O
S) S.t. V($Z) = O, Va;

(wfs) " (V(23) = p) = 7 (2)QAi(x:), Va;
using 7(-), which can be a standard basis or an implicit
Grobner basis; this is to be described later.

As hinted, there are certain numerical benefits of solving
the sampled version (S). But given that the ultimate goal
is to produce stability certificate, we should be immediately
asking: a solution to (S) is necessarily a solution to (Q),
does there exist guarantee regarding sufficiency (as required
to claim correctness)? Also, what is the sample complexity
and sampling procedure? The detailed answers and rigorous
treatments can be found in [5], we include a brief high-level
summary for completeness.

A. Correctness and sample bound

The sampled program (S) is equivalent to the original pro-
gram (Q), with probability one, if the samples x; are generic.
The genericity condition can be interpreted as checking if
enough samples are drawn randomly. In theory, there exists
a finite sample bound. This bound depends on many factors
including the problem size, variety structure, etc. Concretely,
genericity is checked by a simple rank test of a matrix whose
elements are simple monomial evaluations at the samples.

Through this practical case-by-case numerical rank check,
we accumulated enough empirical evidence that the samples
needed are in fact, very small. Usually, this number is far
less than the number of elements in the Gram matrix. In
Section VII, we document the number of samples used for
each program, which could serve as an empirical reference.

An intuitive explanation might be helpful; after all, “with
probability one guarantee” is usually stated in the asymptotic
regime. Intuitively, the combination of “being exactly on the
variety” and “degree-bounded polynomial parameterization”
imposes a constraint so strong that finite samples are capable
of capturing. To some extend, it is similar to polynomial
interpolation, where a finite number of samples can faithfully
determine the coefficients of a degree-bounded polynomial.

We finally point out that, the sampling procedure itself
involves finding roots to polynomial equation(s). In the
simple case where dynamics itself is polynomial, sampling
means finding roots of a single multi-variate polynomial V,
which can be easily done via open-source packages (in our
case, we use shooting and numpy). As the variety gets more

complicated (usually when having more defining equations),
so will the sampling process. Fortunately, sampling is a
trivially parallelizable process, where each thread only comes
with very low processing and memory requirement.

B. Computational benefits.

The computational gains come from the paradigm shift:
whereas traditional methods match polynomial coefficients,
sampled approach matches polynomial evaluations.

One direct consequence is the low-dimensional numerical
basis 71(x; ). First, this basis can be chosen as standard mono-
mials evaluations, because the generic samples numerically
capture the underlying variety. In comparison, problem (Q)
must rely on explicit Grobner basis to symbolically encode
the variety. This in and of itself is a huge improvement.

fi(x) can be further simplified (from e.g. the standard
basis) to an even lower-dimensional implicit Grobner basis
by leveraging the underlying variety and a simple SVD
procedure. These implicit basis can be thought of as the
orthogonal basis with respect to a natural inner product
supported on the samples. Orthogonalization, as a byproduct
of this size-reduction procedure, has been shown to improve
SDP numerical condition as well [15].

Finally, (S) results in an SDP with low-rank data struc-
tures, which can be readily exploited by solvers. Note that
the right-hand side of (S) is a scalar evaluation. Via the trace
cyclic property, 7' (z;)Qn(x;) = tr(Q, n(x;)n'(z;)), where
n(x;)n'(z;), the problem data in the SDP, is of rank at most
one by construction (because recall that 72(x;) is a numerical
vector). Such low-rank data does not appear in traditional
SOS programs, since n(x) there are symbolic monomials.
Note that it is the problem data (rather than the decision
variable () that is of low-rank.

o (IE)
®

SDP complexity

@,

the proposed
prop s

)y

solution quality

Fig. 3: Qualitative comparison of the four programs.

Comparison of the four SOS programs.: We have pre-
sented four different SOS programs for the polynomial ROA
problem. Figure 3 summarizes a qualitative comparison of
the solution quality and underlying SDP complexity. Note
that the relative scale of the gap varies case-by-case. For
example, on very simple problems, all programs might be
overkill and arrive at the same solution. On the other hand,
the proposed method achieves more significant computa-
tional gain for more complex systems; Section VII includes
these quantitative comparisons.

V. FORMULATION - LUR’E PROBLEM

Consider dynamics with generalized Lur’e uncertainties:

f(@) = fo(z) +d(x) 3)



where fo(x) is the nominal polynomial dynamics; the un-
certainty d(z) satisfies (a(z) — d(x))(B(x) — 6(x)) < 0,
where «(z) and B(x) are both polynomial (generalized from
the standard linear). A one-dimensional example of §(z) is
visualized in Figure 4.

6(x)

= Bx)
all admissible 6(x)

Fig. 4: Generalized Lur’e type sector uncertainty. «(x) and
B(x), both polynomial, define the “boundaries” of the sector;
the uncertainty J(x) can take any function “in between”.

A. Existing formulation

For Lur’e problem, we would like to eliminate a standard
S-procedure dedicated to encoding the uncertainty . This is
a separate issue / overhead from those arising from encoding
sub-levelset (discussed in Section III). To isolate the two
and highlight the new improvements here, we first present
the standard and proposed formulations for global analysis.
Local extension is discussed later.

The standard way to verify global asymptotically stable
(g.a.s.) is via an IQC-type treatment [16]:

find &(z,9)
s.t. &(x,0) >0
ov
5y fo(@) +0) = &(x,0)(a(z) — 6)(B(x) —9) <0,
V(x,8) S-procedure encoding (z, §) dependency

4)
where 4 is an auxiliary indeterminate, independent from z
(thus the notation V(z,d)); its true dependency on z is
incorporated using multiplier £(x,d) and the S-procedure.

B. Proposed formulation

The proposed formulation is simpler yet stronger (in
aspect different from quotient-ring structure): it eliminates
the auxiliary multiplier £(x,d) and indeterminate &, and
allow us to analyze all admissible dynamics f (defined in
Eq. (3)) by examining the boundaries f, := fo(z) + a(z)
and fg := fo(x) + B(x) with a less conservative condition.

Lemma 1: For a given positive definite V' (x), define

Vo(z) := ngf) fa <0
Va(a) = 25 f5 <0,

then (4) = (5) = g.a.s. <= (5) <= (4) (slight abuse of

notation here, (4) denotes that the optimization is feasible).
Proof: (4) = (5): If (4) holds, it holds for all

admissible d. It must hold when § = a(x), plug this in and

(4) reduces to exactly V,, < 0. Similarly Vs < 0 is implied.

&)

(5) = g.a.s.: First, note that for any fixed z, 6(x) can be
written as a convex combination of a(z) and S(z). Second,
V(z) = %—Z(fo(x) + §(z)) is linear with respect to §(x).
Combining the two observations, V can also be written as
a convex combination of Vg and V, (with generally state-
dependent combination coefficients). Therefore, (5) implies
V(z) < 0 for all admissible f.

g.a.s <= (5): Well-known fact. Finally, (5) <= (4) is a
consequence of the multiplier limitation (Section III). [ ]

Lemma 1 shows that (5) is stronger than (4). Also, in
terms of computation, not only is the multiplier £(z, ) and
S-procedure eliminated, so is the auxiliary indeterminate §.
These simplifications are preserved, and also combined with
those in Section III (e.g. elimination of multipliers \) when
extended to local analysis via the following.

Theorem 2: Given a positive definite V' (x), if program (S)
is feasible for dynamics f, and fg, with optimal solutions
po and pg, then V(z) <0, Vz € £ (V,p) := {z | V(z) <
min(pq, pg)}, and for all admissible f defined by Eq. (3).

Proof: Given Theorem 1, the optimal solutions of (S)
imply that V,,(z) < 0, Vz € £ (V. p), and similarly for Vs.
For all admissible f, V (z) < 0 within this set can be almost
identically proved as “(5) = g.a.s.” part in Lemma 1. B

Finally, the new formulation affords additional high-level
insights into application too; details in Section VII-B.

VI. FORMULATION - RIGID-BODY PROBLEM

Multi-body rigid-body systems are challenging to analyze,
not only because of their often large scale, but more impor-
tantly because the Equations of Motions (EoM) and rotation
and potential energy make their dynamics complicated ratio-
nal trigonometric. Shown in Figure 5 is an N-link pendulum
on a cart system, whose dynamics exhibit such characteristic.
We use it to illustrate more explicitly the challenge and the
existing and proposed approach.

Fig. 5: N-link pendulum on a cart. 3

Without loss of generality, assume N = 1 (the classical
cart-pole). Also, suppose the cart and pole both have unit
mass and the pole has unit length.

Let the states be y := [qo,q1,do, 1), where g is the
cart position, ¢; the pole angle, and qg, ¢; the corresponding
velocities. Let the force on the cart be v and the gravitational

3figure taken from the python PyDy package.



constant be g. The EoM is:

1 0 0 0 do do
0 1 0 0 q1 . q1
0 0 2 —sinq Go | | d®cosqi+u
0 0 —sing 1 g1 —gcosqi
~—_——
M (y) Y F(y,u)
(6)

where M (y) is the (positive definite) mass matrix, F(y, u)
the force matrix, and y the dynamics. Since y = M —1F the
dynamics is explicitly rational trigonometric.

A. Existing formulations

Taylor expansion is commonly used to handle the rational
trigonometric dynamics. This approach has two major limi-
tations. One is the error; or the complication introduced by
error-bounding. The other limitation is Taylor expansion’s
own scalability; expansion can be challenging when the
dimension or degree gets non-trivial. For example, to expand
the dynamics of the N-linked cart example to third order,
Sympy fails at link 4, whereas Matlab fails at link 5. If
higher-orders are needed to reduce the error, the scalability
is even worse.

A “less lossy” transformation-type technique based on [17]
has also been applied [4], [7]. This technique deals with the
dynamics in two steps. First, a change-of-variables recasting
technique can turn the trigonometric components into poly-
nomials and the dynamics are simplified as rationals. The
second step is to clear the rationals’ denominator, perhaps
not surprising by now, via multipliers, which carry all the
complications discussed so far.

B. Proposed formulation

The proposed method to deal with the rational trigono-
metric dynamics is a combination of change of variable,
differential algebraic equations (DAE), and implicit algebraic
variety.

We start with the standard change of variable. Let x :=
[90, 51, €1, o, ¢1] where s1 = sin ¢; and ¢; = cos g1 ; suppose
a feedback controller u(x) is given to close the loop. The
new coordinates first must satisfy the unit circle condition
52 + ¢ = 1, which is equivalent to 2/Sz = 1 where S =
diag(0,1,1,0,0).

Secondly, simple variable substitution of the recast states
z into the EoM Eq. (6) gives M (x)y = F(x). This is the
key step, where we do not explicitly write out the y but
rather leave it implicit. In other words, instead of dealing
with ordinary differential equations, we describe the dynamic
via DAEs, which are in fact more general as well.

Thirdly, due to the coordinate transformation, the dynam-
ics of the recast & follows a transformation from y as:

do 1 0 00 .
é1 0 ¢ 00 do
i=|¢ |=]0 —s1 00 D =2y
do 0 0 10 o
A 0 0 0 1 g
H'/_/

T(x) Y

where T'(x) is the recasting transformation matrix (purely
dependent on x). Consequentially, the derivative of the
Lyapunov function is then

ov . ov .
= pr= %T(x)y @)

With these preparations, sampling quotient-ring can be
now readily applied. In the ‘vanilla’ case where the dynamics
is polynomial, the variety has only one component that is
V = 0. Here, due to the recasting, the variety )V is more
involved V = V; UV, U V3 where the defining equations are:

'Sz =1 (8a)
M(z)j = F() (8b)
oV (x) -

Note that ¥ = [qo, ¢1, do, G1] may seem necessary to be in-
cluded in the SOS program basis. However, because the first
half of the elements (first-order derivatives of ¢) is included
in x, whereas the second half (second-order derivatives of
q) is otherwise independent of x, the numerical samples via
the variety capture all dependencies between y and z. In
other words, it is not necessary for ¢ to appear explicitly in
the basis, which is another major advantage over multiplier-
based formulation.

VII. EXAMPLES

A. Polynomial problems

We first consider three polynomial systems: Van der Pol
oscillator, Ninja star, and Pendubot. Programs (IE), (E), and
(S) are compared. Across all three examples, the proposed
method (S) demonstrates speed improvement of up to 2-3
orders (Table I). On Pendubot and Ninja star example, the
proposed method also produces better solutions.

Van der Pol: (Time-reversed) Van der Pol is a 2 state,
degree 3 polynomial systems. It has a known ROA, and has
thus been a staple benchmark. Using a degree 6 candidate V,
all programs produce almost tight approximation (Fig. 6a),
though the proposed method is the fastest.

N\

Verified via (E)

| = Verified via (5)
@ Simulated Stable Samples

= Known ROA
= Verified via (S)

= Known ROA
Verified via (IE)
Verified via (E)
= Verified via (S)

(c) Pendubot

(b) Ninja Star

(a) Van der Pol

Fig. 6: ROA approximations of polynomial systems. Quali-
tatively, for Van der pol, all three programs return identical
result; for Ninja star, only the proposed method (S) succeeds;
for Pendubot, the proposed method is tighter.



Van der Pol Ninja Star Pendubot
(IE) (E) (S) (IE) E) (S) (IE) E) (S)
PSD variable dim 45 45 15 220 220 55 495 495 70
num. scalar var. 46 46 1 221 221 1 496 496 1
num. constraints® 165 152 29 540 632 78 4844 4840 118
time (sec) 0.09 0.07 0.01 err? err  0.13 err  217.96 0.33

“equals the number of samples on the variety for method (S)
b«err” indicates the solver encounters numerical error

TABLE I: Numerical comparison of three methods for ROA verification.

Ninja star: To showcase the efficacy of our method
in numerically challenging situations, we purposely create
a system with “badly conditioned” dynamics*. The system,
with known true ROA that resembles a Ninja star shown in
Figure 6, is low dimensional (2 states) but of high degree (7
degree). Further, the coefficients are very unbalanced (rela-
tive scale difference is 10%); and the dynamics linearization
A matrix at the origin are precisely zero. We supply a unit
quadratic function V' = z’x, therefore coefficients of V' and
V are even more unbalanced than the those in the dynamics.
Among the three programs, only the proposed succeeds at
producing a result (and the result is tight).

Pendubot: 'We take from [18] an LQR-controlled four
dimensional Pendubot system, Taylor expanded to degree
three at the fixed point. A degree six Lyapunov function
is provided. Figure 6 shows the produced approximation
at slice (z1,z3). Our method not only produces better
approximation, it does so about 10 times faster (Table I).

B. Lur’e problem - Path-tracking Dubins Vehicle

Consider a Dubins car defined in the error frame relative
to the virtual vehicle along a path to be tracked, illustrated
in Figure 7. The model is: ¥g = u; — k¥, XE =wuYg +
ug — L cosYg, YE = —u1 Xg + £sinyg where ¥g, XE, YE
are the angle error and linear displacements, [ and k, are
the target speed and path curvature, and u; and us are the
angular and linear torques. Stabilization at zero error means
the car achieves perfect tracking.

Ji

Vehicle
Frame

Path

Inertial Frame I

Fig. 7: Path-tracking Dubins vehicle in the virtual error frame

An LQR controller is designed for a constant nominal
tracking curvature k,, = 1. The true curvature can be between
[0.8,1.2], and potentially time-varying. The task is to find
an ROA approximation robust to this run-time parameter

“Ninja Star dynamics: #1/16 = 725:3? + 2500:2{ + 481%:):1 -
14400222% +28432z323 — 1920025z 1; 42/16 = —10023 + 4000025 +
482272 — 4800228 + 28432232} — 576002522

variation. Formulation presented in Section V is applied to
this problem, which allows us to verify the robust ROA
by checking the two extreme cases. The result is shown in
Figure 8.

Fig. 8: Robust ROA analysis for Dubins vehicle tracking
a path of varying curvature. The yellow outer tube corre-
sponds to k, = 0.8 (straighter path). The green inner-tube
corresponds to k, = 1.2. The inner-tube is also the robust
ROA for any k, varying within the given range. The red dots
are counter-examples that do not converge to the origin; they
show the tightness of the approximation.

We would like to point out an extra bit of insight the pro-
posed method affords (which the existing formulation does
not). Comparing the two ROAs produced for the extreme
cases, the one corresponding to a straighter k, = 0.8 path
has larger volume than k, = 1.2. In fact, we approximated
the ROA for the nominal constant curvature k, = 1 (note
that this is not required for the robust ROA per se), and
the result is sandwiched in between the two shown in
Fig. 8 (so smaller than straighter-path one), even though the
controller is designed based on this parameter. These findings
agree with our intuition that tracking a “curvier” path feels
dynamically more demanding, and it is interesting to have
it, as a byproduct, emerging from the result.

C. Rigid-body problem - Cart with N-link Pole

Consider the problem of N-link pendulum on a cart,
illustrated in Figure 5. The system states are the position
and (angular) velocity of the cart and the NV links. There are
N inputs, one is a force applied on the cart, and the rest are
torques applied on the N —1 links, starting from the attached
on the cart (farthest one from the cart is not controlled
directly). The task is to balance all the links upright.

We first produce an LQR controller and a quadratic
Lyapunov function in the original coordinate. Then with



Link 1 2 3 4 5 6 7 8 9
dim(z) 5 8 11 14 17 20 23 26 29
dim Q¢ 21 45 78 120 171 231 300 378 465
Constraints” 45 89 179 298 390 531 690 890 1390
time (sec) 0.03 0.48 23.67 91.87 178.78 338.56 478.37 598.20 723.03

9The matrix variable in the SDP is dim Q-by-dim Q.
bThe same as the number of samples.

TABLE II: Numerical results of the ROA problem with different number of links on the cart.

small-angle approximations, and techniques introduced Sec-
tion VI, transform them all into the recast x coordinate.
Figure 9 shows the ever-growing complexity disparity for
the proposed method and its multiplier-based counterpart (E).
Applying techniques detailed in, we are able to verify system
of dimension 29, well beyond the scale of current SOS-
based method. The numerical comparisons for different N
are documented in Table II.

PSD decision variable size Num. of scalar equality constraints ~ Num. of scalar decision variables
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Fig. 9: SDP complexity as the number of links in the N-link
on cart system Figure 5 grows. Note the log-scale.

VIII. CONCLUSION

We presented a novel framework, combining smaller yet
stronger problem reformulations and sampling, to address the
scalability issues of SOS-based verification. The three new
ROA formulations each relies on (different) intrinsic system
structures, and are thus general. The subsequent quotient-ring
SOS programs leverage geometric problem description rather
than algebraic and are thus smaller, sparser, less constrained,
yet less conservative. Their computation is further improved
via the application of sampling variety method. Altogether,
scale and speed are significantly improved.

Future work includes extending the techniques to more
applications. A direct example is the multi-contact example
described in [4]. Where the mass matrix can be handled via
DAE technique as described in Section VI, contact condition
can be simplified as described in SectionV.

An important related question we did not elaborate on here
(due to space limitation) is how to find a high-quality Lya-
punov candidate to feed into this new verification pipeline.
This is the motivation of a sister project, which we will
discuss in an upcoming paper.

The source codes is at https://github.com/shensqured/
S4VC; it includes all the algorithms and examples presented.
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