
Compositional Verification of Large-Scale Nonlinear Systems via
Sums-of-Squares Optimization

Shen Shen and Russ Tedrake

Abstract— We consider the computationally prohibitive prob-
lem of stability and invariance verification of large-scale dynam-
ical systems. We exploit the natural interconnected structure
often arising from such systems in practice (i.e., they are
interconnections of low-dimensional subsystems), and propose
a compositional method. We construct independently for each
subsystem a Lyapunov-like function, and guarantee that their
sum automatically certifies the original high-dimensional system
is stable or invariant. For linear time invariant systems, our
method produces block-diagonal Lyapunov matrices without
structural assumptions commonly found in the literature. For
polynomial system tasks, our formulation results in significantly
smaller sum-of-squares programs. Demonstrated on numerical
and practical examples, our algorithms can handle problems
beyond the reach of direct optimizations, and are orders of
magnitude faster than existing compositional methods.

I. INTRODUCTION

Linear matrix inequalities (LMIs) are ubiquitous in system
analysis, largely due to its clean connection to Lyapunov
theory. It is widely known that most of the common linear
time invariant (LTI) systems analysis and synthesis tasks
directly translate through Lyapunov argument into LMIs [7].
More recently, the development of sums-of-squares (SOS)
programming makes it possible to essentially apply this
technique on polynomial systems too [12], [13], expanding
the applicability even further.

Practically, however, LMIs and by extension SOS do not
scale very well, and the computational cost is immense for
large scale systems. This computational challenge, combined
with the natural decomposition structure often arising from
these systems, motivates research areas such as compo-
sitional analysis [2], [20] and distributed and decentral-
ized control [14], [4]. The common theme there is to not
investigate the high dimensional system directly. Instead,
the large system is first divided and studied in parts, and
the implication of these individual results would then be
reasoned about collectively for the original system.

In the context of stability analysis for LTI systems, the
compositional idea is typically materialized as the search
of block-diagonal Lyapunov matrices. Various necessary and
sufficient conditions on their existence have been given in the
literature, but they are either restrictive or non-constructive.
The restriction is usually on the dynamics matrix A having
special structure such as being Metzler matrix [11], block
triangular or cyclic [3], or on the Lyapunov matrix having

This work was supported by Toyota Research Institute, Award ID LP-
C000765-SR, and Lockheed Martin Corporation, Award ID RPP2016-002.

The authors are with Computer Science and Artificial Intelligence Lab-
oratory, Massachusetts Institute of Technology, Cambridge, MA, USA.
{shenshen,russt}@mit.edu

particular block-diagonal patterns like strictly diagonal [6],
[15], [21], [18] or being limited to a 2-by-2 partition [17].
For the more general conditions such as in [8], there is no
simple recipe computing the desired Lyapunov matrix from
the sufficient rank conditions given. Our work offers con-
structive sufficient conditions without any of these structural
limitations. (It is worth mentioning that we noticed Theorem
1 in this part is very similar to an independent and recent
work [22].)

For compositional analysis of the more general polynomial
systems via SOS framework, we mention the work of [20],
[16], [1], which are most similar to ours. In previous work,
the Lyapunov value constraints are untangled but the time
derivatives are not. Our algorithm completely decouples both,
and the resulting additional computational saving can come
in multiple orders of magnitude. We also note in particular
that [1] focuses more on revealing a latent modular structure
using graph partition ideas; we on the other hand assume the
system has a given decomposition structure or one obvious
enough by visual inspection and strive purely for efficiency.
Our views are thus complementary, and combining them can
solve a larger class of problem faster, as will be shown later
with an example.

Next, in Section II, we formalize the problem and in-
troduce technical background. In Section III, we focus on
finding block-diagonal Lyapunov matrix for LTI system, and
present two algorithms for dynamics matrices of arbitrary
size, structure, and partition pattern. In Section IV, we ad-
dress the extension to polynomial dynamics and formulate a
much smaller SOS programming. Finally, we demonstrate on
numerical and practical examples in Section V the efficiency
of the proposed algorithms.

A. Notation

For a real vector x ∈ Rn, the usual Euclidean 2-norm is
denoted as ‖x‖, the weighted 2-norm is denoted as ‖x‖2A :=
x′Ax with A ∈ Rn×n, and the time derivatives are denoted
as ẋ. If xi ∈ Rni , i = 1, 2, . . . ,m, then (x1, x2, . . . , xm)
denotes their column catenation. For a matrix A ∈ Rm×n,
σ1(A) is its largest singular value and A′ its transpose.
A � 0 (resp. A � 0) implies A is square, symmetric, and
positive definite (resp. positive semidefinite). If Ai ∈ Rki×ki ,
i = 1, 2, . . . ,m, then

⊕m
i=1Ai := A1 ⊕ A2 · · · ⊕ Am

denotes the block diagonal matrix with diagonal blocks
A1, A2, . . . , Am. I denotes the identity matrix of appropriate
size. Symbol \ denotes set complement. R[x] denotes the
ring of scalar polynomial functions in indeterminate x with



real coefficients, and R[x]m×n denotes an m by n matrix
whose elements are scalar polynomials in R[x].

II. PROBLEM STATEMENT AND BACKGROUND

A. Problem Formulation

Consider a time-invariant polynomial system described by
ẋ = f(x) where the state x ∈ Rn and the dynamics f ∈
R[x]n. We restrict ourselves to time-invariant systems and
will drop all time dependencies. Let the state x be partitioned
into m components: x = (x1, x2, . . . xm), where xi ∈ Rni

constitutes the states of a subsystem. We assume the partition
is one such that no more than two subsystems are coupled,
i.e., no terms like x11x22x32 (x11 being the first state in the
first subsystem and so on) exist in f . This is not a restrictive
assumption as it can always be satisfied by regrouping (e.g.,
one can merge x1 and x2 into a new sub-system should terms
like x11x22x32 appear).

With the partition and assumption above, ẋ = f(x) can
be rearranged into a component-wise expanded form:

ẋi = fi(xi) +

m∑
j=1
j 6=i

gij(xi)hij(xj) (1)

where fi ∈ R[xi]
ni describes the internal dynamics of

sub-state xi, gij ∈ R[xi]
ni×lijnj and hij ∈ R[xj ]

lijnj

captures the coupling between sub-state xi and xj . The
newly introduced dimension lij is due to the possibility of
more than one linearly independent coupling terms involving
xi and xj , for instance, say ẋ1 = −x13 + x1x2 + 3x1

2x2
2,

then l12 = 2. (For the special LTI case, lij = 1.)
We are interested in making claims such as asymptotic

stability to the origin and invariance for the entire system
states x, but ideally by examining one sub-system state xi at
a time. To this end, we associate the system with a Lyapunov-
like function V such that:

V (x) =

m∑
i=1

Vi(xi) ≥ 0,∀x ∈ Rn (2a)

V̇ (x) =

m∑
i=1

V̇i < 0,∀x ∈ D (2b)

where the equality in (2a) holds only at the origin, and
the region D in (2b) varies with the task in hand. For
instance, when dealing with global stability to the origin,
D = Rn\{0}, whereas in local analysis the region is usually
a sub-level set of V and part of the decision variables.

The aim of this paper is to find the set of {Vi}mi=1 functions
independently so as to form as small an LMI or SOS as
possible. (2a) is already in a decoupled form, and one can
simply require Vi ≥ 0,∀i. (2b) may look decoupled too, and
one may be tempted to claim that V̇i < 0,∀i is also a set of
independent constraints; this is not true. Note that

V̇i =
∂Vi(xi)

∂xi
fi +

m∑
j=1
j 6=i

∂Vi(xi)

∂xi
gij(xi)hij(xj) (3)

while the first term is only dependent on xi, the second term
that is the summation involves hij , a function of sub-states
xj , and the summing over all j 6= i makes V̇i dependent
on possibly the entire states x = (x1, x2, . . . xm). This
is a direct consequence of sub-states coupling from the
dynamics ẋi, in other words, the set of {V̇i}mi=1 are inherently
entangled.

Our compositional approach thus avoids dealing with
{V̇i}mi=1 head-on. Instead, we resort to finding an upper
bound of V̇ that is by design a sum of functions each
dependent on one xi only. We then require this upper
bound to be non-positive to sufficiently imply (2b). While
this detour leads to more conservative results, it allows the
parallel search we desire and can bypass the computational
hurdle of direct optimizations. The details of our approach
are in Section III and IV.

B. Sums-of-Squares Programming

Direct application of Lyapunov theory on polynomial sys-
tem requires checking non-negativity of polynomials, which
is unfortunately NP-hard in general. However, the problem
of checking if a polynomial is sum-of-squares (SOS), which
is sufficient for non-negativity, is computationally approach-
able. A scalar multivariate polynomial F (x) ∈ R[x] is called
SOS if it can be written as F (x) =

∑m
i=1 f

2
i (x) for a set of

polynomials {fi}mi=1. If deg(F ) = 2n, this SOS condition is
equivalent to F (x) = m′(x)Qm(x) where m(x) is a vector
whose rows are monomials of degree up to n in x, and the
constant matrix called the Gram matrix Q � 0. Thus, the
search of a SOS decomposition for F can be equivalently
cast as an LMI on Q [12]. We will replace all sign constraints
on polynomials in our optimization with SOS constraints out
of computational consideration.

III. LTI SYSTEM AND BLOCK-DIAGONAL LYAPUNOV
MATRIX

We first study the most fundamental LTI systems. Though
the technical result in this section can be reduced from the
polynomial systems’ result, some more intuitive aspects of it
can only be or are better appreciated in this limited setting
and hence it merits the separate elaboration here.

Under the LTI assumption, (1) takes a clean form

ẋi = Aiixi +

m∑
j=1
j 6=i

Aijxj (4)

where Aii ∈ Rni×ni , Aiixi corresponds to the fi term, Aij ∈
Rni×nj corresponds to gij with dimension lij ≡ 1, and xj
corresponds to the hij term.

For LTI systems, it only makes sense to consider global
asymptotic stability (to the origin) as all convergences in LTI
systems are in the global sense. A quadratic parameterization
of Lyapunov function V = x′Px such that P � 0 and
AP +PA′ ≺ 0 is both necessary and sufficient for this task.
Naturally then, when considering Lyapunov functions for the
subsystems, we use this quadratic parameterization as well



and let Vi = x′iPixi. This is equivalent to imposing a block-
diagonal structure constraint on P � 0 as P =

⊕m
i=1 Pi � 0.

Substituting the parameterization into condition (2) yields:

find {Pi}mi=1 (5a)
s.t. Pi � 0,∀i (5b)

A11P1 + P1A
′
11 . . . A1nPn + P1A

′
n1

A21P1 + P2A
′
12 . . . A2nPn + P2A

′
n2

...
. . .

...
An1P1 + PnA

′
1n . . . AnnPn + PnA

′
nn

 ≺ 0,

(5c)

Note that (5c) gives a more tangible sense of the latent inter-
twined nature of (2b). The clean block-diagonal structure in
P is deeply buried here as the left hand side is a full matrix
with AijPj + PiA

′
ji at all the off-diagonal spots.

Our goal in this section is to find the set of {Pi}mi=1

independently for each i. We start with an LMI-based algo-
rithm that is still somewhat coupled, and then gradually get
to the truly decoupled algorithm which is based on Riccati
equations.

A. Sparse LMIs

Theorem 1: For an n-dimensional LTI system written in
the form (4), if the optimization problem

find {Pi}mi=1, {Mij}mi,j=1,i6=j (6a)

s.t. Pi � 0,∀i (6b)
Mij � 0,∀i, j, i 6= j (6c)

AiiPi + PiA
′
ii +

m∑
j=1
j 6=i

AijMijA
′
ij + PiM

−1
ji Pi ≺ 0,∀i

(6d)

is feasible, then the set of {Pi}mi=1 satisfies problem (5)
with D = Rn\{0}, and the original system is strictly
asymptotically stable.

Proof: Two proofs, one from the primal perspective and
the other the dual, are included in the appendix. Theorem 1
can also be reduced from Theorem 2 (in Subsection IV-A),
whose proof is in fact less involved. The appended proofs,
however, offer a control and optimization connection that the
simple proof lacks.

Remark 1: Theorem 1 can be viewed as a generalization
of the sufficient direction of Lyapunov inequality for LTI
systems. Particularly, if the state is not partitioned, P has no
structural constraint, the summation in (6d) disappears, and
the condition reduces to the ordinary Lyapunov inequality.
Furthermore, Theorem 1 gives an explicit procedure to
construct a Lyapunov matrix with user specified structures
including the extreme case of pure diagonal structure.

Remark 2: Theorem 1 also closely resembles the small-
gain theorem (which in fact is the inspiration for our results).
Notice that setting m = 2 (two subsystems scenario) reduces
Theorem 1 to the matrix version of the bounded real lemma,
which proves the product of the two subsystems’ `2-gains
less than or equal to one and implies stability. The intuition

behind the connection is this: think of diagonal blocks
A11 and A22 as describing two disconnected “nominal”
plants, and the off-diagonal blocks are pumping feedback
disturbance from one nominal system to the other. The com-
pound system admitting a block-diagonal Lyapunov matrix
indicates it is stable whether or not the disturbance blocks
are present, and this is exactly what small-gain theorem
implies. The feedback disturbance interpretation obviously
carries over to more than two interconnected systems even
though there is no extension of small-gain theorem in those
settings. (The structured disturbance setup arising from µ-
synthesis is not such a generalization. While it does admit
multi-dimensional disturbances, all the disturbances are to
the central nominal plant but not to one another.)

Remark 3: One might wonder what is the virtue of study-
ing the bare bone Lyapunov inequality; after all, checking
stability can easily be done through an eigenvalue compu-
tation and that is uniformly faster than LMIs. We believe
the value lies in that LMIs is more general and clean
than eigen-based methods. For instance, LMI formulation
leads to extensions such as robustness analysis via com-
mon Lyapunov functions which eigen-based method fails
to handle; or to a straightforward formulation of `2-gain
bound, for which the eigen-based method leads to very messy
computation. Therefore, AP +PA′, the most basic building
block appearing in almost every control LMI, deserves a
close examination.

Remark 4: Computationally, (6d) with the nonlinear term
PiM

−1
ji Pi can be equivalently turned into an LMI via Schur

complement. Hence, Theorem 1 requires solving m coupled
LMIs of the original problem size, but all of them enjoy
strong sparsity as all non-zero terms only appear, in the block
sense, at one row, one corresponding column, and the main
diagonal. For instance, when m = 8, Figure. 1 shows the
sparsity pattern of three out of the eight LMIs. The sparsity
in practice might already be a worthy trade off, and we test
the claim in Section V. Further, if we fix the set of Mij rather
than searching for them, constraints (6) become decoupled
low-dimensional LMIs. Better yet, they can be solved by an
even faster Riccati equation based method below.

1 2 3 4 5 6 7 8

8
7

6
5

4
3

2
1

LMI Searching for P1

1 2 3 4 5 6 7 8

8
7

6
5

4
3

2
1

LMI Searching for P3

1 2 3 4 5 6 7 8

8
7

6
5

4
3

2
1

LMI Searching for P5

Fig. 1. Sparsity Pattern of Three LMIs for m = 8 Example

B. Riccati equations

If Mij are fixed, the set of decoupled low-dimensional
LMIs can be solved by a method based on Riccati equa-
tions, which has near-analytical solutions and by implication
far better scalability and numerical stability than LMIs.



Specifically, if we replace the inequality with equality, then
(6) are precisely Riccati equations with unknown Pi. The
feasibility of LMIs like (6) is equivalent to the feasibility
of the associated Riccati equations. That is, the (unique)
positive definite solution to the Riccati equation lives on the
boundary of the feasible set of the LMI [7]. So by nudging
the right hand size in the constraint slightly in the positive
direction, e.g., replacing zero with εI for some small ε > 0,
we get a solution strictly in the interior and one precise to the
original LMI. We note that when the Riccati equations return
a feasible solution, it is much faster than solving the sparse
LMIs (6), and even more significantly so than the original
LMI (5).

The choice of the set of positive definite Mij scaling
matrices can be arbitrary but would largely affect the fea-
sibility. Identity scaling is one obviously valid choice, and
it is very likely to succeed in cases such as when the off-
diagonal blocks are very close to zeros. In general though,
identity scaling is not guaranteed to always work, it is
then desirable to have some other heuristics at our disposal.
Inspired by the small-gain theorem connection in Remark
2, we propose another educated guess that we call σ1-
scaling. The procedure is to (1) initialize a set of scalars
γij = σ1(Aii

−1Aij), (2) keep γij as is if γijγji ≤ 1,
otherwise, say γij > γ−1ji , then keep only γji and shrink γij
down to γ−1ji , and (3) set Mij = γijI . The justification of
the heuristic is that σ1 operator of a dynamics matrix loosely
reflects the input-output signal magnification by the system,
and σ1(Aii

−1Aij) can therefore serve as a barometer of the
relative energy exchange between an internal Aii subsystem
and the coupling Aij term from system j. Of course, there
is no guarantee on the performance of σ1-scaling either.
Empirically though, they succeed roughly 7 times out of 10.
Plus, the time it takes to test these scalings is negligible
compared with solving any LMIs, so it is well worth a try.

IV. POLYNOMIAL SYSTEMS

Extending the LTI decoupling idea to polynomial systems
is conceptually straightforward: we again want to upper
bound V̇ . Technically, a few nice properties from the LTI
case would vanish. We will address these issues when they
appear, and for now start with the result for global asymptotic
stability.

A. Global Asymptotic Stability

Theorem 2: For a polynomial system described in the
expanded form (1), if the optimization:

find {Vi}mi=1, {Mij}mi,j=1,i6=j (7a)

s.t. Mij � 0,∀i, j, i 6= j (7b)
Vi − ε‖xi‖ is SOS,∀i (7c)

− ∂Vi
∂xi

fi −
1

2

m∑
j=1
j 6=i

‖∂Vi
∂xi

gij‖2Mij
− 1

2

m∑
j=1
j 6=i

‖hji‖2M−1
ji

− ε‖xi‖ is SOS,∀i
(7d)

is feasible for some small ε > 0, then the set of polynomial
functions {Vi(xi)}mi=1 satisfies (2) with D = Rn\{0} and
the system is globally asymptotically stable to the origin.

Proof: (7c) obviously implies (2a). Then by introducing
invertible matrices mij ∈ Rlijnj×lijnj and let Mij =
mijm

′
ij , we can have V̇ upper bounded as:

V̇ =

m∑
i=1

V̇i (8a)

=

m∑
i=1

∂Vi∂xi
fi +

m∑
j=1
j 6=i

∂Vi
∂xi

gijhij

 (8b)

=

m∑
i=1

∂Vi
∂xi

fi +

m∑
i=1

m∑
j=1
j 6=i

(
∂Vi
∂xi

gijmijm
−1
ij hij

)
(8c)

≤
m∑
i=1

∂Vi
∂xi

fi +
1

2

m∑
i=1

m∑
j=1
j 6=i

(
‖gij

∂Vi
∂xi
‖2Mij

+ ‖hij‖2M−1
ij

)
(8d)

=

m∑
i=1

∂Vi∂xi
fi +

1

2

m∑
j=1
j 6=i

(
‖∂Vi
∂xi

gij‖2Mij
+ ‖hji‖2M−1

ji

)
(8e)

(8d) is due to the elementary inequality of arithmetic and
geometric means (AM-GM inequality), and the exchange of
summation index at (8e) is due to the symmetry between
i and j. (7d) implies the negation of (8e) is SOS, which
directly leads to that the negation of V̇ is SOS, and sufficient
to imply (2b).

Remark 5: Our method can be extended to handle cou-
pling terms such as xixjxk that involves more than two
sub-states. The key step is to use the generalized version
of AM-GM inequality with n > 2 variables at (8d).

Remark 6: Similar to the LTI case, the scaling matrices
Mij brings coupling across the constraints. Eliminating these
constants as decision variables could again untangle the
entire set of constraints. However, we do not believe a trivial
extension of σ1-scaling developed for the LTI case would be
as convincing a heuristic for hand-picking these constants
in the polynomial settings. This is mainly due to the lack
of a notion of ‘coupling strength’ in the polynomial sense.
Specifically, for LTI systems, the coupling can only enter as
Aijxixj , so at least intuitively, for a ‘normalized’ Aii the
strength of the coupling is quantified by Aij . Polynomial
systems with the additional freedom of degrees, however,
can have coupling terms like 4xixj and xix2j . It is then hard
to argue, even hand-wavingly, if the coefficients play a more
important role or if the degrees do. Therefore, we settle with
just fixing all the Mij to identity.

Remark 7: Even with Mij = I , the term ‖∂Vi

∂xi
gij‖2 in

(7d) is still not directly valid for a SOS program because
of the quadratic dependency on Vi. We develop below what
can be considered the generalization of Schur complement



in the polynomial settings to legalize the constraint.

Lemma 3: Given a scalar SOS polynomial q(x) ∈ R[x] of
degree 2dq and a vector of generic polynomials s(x) ∈ R[x]n

of maximum degree ds, let y be a vector of indetermi-
nates whose elements are independent of x, then q(x) −
s′(x)s(x) ∈ R[x] is SOS if and only if q(x)+2y′s(x)+y′y ∈
R[x, y] is SOS.

Proof: Define m (x) and n(x, y) respectively as
the standard monomial basis of x and (x, y) up to de-
gree d = max(dq, ds). It is always possible to rewrite
s(x) = C ′m(x) for some coefficients C, and q(x) =
m′(x) [Q+ L (α1)]m(x), where Q is a constant symmetric
matrix such that q(x) = m′(x)Qm(x), L(α1) is a pa-
rameterization of the linear subspace L := {L = L′ :
m′(x)L(α)m(x) = 0}, and Q + L(α1) � 0. Denote
q(x)− s′(x)s(x) as Π1 and plug in these parameterizations,
Π1 = m′(x) [Q+ L(α1)− C ′C]m(x).

If Π1 is SOS, then there exists an L(α2) ∈ L (possi-
bly different from L(α1)) such that Q + L(α1) − C ′C +
L(α2) � 0. This implies via Schur complement that V :=[
Q+L(α1)+L(α2) C

′

C I

]
� 0. Denote q(x) + 2y′s(x) + y′y as

Π2 and notice that it is precisely (m(x), y)′V (m(x), y), and
therefore Π2 is SOS.

If Π2 is SOS, then there exists a β1 such that Π2 =
n′(x, y) [T +M(β1)]n(x, y) where T is a constant sym-
metric matrix such that n′(x, y)Tn(x, y) = Π2, M(β1)
is a parameterization of the linear subspace M :=
{M = M ′ : n′(x, y)M(β)n(x, y) = 0}, and T +
M(β1) � 0. Since the elements of m(x) and y form a
strict subset of those in n(x, y), the ordering n(x, y) =
(m(x), y, k(x, y)) where k encapsulates the x, y cross term
monomials is possible. Accordingly, T + M(β1) can be

partitioned as
[
T11+M11 T12+M12 T13+M13

∗ T22+M22 T23+M23

∗ ∗ T33+M33

]
(β1 from now

on dropped for concision). Then, since Π2 has no cross
terms of second or higher order in y, it must be that
k′(x, y) [T33 +M33] k′(x, y) = 0, and since y and x are
independent, T33 + M33 = 0. Similar arguments imply that
T23 + M23 = T ′32 + M ′32 = 0, and T22 + M22 = I .
Once these four blocks are fixed, by the equality con-
straint in the Schur complement of T11 + M11, it must
be the case that T13 + M13 = T ′31 + M ′31 = 0. In
other words, Π2 in fact admits a more compact expansion
Π2 = (m (x) , y)

′ [ T11+M11 T12+M12

∗ I

]
(m (x) , y) where by

matching the terms and invoking the independence of x and
y, m′(x) [T11 +M11]m(x) = q(x), m′(x) [T12 +M12] =
s(x), and the gram matrix is positive semidefinite. The Schur
complement of the I block therefore gives an explicit SOS
parameterization of Π1 in the m(x) basis.

Lemma 3 trivially extends to ‘q(x) −
∑m
j=1‖sj(x)‖2

is SOS’, again via Schur complement of the Gram ma-
trix. The extended condition can be mapped to (7d), with
−∂Vi

∂xi
fi− 1

2

∑m
j=1
j 6=i
‖hji‖2 as q(x), and ∂Vigij√

2∂xi
as sj(x). Now

the constraint (7d) is linear in Vi and can be readily handled
by a SOS program.

V. EXAMPLES

The examples are run on a MacBook Pro with 2.9GHz i7
processor and 16GB memory. The LMI problem specifica-
tions are parsed via CVX [9], SOS problems are parsed via
SPOTLESS [19], and both are then solved via MOSEK [10].
The source code is available online.1

A. Randomly Generated LTI Systems

We randomly generate 1000 candidate A matrices of
various sizes that admit block-diagonal Lyapunov matrices
of various block sizes. We facilitate the sampling process by
biasing A towards negative block-diagonal dominance (to
make it more likely an eligible candidate), and then pass
this sample A into the full LMI (5) to check if the LMI (a
necessary and sufficient condition) produces a block-diagonal
Lyapunov matrix, if not, the sample is rejected. Table I
records the average run time comparison of this full LMI
(5) and our proposed sparse LMIs (6) and Riccati equations
algorithms. It also records the success rate of identity scaling
and σ1-scalings for hand-picking the Mij term in the Riccati
equations.

TABLE I
RUN-TIME AND SUCCESS RATES FOR LTI SYSTEMS

Size of A 50 100 100 1000
Block Size 25 10 25 25

Run-time
(sec)

Full LMI .2 1.03 2.26 N/A
Sparse LMIs .18 .83 1.76 N/A
Riccati eqns 1.44e-2 1.1e-3 1.89e-2 .5

Success Rate
(Riccati eqns)

Identity 70% 56% 68% N/A
σ1-scaling 78% 69% 65% N/A

The first two N/As in the last column indicate the LMI-
based methods run into memory issues and the solver is
forced to stop. Riccati-equations is still able to solve some
of these sampled problems, but without the baseline LMI
feasibility, its success rate is not available either, hence the
last two N/As. We note that when the Riccati equations are
feasible, they are the fastest method to check stability of the
generated A matrices. The computational saving becomes
more significant as the dimension goes up thanks to scalable
algorithms solving Riccati equations. We also note that there
is no clear winner between identity scaling and σ1 scaling
when it comes to producing feasible Riccati equations. In
practice, one may want to try both as there is very little
added real time computational cost of doing so.

B. Lotka-Volterra System

We take from [1] the Lotka-Volterra example and verify
its stability. It is a 16-dimensional polynomial system2, and
is thus beyond the reach of direct SOS optimization. In
that paper, the authors handle the task by first developing
a graph partition based algorithm, which finds a 3-way
partition scheme for this example, and then a non-sparse or

1codes available at https://github.com/shensquared/
ComposableVerification

2we omit explicitly listing here the dynamics for saving space and refer
the reader to the source code for details



sparse SOS programs for computing a Lyapunov function for
each subsystem and a composite Lyapunov function for the
original system.

Their graph partition algorithm is of particular interest to
us, since our compositional algorithm requires a partition but
lacks the ability to search for one. Reusing their resulting 3-
way partition scheme, we are also able to find a composite
Lyapunov function. However, our underlying SOS formula-
tions and hence run-time are significantly different.

TABLE II
RUN-TIME COMPARISON FOR LOTKA-VOLTERRA SYSTEM

Non-sparse
Algorithm in [1]

Sparse
Algorithm in [1] Proposed

V1 0.25s 0.38s 0.1023s
V2 0.25s 0.37s 0.0587s
V3 0.44s 0.59s 0.0568s
V 1415.23s 688.54s 0.2178s

For both non-sparse and sparse algorithms in [1], after
the individual {Vi}3i=1 are found by low-dimensional SOS,
it relies on an additional search of αi > 0 such that

∑
i αiVi

satisfies the derivative condition in x. This has to be done
with yet another SOS program of considerable size since the
indeterminate is the high dimensional x. Also, there is no
guarantee such an αi > 0 always exists; it heavily depends
on how compatible {Vi}3i=1 are (in our test, the {Vi}3i=1 we
found do not produce feasible αi, so we copy the run-time
reported in the paper for comparison).

Our sufficient condition (7), in contrast, guarantees that∑
i Vi would automatically satisfy the derivative condition.

This is done by imposing more restrictive conditions on
{Vi}3i=1 at the their independent construction stages. In other
words, once we get these ingredients, no extra work is
necessary and the time spent searching for V is just the sum
of time spent on each {Vi}3i=1 in much lower dimensions.
Consequentially, as shown in Table II, our final run-time is
3-4 orders of magnitude faster in finding the composite V .

This example showcases the combined power of graph
partition-like algorithms such as [1] and the technique pro-
posed in this paper: the former as a prepossessing step can
extend the use case, and the latter can facilitate a much faster
optimization program.

VI. CONCLUSIONS

In this paper, general and constructive compositional al-
gorithms are proposed for the computationally prohibitive
problem of stability and invariance verification of large-scale
polynomial systems. The key idea is to break the large system
into several sub-systems, construct independently for each
subsystem a Lyapunov-like function, and guarantee that their
sum automatically certifies the original high-dimensional
system is stable or invariant. The proposed algorithms can
handle problems beyond the reach of direct optimizations,
and are orders of magnitude faster than existing composi-
tional methods.

We currently are exploring extensions of our work to
compositional safety verification of multi-agent networks

by leveraging the barrier certificate idea [13]. We believe
the connection is immediate both technically, as barrier
certificates are natural extensions of Lyapunov function, and
practically, as the multi-agent network has, by definition, a
compositional structure.

APPENDIX

A. Primal Proof of Theorem 1
Let us denote the left hand side of (5c) as U . Let Uk be the

k-th leading principal sub-matrix of U in the blocks sense
(e.g., U1 equals A11P1 + P1A

′
11 instead of the first scalar

element in U ), and let Ũk be the last column-blocks of Uk
with its last block element deleted, i.e.,

Ũk :=


A1kPk + P1A

′
k1

A2kPk + P2A
′
k2

...
A(k−1)kPk + Pk−1A

′
k(k−1)


Also, define a sequence of matrices:

Nk :=

k⊕
i=1

 m∑
j=k+1

AijMijA
′
ij + PiM

−1
ji Pi

′


for k = 1, 2, . . . ,m − 1, and Nk = 0 for k = m. Let N̄k
be the largest principal minor of Nk in the block sense. It’s
obvious then that by construction Nk � 0,∀k.

We will use induction to show that Uk + Nk ≺ 0,∀k,
so that in the terminal case k = n, we would arrive at the
desired Lyapunov inequality U = Un +Nn ≺ 0. For k = 1,
U1 +N1 ≺ 0 is trivially guaranteed by taking i = 1 in (6d).
Suppose Uk +Nk ≺ 0 for a particular k ≤ n−1, let us now
show that Uk+1 +Nk+1 ≺ 0.

First, notice that for k ≤ n−1, the sequence of Nk satisfies
this recursive update: Nk = nk + N̄k+1 where

nk :=

k⊕
i=1

(
Ai(k+1)Mi(k+1)A

′
i(k+1) + PiM

−1
(k+1)iPi

′
)

Notice also that nk = LkSk+1L
′
k where

Lk :=
[⊕k

i=1 Pi ,
⊕k

i=1Ai(k+1)

]
Sk+1 :=

[⊕k
i=1M

−1
(k+1)i ⊕

⊕k
i=1Mi(k+1)

]
From the assumption that Uk+Nk ≺ 0, we have Uk+Nk =
Uk + LkSk+1L

′
k + N̄k+1 ≺ 0. Rearrange the terms:

− (Uk + N̄k+1) � LkSk+1L
′
k (9)

Next, let Dk+1 be the left hand side of constraint (6d)
at i = k + 1 with the summation truncated to be only over
indicies k + 2 to n (as opposed to be over all indices other
than k + 1), i.e.,

Dk+1 :=A(k+1)(k+1)Pk+1 + Pk+1A
′
(k+1)(k+1)

+

m∑
j=k+2

A(k+1)jM(k+1)jA
′
(k+1)j

+

m∑
j=k+2

Pk+1M(k+1)jPk+1



and let

Tk+1 :=[A(k+1)1, A(k+1)2, . . . , A(k+1)k, Pk+1, . . . , Pk+1︸ ︷︷ ︸
repeat k times

]

Then by Schur complement, constraint (6d) with i = k + 1
is equivalent to: Dk+1 Tk+1

T ′k+1 −Sk+1

 ≺ 0 (10)

Use Schur complement on (10) again, this time from the
opposite direction, it is also equivalent to:

Sk+1 � −T ′k+1D
−1
k+1Tk+1 (11)

Because Pi � 0,∀i, Lk has full row-rank, then pre- and
post-multiplying (11) with Lk and L′k preserves the positive
definite order:

LkSk+1L
′
k � −LkT ′k+1D

−1
k+1Tk+1L

′
k (12a)

= −Ũk+1D
−1
k+1Ũ

′
k+1 (12b)

The last equality is due to

LkT
′
k+1 =


A1(k+1)Pk+1 + P1A

′
(k+1)1

A2(k+1)Pk+1 + P2A
′
(k+1)2

...
Ak(k+1)Pk+1 + PkA

′
(k+1)k

 = Ũk+1

Finally, combining (9) and (12), we have

− (Uk + N̄k+1) � −Ũk+1D
−1
k+1Ũ

′
k+1 (13)

By again taking Schur complement, this is equivalent to:Uk + N̄k+1 Ũk+1

Ũ ′k+1 Dk+1

 = Uk+1 +Nk+1 ≺ 0 (14)

which completes the induction. �

B. Dual Proof of Theorem 1.

We’ll make use of Theorem of Alternatives [5] below.
Theorem 4: Let V (resp. S) be a finite-dimensional vector

space with inner product 〈·, ·〉V (resp. 〈·, ·〉S ). Let A : V → S
be a linear mapping, and Aadj : S → V be the adjoint
mapping such that ∀x ∈ V and ∀Z ∈ S , 〈A(x), Z〉S =
〈x,Aadj(Z)〉V , and let A0 ∈ S. Then exactly one of the two
statements is true:

1) There exists an x ∈ V with A(x) +A0 > 0.
2) There exists a Z ∈ S with Z 
 0, Aadj(Z) = 0, and
〈A0, Z〉S ≤ 0.

The theorem can be intuitively thought of as a generaliza-
tion of Farkas’ Lemma to non-polyhedral convex cones. A
complete proof can be found in [5]. Tailored to our need, V
and S are taken as the cone of positive semidefinite matrices
equipped with 〈A,B〉 = trace(AB), > (resp. ≥) therefore
means � (resp. �), and Z 
 0 means Z � 0, Z 6= 0.

Now, let us first match (5) to the first statement to get the
linear mapping A and the adjoint. Then (5) is infeasible if

and only if there exists a Z with the same size and partition
of A (as well as P ) such that:

Z 
 0 (15a)

ZiiAii +A′iiZii +

m∑
j=1
j 6=i

A′ijZij + Z ′ijAij 
 0,∀i (15b)

Finding the alternative of (6) is less straightforward. It
turns out it is easier to work with an equivalent form of (6):

Pi > 0,Mij > 0,∀i, j, i 6= j (16a)

PiAii +A′iiPi +

m∑
j=1
j 6=i

PiAijMijA
′
ijPi +M−1ji < 0,∀i

(16b)

We then match (16) also to the first statement. It is
infeasible if and only if there exists a set of {Ti}mi=1 where
each Ti is with the same size and partition of A (as well as
P ) such that:

Ti 
 0,∀i (17a)

AiiTiii + TiiiA
′
ii +

m∑
j=1
j 6=i

TiijA
′
ij +AijTi

′
ij 
 0,∀i (17b)

Tiii ≤ Tjii,∀i, j, i 6= j (17c)

It is clear that the feasibility of (15) implies that of (17)
because one can simply let Ti = Z−1, ∀i (the reverse
implication does not necessarily hold; it is possible the set
{Ti}mi=1 can not be ‘squashed’ into a single Z−1). Therefore,
the infeasibility of (5) implies the infeasibility of (16) which
is equivalent to (6). Flipping both sides of the last statement,
(6) is feasible implies (5) is feasible. �

ACKNOWLEDGMENT

The authors thank Alexandre Megretski for insightful
discussions, especially on whether Theorem 1 is a necessary
condition too. (As can be seen from the dual proof, it is not.)

REFERENCES

[1] J. Anderson and A. Papachristodoulou, “A Decomposition Technique
for Nonlinear Dynamical System Analysis,” IEEE Transactions on
Automatic Control, vol. 57, no. 6, pp. 1516–1521, 2012.

[2] M. Araki, “Stability of Large-Scale Nonlinear Systems-Quadratic-
Order Theory of Composite-System Method Using M-Matrices,” IEEE
Transactions on Automatic Control, vol. 23, no. 2, pp. 129–142, 1978.

[3] M. Arcak and E. D. Sontag, “Diagonal stability of a class of cyclic
systems and its connection with the secant criterion,” Automatica,
vol. 42, no. 9, pp. 1531–1537, 2006.

[4] L. Bakule, “Decentralized control: An overview,” Annual Reviews in
Control, vol. 32, no. 1, pp. 87–98, 2008.

[5] V. Balakrishnan and L. Vandenberghe, “Semidefinite programming
duality and linear time-invariant systems,” IEEE Transactions on
Automatic Control, vol. 48, no. 1, pp. 30–41, 2003.

[6] G. P. Barker, A. Berman, and R. J. Plemmons, “Positive diagonal
solutions to the Lyapunov equations,” Linear and Multilinear Algebra,
vol. 5, no. 4, pp. 249–256, 1978.

[7] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix
Inequalities in System and Control Theory, 1994, vol. 15.



[8] D. Carlson, D. Hershkowitz, and D. Shasha, “Block diagonal semista-
bility factors and Lyapunov semistability of block triangular matrices,”
Linear Algebra and Its Applications, vol. 172, no. C, pp. 1–25, 1992.

[9] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex
programming, version 2.1,” http://cvxr.com/cvx, Mar. 2014.

[10] MOSEK ApS, The MOSEK optimization toolbox for MATLAB manual.
Version 8., 2017.

[11] K. S. Narendra and R. Shorten, “Hurwitz stability of Metzler matrices,”
IEEE Transactions on Automatic Control, vol. 55, no. 6, pp. 1484–
1487, 2010.

[12] P. A. Parrilo, “Structured Semidefinite Programs and Semialgebraic
Geometry Methods in Robustness and Optimization,” PhD Thesis,
California Institute of Technology, 2000.

[13] S. Prajna, A. Jadbabaie, G. J. Pappas, and S. Member, “A Framework
for Worst-Case and Stochastic Safety Verification Using Barrier Cer-
tificates,” IEEE Transactions on Automatic Control, vol. 52, no. 8, pp.
1415–1428, 2007.

[14] A. Rantzer, “Dynamic dual decomposition for distributed control,”
Proceedings of the American Control Conference, pp. 884–888, 2009.

[15] R. N. Shorten and K. S. Narendra, “On a theorem of Redheffer
concerning diagonal stability,” Linear Algebra and Its Applications,
vol. 431, pp. 2317–2329, 2009.

[16] C. Sloth, R. Wisniewski, and G. J. Pappas, “On the existence of com-
positional barrier certificates,” Proceedings of the IEEE Conference on
Decision and Control, pp. 4580–4585, 2012.

[17] A. Sootla and J. Anderson, “On existence of solutions to structured
Lyapunov inequalities,” Proceedings of the American Control Confer-
ence, vol. 2016-July, no. 0, pp. 7013–7018, 2016.

[18] T. Tanaka and C. Langbort, “The Bounded Real Lemma for Internally
Positive Systems and H-Infinity Structured Static State Feedback,”
IEEE Transactions on Automatic Control, vol. 56, no. 9, pp. 2218–
2223, 2011.

[19] M. M. Tobenkin, F. Permenter, and A. Megretski, “Spotless polyno-
mial and conic optimization,” https://github.com/spot-toolbox/spotless,
2015.

[20] U. Topcu, A. Packard, and R. Murray, “Compositional stability anal-
ysis based on dual decomposition,” Proceedings of the 48h IEEE
Conference on Decision and Control (CDC), pp. 1175–1180, 2009.

[21] J. C. Willems, “Lyapunov functions for diagonally dominant systems,”
Automatica, vol. 12, no. 5, pp. 519–523, 1976.

[22] Y. Zheng, M. Kamgarpour, A. Sootla, and A. Papachristodoulou,
“Convex Design of Structured Controllers using Block-Diagonal
Lyapunov Functions Convex Design of Structured Controllers using
Block-Diagonal Lyapunov Functions,” 2017. [Online]. Available:
https://arxiv.org/abs/1709.00695


