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Abstract
Choosing features for the critic in actor-critic al-
gorithms with function approximation is known
to be a challenge. Too few critic features can
lead to degeneracy of the actor gradient, and too
many features may lead to slower convergence
of the learner. In this paper, we show that a well-
studied class of actor policies satisfy the known
requirements for convergence when the actor fea-
tures are selected carefully. We demonstrate that
two popular representations for value methods -
the barycentric interpolators and the graph Lapla-
cian proto-value functions - can be used to repre-
sent the actor in order to satisfy these conditions.
A consequence of this work is a generalization
of the proto-value function methods to the con-
tinuous action actor-critic domain. Finally, we
analyze the performance of this approach using
a simulation of a torque-limited inverted pendu-
lum.

1. Introduction
Actor-Critic (AC) algorithms, initially proposed by (Barto
et al., 1983), aim at combining the strong elements of
the two major classes of reinforcement learning algorithms
– namely the value-based methods and the policy search
methods. As in value-based methods, the critic component
maintains a value function, and as in policy search meth-
ods, the actor component maintains a separate parameter-
ized stochastic policy from which the actions are drawn.
This combination may offer the convergence guarantees
which are characteristic of the policy gradient algorithms as
well as an improved convergence rate because the critic can
be used to reduce the variance of the policy update (Konda
and Tsitsiklis, 2003).
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Recent AC algorithms use a function approximation ar-
chitecture to maintain both the actor policy and the critic
(state-action) value function, relying on Temporal Differ-
ence (TD) learning methods to update the critic parame-
ters. Konda and Tsitsiklis (2000) and Sutton et al. (2000)
showed that in order to compute the gradient of the per-
formance function (typically using the average cost crite-
rion) with respect to the parameters of a stochastic policy
µθ(x,u) it suffices to compute the projection of the state-
action value function onto a sub-space Ψ spanned by the
vectors ψi

θ(x, u) = ∂
∂θi

logµθ(x,u). Konda and Tsitsiklis
(2003) also noted that for certain values of the policy pa-
rameters θ, it is possible that the vectors ψi

θ are either close
to zero, or almost linearly dependent. In these situations the
projection onto Ψ becomes ill-conditioned, providing no
useful gradient information, and the algorithm can become
unstable. As a remedy for this problem the authors sug-
gested the use of a richer, higher dimensional set of critic
features which contain the space Ψ as a proper subset.

In this paper, we attempt to design features which span Ψ
and preserve linear independence without increasing the
dimensionality of the critic. In particular, we investigate
stochastic actor policies represented by a family of Gaus-
sian distributions where the mean of the distribution is lin-
early parameterized using a set of a fixed basis functions.
For this parameterization, we show that if the basis func-
tions in the actor are selected to be linearly independent,
then the minimal set of critic features which naturally sat-
isfy the containment condition also form a linearly inde-
pendent basis set.

2. Preliminaries
In this section we present a brief overview of the AC algo-
rithms with function approximation adapted from (Konda
and Tsitsiklis, 2003). Assume that the problem is modeled
as a Markov decision process M = 〈X ,U ,P, C〉, where
X is the state space, U is the action space, P(x′|x, u) is
the transition probability function, C : X × U → < is
the one step cost function, and µθ is a stochastic policy
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parameterized by θ ∈ <n where µθ(u|x) gives the prob-
ability of selecting an action u in state x, parameterized
by the vector θ ∈ <n. We also assume that for every
θ ∈ <n, the Markov chains {Xk} and {Xk, Uk} are irre-
ducible and aperiodic, with stationary probabilities πθ(x)
and ηθ(x, u) = πθ(x)µθ(u|x) respectively.

The average cost function ᾱ(θ) : <n → < can be defined:

ᾱ(θ) =
∑

x∈X ,u∈U
c(x, u)ηθ(x, u)

For each θ ∈ <n, let Vθ : X → <, and Qθ : X × U be the
differential state, and the differential state-action cost func-
tions that are solution to the corresponding Poisson equa-
tions in a standard average cost setting. Then, following
the results of (Marbach and Tsitsiklis, 1998), the gradient
of the average cost function can be expressed as:

∇θᾱ(θ) =
∑
x,u

ηθ(x, u)Qθ(x, u)ψθ(x, u) (1)

where:
ψθ(x, u) = ∇θ lnµθ(u|x) (2)

The ith component of ψθ, ψi
θ(x, u) is the one-step eligi-

bility of parameter i in state-action pair x and u given by
ψi

θ(x, u) = ∂
∂θi

lnµθ(u|x). We will therefore refer to ψi
θ

as the actor eligibility vector, a vector in <|X ||U|. For any
θ ∈ <n, the inner product 〈·, ·〉θ of two real-valued func-
tions Q1,Q2 on X × U , also viewed as vectors in <|X ||U|,
can be defined by:

〈Q1,Q2〉θ =
∑
x,u

ηθ(x, u)Q1(x, u)Q2(x, u)

and let ‖ · ‖θ denote the norm induced by this inner product
on <|X ||U|. Now, we can rewrite Equation 1 as:

∂

∂θi
ᾱ(θ) = 〈Qθ, ψ

i
θ〉θ, i = 1, . . . , n.

For each θ ∈ <n, let Ψθ denote the span of the vectors
{ψi

θ; 1 ≤ i ≤ n} in <|X ||U|. An important observation is
that although the gradient of ᾱ depends on the function
Qθ, which is a vector in a possibly very high-dimensional
space <|X ||U|, the dependence is only through its inner
products with vectors in Ψθ. Thus, instead of “learning”
the function Qθ, it suffices to learn its projection on the
low-dimensional sub-space Ψθ.

Konda and Tsitsiklis (2003) consider actor-critic algo-
rithms where the critic is a TD algorithm with a linearly
parameterized approximation architecture for the Q-value
function that admits the linear-additive form:

Qr
θ(x, u) =

m∑
j=1

rjφj
θ(x, u) (3)

where r = (r1, . . . , rm) ∈ <m is the parameter vec-
tor of the critic. The critic features φj

θ, j = 1, . . . ,m
depend on the actor parameter vector and are chosen so
that the following assumptions are satisfied: (1) For every
(x, u) ∈ X ×U , the map θ → φθ(x, u) is bounded and dif-
ferentiable; (2) The span of the vectors φj

θ (j = 1, . . . ,m)
in <|X ||U| denoted by Φθ, contains Ψθ.

As noted by (Konda and Tsitsiklis, 2003), one trivial choice
for satisfying the second condition would be to set Ψ = Φ,
or in other words to set critic features as φi

θ = ψi
θ. How-

ever, it is possible that for some values of θ, the features
ψi

θ are either close to zero, or almost linearly dependent. In
these situations the projection of Qr

θ onto Ψ becomes ill-
conditioned, providing no useful gradient information, and
therefore the algorithm may become unstable. Konda and
Tsitsiklis (2003) suggest some ideas to remedy to this prob-
lem. In particular, the troublesome situations are avoided if
the following condition is satisfied: (3) There exists a > 0,
such that for every r ∈ <m, and θ ∈ <n:

‖ r′ φ̂θ ‖2θ ≥ a|r|2

where φ̂ = {φ̂i}m
i=1 are defined as:

φ̂i
θ(x, u) = φi

θ(x, u)−
∑
x̄,ū

ηθ(x̄, ū)φi
θ(x̄, ū) (4)

This condition can be roughly explained as follows: the
new functions φ̂i

θ can be viewed as the original critic fea-
tures with their expected value (with respect to the distribu-
tion ηθ(x, u)) removed. In order to ensure that the projec-
tion of Qr

θ onto Ψ contains some gradient information for
the actor (and to avoid instability), the set φ̂θ must be uni-
formly bounded away from zero. Given these conditions,
Konda and Tsitsiklis (2003) prove convergence for of the
most common form for the actor-critic update (see (Konda
and Tsitsiklis, 2003, p.1148) for the updates).

Konda and Tsitsiklis (2003) go on to propose adding ad-
ditional features to the critic as a remedy, but satisfying
this condition is still a difficult problem. To the best of
our knowledge there is no general systematic approach for
choosing a set of critic features that satisfies this third con-
dition. In the next section, we will address this issue for
one commonly used policy class.

3. Our Approach
We consider the following popular Gaussian probabilistic
policy structure parameterized by θ:

µθ(u|x) =
1

(2π)
n
2 |Σ| 12

exp{−1
2
(u−mθ(x))T Σ−1 (u−mθ(x))} (5)
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where u ∈ <k is a multi-dimensional action vector. The
vector mθ(x) ∈ <k is the mean of the distribution that is
parameterized by θ:

mi
θ(x) =

n∑
j=1

θij ρj(x), i = 1, . . . , k (6)

where in this setting θ ∈ <k×n. The functions ρj(x) are a
set of actor features defined over the states. For simplicity,
in this paper we only investigate the case where Σ = σ2

0 I.
In this case Equation 5 simplifies to:

µθ(u|x) =
1

(2π)
k
2 σk

0

exp{− 1
2σ2

0

(u−mθ(x))T (u−mθ(x))} (7)

Using Equation 2 we can compute the actor eligibility vec-
tors as follows:

ψij
θ (x,u) =

∂

∂θij
lnµθ(u|x)

=
∂

∂θij

[
−ln((2π)

k
2 σk

0 )−

1
2σ2

0

(u−mθ(x))T (u−mθ(x))}
]

=
1
σ2

0

(u−mθ(x))T ∂

∂θij
mθ(x)

=
1
σ2

0

(ui −mi
θ(x))ρj(x)

= κi
θ(x,u)ρj(x)

(8)

where κi
θ(x,u) = (ui−mi

θ(x))

σ2
0

. In order to satisfy the con-
dition (2) in the previous section (Φ should properly con-
tain Ψ), we apply the straightforward solution of setting
φij = ψij for i = 1, . . . , k and j = 1, . . . , n. This se-
lection also guarantees that the mapping from θ to φθ is
bounded and differentiable, from condition (1). In Propo-
sition 1, we show that for the particular choice of policy
structure that we have chosen, if the actor features, ρj(x),
are linearly independent, then the critic features will also
be linearly independent.

Proposition 1: If the functions ρ = {ρj}n
j=1 are linearly

independent, then the set of critic feature functions φij will
form a linearly independent set of functions.

Proof: We prove by contradiction that if the above con-
dition holds, then the set of actor eligibility functions ψij

(and therefore also φij) are linearly independent. Assume
that the functions ψij are linearly dependent. Then there
exists α = {αij ∈ <}k,n

i=1,j=1 such that

k,n∑
i=1,j=1

αij ψ
ij(x,u) = 0, ∀x ∈ X , ∀u ∈ U ,

and ‖ α ‖2> 0. Substituting the right hand side of the
Equation 8 for ψij(x,u) yields:

k,n∑
i=1,j=1

αij κ
i
θ(x,u)ρj(x) = 0, ∀x ∈ X , ∀u ∈ U .

By regrouping terms we obtain:

n∑
j=1

(
k∑

i=1

αijκ
i
θ(x,u)

)
ρj(x) = 0, ∀x ∈ X , ∀u ∈ U .

Since according to the assumption the functions ρ =
{ρj}n

j=1 are linearly independent, then the following con-
dition must hold:

k∑
i=1

αijκ
i
θ(x,u) = 0, ∀j = 1, . . . , n, ∀x ∈ X , ∀u ∈ U

(9)
But for every i, there exists an (x,u) such that κi

θ(x,u) 6=
0:

κi
θ(x,mθ(x) + εi1) =

εi
σ2

0

, (10)

where 1 is the k × 1 vector of ones, and εi 6= 0. Note that
the above condition holds for all εi ∈ <−{0}. Now, define
a (k × 1) vector hl (for l = 1, . . . , k) as:

hl(j) = { ε if j 6= l
2ε if j = l

(11)

for some ε > 0. Based on Equation 10, if we choose u =
mθ(x) + hl in Equation 9, we obtain:

1
σ2

0

hl
T ᾱij = 0, ∀l = 1, . . . , k

where ᾱij = [α1j , α2j , . . . , αkj ]T . This gives us the fol-
lowing system of equations (for a fixed value of j):

A ᾱij = 0, i = 1, . . . , k (12)

where Ak×k = [h1h2 . . .hk]T . Note that for the particular
choice of the vectors hl (Equation 11), the matrix A has
a full-rank (since the vectors hl are linearly independent),
and thus the only solution to the Equation 12 is ᾱij = 0.
This means that αij = 0 (for all i,j), and thus ‖ α ‖2= 0.
By contradiction, ψij (and therefore φij) must be linearly
independent.

Proposition 1 provides a mechanism for ensuring that the
θ-dependent critic features remain linearly independent for
all θ’s, thereby avoiding a major source of potential in-
stabilities in the AC algorithm. However, to meet the
strict conditions from (Konda and Tsitsiklis, 2003), we
should also demonstrate that the critic features are uni-
formly bounded away from zero. Proposition 2 allows us to
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demonstrate that a set of actor features that is also linearly
independent with the function 1 satisfies the weak form of
condition (3).

Proposition 2: If the functions 1 and ρ = {ρj}n
j=1,

j = 1, . . . , n are linearly independent, then the set of critic
feature functions φij and the function 1, will also form a
linearly independent set of functions.

Proof (sketch): We follow the proof of the proposition 1.
Assume that the functions ψij are linearly dependent. Then
there exists α = {αij ∈ <}k,n

i=1,j=1 ∪ {α1 ∈ <} such that:

k,n∑
i=1,j=1

αij ψ
ij(x,u) + α11 = 0, ∀x ∈ X , ∀u ∈ U ,

and ‖ α ‖2> 0. Following the same steps as in proof of
proposition 1, we obtain:

n∑
j=1

(
k∑

i=1

αijκ
i
θ(x,u)

)
ρj(x)+α11 = 0, ∀x ∈ X , ∀u ∈ U .

(13)

Since according to the assumption the functions ρ =
{ρj}n

j=1 and 1 are linearly independent, then α1 = 0. Fol-
lowing the rest of the steps in proof of the proposition 1,
it can be also established that αij = 0 (for all i,j). This
completes the proof.

Konda and Tsitsiklis (2003) prove that if the functions 1
and the critic features φi

θ are linearly independent for each
θ, then there exists a positive function a(θ) such that:

‖ r′ φ̂θ ‖2θ ≥ a(θ) ‖ r ‖2 (14)

(refer to Section 2, Equation 4 for the definition of φ̂θ).
This is the weak form of the non-zero projection property.

Finally, it should be noted that it is also possible to tune
the standard-deviation of the policy distribution, σ0, as a
function of state using additional policy parameters, w. If
we parameterize the variance as:

σ0(x) = [1 + exp(−
∑

i

wiρ
i(x))]−1

then the eligibility of this actor parameter takes the form:

∂

∂wi
lnµθ,w(x, u) =(

(u−mθ(x))2 − σ2
0(x)

)
(1− σ0(x)) ρi(x)

= κi
θ,w(x, u)ρj(x)

It can be shown that this set of vectors forms a linearly in-
dependent basis set, which is also independent of the bases
Ψ.

4. Candidate Features
In this section we investigate two different approaches for
choosing linearly independent actor features, ρj(x).

4.1. Unit Basis Functions

Unit Basis Functions are the simplest linear independent
basis set. For a random walk of size N in the state space,
we can define a unit basis set U = {ui}m

i=1, for some
m ≤ N , where ui is a unit vector of size N , with a 1 at
ith position, and zero elsewhere (note that by reordering i
we can select different subset of the nodes of the random
walk).
Proposition 3: For any given set of unit basis functions U ,
if |U| < N , then U will satisfy the weak form of the non-
zero projection property presented in Equation 14.
Proof (sketch): We know that the unit basis functions de-
fined over a space of dimension N are linearly independent.
Since |U| < N , then they are also linearly independent of
the function 1. Based on the results of the Proposition 2,
the critic feature functions φij are also linearly independent
and also linearly independent of the function 1, and the fea-
tures will satisfy the weak non-zero projection property.

4.2. Barycentric Interpolation

Barycentric interpolants described in (Munos and Moore,
1998, 2002) are defined as an arbitrary set of (non-
overlapping) mesh points ξi distributed across the state
space. We denote the vector-valued output of the func-
tion approximator at each mesh point as m(ξi). For an
arbitrary x, if we define a simplex S(x) ∈ {ξ1, ..., ξN}
such that x is in the interior of the simplex, then the output
at x is given by interpolating the mesh points ξ ∈ S(x):
mθ(x) =

∑
ξi∈S(x) m(ξi)λξi

(x). Note that the inter-
polation is called barycentric if the positive coefficients
λξi(x) sum to one, and if x =

∑
i ξiλξi(x) (Munos and

Moore, 1998). In addition, Munos and Moore (1998) de-
note the piecewise linear barycentric interpolation func-
tions as functions for which the interpolation uses exactly
dim(x)+1 mesh points such that the simplex for state x is
the simplex which forms a triangulation of the state space
and does not contain any interior mesh points. Barycentric
interpolators are a popular representation for value func-
tions, because they provide a natural mechanism for vari-
able resolution discretization of the value function, and the
barycentric co-ordinates allow the interpolators to be used
directly by value iteration algorithms.
These interpolators also represent a linear function approx-
imation architecture; we confirm here that the feature vec-
tors are linearly independent. Let us consider the output at
the mesh points as the parameters, θi = m(ξi), and the in-
terpolation function as the features ρi(x) = λξi(x).
Proposition 4: The features ρi(x) formed by the piecewise
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linear barycentric interpolation of a non-overlapping mesh
(ξi 6= ξj ,∀i 6= j) form a linearly independent basis set.
Proof (sketch): For a non-overlapping mesh, consider the
solution for the barycentric weights of a piecewise linear
barycentric interpolation evaluated at x = ξi. There are
multiple simplices S(x) that contain x, but for each such
simplex, x is a vertex of that simplex. By definition of
a simplex, x is linearly independent of all other vertices
of each simplex. As a result, the unique solution for the
barycentric weights is ρi(x) = 1, ρj(x) = 0, ∀j 6= i.
Since for each feature we can find an x which is non-zero
for only that feature, the basis set must be linearly indepen-
dent. Note that the traditional barycentric interpolators are
not constrained to be linearly independent from the func-
tion 1.

4.3. Graph Laplacian

Proto-Value Functions (PVFs) (Mahadevan and Maggioni,
2007) have recently shown some success in automatic
learning of representations in the context of function ap-
proximation in MDPs. In this approach, the agents learn
global task-independent basis functions that reflect the
large-scale geometry of the state-action space that all task-
specific value functions must adhere to. Such basis func-
tions are learned based on the topological structure of
graphs representing the state (or state-action) space man-
ifold. PVFs are essentially a subset of eigenfunctions of
the graph Laplacian computed from a random walk graph
generated by the agent. We show here that if the proto-
value functions are used instead to represent features of the
actor, instead of the critic, then this representation satisfies
our Proposition 2.
Proposition 5: If the functions {ρj}n

j=1 are the proto-value
functions computed from the graph generated by a random
walk in state space, then the set of critic features and the
function 1 will form a linearly independent basis set, and
will satisfy the weak form of the non-zero projection prop-
erty presented in Equation 14.
Proof (sketch): Since the functions {ρj}n

j=1 are the eigen-
functions of the graph Laplacian computed from the graph
generated by a random walk in state space, they are lin-
early independent. Note that the function 1 is always the
eigenfunction of any graph Laplacian associated with the
eigenvalue 0. That implies the functions {ρj}n

j=1 are also
linearly independent of the function 1. Based on the results
of the Proposition 2, the critic feature functions φij are also
linearly independent and also linearly independent of the
function 1, and the features will satisfy the weak non-zero
projection property.

5. Experiments
We demonstrate the effectiveness of our feature selec-
tions by learning a control policy for the swing-up task
on a torque-limited inverted pendulum, governed by q̈ =

1
ml2 [τ − b q̇ −mg l cos(q)], with m = 1, l = 1, b =
1, g = 9.8, |τ | < 1, and initial conditions q = −π

2 , q̇ = 0.
We use an infinite-horizon, average reward formulation (no
resetting) with the instantaneous cost function:

g(q, q̇, τ) =
1
2
(q − π

2
)2 +

1
2
q̇2 +

1
10
τ2

The policy is evaluated every dt = 0.1 seconds; τ is held
constant (zero-order hold) between evaluations.
BASIS FUNCTIONS: We employed a variety of basis
functions parameterizing the actor’s policy (i.e., the ρ basis
functions in Equation 6) as follows:
Barycentric Interpolators: We use linear barycentric fea-
tures on a uniform mesh over the state space, with 16 bins
on θ over the interval [−π, π], and 10 bins on θ̇ over the
interval [−1, 1].
Proto Value Functions (PVFs): We generated a random
walk of size 4781 using rapidly-exploring randomized trees
(RRTs) (LaValle and Kuffner, 2000) for coverage. Note
that this is in place of the traditional “behavioral policy”
used to identify the proto-value functions; it provides a fast
and efficient coverage of our continuous state space. We
then computed the Laplacian eigen-vectors and used a set
of 10 eigen functions (eigen-vectors 2-11) in all of our ex-
periments. For generalizing to unseen states, we used a
weighted average of 20 nearest neighbors of that state to
approximate the policy in that state.
Perturbed PVFs: We also generated a set of perturbed
PVF basis functions, by perturbing the original PVF ba-
sis set computed as above using a Gaussian noise. In our
experiments the model PV F + N (0, σ2

p) refers to an ex-
periment where the original PVFs (consisting of 10 eigen
functions (eigen vectors 2-11)) are perturbed using a Gaus-
sian noise N (0, σ2

p). The primary reason for using a noisy
PVF basis set is to investigate the convergence properties
of the model as a function of noise in the original basis set.
Unit Basis Functions: We used a set of 10 unit basis func-
tions defined at 10 random nodes of the random walk over
the state space.
Polynomial Basis Functions: We used a polynomial func-
tion of degree 4 (i.e., (1, q, q̇, q q̇, . . . , q4, q̇4)) for a total
of 15 for approximating the actor’s policy.
Radial Basis Functions (RBFs): We used a set of 10 ra-
dial basis functions for approximating the actor’s policy .
These 10 basis functions included a constant term and 9
radial basis functions (Gaussians):(

1, exp{−
‖ s− µ1

rbf ‖2

2σ2
rbf

}, . . . , exp{−
‖ s− µ9

rbf ‖2

2σ2
rbf

)
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BASIS FUNCTIONS CONVERGED (PERCENTAGE)

UNIT 100 %
PVF 100 %
BARYCENTRIC∗ 100 %
RBF 10 %
PVF + N (0, 0.10) 95 %
PVF + N (0, 0.50) 45 %
PVF + N (0, 1.0) 0 %
PVF + N (0, 1.5) 0 %
PVF + N (0, 2.0) 0 %
POLYNOMIAL 0 %

Table 1. Percentage of convergence of AC with various function
approximation methods computed over 20 runs of each method.
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Figure 1. Performance comparison among AC with using PVF ba-
sis functions, AC with unit basis functions, and AC using per-
turbed set of PVF basis functions.

for a state s = (q, q̇). Here the {µi
rbf}9i=1 are the 9 points of

the grid covering the state space located at {π/2, 0, π/2}×
{−1, 0, 1}. In order to evaluate the convergence properties
of the AC with the above basis functions, we setup up an
experiment where we measured the percentage of conver-
gence of each method over 20 runs of each, for total of 4000
steps. The results are reported in Table 1. As we can see in
this table, the representations on which our convergence re-
sults apply (Unit, Barycentric, and PVF), the algorithm did
converge experimentally on every run. More surprising was
the observation that other commonly used features actually
diverge in relatively benign experiments. The RBF experi-
ments only converged on 10% of the experiments, and AC
with polynomial basis functions diverged at every single
experiment (with polynomial basis functions, we also tried
different learning rates in AC algorithm; the experiments
diverged quickly).

Figure 1 shows the moving mean of the average cost for
four different approaches for every 200 steps, namely AC
with PVF, AC with perturbed PVF (with Gaussian noise
N (0, 0.10)), AC with unit basis functions, and finally AC

with barycentric interpolation. In all methods the policy
is parameterized as in Equation 5 using the corresponding
basis set. Each trial starts the pendulum from the initial
condition, with the parameters of the actor and critic ini-
tialized to small random values. AC with PVF achieves the
best performance, followed closely by barycentric. Note
that the AC with perturbed PVF basis set initially performs
better then the AC with unit basis functions, however it the
performance degrades by time and it slowly diverges.

6. Conclusions
In this paper, we provide some insights for designing fea-
tures for actor-critic algorithms with function approxima-
tion. For a limited policy class, we demonstrate that a lin-
early independent feature set in the actor permits a linearly
independent feature set in the critic. This condition is sat-
isfied by the piecewise linear barycentric interpolators, and
by the features based on a graph Laplacian. When com-
bined with an additional linear independence with the func-
tion 1, the critic features for any particular θ are uniformly
bounded away from zero. This condition is satisfied by the
graph Laplacian features. Finally, our experimental results
demonstrate that our proposed representation smoothly and
efficiently converges to a local minimum for a simulated in-
verted pendulum control task.
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