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Abstract

Controlling the interaction of a robot with a fluid, particularly when the desired behavior is
intimately related to the dynamics of the fluid, is a difficult and important problem. High-
performance aircraft cannot ignore nonlinear stall effects, and robots hoping to fly and swim
with performance matching that seen in birds and fish cannot treat fluid flows as quasi-
steady. If we wish to match the level of performance seen in nature several major hurdles
must be overcome, with one of the most difficult being the poor observability of the fluid
state. Fluid dynamicists have long contended with this observability problem, and have
used computationally intensive Particle Image Velocimetry (PIV) to gain an understanding
of the fluid behavior after the fact. However, improvement in available computational
power is now making it possible to perform PIV in real-time. When PIV provides real-time
awareness of the fluid state it is no longer just an analysis tool, but rather a valuable sensor
that can be integrated into the control loop.

In this thesis I present methods for controlling fluid-body systems in which the fluid

plays a vital dynamical role, for performing real-time PIV, and for interpreting the output

of PIV in a manner useful to control. The utility of these methods is demonstrated on a

mechanically simple but dynamically rich experimental platform: the hydrodynamic cart-

pole. This system is analogous to the well-known cart-pole system in the controls literature,

but through its relationship with the surrounding fluid it captures many of the fundamental

challenges of general fluid-body control tasks, including: nonlinearity, underactuation, an

important and unknown fluid state and a dearth of accurate and tractable models. The first

complete demonstration of closed-loop PIV control is performed on this system, and there

is a statistically significant improvement in the system’s ability to reject fluid disturbances

when using real-time PIV for closed-loop control. These results suggest that these new

techniques will push the boundaries of what we can expect a robot in a fluid to do.

Thesis Supervisor: Russ Tedrake
Title: X Consortium Associate Professor
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Chapter 1

Introduction

Controlling the interaction of a body with a fluid – as in done by birds, fish, aircraft

and myriad other systems – is a problem of great importance and subtle complexity.

Birds’ ability to fly through forests, maneuvering between dense obstacles at high

speeds, is unmatched by current man-made technology. Similarly, experiments on

fish in the lab have demonstrated the degree to their bodies are tuned to swim;

not simply through their streamlined shape, but through the dynamical relationship

between the mass and compliance of the fish and the forces present in the surrounding

fluid [10, 52, 50].

Obtaining useful dynamical models of these systems is, however, extremely diffi-

cult. Leaving aside the particular challenges of modeling the internal dynamics of a

living creature such as a fish, the behavior of Navier-Stokes when coupled to equations

of motion for an immersed body is tremendously complex. Even the most advanced

computational methods struggle to reproduce the dynamics of an experimental sys-

tem. For some special cases such as rigid airfoils at quasi-steady operation good

methods do exist [86, 92], but for many important fluid-body systems, such as small

Unmanned Aerial Vehicles (UAVs) executing high-performance maneuvers, starting

from first-principles produces unsatisfactory returns.

Furthermore, when interacting with a complex flow environment another problem
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arises: the importance of a fluid state which can be very difficult to measure using

only local sensors such as pressure taps and anemometers. If flow features such

as vortices are on the same scales as the body to be controlled (e.g., neither small

enough to be ignored as discrete objects nor large enough to be treated as a more

global change) they can have complicated effects which are very difficult to model

effectively. Contending with this sensing problem is non-trivial, and in many cases it

can be difficult to determine what measurements are appropriate to make informative,

and what aspects of the flow are important.

The literature has treated problems of this class with two different approaches:

high-performance control of UAVs with an experimental focus that neglects fluid

disturbances, or controlling fluid systems with a computational (i.e., CFD) focus that

concentrates on the fluid and does not include coupling with a body. A detailed review

of the work on controlling UAVs can be found below in §1.2.1, but in brief it has the

following characteristics: good first-principles models coupled with strong actuators,

and, in some cases, expert demonstrations of desired trajectories and inputs, allow for

impressive performance on actual experimental systems. This work includes Abbeel’s

apprenticeship learning for an aerobatic helicopter [1], Mellinger’s minimum snap

trajectories for quadrotors [62] and Lupashin and D’Andrea’s work on quadrotor

flips [58]. On windy days, however, recorded expert maneuvers can become infeasible,

and first-principles models can be completely inadequate in gusty conditions.

Alternatively, there is work on directly controlling fluid systems that consider

complicated, unsteady fluid effects, but it does not generally deal with the additional

difficulty of fluid-body coupling. This literature considers problems such as cavity

flows [20], the vortex wake of a cylinder [12], the mixing behavior of a fluid jet [97]

and the improvement of lift-to-drag ratios for stalled or near-stalled wings [72, 90]. A

detailed review may again be found below in §1.2.2, but in brief this work is frequently

computational in nature (i.e., not validated on an experiment), often considers only

open-loop controllers [34] and the control objectives are purely functions of the flow

12



(e.g., suppress the instability of a cavity flow [9]). While the work in this literature

does deal with directly controlling complex fluid behaviors, it does not consider the

effects arising from the coupling between the fluid and a body being controlled. For

example, when studying the stalled wing [72] assumes the wing is traveling in a quasi-

steady domain irrespective of what the actuators do. As a result, it does not offer

easy solutions to the fluid-body control problems considered here.

This thesis is concerned with designing a relatively general methodology for con-

trolling fluid-body systems at the intersection of these two different approaches. The

goal is to control an underactuated, experimental fluid-body system in the presence

of intermittent fluid disturbances capable of drastically impacting the body. This can

be broken up into two basic tasks:

• Control a complex, underactuated dynamical system arising from the coupled

dynamics of a body and its surrounding fluid.

• Allow the body to respond to significant, intermittent fluid disturbances on the

scale of the body itself.

The methodology presented here to deal with these difficulties is predicated on a very

basic assumption that holds largely true despite these systems’ complexity: a given

interaction is relatively repeatable. For example, when attempting a certain maneu-

ver, or when repeatedly encountering a vortex of a certain strength, the system will

respond with a “sufficiently small” variation in outputs. In this context “sufficiently

small” means that a local model can be found that is relevant within the range of

the variation. This is often much easier than finding a model relevant over the full

domain of operation of the system, and is more amenable to models based on general-

purpose model classes1. This assumption is often particularly true in laboratory fluid

dynamics experiments as great effort is taken to ensure repeatability in experiments,

1In this thesis local models were all of time-varying linear form, with free parameters motivated
by a basic physical understanding of the system. Much richer and more specialized model classes
could also be used, but this thesis focuses on this easily transferable model class.

13



even to the point of waiting several hours between experiments to allow the fluid to

become quiescent[42].

Using these local models a desired trajectory for the system can be found, along

with an associated feedback controller to stabilize it. This new trajectory will, if the

necessary procedures outline in the subsequent chapters are followed, perform better

(e.g., more precise response; better disturbance rejection) than the initial system

behavior. More data can then be collected, another local model can be found, and

the procedure can be repeated again until convergence.

This procedure can the be coupled with with information obtained from real-time

Particle Image Velocimetry, or PIV. PIV is a sort of “motion capture for fluids” capa-

ble of providing the full velocity field of a fluid flow. Recent advances in computation

have allowed it to be performed in real-time, making accurate flow fields available

during run time. With this information, relevant flow disturbances can be identified

and responded to even if they have not yet significantly affected the controlled body.

By “seeing into the flow future of the flow” superior performance can be achieved,

and even complex flow disturbances can be handled in a systematic manner. If the

ultimate application is such that PIV cannot be easily deployed (e.g., a UAV flying

through a forest), the information obtained by developing PIV-capable controllers can

act as a form of “scaffolding,” telling the control designer what fluid states are impor-

tant, and what degree of knowledge of the flow is necessary to attain the benchmark

level of performance achieved in the fully observable PIV case.

The efficacy of this methodology is demonstrated on a simple but dynamically rich

experimental test-bed: the Hydrodynamic Cart-Pole, or HCP. The HCP is described

in detail in Chap. 2, but it can be thought of as a fluid analog of a the well-known

cart-pole system. The difference between the classical cart-pole and the HCP is that

instead of operating against gravity in the vertical plane, the HCP operates against a

fluid flow in the horizontal plane (see Fig. 1-1). The fluid attempts to make the HCP

point downstream, but by moving the cart the pole can be balanced while pointing

14



Figure 1-1: Schematic of the HCP system when looking from above (i.e,. gravity is
into the page). The fluid flows from left to right while the pole (which is free to rotate)
can be moved up and down by the cart. This motion of the cart is the only input
to the system. The pole as shown is at the upright configuration which is passively
unstable. Due to weathercock stability the pole will naturally spin 180◦ and point
downstream if the cart is not moved to stabilize it. The yellow perturbation wing
can be rotated to generate vortices which travel downstream and perturb the cart, if
desired. See Chap. 2 for a full discussion of the system.

upstream. To simulate fluid disturbances a “perturbation wing” is placed upstream

from the HCP. By moving this perturbation wing vortices can be shed downstream

to disturb the HCP. Rejecting these disturbances effectively with the aid of PIV is

the ultimate goal of this thesis, and is described in Chap. 5.

1.1 Organization of this Thesis

The remainder of thesis is organized around a means of designing controllers in the

presence of these two classes of difficulties by iterative data-driven methods and real-

time PIV. The chapters are as follows:

1. Introduction - Introduces the high-level problems and the philosophy of the

solution. Describes the structure of the thesis. Presents an overview of the

15



relevant literature (with further citations within the text when appropriate).

2. The Hydrodynamic Cart-Pole - Describes the Hydrodynamic Cart-Pole (HCP);

the experimental system on which the control design methodologies presented

in this thesis were studied and validated. The hardware is presented and a

basic, quasi-steady model of the system is developed.

3. Control without PIV - State observer design and basic control tasks are per-

formed. The limitation of traditional, model-based feed-forward and feedback

controllers in high-performance settings is demonstrated. A general-purpose al-

gorithm to improve performance without building a more accurate global model

is presented and its utility tested experimentally on the HCP.

4. Real-Time PIV - The PIV algorithm is briefly explained, and the manner in

which it was implemented at real-time speeds is discussed. Filtering methods

that extract relevant, low-order information from the vector fields produced by

PIV are presented and their performance tested on real flow data.

5. PIV-Enabled Control - Real-time PIV and the iterative local-model based

control design method are integrated on the HCP to reject flow disturbances.

The improvement in performance over techniques without knowledge of the flow

state is demonstrated experimentally.

6. Conclusion - The results presented in the thesis are summarized, and promising

future directions are briefly outlined.

A. Implementation Details - An appendix containing details of some of the work

performed in the thesis that is not central to the primary argument.

B. Robust Learning Control - An appendix containing information on a different

technique that could be used to control fluid-body systems that is promising,

but more dependent on an initially accurate model than the method presented
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in the thesis proper. It is a relevant alternative approach, but is distinct from

the methods used herein.

1.2 Previous Work

The work in this thesis builds upon the extensive literature of Iterative Learning

Control and Adaptive Control (see §1.2.1) as well as work in real-time PIV processing

on FPGAs and flow control (see §1.2.2). The following two sections review the relevant

literature, with a focus on its relationship to the work performed in this thesis.

1.2.1 Iterative Controller Learning

Engineers attempting to design controllers for fluid-body systems frequently struggle

with the difficulty of constructing a first-principles model that is accurate enough

for high-performance control. “Data-driven” approaches in which either a highly-

phenomenological model is built from experimental data, or in which the control

policy is directly updated without ever constructing an explicit model, are an effective

means of circumventing the modeling problem, and it is with these techniques that

the work in this thesis has the most in common.

One of the common algorithms for improving a trajectory over time via experiment

is Iterative Learning Control (ILC). ILC has a long history, and in its standard form

can very effectively compensate for repeatable, structured disturbances [18]. In Bris-

tow’s definition (after Moore [63]), ILC modifies the control input (a signal) rather

than the controller (a dynamical system). In this way it is distinct from the con-

trol design procedure outlined in this thesis, but the philosophy of it is very similar.

Practically, the goal of ILC is to develop an open-loop input that rejects repeating

disturbances while ignoring non-repeating ones. A very common (and perhaps the

most common) method of performing this are so-called “PD” methods, with a form

much like a PD controller [105]. These update the input based on a combination
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of the measured error and the derivative of the measured error, and must be tuned

by hand. This can be very difficult for a nonlinear system, particularly when it is

underactuated and even the sign of the appropriate input update may be unknown.

Alternatively, methods based on inverting a model can be used, and may result

in very fast convergence, though for nonlinear plants inversion can be difficult. This

difficulty can be dealt with by linearizing the model around the desired behavior,

and has been successful in several applications [30]. This, however, presents several

difficulties for underactuated systems where the appropriate compensatory signal is

difficult to find, and thus the desired behavior (and the point about which to linearize)

is unclear. Furthermore, it depends upon possessing a model of the system which may

be unavailable or inaccurate.

There is also relevant work in the literature on adaptive control, where both a

controller and a feed-forward trajectory (not just an input) are learned from data.

The most relevant examples of adaptive control of fluid-body systems take place on

quadrotors, which are high-performance UAVs for which reasonably rich dynamical

models are available [40], though even these models are not accurate enough to design

high-performance controllers without adaptation. Control methods making use of

these dynamical models have achieved impressive results [58, 61, 60, 62], but it is the

goal of this thesis to not depend on an initial, relatively-accurate model.

Abbeel et al. used an adaptation method that built local models of the system near

the desired behavior, but it depends upon having an initial valid, nominal trajectory

to follow that is generated by having a human execute the specified task first [1, 2, 3].

Because of this dependence upon an having a “teacher” capable of performing the

task at the outset, the technique is termed “apprenticeship” or “imitation” learning.

For the work in this thesis I will not assume that there is a human expert who knows

how to execute the desired tasks. Instead, I will assume that there is no a priori

information about how attainable the specified goals are in practice, or what feasible

trajectory may achieve them.
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Lupashin and D’Andrea used a method in which certain “keyframes” were speci-

fied, and it was left to the quadrotor to discover a trajectory that satisfied them [59,

57]. This is a very similar formulation to that used in this thesis, but they used a

simple, first-principles model to solve for the updated high-gain controller, and con-

strained the controller to be of a form they heuristically chose as reasonable. Because

the model was available, relatively quick and robust performance could be achieved

without much data from the actual system. This thesis will not assume that an

accurate model exists, nor will it make use of a specialized policy parameterization

designed for the task at hand. However, in the case where the model and controller

parameterization are known, the method of Lupashin and D’Andrea will in general

be much more data efficient than the technique outlined here.

A further set of methods for designing effective trajectories and controllers comes

from the policy learning literature in Reinforcement Learning (RL) [109, 96, 45].

These techniques do not require a model, are robust to noise in the system’s opera-

tion and can easily encode user intuition in the structure of the policy (as Lupashin

and D’Andrea did in their method). RL techniques for learning effective trajectories

on fluid-body systems have seen success in experiments, and were the basis of my

previous work [78, 80, 79]. Using them to design not just trajectories but feedback

controllers is an exciting possibility, and while the literature includes the possibility

of learning feedback controllers in the theory, in practice it is infrequently seen. I

have worked on bridging this gap with an attempt to overcome some of the difficul-

ties in learning feedback controllers2 by learning controllers represented in the Youla

parameterization, and the direction is promising [77]. It is, however, not yet validated

on an physical experimental fluid system, but can be read about in some detail in §B.

Effectively, the iterative control design method proposed in this thesis fits a certain

niche within the spectrum of methods already present in the literature. It requires no

model, no initial valid trajectory, and no cleverly-designed policy parameterization.

2Namely, the loss of stability during learning and the many local minima present in gain space.
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It is not designed to follow a given trajectory (as is the case with ILC methods and

apprenticeship learning), or achieve a certain state at a specified keyframe (as is the

case with [57]), but rather to achieve certain performance goals such as minimizing

the maximum deviation in the presence of a structured disturbance. In the general-

purpose, model-starved domain studied in this thesis it is a natural fit, but in other

domains some of the other techniques outlined here are more appropriate.

1.2.2 PIV and Flow-Modeling for Control

Particle Image Velocimetry (PIV; see §4.1 for a description of the technique) has

been used for decades to study fluid flows in an offline setting [110, 35, 4]. Gener-

ally, despite the development of high-performance correlation techniques [36], PIV

has been too computationally intensive to do at the same timescale as an experimen-

tal fluid flow. Continuing advances in computational power, however, is making it

possible to perform at least basic versions of the PIV algorithm in an online setting,

in which the resulting vector fields are available nearly simultaneously with the flow

they represent [11].

The possibility of using this real-time PIV information in a feedback control loop

has been discussed for almost a decade, with a very basic implementation in [93] in

which six vectors were obtained with a delay on the order of 70ms, but no control

was actually performed. In [114], a FPGA was used to obtain many more vectors

still at real-time speeds, but again no control experiment was performed. In [108] it

was used in a low-Reynolds number flow to control the flow speed (by controlling a

pump) over a fixed airfoil in an oil tunnel, but did not actively drive the wing. This

last experiment is the most similar work to that studied in this thesis, but as only

the bulk flow was controlled, and not the body within the fluid, the comparisons are

only superficial.

A complementary literature to that of real-time PIV is the closed-loop control

of fluid flows. While this thesis concerns itself with controlling a fluid-body system,
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and the flow-control literature generally concerns itself with controlling only a fluid

without a coupled body, the evolution and structure of the fluid state during a fluid

disturbance is critically relevant to the performance of the system. Because of this it

is important to review this flow control work, even though it is not directly applicable

to the coupled fluid-body control problem considered here. Note also that this review

focuses on closed-loop flow control in which control inputs are a function of measure-

ments of the fluid state. There is an extensive literature on active flow control that

runs open loop, including work on improving the mixing in jets by actuating tiny

flaps around the jet exit [97], increasing the lift-to-drag ratios of airfoils when the are

nearly stalled [90] or stalled [72], and regulating leading-edge vortices on wings [34]3.

This work on open-loop control is interesting, and can be very effective at improving

fluid-body systems’ performance, but is not designed to make use of the novel sensing

capabilities offered by real-time PIV. Thus, the remainder of this section will focus

on closed-loop flow control.

1.2.2.1 Closed-Loop Flow Control

The full range of relevant fluid dynamics around the HCP are too complex to be

captured by simple lumped parameter models (see Chap. 2). Thus, it is natural to

consider models built on measurements of the fluid. The most prevalent method in

the literature for constructing fluid models from data is the combination of Proper

Orthogonal Decomposition, or POD [21] and the Galerkin projection [85].

POD is a statistical method for finding the “most important” directions in a set of

multidimensional data. It does this by finding an orthonormal basis for the collected

data that is aligned with the directions of greatest variation. Thus, if the data lies on

a low-dimensional hyperplane POD can extract that plane, and allow the dimension of

the system to be reduced while maintaining the important characteristics (i.e., the lo-

cation of the data on the hyperplane). It is, in effect, an efficient means of performing

3Gursul also mentions a closed loop controller for leading edge vortices, but the majority of
controllers in the review run open loop.
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manifold learning for linear manifolds. For a system that is low-dimensional in this

“linear” sense, it can be very effective at capturing the relevant low-order structure

while discarding the rest of the dimensions, improving efficiency and clarity.

Once POD has been performed and relevant features have been found, a Galerkin

model of the flow can be constructed in the reduced-space of the POD modes.

Galerkin models for fluid systems are the result of projecting the Navier-Stokes equa-

tions onto the subspace spanned by a reduced-order model (e.g., the POD modes) to

determine how the reduced states will evolve over time. A great deal of work has gone

into getting the most useful features from POD for generating useful Galerkin mod-

els, as well as how to make the resulting Galkerin models capable of being used for

control [98, 99, 100]. This technique is used extensively in fluid modeling and control

applications to build reduced order descriptions of a fluid’s evolution, particularly for

finite-time or periodic flows [67]. A more data-driven approach is the “calibrated”

Galerkin model [22], in which the some of the parameters which would normally come

from the projection of Navier-Stokes are fit based upon collected data.

Assuming a reasonable model of the fluid has now been obtained, the problem of

control can be considered. It can be very difficult to include actuation in models based

on data from unactuated configurations [67], but there have been several successful

applications. One such problem, and a very common one in the literature of closed-

loop flow control, is the regulation of a cavity flow [20]. Examples of control in of a

cavity flow include minimizing the recirculation via blowing air on the boundary [74,

75] (studied using CFD), suppressing the instability via upstream blowing [9]4 (also

using CFD) and minimizing the energy in the cavity tones by using a speaker as an

actuator [87] (studied on an experimental system).

Another control problem commonly encountered is the control of the wake of a

circular cylinder. The modeling of this wake with POD is well-established, even in

4This work uses Balanced POD which is inspired by balanced truncation but less computationally
expensive, and can result in fewer modes and better performance than plain POD. See [83] for more
details.
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complex transient regimes, and feedback controllers have been designed to successfully

suppress the onset of the wake [94]. Other work on cylinder wake suppression has

been done in CFD as well, including [28] and [66]. Drag reduction for the cylinder

wake by periodic rotation of the cylinder has also been studied using modern POD

techniques, with significant wake suppression achieved on a simulated cylinder in the

laminar regime [12]. However, note that this controller was not a feedback controller

(i.e., an open-loop rotation as used). There are numerous other examples of control of

the wakes of cylinders in this laminar regime [37, 41, 71], but many possess different

actuators or different objectives, so directly comparing their performance is difficult.

The POD-based methods and Galerkin models used in these works, however, are

not easily transferred to the fluid flows around the HCP. The intuitive reason for this is

that the relationship between the flow and the HCP itself is not easily captured in the

framework of POD. POD does well at modeling phenomena that are low-dimensional

in a “linear” sense (i.e., most behavior can be described by the superposition of several

features). This property is present in cavity flows (with the dominant behavior being

several superimposed cavity tones and their harmonics) and cylinder wakes (which

have one dominant periodic structure that can be represented by the superposition

of several modes), but the flow around the HCP is much harder to break down in this

way.

The utility of the POD/Galerkin closed-loop control methodology has not been

conclusively demonstrated on systems more complex than these testbeds from the

literature. It has only been infrequently used on experimental systems with the

associated difficulties of noisy measurements and unmodelable dynamics (though they

have been applied to CFD systems using full DNS), and in a number of cases the

“actuators” that are used are sometimes experimentally impractical (e.g., a body

force on a portion the fluid) and often driven as much by the limitations of CFD as

by practical utility (e.g., many actuators are chosen so that they can be represented

as a boundary condition in the solver, hence the prevalence of blowers and cylinder
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rotations as inputs). Finally, the difficulty of using CFD in problems in which the

body’s dynamics are coupled in a non-trivial way to the fluid (as is the case with the

underactuated pole in the HCP, see Chap. 2) has prevented significant study of these

methods to the domain of interest of this thesis.

As a result of these issues this thesis makes little use of complex flow modeling

to improve control performance. Instead, the techniques presented here handle the

fluid state’s evolution implicitly, and were successful at achieving the desired tasks.

However, including data-driven fluid models such as POD-based Galerkin models is

an exciting direction of research, and while making them work will be challenging and

require some non-trivial insight, they could ultimately improve the flexibility of the

control design methods presented in this thesis, and allow them to apply to a wider

range of flow conditions.
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Chapter 2

The Hydrodynamic Cart-Pole

Fluid-body systems, particularly at intermediate Reynolds numbers in complex flows,

are very difficult to model in a manner which is both tractable and sufficiently rich to

capture the full range of observed dynamical behaviors. Low-order lumped-parameter

systems can capture the important dynamics for certain situations[7, 106], but must

be extensively validated and often require some amount of insight to apply to new

domains. The Navier-Stokes Equations, when solved numerically via Direct Numer-

ical Simulation, (DNS) are very computationally intensive and ill-behaved, and in

some cases obtaining convergence can be difficult[14, 44]. Because of this, the study

of novel high-performance control techniques for fluid-body systems at intermediate

Reynolds numbers must be well-grounded on a representative experimental system.

This system should capture the important difficulties of control, but be experimentally

convenient enough to allow different control methodologies to be easily and quickly

tried-out, validated or discarded.

This chapter describes in detail the construction and modeling of the representa-

tive experimental system used in this thesis: Hydrodynamic Cart-Pole (HCP). The

HCP is a testbed well-suited to studying the control ideas presented in the following

chapters. The HCP is robust and can be run for long periods of time with little

maintenance, and exhibits the most important difficulties of controlling fluid-body
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systems. These difficulties are:

• Nonlinearity

• Underactuation

• A large and difficult to observe fluid state

• Dynamics which are difficult to usefully model

The system is also designed such that real-time Particle Image Velocimetry (PIV), a

technique which allows for the fluid velocity field to be directly observed, can be used

inside the feedback-control loop (see §4 for a detailed explanation).

The remainder of this chapter is divided into two sections as outlined below:

• HCP Hardware - The physical Hydrodynamic Cart-Pole itself

• HCP Modeling - Development of a quasi-steady lumped-parameter model for

states near the “upright” (i.e., unstable) configuration

Further information regarding the construction and design of the water-tunnel itself

may be found in §A.1, and information regarding the hardware details used to perform

PIV (e.g., information on the laser and camera) are in §4.1.2 and §A.2.

2.1 HCP Hardware

All the control tasks studied in this thesis take place on the hydrodynamic cart-

pole (HCP); a fluid-dynamical analog of the much-studied cart-pole problem from

the controls literature [29, 95, 76]. The HCP system has a similar geometry to that

classical control problem, but instead of operating in the vertical plane against gravity

it operates in the horizontal plane against weathercock stability in a free stream

(see Fig. 2-1). This fluid-dynamical system is governed by much more complicated

dynamics than its traditional counterpart, as the behavior of the pole is dictated
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primarily by the fluid forces, while the pole’s own inertia (the critical force in the

traditional cart-pole system) is of comparatively little importance.

The important features of the HCP’s construction are listed below:

• The pole pinned about its trailing edge, where a ball-bearing connects it to the

cart.

• The connection to the cart cannot apply torque (i.e., it is a simple pin joint).

• The cart can be directly controlled via an input force u.

• The angular acceleration of the pole can only be controlled by moving the cart

and taking advantage of fluid and inertial coupling between them.

The most fundamental task of the HCP consists of trying to balance (i.e., sta-

bilize) the pole at θ = 0 (i.e., pointing upstream) at what is termed the “upright”1

configuration2. This configuration is unstable because the center of pressure (for a

stalled flat plate) is at the midpoint of the pole, and thus ahead of the pin joint.

Without control, the pole will fall over and point downstream (the “downright” con-

figuration). Stabilization of the pole is not accomplished by applying torques directly

to the wing. Instead, the cart (and thus the pin joint) is moved perpendicular to the

flow (see Fig. 2-2).

Moving the cart is the only input to the system, and therefore the only torques

applied to wing are due to the fluid and the pole’s inertia. The positions of the

cart and the pole are both measured with high accuracy by encoders, making the

cart-pole (but not the surrounding fluid system) fully observable. The goal is not

merely to stabilize the system, but to provide a stabilizing controller with as high

performance as possible (e.g., fast tracking of desired inputs and robustness to large

fluid disturbances such as bluff body wakes).

1This configuration is termed the upright because it is analogous to the upright, unstable config-
uration of the traditional cart-pole system.

2This is approximately stabilizing an unstable equilibrium, but technically the upright is not an
equilibrium as vortex shedding effects prevent any one state from having zero torque at all times.
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Figure 2-1: Schematic of hydrodynamic cartpole control task. Blue arrows indicate
direction of fluid flow, x is the position of the cart, θ is the angle of the pole and u is
the applied force (i.e., the input). The “upright” is defined as θ = 0, an equilibrium
made unstable by the center of pressure of the plate being ahead of its connection
point (i.e., weathercock stability attempts to make the pole point downstream).

Figure 2-2: Photo of the test section of the water-tunnel setup. The water flows from
left to right in this image. The black rails on the right are the linear actuator (the
cart), and the circular aluminum wheel is a flywheel adding inertia to the wing (the
pole), making it effectively less damped and thus more interesting to control. This
disk can be removed or added to when designing the control task.
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The pole is a flat plate with a rectangular cross-section of chord 9.5 cm and a

thickness of 0.6 cm. The pole submerged 18 cm deep in water, and for the purposes

of analysis it is treated as 2D. The water flows by the flat plate at 22 cm/s, and the

available travel of the cart is 15 cm. The Reynolds number of the system, using the

chord of the flat plate, is 20,000. These values are summarized in the following table,

and more details on the water tunnel can be found in §A.1. The discrepancy between

the test section width and the maximum cart displacement is due to hard-stops put

in place to prevent damage to the test section.

Table 2.1: Dimensions and Values of HCP Parameters

Property Value
Free Stream Speed 22 cm/s
Flat Plate Chord 9.5 cm
Flat Plate Thickness 0.6 cm
Test Section Width 22 cm
Depth of Plate into Water 18 cm
Cart Displacement Range 15 cm
Reynolds Number 20,000

The flat plate was chosen because it is a fundamental geometry, is relatively easy

to study analytically, and is well-behaved optically (i.e., does not have significant

lensing effects), making it the natural choice for the experiments in this thesis. See

Figure 2-3 for a PIV image of the flat plate.

The cart used for the HCP is a high-force, high-speed linear actuator: a Copley

STA1116 ServoTube actuator. This actuator is integrated with a linear bearing, pro-

viding a convenient package for generating linear motion. The most relevant actuator

specifications may be seen in Table 2.2.

As Table 2.2 shows, the speeds and accelerations achievable by the actuator are

significantly greater than those seen in the fluid (where the free stream speed is

22 cm/s). Thus, the actuator is able to move very quickly compared to the fluid; a

desirable trait as the goal is to study high-performance controllers.
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Table 2.2: Specification of STA1116 ServoTube Actuator

Property Value
Peak Force 91.9 N
Peak Accel 141 m/s2

Max Speed 4.7 m/s
Max Stroke 22 cm

Figure 2-3: PIV photograph of flat plate immersed in water. The the bright dots are
the seeding particles described in §4.

2.2 Modeling the Hydrodynamic Cart-Pole

The modeling of dynamical systems is an integral component in the vast majority

control strategies, from classical bode-plot-driven design to modern H∞-based robust

control. The success of these model-based methods has been so dramatic in so many

challenging domains that the limitations stemming from their dependence on a model

can sometimes be forgotten. However, when attempting to apply these techniques to

a fluid-body system, the difficulty inherent in obtaining a model becomes the primary

obstacle to increased performance. In this section, a lumped-parameter model of the

HCP is found using results from the fluid dynamics literature and experiments on the
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hardware the do not require a controller3. This model is used to design controllers for

basic tasks. The model’s limitations, and a method to circumvent these limitations,

is presented in §3.4.

The complete dynamics of the hydrodynamic cart-pole (HCP) are extremely non-

linear and of large state (due to the coupling with the fluid), and cannot be written

down in a manner which is both complete and useful for control synthesis. However,

by making a number of simplifying assumptions, a model applicable to the limited

domain of operation relevant to balancing (i.e., near the upright and when the cart

and pole are moving slowly) may be found. The relevant assumptions are:

• The pole acts as a flat plate (i.e., I ignore its thickness)

• The dynamics can be treated as quasi-steady (i.e., fluid state can be ignored)

• The cart is feedback linearizable

• The effect of fluid inertia can be captured by a simple added mass term

• The angular damping force is a linear function of velocity

These assumptions are clearly violated during high-performance maneuvers. How-

ever, if we wish to first simply balance the pole at the upright, a good controller based

on a locally-valid model should keep the HCP in a domain in which the assumptions

are approximately satisfied. Furthermore, as the HCP at the upright is open-loop

unstable, obtaining an initial model from experimental data is not necessarily feasi-

ble. However, once an initial stabilizing controller is found, the system becomes much

easier to study and many system-identification techniques are available for improving

the model and the controller[54, 69, 103].

The dynamics of the cart can be dealt with easily as 1) the fluid forces transmitted

to the cart through the pole are small compared to the mass of the cart and static

friction and 2) a high-gain, high-frequency control loop exists between the motor

3If on finds an initial stabilizing controller without a model, it is possible to collect data on the
HCP at the upright, and use this information to build a data-driven, identified model that may offer
better performance. However, in general, finding a stabilizing controller without first having a basic
model is a tricky proposition, and so the model presented was found without requiring an initial,
stabilizing controller.
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amplifier and the cart. These two factors allow the cart dynamics to be effectively

feedback linearized, resulting in the dynamics:

ÿ = u. (2.1)

To model the dynamics of the wing (i.e., find θ̈), first the quasi-steady fluid forces

on a flat plate must be calculated. The coefficients for lift and drag (CL and CD

respectively) on a fixed flat part can be written as:

CL = 2 sinα cosα (2.2)

CD = 2 sin2 α, (2.3)

with α representing the angle of attack (the angle between the wings major access and

the fluid flow). The behavior with respect to angle of attack can be seen in Fig. 2-4).

The angle of attack α can be computed from the wing pitch angle θ and the

direction of fluid flow relative to the wing φ. These can be computed as follows:

φ = arctan

(
−ẏ
V0

)
(2.4)

α = φ− θ, (2.5)

where ẏ is the velocity of the cart and V0 is the speed of the fluid flow in the laboratory

frame.

The lift and drag forces on the plate can then be written as:

FL =
1

2
ρV 2csCL (2.6)

FD =
1

2
ρV 2csCD, (2.7)

with ρ the density of the fluid, V = V 2
0 + ẏ2 representing the relative fluid velocity,
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Figure 2-4: Flat plate theory lift and drag with respect to angle of attack.

c the chord length of the wing and s the span of the wing. The drag force is in the

direction of fluid flow and the lift force perpendicular to the direction of fluid flow.

The torque resulting from these forces about the connection point of the flat plat

can be written as:

τaero = −FL
c

2
cos θ − FD

c

2
sin θ (2.8)

= −1

2
c2sρV 2 sin (α) , (2.9)

where θ is the angle of wing relative to the upright.

The effect of inertial torque resulting from the added mass of the fluid must then

be included. The density of the pole is approximately that of the water (acrylic

plastic is 18% denser than water), and is considered “thin” for the purpose of flat-

plate analysis, and thus inertial forces on this plate will simply be included in the

added mass calculation. The added mass for a flat plate moving in the direction of
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its minor axis is given in [65] as:

Madd = π (c/2)2 sρ, (2.10)

which can be interpreted as the mass of a fluid cylinder with a diameter equal to

the length of the plate and a height equal to its span. This will result in an inertial

torque equal to:

τinertial = Madd
c

2
cos (θ)u, (2.11)

where ÿ = u has been used.

Thus, the equations of motion for the system can be written as:

ÿ = u, (2.12)

θ̈ =
τaero + τinertial

Itotal
− kdθ̇, (2.13)

where Itotal is the total moment of inertia of the system (including the flywheel) and

kd is the linear angular damping coefficient. These two parameters were found via

the following two experiments, neither of which required a balancing controller to

perform.

The total moment of inertia Itotal was found by assuming the holding the wing

at a pitch angle of θ = 90◦ and a speed of ẏ = 0, and measuring the initial angular

acceleration of the wing. The linear angular damping coefficient kd was found by

spinning the wing by hand and fitting a decaying exponential to the resulting curve

of θ̇ versus t.

This model is made use of in the following chapter to create a controller and

an observer that allow for the upright position to be stabilized, and for some more

aggressive maneuvers to be attempted.
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Chapter 3

Control without PIV

Before attempting to control the HCP with PIV in the loop, a basic level of control

must be achieved without knowledge of the fluid. In this operating condition dis-

turbances to the free stream flow (e.g., vortices) and errors in the model are treated

as perturbations, without understanding the structure behind them. The chapter is

organized into four sections, as outlined below:

• Model-Based Observer Design - Design of a high-gain state observer using

the model from §2.2.

• Balancing Controller - An LQR balancing controller for the HCP.

• High-Speed Step Tracking - A feed-forward controller for quickly tracking

a step based upon the model from §2.2.

• Trajectory Learning - A data-driven trajectory improvement scheme offering

higher performance than the model-based feed-forward scheme presented above.

3.1 Model-Based Observer Design

As the hardware only directly measures position and the controller methodology we

wish to use (i.e., LQR. See §3.2) require velocities, an observer must be constructed
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to provide as accurate velocity estimates as possible with minimum latency. The

observer can also reduce measurement noise for the positions, but as we are using

high-accuracy encoders for both the cart and the pole positions measurement noise

is not significant for position (but can be significant for velocity as described below).

Simple discrete time differentiation of the form:

ẋn =
xn − xn−1

1
, (3.1)

where xn
1 = [y θ ẏ θ̇]T is the state at time step n, is insufficiently accurate and far too

noisy for the purposes of balancing, and naive filters with a large number of taps (i.e.,

filters that look at a long history of measurements) can result in excessive latency. A

commonly used and effective form for an observer is a Luenberger Observer[56]. This

observer has the form (in continuous time):

˙̃x = f(x̃, u) + L(z − Cx̃), (3.2)

where f(x, u) is a possibly nonlinear model of the system dynamics, x̃ ∈ Rn is the

state estimate, z ∈ Rm is the vector of measurements, C ∈ Rm×n is the observation

matrix and L ∈ Rn×m is the matrix of observer gains. Note that the steady-state

Kalman Filter is a special case of this form of observer in which the dynamics are

linear and the observer gains L are in some sense optimal for a linear system.

As the assumptions made regarding noise for the Kalman filter (e.g., Gaussian

and independent of state) are not valid for the HCP system there is little advantage

to using the procedure for a Kalman filter to find L. Instead, the gains in L are

selected such that the nominal poles for the observer (e.g., the time scale for the error

dynamics) all have a real part near −1/ε where ε is a parameter chosen by the control

designer. In this work, ε = 0.05 was chosen, placing the real parts of the observer

poles near s = −20 where s is the Laplace variable. The L to achieve this for the

1This means the state is organized as [cart position, pole angle, cart speed, pole speed].
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Figure 3-1: A schematic representation of the linear control loop for the HCP. When
PIV is included in §5 the components needed to handle the additional sensing add
complexity, but for now this simpler understanding will suffice. In general, a nonlinear
observer G(y, u) is used, but near the upright a linear G(s) is sufficient.

HCP (when linearized about the balancing configuration) is given by:

L =


2/ε 0

0 2/ε

1/ε2 0

0 1/ε2

 , (3.3)

with resulting observer poles at:

s = −20,−20,−21.1± 5.687i. (3.4)

For more detailed analysis, see §A.3.
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3.2 Balancing Controller

With the nonlinear model developed in §2.2 and the observer G(s) described in §3.1,

all that remains to be found to complete the control loop shown in Figure 3-1 is the

controller K(s). One could attempt to design this controller by hand, but a natural

starting place for linear control design is the Linear Quadratic Regulator (LQR).

This control design technique requires a linear model of the system, and the system’s

full state. An estimate of the state is available through the observer G(s), and the

nonlinear model ẋ = f(x, u) can be linearized to give:

ẋ = Ax+Bu (3.5)

A = ∂f/∂x (3.6)

B = ∂f/∂u, (3.7)

thus it is reasonable to design and apply an LQR controller. This controller will have

the form:

u = −Kx̃, (3.8)

where K is the LQR gain matrix, consisting of proportional and derivative gains (i.e.,

gains on position and velocity error), and x̃ is the output of the observer discussed in

§3.1.

For a linear system, it can be shown that an LQR controller minimizes the

quadratic regulator cost:

Cost =
1

2

∫ t=∞

t=0

(
xTQx+ uTRu

)
dt, (3.9)

where x is the system state, u is the control input and Q and R are cost matrices

chosen by the designer. Choosing these matrices can sometimes be a tricky task, as

the desired system behavior is rarely exactly captured by minimizing the cost shown

in Eq. (3.9). However, LQR controllers often perform “well enough,” particularly for
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underactuated systems where hand-designing controller can be very difficult, that the

disconnect between cost and desired behavior is worth accepting.

Using the cost matrices Q and R given below in the LQR design, a successful

controller with gain matrix K can be found:

Q =


30 0 0 0

0 10 0 0

0 0 10 0

0 0 0 5

 (3.10)

R = [1] (3.11)

K =
[
−5.4772 5.2500 2.9238 2.3511

]
. (3.12)

Note that the gain on y is negative, indicating that the controller will actually move

to increase the error in this state variable. The stabilizing effect comes about through

the interplay between y and θ – a common property when controlling underactuated

systems, and one of the reasons why hand-designing controllers for them is difficult.

3.2.1 Resulting Performance and Robustness

With a reasonable LQR controller designed and the system carefully centered (see

§A.4) the actual performance of the system can be explored. There are two impor-

tant considerations: the ability of the controller to balance with minimal deviations

when the incoming flow is undisturbed (i.e., the “smooth flow” configuration; see

Fig. 3-2 and Fig. 3-3) and the capacity for the controller to reject disturbances, both

perturbations by hand and complex incoming flow.

The performance of the system in the smooth flow configuration can be seen in

Fig. 3-4. The small oscillations seen here likely primarily a result of stiction in the

actuator, but lingering centering issues are also a possibility2. The controller also

2It is tempting to attribute this oscillation to vortices shedding from the wing, but the frequency
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Figure 3-2: Distribution of measured velocity in the freestream in the nominal flow
direction, as measured by the PIV system described in Chap. 4. Velocity vectors
were median filtered to reject outliers (see Chap. 4 for more details). Due to the
discrete nature of the PIV offsets and the median filtering only the discrete set of
measurements plotted here are possible.

effectively rejects disturbances, as can be seen in Fig. 3-5. Perturbations by hand are

quickly rejected, and the periodic wake of a cylinder (whose diameter is approximately

1/3 the chord of the pole) placed upstream from the HCP cannot cause dramatic

deviations from the desired set point.

3.3 High-Speed Step Tracking

Despite the controller’s robust stabilization of the HCP demonstrated in §3.2, the

controller’s ability to track an aggressive trajectory in y while keeping the pole bal-

anced is underwhelming, as seen in Figure 3-6A. In this figure, the cart attempts to

follow a step in position (e.g., move y from 0 cm to 4 cm) while keeping the pole

at the upright. Improving performance by increasing the gains, however, is not an

option, as pushing the gains significantly higher than those in Eq. (3.12) results in

of such shedding is much higher than that seen in the periodic behavior of the HCP at upright.
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Figure 3-3: Distribution of measured velocity in the freestream perpendicular to the
nominal flow direction, as measured by the PIV system described in Chap. 4. Velocity
vectors were median filtered to reject outliers (see Chap. 4 for more details). Ideally
these measurements would all be zero, representing no flow perpendicular to the
nominal flow direction. Due to the discrete nature of the PIV offsets and the median
filtering only the discrete set of measurements plotted here are possible.
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Figure 3-4: Hydrodynamic Cart-pole state (y and θ) when balancing in smooth in-
coming flow. The slight periodic oscillation is a result of static friction preventing
very small corrections. Because of this, some error must accrue before the controller
responds, resulting in the low-frequency, low-amplitude oscillation witnessed here.
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Figure 3-5: Hydrodynamic Cart-pole state (y and θ) when balancing while responding
to perturbations by hand and a cylinder wake.

instability3.

A sensible and general-purpose means of improving performance over the balanc-

ing controller (in which the desired behavior is effectively treated as a disturbance)

is to design a “feed-forward” controller. A feed-forward controller does not simply

respond to errors, as is done by the LQR feedback controller. Instead, a feed-forward

controller pre-computes nominal control inputs and state trajectories based upon the

specified task, and then uses feedback to respond to measured errors. These nominal

state trajectories are then stabilized by feedback. The result is a controller with a

different form than given in Eq. (3.8). Instead, it may be written as:

u(n) = −K(n) (x(n)− xff (n)) + uff (n), (3.13)

where xff is the feed-forward state trajectory and uff is feed-forward control input,

K(n) is a time-varying gain matrix and the other terms are the same as in Eq. (3.8).

The reason K(n) varies with n is because the linearized model around xff (n) is a

3The gains are increased by reducing the value of R, not by simply increasing the gains directly.
This distinction is important, as even on the linearized system simply scaling the gains (e.g., by a
linear scaling: Knew = αKold with α > 1) can result in instability.
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Figure 3-6: Two controllers attempting to track a step input (note that different time
scales were used as the controller in B was much faster than that in A). A) Tracking
performance of the balancing controller from §3.2. The slow rise time cannot be
improved simply by increasing the controller gains due to the inadequacy of the model
when violating the quasisteady assumptions. B) Tracking performance of feed-forward
controller, in which a trajectory optimizer has found state and input trajectories based
upon the quasi-steady model from §2.2.

function of n, thus the appropriate K(n) changes as well. Note that the appropriate

K(n) for a given n depends on the model at all future n′ ≥ n, and thus must be

computed starting at the end of the trajectory.

By using a feed-forward controller, the full nonlinear model from §2.2 can be

used to design the control input, and the controller can take advantage of its advance

knowledge of the particulars of the desired task. In general, for a nonlinear model, this

will be a nonconvex optimization, and there can be some tuning involved in solving

an initial feasible trajectory. Fortunately, modern trajectory design techniques (using

optimization packages such as SNOPT[31, 32]) are quite robust and computationally

efficient, and a feasible solution can often be found with their help. While SNOPT is a

general purpose solver, trajectory optimization problems can be naturally represented

in its general optimization framework. There are several forms in which the problem

can be encoded, with assorted advantages and disadvantages. The most common are

shooting methods [16] and direct collocation or direct transcription [104, 13].
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Figure 3-7: Schematic snapshots of the HCP system executing a step using the LQR
controller as plotted in 3-6A. Note that even after 2.4 seconds it has not completed
the step, and is never moving very aggressively.
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Figure 3-8: Schematic snapshots of the HCP system executing a step using the final
feed-forward controller as plotted in 3-10. The initial feed-forward controller is simi-
larly fast, but exhibits significant overshoot, which is seen in 3-6B and compared to
the final controller in 3-10.
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Figure 3-9: Initial “seed” trajectory, trajectory after several optimizer steps, and final
trajectory, as found by SNOPT for the HCP model developed in this chapter.

To find a feed-forward trajectory for the cart-pole system I used a direct collocation

routine, in which both the input tape and the state trajectory are discretized and

included as variables to be optimized, and the dynamics (along with initial and final

states) are imposed as constraints. The specified initial and final states are:

x0 = [0.0 0.0 0.0 0.0], (3.14)

xf = [0.04 0.0 0.0 0.0] (3.15)

with the state ordering as before (i.e., [x θ ẋ θ̇]). The initial inputs (the u(t)) were

set randomly with a small variance and the initial states were linearly interpolated

between their initial and final values. Finally, a quadratic cost on input magnitude

equal to that used in the balancing section was included. This formulation robustly

produced a reasonable feasible trajectory at convergence. See Fig. 3-9 for an example

of how the solver converges towards a feasible trajectory.

When this trajectory is executed, however, the limitations of the model come into

stark relief. The system suffers from a significant amount of overshoot on average,
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with the mean trajectory peaking approximately 25% above the desired point. There

is also a reasonable amount of variance in behavior, though this can largely explained

by variance in the initial state at which the feed-forward controller was engaged, and

not due to more fundamental randomness in the system.

Improving the speed and accuracy of step tracking beyond this is a nontrivial task,

as the control designer is now directly contending with the limitations of the model.

For the sort of high-speed motions of the pole required for high-speed step tracking,

the quasi-steady assumption used in §3.4 is significantly violated, and the fluid states,

ignored in the quasi-steady model, become very important. A general technique for

dealing with these issues is presented in the following section, where indirect adaptive

control is used to increase the speed and accuracy of high-speed step-tracking on the

HCP.

3.4 Trajectory Learning

Though the previous section introduced the feed-forward step, the resulting perfor-

mance was not yet satisfactory. Due to the limitations of the quasi-steady model

developed in §2.2 the actual system, when executing the step (with a stabilizing

linear-time-varying controller), overshot significantly and suffered from conspicuous

ringing. This is not surprising as the model made the assumption of quasi-steadiness

and thus did not attempt to incorporate the fluid state. However, critically, the er-

ror experience by the system is relatively repeatable. Because of this, data-driven

approaches similar to Iterative Learning Control can be investigated.

In this chapter a general-purpose iterative method will be presented that signif-

icantly improves the performance of the HCP when tracking a step. This method

does not require a great deal of a priori information regarding the system, save as-

sumptions of sufficient smoothness (what qualifies as sufficient will be discussed later

in the chapter). The efficacy of the technique is demonstrated experimentally on the
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HCP, with results appearing in §3.4.4.

3.4.1 The Proposed Algorithm

Despite the difficulties in modeling discussed in the §2.2, and the resulting apparent

limits in performance (see §3.3) high-performance control is possible. The important

realization is that the difficulty lies in obtaining an accurate model over a large region

of state space, not in modeling the local behavior of the system near the states relevant

to the current task. Thus, if one wishes to perform a specific behavior, and the

system can be approximately reset to an appropriate set of valid initial conditions,

a local model can be used in place of a much more complicated (and difficult to

obtain) general model. By modeling only the local behavior around the current

control actions, many simple but flexible model classes are sufficient even for complex

tasks such as tracking a step on the HCP.

Once a suitable model class has been chosen (see §3.4.2 for a description of the

model class used in this chapter) and an initial feasible controller found (e.g., a con-

troller based on the quasisteady model described in §2.2), controller performance can

be optimized by executing the following procedure until convergence (i.e., performance

no longer improves):

1. Collect data using the current controller

2. Fit a model in the proposed model class

3. Optimize a proposed controller for the resulting model

4. Perturb the controller in direction of the proposed controller

5. Collect data using the new controller

6. Repeat
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This procedure, which will be described in detail in the remainder of the section,

allows a local optimization to be performed, in which each controller explores a new

region of state space, and determines how the controller should be locally updated,

until it reaches a controller than cannot be improved further using local methods.

This fixed point represents convergence to a local optimum.

3.4.2 Fitting a Local Model

While there is a great deal of freedom for the designer when choosing a model class,

this paper will focus on a powerful, general-purpose choice which is widely applica-

ble for finite time maneuvers (e.g., the step tracking task introduced in §3.3). The

proposed model class is a linear time-varying (LTV) model in discrete time. Using

a discrete time model (as opposed to a continuous time one) is more appropriate, as

the state is sampled by a computer at discrete time steps. The resulting model has

the form:

xn+1 = Anxn +Bnun (3.16)

where x is the state, n is the (discrete) time, u the input and An and Bn matrices

with of appropriate sizes. Furthermore, not every entry of An and Bn must be fit. In

fact, as only the fluid forces are substantially unknown, we need only fit the entries

related to the unknown effect of the fluid on the pole; ultimately resulting in four

unknown scalars for every time n. The scalars represent discrete-time interpretations

of the added-mass, damping coefficient, and lift and drag of the pole.

The model can be easily fit to measured data via least-squares linear regression.

The notion of sufficiently rich data for fitting a model is well-developed for linear

systems, and the practical requirements for achieving this richness as outlined here.

First, the controller must be executed several times from similar initial conditions

(initial conditions should not be identical, and never will be due to the complexity

of the fluid state). Then, the free parameters of An and Bn can be fit such that
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the squared-error between the model proposed in Eq.(3.16) and the measured data

is minimized. Rather than fitting different values for each n, An and Bn can be

made first-order splines (i.e., piece-wise linear functions of n) with the fits weighted

based upon activation of the value (i.e., high when close, low when far and zero when

beyond the next knot point). This effectively enforces model smoothness over time,

and results in better fits as there is more data per fit and smoother variations in the

model parameters.

3.4.3 Optimizing Controller and Updating Controller

Assuming that the system has not yet converged to the desired behavior, there will

be a non-zero error between the target behavior (e.g., fast tracking of a step) and

the measured behavior. Using the local discrete-time model found in the previous

section and standard trajectory optimization techniques, one can find a “corrective”

feed-forward trajectory that cancels out a portion of the observed disparity between

the desired and the observed behavior. In the case of tracking a step, if the measured

data tend to overshoot the desired trajectory, a corrective trajectory that undershoots

the observed behavior would be found. For models from the class described above

and the suggested quadratic objective, finding this corrective trajectory is a convex

optimization problem, and easily solved computationally.

The reason that only a portion of the observed error can be corrected in a sin-

gle iteration is the fact that a large corrective trajectory may require large deviations

from the previous feed-forward trajectory, and thus may push the system into a region

of state space where the local model is invalid. Therefore, the corrective trajectory

cancels out only a portion of the observed error, with the size of the correction de-

termined by η; a parameter chosen by the user which is generally less than 1. This

perturbation results in a local update in the “right” direction, and takes into account

the complicated couplings between the states of an underactuated systems. If the

update is appropriately sized (i.e,. not too large) the next step will result in less error
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than before. This update can be written as:

xm+1
ff = xmff + xmcorr (3.17)

um+1
ff = umff + umcorr, (3.18)

where m is the current iteration of the algorithm, xmff and umff are the feed-forward

trajectories for the current iteration, xmcorr and umcorr are the corrective trajectories

found in current iteration. The end of the resulting trajectory (e.g., the last several

time-steps) is then smoothly blended towards the desired final state to ensure that

there is no discontinuity in the desired state when the feed-forward trajectory is

completed. As the algorithm converges the amount of blending can be reduced and,

if the desired final state is ultimately reached, can be eliminated entirely. A new

stabilizing feedback gain Km+1(n) can then be found for this updated trajectory by

performing LQR for the current local model.

3.4.4 Performance Results

To demonstrate the effectiveness of the algorithm just suggested, it was implemented

on the HCP to improve fast step tracking. The feed-forward controller performance

presented in §3.3 provides both a baseline for performance and an initial controller

to act as the starting point for the optimization.

The task was to execute a step of 4 cm on the HCP, starting and ending with

zero velocity and the pole balanced at the upright. The initial controller is that

given in §3.3, with the tracking performance shown in Fig. 3-6B. Six iterations were

performed, with η = .1, and 20 trials at each step (used to provide data for fitting a

local model). The result of this process can be seen in Fig. 3-10.

The improvement is dramatic and repeatable, with the initial controller resulting

in the mean final state error magnitude given below as xm=0
err , while after six iterations
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Figure 3-10: Plot showing the step tracking performance of the balancing controller,
initial feed-forward controller and final feed-forward controller. The bars indicated
+/- one standard deviation over 20 trials.

of the algorithm the mean final state error magnitude is that given as xm=6
err .

xm=0
err = [1.23 cm, 0.1688 rad, 2.81 cm s−1, 0.2938 rad s−1] (3.19)

xm=6
err = [0.10 cm, 0.0365 rad, 0.70 cm s−1, 0.0358 rad s−1] (3.20)

The variations in the measured trajectories shown in Fig. 3-10 are largely due to the

relatively broad range of initial conditions. The fact that the performance improve-

ment is repeatable despite this variation is a demonstration of the robustness of the

controller class, and the technique.
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Chapter 4

Real-Time PIV

A common challenge encountered in the control of fluid-body systems is the inability

to observe the state of the fluid. In many cases the dynamics of the fluid are either

much slower or much faster than those of the system, and thus can be reasonably

considered quasi-steady. This quasi-steady assumption greatly simplifies the problem,

as the state of the fluid can be effectively separated from the state of the system.

For example, very fast fluid dynamics will reach steady-state quickly enough, and

any oscillations will be sufficiently high-frequency, that their transient nature can be

ignored. Very slow dynamics, on the other hand, can be captured by slowly adapting

the system parameters (i.e., the “time-scale separation” required for effective adaptive

control is present).

However, in situations where the dynamics of the fluid are on a similar timescale

to those of the body, the time-varying nature of these fluid states becomes important

to the performance of the system as a whole. The need to capture the effectively

infinite number of states in the fluid, combined with the highly-complex dynamics by

which they evolve, is daunting. Fortunately, in many cases the behavior of the fluid

component of a fluid-body system is highly structured, and relatively few states are

needed to capture the relevant “first-order” behavior of the fluid. Furthermore, the

dynamics of these states can be quite simple in some cases.
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This chapter focuses on a relatively general situation that possesses these simpli-

fying qualities: the shedding of a vortex off of a rotating flat plate. This situation is

used to illustrate the basics of the PIV algorithm, and the manner in which it was

implemented to achieve real-time speeds. This situation does not involve a control

task, though it does involve real-time tracking of non-trivial fluid states capturing the

location and strength of the vortex. Note that the question of tracking fluid states in

real-time opens up many interesting questions surrounding the design of causal filters

for tracking fluid states; something which has not been considered in situations where

PIV is performed offline and acausal filters can be used.

The remainder of this chapter is organized around this problem. The first section

gives an overview of the PIV algorithm, using the a flow dominated by a single large

vortex as an example. The second section presents the real-time vortex tracking

problem, with associated tracking results. This second section will also present an

effective general purpose method for finding relevant features in a PIV flow field:

spatial match filtering. The third section discusses a means of improving the efficiency

of tracking via sparsification; i.e., selecting the “most informative” measurements in

a principled way so that less informative measurements may be omitted without

compromising tracking performance. This reduces overall computational burden and

decreases the latency of the PIV data.

4.1 PIV Algorithm

Particle Image Velocimetry (PIV)is a technique used extensively to aid the study

of fluid dynamics by providing a quantitative description of the fluid velocity field.

In rough terms, it does this by seeding the fluid with small reflective particles and

tracking the motion of the fluid by following the motion of groups of particles1. There

are, however, a number of details that must be considered if this is to be performed

1There is a similar technique, Particle Tracking Velocimetry or PTV, that tracks individual
particles themselves.
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successfully. There exists a wide body of literature explaining PIV and associated

improvements and variants of the general scheme (see [36, 4, 91, 35]), but in this sec-

tion a brief overview will be presented along with details of the real-time, parallelized

version implemented for this thesis.

4.1.1 Overview of PIV

Consider a simple flow of interest: a single, largely isolated vortex. In this work, this

vortex is generated by spinning the pole of the HCP, which results in the shedding of a

large vortex from the edge of the plate without significantly disturbing the remainder

of the fluid. For a schematic of the situation, see Fig. 4-1. While the existence of the

vortex is clear to the eye, a quantitative description of the flow can be obtained via

PIV.

Figure 4-1: A schematic of the vortex shedding process, in which the pole of the HCP
is rotated to shed a single, dominant vortex that can be identified by eye.

The two images in Fig. 4-2 were taken 33 ms apart, with the particles moving only

a small distance between frames. The displacement between the two can be found by

taking small regions of pixels in the first image and measuring their “distance” from
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Figure 4-2: Two consecutive images of the single vortex shedding off the rotating
wing. PIV operates by comparing small subareas of the image of the images and
finding what displacement produces the best match, thus giving the displacement of
the fluid.

regions of pixels in the second image. The minimum of this distance is where the two

image regions match up best, and is thus the most likely displacement for that region

of the flow. By repeating this process for many subregions across the first image,

many vectors can be found, providing a vector which describes the motion of the fluid

throughout the image. This is clearly not foolproof, and depends upon appropriately

sized regions, appropriately dense particle seeding, an appropriate concept of distance,

reasonably two-dimensional flow in the plane of the laser and an appropriate time

between images (i.e., the “interframe time”). In practice, however, PIV can work

very well.

The size of the pixel regions, seeding density and the interframe time are often set

by rules of thumb, but a common and robust distance metric that can often be used
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is a function referred to as the “error correlation,” and is written as:

Distance(∆X,∆Y ) =
1

NM

N∑
i=1

M∑
j=1

(g(Xi, Yj)− g′(Xi + ∆X, Yj + ∆Y ))
2
, (4.1)

where the region of interest is size N -by-M , g(·, ·) is the first image, g′(·, ·) is the

second image, (Xi, Yj) is the pixel location in the first image, and (∆X,∆Y ) is the

offset to the second image. The minimum of this function over (∆X,∆Y ) gives the

displacement of the fluid between the frames, and thus the local fluid velocity. Exe-

cuting this process (and performing a simple outlier-rejection step) produces vector

fields with enough quality to be highly useful, as seen in Fig. 4-3.

4.1.2 PIV Hardware

The PIV system (see Fig. 4-4 and Fig. 4-5) used for these experiments was designed

around the need for real-time processing at rates sufficient to be useful in control.

The hardware used for imaging and illumination (i.e., the camera and the laser)

are fairly standard, but the camera was chosen with particular care for its imaging

and data rates. These rates had to be fast enough to ensure that the relevant fluid

dynamics could be effectively captured, and the resulting images had to be offloaded

to processing computer fast enough that latency would not be a significant issue (i.e.,

the images must be streamed to the processing computer in real-time).

4.1.3 Computation

If one considers the computational demands of the algorithm, it is clear that a very

large number of operations are required to produce a vector field. Because of this, PIV

has often been used in an offline setting where images are captured and stored and

processed after the experiment has been run. This is useful for understanding a system

and for modeling purposes, but the information cannot be used in a control loop as it
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Figure 4-3: The vector field of the shed vortex superimposed over one of the images
used to generate it. Note that despite faulty vectors in the center of the vortex and
between the vortex and the wing itself, the vortex structure is clearly visible.

58



Figure 4-4: Schematic of a top-down view of the test section when performing PIV.
Flow is from left to right, and the flat plate as shown is in the “upright” configuration.
The perturbation wing is used to generate the fluid perturbations used in the Chapter
5. The laser sheet is produced by passing a laser through a cylindrical lens, and the
seeding particles are 50µm polystyrene beads.

Figure 4-5: The PIV hardware in operation. The green laser sheet illuminates the
seeded particles in the flow, while a camera images from below, providing the actual
PIV images.
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Figure 4-6: Total time to perform a set of correlations using the GPU implementation
of PIV, and ratio of serial computation time to GPU time. Masks are 21-by-21 pixels
and vectors are maxima over a 31-by-31 grid of offsets. At 15 image pairs per second,
66.7 ms are available between PIV calls. The serial computation time is very linear
with the number of vectors, while the time on the GPU is approximately linear with
some variation as seen above. About 30ms of the time spent in this computation is
simply moving the image onto the GPU (which, given the implementation used here,
must be performed independent of the number of vectors desired).

is unavailable at runtime. However, the structure of the problem (many independent

comparisons and minimizations) is very naturally parallelized. Modern GPUs are

theoretically capable of calculation rates of over a teraflop (trillion of floating point

operations per second), completing very demanding calculations in milliseconds. With

this newly available computational capability, PIV can now be used within a control

loop to provide the state of the fluid to the controller. The GPU used for this thesis

is a NVIDA GeForce GTX 570 with 480 cores. Fig. 4-6 demonstrates the enabling

potential of GPU-based PIV implementations.

4.2 Vortex Tracking

Tracking an isolated vortex in otherwise largely stationary flow (i.e., no free stream) is

non-trivial problem that is nonetheless easy to understand and formulate. If we wish
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to track the center of a large, isolated vortex (as described in the previous section),

we must find a robust way to turn the large number of noisy vectors produced by

PIV into something more abstract, and useful: a low-dimensional description of the

vortex location and strength. Due to the noisiness and outlier level of the vector fields

obtained by real-time PIV, the most common approach of finding vortices in PIV -

computing the curl of the vector field and thus local vorticity - is a non-starter.

Fortunately, theoretical models of vortices are available that capture many of the

important structural aspects of the flow field in a relatively large region around an

isolated vortex (i.e., away from its center). Potential flow theory provides a model of

an inviscid vortex which can be quite accurate away from the vortex center. Viscous

flow theory, on the other hand, suggests that the core of a vortex should rotate like

a rigid body. By blending these two theories together in a manner consistent with

experiment a reasonable a priori model of a vortex can be developed. This model is

effectively a smoothed Rankine vortex [5], and can be used for spatial match filtering

in which a filter searches for the structure of a vortex (in terms of its velocity field)

in the vector field provided by PIV. The remainder of this section will be devoted to

explaining the fluid model behind the model vortex, detailing the implementation of

the match filter, and demonstrating its performance on real flow data.

4.2.1 Vortex Modeling

The basic idea behind the model vortex is to create a “smoothed” Rankine vortex. A

standard Rankine vortex is defined by the following function for tangential velocity:

uθ(r) =

 Γr/(2πR2) : r ≤ R

Γ/(2πr) : r > R
, (4.2)

where Γ is the vortex strength, r is the distance from the vortex center and R is the

radius at which the viscous, rigidly rotating vortex transitions to an ideal, inviscid

vortex. Thus justification for the model is pragmatic: an inviscid model of vortices
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Figure 4-7: A) Tangential velocity versus radius for a standard Rankine vortex model.
B) Tangential velocity versus radius for a smoothed Rankine vortex model.

works very well away from the vortex center, but due to the high (and ultimately

infinite) shear rates predicted by an ideal inviscid vortex, the inviscid model cannot

be used near the vortex center. However, viscous forces will tend to make the center

of the vortex rotate as a rigid body (a mode in which the shear rates are zero), and

thus by patching in this rigidly rotating core a reasonable model of a vortex for all

radii can be produced. Fig. 4-7A plots this velocity profile against r.

This model could be sufficient on its own to produce a match filter, but when

simulating this vortex’s behavior the sharp change in velocity produced apparently

unphysical results. This unphysicality it not particularly surprising as the sharp

change is not realistic. To solve this problem, a smoothed Rankine vortex was created

by blending the viscous center and the inviscid medium-to-far field with a cubic

polynomial. This spline provides continuity of the function and its first derivative.

The resulting tangential velocity profile is given by:

uθ(r) =


Γr/(2πR2) : r ≤ Rviscous

ar3 + br2 + cr + d : Rviscous < r < Rinviscid

Γr/(2πr) : r ≥ Rinviscid

, (4.3)
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where Rviscous is the radius at which the viscous model stops, Rinviscid is the radius

at which the inviscid vortex begins, and a, b, c, and d are parameters fit to match

the values and derivatives of the function at Rviscous and Rinviscid. This results in a

velocity profile of the form seen in Fig. 4-7B.

4.2.2 Match Filter Construction

The match filter is then constructed by searching for a spatial signal matching this

shape (i.e., a local vector field matching shape predicted by the model). Because the

model predicts axial symmetry, the velocity vectors are converted into polar (i.e., (r, θ

coordinates). Then, due to the relatively significant proportion of outliers that are

present, the vectors are segmented by distance (e.g., all vectors from between 70 and

80 pixels from the candidate center are grouped together) and the median radial and

tangential velocity for each segment is computed (see Fig. 4-8). These medians as

a function of radius are then compared to that predicted by the smoothed Rankine

vortex model, with the minimum irrotational vortex radius Rinviscid specified by the

user and the vortex strength Γ either specified by the user or optimized online to find

the strength that allows for the best fit.

This is in contrast to the manner in which match filters are often used in signal

processing, in which a temporal signal is matched. The distinction, however, is not a

fundamental one. An example of an experimental image with associated vector field

can be seen in Fig. 4-3, where to the eye the center of the vortex is quite clear.

A realization, however, when one views the vortex vector fields seen in practice,

is that the central rigidly rotating core is not well resolved. With some thought this

is not surprising, though it is subtle. The core of the vortex is rotational, and the

particles rotate much like a rigid body. With the cross-correlation method employed

here (described in §4.1) this sort of motion is difficult to detect as regions of pixels

are offset and compared without rotation or shear. While one could in principle

include rotation and shear in the cross correlation process, the computational burden
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Figure 4-9: Image to which match filter was applied. Red box bounds area off candi-
date centers. This bounded area is limited primarily by computational considerations,
and thus depending upon the available time and computational capability the search
can be expanded. Given a reasonable initial guess of the vortex center, however, the
region shown here is more than sufficient.

would be greatly increased as computing rotations of a region requires many floating

point multiplications, whereas the method used here simply performs fewer floating

point subtractions. Still, these more complex and power correlations are possible,

and interesting future work could consist of attempts to make them fast enough to

be used in real-time, perhaps through reasonable approximation schemes.

The cross-correlation method performed here can track the structure of the vortex

at medium distance quite well (outside the rigid core, but still near enough to show

a clear signal). This region does not have rotation (according to the model) but

does exhibit some shear. This shear is relatively minor in the data, however, and

even without including it in the cross-correlation procedure useful vector fields can

be found. The performance of this match filtering can be seen in Figs. 4-9 and 4-10.

The peak at the center in this figure is clear, but not extremely “sharp”, just

simply picking the maximum is not the most accurate (nor the most robust) option.

However, the appropriate center can be found in a robust and highly accurate manner
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image shown in Fig. 4-9.
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with a very minor additional computational cost by fitting an elliptic paraboloid on

R2 to the match filter returns. This paraboloid is represented algebraically by:

f(x, y) = p1x
2 + p2xy + p3y

2 + p4x+ p5y + p6 = PQ(x, y), (4.4)

where P is the row matrix P = [p1, p2, p3, p4, p5, p6] and Q(x, y) is the column matrix

of monomials Q(x, y) = [x2, xy, y2, x, y, 1]T . If there are N match filter returns gi =

(xi, yi, zi) where xi and yi are the center offsets and zi is the filter return, the goal is

to minimize:

Error =
N∑
n=1

(PQ(xi, yi)− gi)2 . (4.5)

This minimization is equivalent to a least-squares program, producing the best fit

parameters popti . The location of the maximum of this this parabola (i.e., the best

candidate center), refered to as [xopt, yopt] can computed by solving the linear system:

 2popt1 popt2

popt2 2popt3

 xopt

yopt

 =

 −popt4

−popt5

 , (4.6)

which can be solved analytically to give:

xopt =
p2p5 − 2p3p4
4p1p3 − p22

(4.7)

yopt =
p2p4 − 2p1p5
4p1p3 − p22

, (4.8)

with the superscripts on the popti left out for clarity. Through this procedure highly

accurate fits can be found. One caveat is that if the region searched over is significantly

larger than the vortex this paraboloid structure may be present over the full region of

candidate centers. In that case the paraboloid much be fit to subregions small enough

to exhibit this shape (i.e., aroudn the size of the vortex itself). The result is a robust,

fast and precise means of tracking the center of the vortex, with the performance

described in §4.2.3.
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4.2.3 Tracking Performance

Using the filter outlined above, a vortex center can now be tracked through time.

Fig. 4-11 shows the proposed fit from the match filter over the vector field of the

image. Clearly these fits are reasonable and approximately correct, but it is also

clear that not all fits are precisely at the point which, to the eye, appears to be the

vortex center.

This “noise” in the fits is a result of the imperfect nature of the Rankine model

(e.g., at certain times the vortex is not completely axisymmetric; likely due to inter-

actions with the plate and the test section walls), and outliers and errors in the PIV

vector field. As a result, the behavior of the system when tracking a vortex center

over time exhibits a non-physical “jaggedness” as the center fit evolves through time.

This can be seen in Fig. 4-12.

4.2.3.1 Luenberger Observer for Vortex Center

A solution to this, however, can be found using the same method through which

an observer was constructed in §3.1. Assuming that the center behaves as an un-

forced, undamped, second-order system, a simple linear discrete-time model can be

constructed, with the form:

xc(n+ 1) = xc(n) + ẋc(n)∆t (4.9)

yc(n+ 1) = yc(n) + ẏc(n)∆t (4.10)

ẋc(n+ 1) = ẋc(n) (4.11)

ẏc(n+ 1) = ẏc(n) (4.12)

where (xc, yc) is the location of the center of the vortex. This model was used to

construct a Luenberger observed, with a gain matrix L found by following the same

procedure as that in §3.1, then converting the observer to discrete-time via a Zero-

Order Hold continuous-to-discrete transformation [68].
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Field 1

Field 2
Figure 4-11: Two examples of center fits (green stars) overlaid over images and asso-
ciated PIV vector fields. Despite the regions of poor fit performance, the centers all
appear very reasonable given the vector field.
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Figure 4-12: Profile of fit centers of vortex overlaid over last image in the tracked set.
The true vortex should move smoothly (though not necessarily straight), but due to
errors in the fits it appears to jump around. This issue is dealt with via a Luenberger
observer on the vortex center.
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Filtered
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Figure 4-13: A) Profile of fit centers of vortex using a Luenberger observer overlaid
over last image in the tracked set. B) A comparison of the tracking performance of
the observer-based tracking versus the pure measurements shown in Fig. 4-12.

The measurements to this observer are the best fit centers from the match fil-

ter described above. With an appropriate choice of the epsilon in L more accurate

and physically plausible center tracking can be performed. See Fig. 4-13A for this ob-

server’s performance, and Fig. 4-13B for a comparison to the pure measurement-based

tracking seen in Fig. 4-12.

4.3 Sparsely-Sampled Tracking

The match filter presented above, while effective at tracking an isolated vortex, de-

pends upon a relatively large number of cross correlations. In some sense, this is

desirable because of the noise level of each individual vector. However, there is still

the question of how to weight the different vectors that go into the estimate (i.e., de-

sign a feature that is in some sense optimal). In the section above a reasonable radius

range was selected by the designer and the degree to which the measured velocity

matched the predicted velocity was computed for each radius segment and averaged;

should all radius be treated equally, and if not how should they be weighted?
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Similarly, do all the correlations used in the filter above have to be performed

to obtain a reasonable estimate of the center? If certain radii are not particularly

informative not only could they be omitted from the match filter; the vectors used

to compute those radii could be ignored. By feeding back this information into the

PIV processor itself many fewer calculations would be needed and speed could be

improved without sacrificing performance.

The possibility of this “closed-loop” sensing is very exciting, and this section will

only present preliminary results relevant to that task. The remainder of the section

will concern itself with how to formulate the sparsification and feature-selection prob-

lem in a computationally useful and principled way, how well the resulting sparse filter

is able to reproduce the results of the match filter described above, and the ultimate

tracking performance achieved. There is a great deal of work than can be done in this

direction, and there are many promising avenues of attack. The method proposed

here is certainly one such avenue, but is by no means the only one.

Unsurprisingly, this question of sparse sensing has been considered before in dif-

ferent contexts. A relevant literature to consider is that of Compressed Sensing [24].

Compressed Sensing takes many forms, but when dealing with noisy measurements

it is primarily concerned with obtaining a sparse solution to a least-squares problem.

It does this by approximating the goal of sparsity with the L1-norm (as opposed to

the L0-norm). The L1-norm does not directly encode sparsity (directly optimizing

the L0-norm is NP-Hard in the relevant cases [64]), but does tend to produce some-

what sparse solutions. For some situations Compressed Sensing can allow the user

to compute significantly fewer vectors through PIV while sacrificing little in terms of

detection accuracy.

The basic formulation for compressed sensing is the L1-regularized least squares

problem. Eq. (4.13) below gives the mathematical description of this problem:

x = argmax
x

(
||Ax− y||22 + λ||x||1

)
, (4.13)
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where || · ||2 is the L2-norm (i.e., euclidean norm), || · ||1 is the L1-norm (i.e., sum

of the absolute values), A and y are from data, x is the result of the optimization

and λ is a parameter set by the user to control the balance between sparsity and

accuracy. This is a more complicated problem to solve than traditional least-squares,

and requires iteration to come to a solution, but it remains convex [46]. Therefore, it

can be solved efficiently and the global optimum can be obtained.

This methodology was used to determine sparse center weights for the vortex

center-tracking task. The vector x contains the weights given to each radius when

trying to compute how good the proposed center is. The matrix A contains the fit

performance at each radius for all proposed centers, and y contains the fit results

from the dense computation. The goal then is to find an x which is able to reproduce

the results presented above (i.e., the densely sampled results) while being as sparse

as possible (i.e., contain as many zeros as possible without seriously compromising

performance). Sparsity is desirable because if a weight in x is zero the associated

cross correlations need not be performed, greatly reducing the computation burden.

With this in place either faster frame rates could be obtained or more vectors could

be computed in the same amount of time.

After sparsification 60% fewer cross-correlations had to be performed to track the

center, as compared to the dense sampling case2. The tracking performance did not

suffer significantly despite this significant reduction in the number of measurements,

as can be seen in Fig. 4-14 and Fig. 4-15. Extending these ideas to other flow situations

and configurations is an interesting direction for future research, and one which could

result is significantly improved performance in future PIV experiments.

2The sparsification achieved for a single guessed center was higher, but because computations no
longer needed for a certain center may be needed for an adjacent center the overall sparsification
was approximately 60%.
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Figure 4-14: A) Comparison of the measured centers for both the dense and the
sparse center trackers. B) A comparison of the tracking performance when using an
observer of the dense and sparse center trackers.
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Figure 4-15: “Zoomed-out” view of the center tracking performance of the dense and
sparse trackers. Clearly the two techniques produce similar results on the scale of the
full vortex and the image.
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Chapter 5

PIV-Enabled Control

The previous two chapters have introduced both a method for optimizing fluid-body

systems without the need for an explicit model, and a procedure for quickly perform-

ing PIV and extracting from it relevant information about the features of a flow.

In this chapter these two techniques are combined and used to greatly reduce the

magnitude of the perturbation caused by the HCP passing through a vortex.

The experimental setup is modified to include a servo-driven wing (referred to as

the “perturbation wing”) upstream from the HCP, as seen in Fig. 5-1. By moving

this wing, a vortex can be produced upstream of the HCP, after which the vortex

will advect downstream to the HCP. This wing is controlled by the experimenter,

and thus the timing and size of the perturbation can be accurately controlled. Also,

as the vortex is produced at a known time the performance of the PIV filter (e.g.,

the delay before PIV recognizes a vortex is present and how often false positives or

false negatives occur) can be measured. If the system performs well in this controlled

context it can also be employed in situations where the time of the vortex shedding

is unknown, such as in the wake of several cylinders which can produce a chaotic

vortex street, or in the wake of another body not directly controlled (e.g., a human

or animal controlled system).

Two control experiments were studied, both of which involved minimizing the
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Figure 5-1: Picture of the test section with the servo-driven wing (yellow) in place
upstream of the HCP.
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deviation of the HCP from the desired balancing configuratino as it passed through

a vortex generated by the perturbation wing. The first of these tasks involved min-

imizing the θ deviation via trajectory optimization, while the second minimized the

cart position (y) deviation using the same procedure. In both situations the method-

ology presented in §3 was followed. First, an LQR controller was used to balance in

the presence of a vortex. A model was built around the mean of these perturbation

trajectories, and a compensatory trajectory and input were found and added to the

nominal (in LQR’s case, the nominal is a simple zero trajectory). When this was

executed the deviation was significantly smaller, as discussed in § 5.2 and § 5.3. The

PIV filtering used to detect the vortex was a basic match filter, designed to provide

a clear signal with minimal latency. The design and performance of the match filter

are characterized in the following section.

5.1 Real-Time PIV Filtering Performance

The goal of the real-time filter presented in this section is to identify a vortex as early

as possible, ideally just as it enters the frame. Because of this constraint the center

tracking filter presented in the previous chapter is not necessarily the highest per-

forming. Instead, to minimize latency, a characteristic shift in the cross-flow velocity

(i.e., a shift away from the mean flow) is matched to the measured PIV velocity field.

When this characteristic shift first appears it is taken as a signal that a vortex is

entering the frame.

An example of the smooth-flow (i.e., no vortex) flow field can be seen in Fig. 5-2A.

The match filter should return a small value (poor match) in this operating mode.

In contrast, Fig. 5-2B shows a characteristic velocity field when a vortex is about to

enter. The clear velocity shift near the top of the frame is the “giveaway,” and it is

here that we will focus.

The match filter operates by comparing the measured vector field it is given in
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Figure 5-2: A) Sample vector field from a flow (flow direction from top to bottom)
undisturbed by a vortex. Note that the vectors are pointed straight down. B) Sample
vector field from a flow (flow direction from top to bottom) with a a vortex entering
from the top right. Note that the vectors are pointing down and to the left.
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Figure 5-3: A time history of the match filter output as vortices are produced via
the perturbation wing. The times at which the wing starts moving (i.e., the begin-
ning of perturbation and the creation of a vortex) are shown as black vertical lines.
The detection delay to the first of the double peaks following a perturbation is ap-
proximately 0.6 seconds – it is this peak we wish to detect. The third perturbation
shows why detection is not perfect: the first peak is not significantly higher than the
noise, thus as the threshold approaches this level false positives will begin to occur.
If the threshold is set well above the noise this peak will not be located, and thus
false negatives will occur. This is the trade-off that must be considered, and that is
represented in Fig. 5-4.

real-time by PIV and comparing it to a vector field designed to be similar that in

Fig. 5-2B1. This comparison is performed by taking the difference between the desired

vector field and the measured vector field, and counting the number of vectors that

differ by only one or zero pixels. The proportion of vectors which differ by this amount

is computed, and this ratio (between 0 and 1) is considered the output of the filter.

See Fig. 5-3 to see a trace of this output compared to times of perturbations. As

the figure shows, the filter responds to the vortex being generated approximately 0.6

seconds after the perturbation begins.

1The filter is not based on any one “detection” case, but rather on the average behavior of several
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Figure 5-4: Receiver Operating Characteristic curve for the match filter presented in
this section. By change the threshold at which a detection occurs the designer can
move along this curve and select the appropriate trade-off for the problem at hand.

To decide when the filter’s output reaches a level sufficient to be considered a “de-

tection” a threshold can be chosen. After a detection no second detection is possible

for a certain amount of time (set at 2.5 seconds) to prevent repeated detections close

together from the same vortex. The appropriate threshold depends on the relative

costs of false positives and false negatives. Thus, it must be chosen by the designer

based upon an understanding of the system. To aid in this selection a Receiver Op-

erating Characteristic (ROC) curve can be constructed [26]. An ROC curve shows

how the proportion of false positives and false negatives evolve as the threshold is

changed, and it makes the trade-offs clear. It may also be used as a filter design tool

as optimizing the ROC to provide the best available discrimination can be seen as the

goal of the match filter design. Fig. 5-4 shows the ROC curve for the θ compensation

task described below.
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5.2 Deviation in θ Compensation

For the experiments in this section a vortex was generated 15 cm ahead of the HCP’s

leading edge (i.e., the trailing edge of the perturbation wing was 15 cm in front of

the leading edge of the HCP at the upright). For each perturbation the perturbation

wing was driven from an angle of attack of 0◦ to approximately 30◦ then back to

0◦ with a triangle wave profile. This process took 0.8 seconds, and from the end of

one perturbation to the beginning of the next the HCP was allowed to settle for 7.2

seconds to allow its return to its approximate steady state behavior. The size and

duration of the perturbation was selected to produce a deviation of the appropriate

size when stabilized by the LQR controller (i.e., significant, but not so large as to

make the system regularly exceed its travel2).

Fig. 5-5 and Fig. 5-6 show sample trajectories of the LQR controller being per-

turbed by a vortex generated in the manner described above. These trajectories are

synchronized to the time at which PIV could recognize the vortex (0.6 seconds after

the perturbation wing starts moving, or 0.2 seconds before it finishes its profile). Note

that some of the trajectories appear to begin a small dip around t = 0, while others

do not begin to respond until well after, at approximately 0.5 seconds. Thus, some

trajectories feel the effect of the moving perturbation wing at the same time PIV

detects it3, while others fail to see a clear signal until 0.5 seconds later (see Fig. 5-6).

As a point of comparison for PIV an optimized controller (using the same opti-

mization scheme as the PIV controller as detailed in §3) which detects the vortex 0.5

seconds after PIV would is developed and tested as well. This delay of 0.5 seconds

is very optimistic as to avoid false positives additional latency would have to be in-

troduced to distinguish an actual vortex from the variation witnessed in the normal

2Travel in y (i.e., cart position) is in practice the most strict constraint in the system, and when
the system fails it is because the cart “runs into the wall.”

3The latency of the PIV system: capturing the images, moving them from the camera to the
computer and performing the processing results in a delay of approximately 100ms that could be
reduced with hardware changes, but this chapter will refer to the time at which the controller itself
is aware as the time of PIV detection.
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Figure 5-5: A sample of LQR-controller perturbation trajectories in θ. Note that
given the variation during normal operation, detection is difficult until the vortex has
significantly perturbed the system. See Fig. 5-6 for a close up on the time at which
the perturbation is just beginning.
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Figure 5-6: A sample of LQR-controller perturbation trajectories in θ. Note that
given the variation during normal operation, detection is difficult until the vortex has
significantly perturbed the system.
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Figure 5-7: A series of snapshots of the LQR-controller responding to vortex pertur-
bations. Compare to Fig. 5-10 and Fig. 5-13 to see the improvement achieved via the
PIV-enabled controller when attempting to minimize θ (pole) and y (cart) deviation
respectively.
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balancing operation of the HCP. This controller was given awareness of the vortex by

allowing it to “cheat.” In other words, after beginning to move the servo an appro-

priate delay was introduced (i.e., the mean time to PIV detection plus 0.5 seconds)

and a “detection” signal was given to the controller. This removed any complex-

ities involving possible false positives or negatives when evaluating this competing

controller. The comparison of a controller using PIV, a controller using a delayed de-

tection signal, and the LQR controller is presented in Fig. 5-8, and again in Fig. 5-9

showing the repeatability of the trajectories via the measured standard deviation as

well.

To give a more clear picture of what individual trajectories look like under the

PIV controller, see Fig. 5-11. In this figure three individual trajectories are plotted,

demonstrating the degree of variability in performance and the gap between LQR and

PIV performance. As is quite clear, while there is reasonable inter-trial variation in

behavior and performance the PIV controller outperforms handily.

5.3 Deviation in y Compensation

Similar to the previous section, a vortex was again generated 15 cm ahead of the

HCP’s leading edge (i.e., the trailing edge of the perturbation wing was 15 cm in

front of the leading edge of the HCP at the upright). For each perturbation the

perturbation wing was driven from an angle of attack of 0◦ to approximately 40◦,

then back to 0◦ in a triangle wave profile. This process took 1.0 seconds, and from

the end of one perturbation to the beginning of the next the HCP was allowed to

settle for 7.0 seconds to allow its return to its approximate steady state behavior.

The size and duration of the perturbation is larger than that used for the θ tests,

and was again sized to achieve a significant disturbance without causing an excessive

number trajectories to exceed the bounds on y.

These trajectories are synchronized to the time at which PIV could recognize the
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Figure 5-8: Comparison of mean θ perturbation trajectories for the LQR controller,
a controller recognizing the vortex via PIV and a controller whose awareness of the
vortex is delayed 0.5 seconds after PIV. Trajectories are synchronized to the time PIV
would detect detect the vortex (i.e., t = 0 above is when PIV would first recognize a
vortex was incoming). While the mean trajectory begins responding before this time,
the effect is very subtle and does not robustly appear in individual trajectories (see
Fig. 5-5). A delay of 0.5 seconds is an optimistic detection delay in practice.
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Figure 5-9: The same comparison as in Fig. 5-8, but with shading indicating
plus/minus one standard deviation around the mean.
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Figure 5-10: A series of snapshots of the PIV-enabled controller responding to vortex
perturbations and attempting to minimize θ deviation. Contrast maximum angular
pole deviation with the LQR controller in Fig. 5-7.
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Figure 5-11: Three θ trajectories for LQR and PIV-Enabled controllers. The improve-
ment in performance is clear. In both cases, the three trajectories closest to θ = 0
at the start of the window were chosen. The fact that despite the clear variation in
initial conditions the PIV-Enabled controller reliably outperforms LQR demonstrates
the robustness of the corrective maneuver.
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Figure 5-12: Three y trajectories for LQR and PIV-enabled controllers. The improve-
ment in performance is clear. In both cases, the three trajectories closest to y = 0
at the start of the window were chosen. The fact that despite the clear variation in
initial conditions the PIV-Enabled controller reliably outperforms LQR demonstrates
the robustness of the corrective maneuver.

vortex (0.6 seconds after the perturbation wing starts moving, or 0.4 seconds before

it finishes its profile). Note that some of the trajectories appear to dip just around

t = 0, while others do not respond until well after, at approximately 0.5 seconds (as

was the case in the previous section). Fig. 5-12 shows several sample trajectories

for both the PIV-Enabled controller and LQR. Again, the variance is nontrivial but

performance is robustly better.

Another useful perspective on the the advantage provided by the PIV-enabled

controller over both LQR and a controller with only local awareness of the vortex

is presented in Fig. 5-14. In this figure histograms of maximum y deviation for the

different controllers are plotted. Fig. 5-14A shows a comparison between deviation

between PIV-enabled and LQR, while Fig. 5-14B compares PIV-enabled and the
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Figure 5-13: A series of snapshots of the PIV-enabled controller responding to vortex
perturbations and attempting to minimize y (i.e., cart) deviation. Contrast maximum
cart deviation with the LQR controller in Fig. 5-7.
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delayed controller. In both cases PIV allows for significantly improved performance

over both alternatives. The delayed controller outperforms LQR but underperforms

the PIV-enabled case, as would be expected.
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Figure 5-14: Histogram of maximum deviations in cart-position after a vortex per-
turbation for the PIV-enabled controller (blue) comapred against the LQR controller
(red), and the delayed controller (green). A) PIV vs. LQR: The performance is
dramatically improved by the use of a feed-forward controller with vortex detection
enabled by PIV. B) PIV vs. Delayed: The cyan bar signifies an equal number of
counts for both. A delay of 0.5 seconds after PIV is again a very optimistic number
for when the presence of a vortex can be identified by local sensing alone. The de-
grading level of performance when this delay is present demonstrates the importance
of recognizing the vortex before it is encountered.
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Chapter 6

Conclusion

This thesis has presented two complementary methods of controlling fluid-body sys-

tems, and shown how the can be combined to offer improved performance and a better

understanding of the nature of the control problems at hand. The method presented

in Chapter 3 dealt with designing high-performance controllers for underactuated sys-

tems without good models. Chapter 4 introduced the real-time PIV system used, and

the basic filtering methodology through which vector fields could be converted into

low-dimensional information useful to control. Finally, Chapter 5 introduced these

two techniques working together to improve performance on a complex, underactu-

ated fluid system interacting with fluid disturbances. These results offer a “proof

of concept” about how to usefully couple data-driven control design techniques with

real-time PIV to achieve higher-performance.

The remainder of this chapter will concern itself with discussing the interpretation

of the control results presented earlier in the thesis, and suggesting avenues of possi-

bly fruitful further research. A great many interesting problems suggest themselves

now that the system is fully operational and offering useful results. The next three

sections will discuss exciting possibilities, organized by problem to which they are

most related: 1) Data-Driven Control Without PIV, 2) Real-Time PIV Filtering and

3) PIV-Enabled Control.

95



6.1 Data-Driven Control

As discussed in the section of previous work (see §1.2.1) a significant amount of

effort has been spent on designing controllers for fluid-body systems, with different

techniques appropriate to different situations. The methodology presented in Chapter

3 is well-suited to the HCP system presented here, and it was used in a relatively

general-purpose way without significant engineering insight being required. It would

be interesting, however, to evaluate the technique with more specialized models and

policy classes, blending it with the work of Lupashin and D’Andrea [57]. For a

system with more states and actuators, it could be that a subspace of the state space

is relatively easy to model and control, and thus more model-based methods could be

effective to regulate some of the dynamics, while the data-driven iterative method of

this thesis could compensate for those parts too difficult to represent conveniently as

a model or “squash” with high-gain control.

An alternative direction is to study how policy parameterizations more structured

than the discrete-time state, input and gain trajectories used here would perform.

One issue that can appear when using these vary naive policy classes is that over the

course of several iterations high-frequency content appears in the signals, possibly

degrading performance. In the this thesis this was not a problem when the updates

were made relatively small, but in general the issue could appear, particularly if many

iterations are required. Therefore, a limited dimensional policy class that precludes

high-frequency content (e.g., a spline1) could be effective, as the optimization could

be performed over sets other than discrete-time linear signals. In many cases this

will prevent the use of very computationally efficient formulations such the quadratic

programs used here, but in practice the problems can often be reasonably solved for

at least a local solution.

1A truncated fourier representation could seem natural here as well, though in practice I have
found splines to be better behaved and more useful.
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6.2 Real-Time PIV Filtering

There are many possible directions of research in real-time filtering for PIV. These

can be considered in three sections, organized as follows:

6.2.1 Improvements to the real-time PIV itself

6.2.2 Improvements to the extraction of relevant information from a PIV vector field

6.2.3 Closing the loop between information from vector field and measurements of

the vector-field

6.2.1 Improving Real-Time PIV

There is a wealth of literature about performing PIV as efficiently as possible (see

§1.2.2), with frequency domain methods a common approach which I have yet to

investigate. The implementation is significantly more complicated than that used for

real-time PIV in this thesis, but many aspects of the algorithm can still be parallelized

and further speed up could result. These could allow for denser vector fields and less

latency before the field is available for filtering. Also, taking into account rotation and

shear of the fluid could result in better matches and more accurate vector fields, but at

the cost of reduced speed. Dealing with this trade-off is an interesting research topic,

and in many situations it could be worthwhile to perform the extra computation.

Another interesting possibility is to modify the PIV algorithm to make it more

specialized for the filtering task at hand. If a certain match-filter is to be applied

to the output, the implementation of PIV can be optimized to obtain the necessary

information as quickly as possible with minimal computation cost. For example, if

a match filter largely ignores an aspect or region of the vector field, it may be more

efficient to simply not compute it. One must take care, however, about shrinking the

number of comparisons performed between subregions, as fewer comparisons makes
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it more likely at match between regions will happen by chance rather than because

of actual match quality, and thus more false positives may result.

6.2.2 Improving Extraction

There are many possible means of designing effective filters on the vector field beyond

the match filter methods used here. The filters used in this thesis were constructed

based upon models of the fluid (i.e., a Rankine vortex) and by hand. Obtaining

features directly from data is an exciting possibility, and tools exist to make it possible.

Methods such as Proper Orthogonal Decomposition (POD) allow relevant features to

be extracted automatically from data, so long as the can be represented in a linear

fashion. Other automatic feature learning tools exist, and some are well-suited to

control applications, such as balanced truncation [84].

It is also exciting to consider further the possibility of designing sparse features

that look at only a limited subset of the available PIV vectors, and at means of

blending measurements that are taken in some “optimal” way. As seen in §4.3

sparse features can in certain cases largely reproduce the performance of a dense

feature. Because of this it is sometimes possible to greatly decrease the number of

cross-correlations necessary by not generating the PIV vectors upon which the sparse

feature does not depend. This decreases the computational burden while maintain-

ing filter performance. Furthermore, incorporating the measurements that are taken

(e.g., giving more weight to lower variance measurements) is another interesting, rich

problem to be explored. The sparsification technique presented in §4.3 is a good

starting point, but superior classification and greater sparsification could certainly be

achieved with further research.

6.2.3 Closed-Loop Sensing

The most exciting potential improvement to PIV performance, however, is to couple

the feature tracking component with the PIV processing itself. For example, when
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tracking a vortex center the current estimate of the vortex location could be sent to the

PIV system. The PIV system could then perform denser correlations in the regions

that are likely to be the most informative. This is related to the compressed sensing

work referenced in §6.2.2, as the information provided by the current estimate of the

fluid state could be combined with the L1-norm sparsification procedure to generate

sparse, principled sampling distributions optimized for the current fluid state.

The advantages of this are obviously significant, and a number of interesting prob-

lems are raised. An example is how to select an efficient sparse sampling distribution

while maintaining robustness to errors in the estimate. If the vortex is not where

the current estimate places it, how well can the filter correct its error, and at what

cost? These are interesting questions, and ones only now being raised because of the

feasibility of closed-loop PIV-enabled control.

6.3 PIV-Enabled Control

PIV-enabled control is an exciting topic, and one for which the necessary computa-

tional capabilities are just coming on line. Its most obvious applicability to problems

of practical engineering comes in the form of a “scaffold” towards deployable con-

trollers that do not ultimately depend on PIV measurements to perform. In this con-

text PIV can be performed in the lab to provide the controller with a fully-observable

problem in which control design is much easier and more natural. The question then

involves discovering how much of the information relevant for control can be obtained

via local sensors such as anemometers and pressure taps.

By first making use of a PIV-enabled controller, the control designer can directly

respond to flow disturbances without depending upon local sensing. Once a high-

performing controller has been designed in this more intuitive and “easy” space, local

sensors can be correlated with the actions of the PIV controller. There is a possibility

that a structure or signal in the flow that was otherwise difficult to discover the
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Figure 6-1: A sample of LQR-controller perturbation trajectories in θ. Note that
while the variation during normal operation makes detection difficult until the vortex
has significantly perturbed the system, some trajectories do see witness an effect
in the flow earlier than would otherwise be expected. Identifying the cause of this
disturbance, and characterizing it more robustly could result in improved performance
without PIV.

importance of could be found by connecting it with the PIV controller’s actions. For

example, in the PIV-enabled control task presented here there is occasionally a signal

in the θ measurement that arrives at the same time as PIV detects the vortex. This

can be seen in Fig. 5-6, which is reproduced here for convenience as Fig. 6-1.

While the variation during normal operation makes detection difficult until the

vortex has significantly perturbed the system, some trajectories exhibit a signal sug-

gesting the presence of a vortex earlier than expected. If the cause of this early

perturbation could be discerned, it may be identified and used to achieve a level of

performance without PIV approaching the performance available with PIV, though

likely with inferior detection performance (i.e., more false negatives or false positives).

Furthermore, the PIV-enabled controller can act as a benchmark in this setting, giv-

ing in some sense an “upper bound” on performance, by allowing the control design to
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treat the system as fully observable. In a sense, if a controller attaining an acceptable

level of performance cannot be obtained with PIV in the loop it may be impractical

to achieve that level of performance in the field no matter what sensors are available.

In addition to using the PIV-enabled controller as a scaffold for building a con-

troller that requires only local, traditional sensors there is the possibility that a sys-

tem of engineering interest could be controller during actual operation through a

PIV-enabled controller. PIV can be performed in combustion chambers of jet engines

and power plants [107]. In certain modes of operation vortex formation or instability

can be critical to performance [89], with models difficult to come by and simulation

difficult [27]. PIV is used to study these combusting flows [49] and analyze how the

interaction between the flow and the reaction can affect efficiency. Passive and open-

loop active control approaches have been explored [43], but the possibility of actively

controlling the combustion in a deployed system through real-time PIV measurements

is exciting, though several technical hurdles must first be overcome.

6.4 Concluding Remarks

The possibilities offered by real-time PIV-enabled controllers are myriad, and many

interesting questions arise out of the need to obtain flow information relevant to

control quickly and robustly. This need for causal filtering in PIV is new, with the

real-time requirement imposing constraints that are not present when PIV is used in

its traditional setting.

By looking at PIV as a sensor in a control loop as opposed to a means of studying

fluid dynamics makes clear the numerous research questions that are unanswered,

each of which could provide not only superior performance for a controlled fluid-body

system but a better understanding of how such systems behave and interact. The

difficulty in modeling these systems does not preclude controlling them, and through

controlling them new insight can be gained.
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Ultimately, many threads of research can be carried out on how to perform real-

time PIV more efficiently and robustly; how to focus the available computation on

the features of the flow that are relevant to control; how to design controllers that

take advantage of the information gained by PIV; and how to correlate PIV-enabled

controllers with controllers using only local, deployable sensing. All of these are

exciting problems and all of them have several fruitful avenues of attack. It is my

hope that the results presented here will quickly be surpassed by more sophisticated

filters and controllers operating on more complex systems, and that the knowledge

gained will allow fluid-body systems to do things never before possible while granting

insight into a challenging and important aspect of the behavior of fluids.
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Appendix A

Implementation Details

This appendix contains great detail of some of the engineering and design decisions

made in the process of executing this thesis. They are relegated to this appendix

because they are not central to the primary argument, but are included to be useful

to anyone wishing to reproduce these results or continue using the setup used for

these experiments.

A.1 The Water-Tunnel

Steven Proulx (a former lab staff member) and I built the water-tunnel (see Fig. A-1

and Fig. A-2) specifically to enable the convenient study of control for fluid-body

systems. For its size (2.4m x 1m) it has a wide test section (25 cm) to facilitate the

study of a body which must move within the test section. The water tunnel has a

free surface and thus the depth at the test section is not fixed, but in practice it is

run with a depth of 20cm. It can achieve flow rates of over 20cm/s in the test section,

while maintaining uniform flow. Using pure water at room temperature (20 C), the

Reynolds number of a body in the test section is:

Re =
UL

ν
=

0.20m/s · 0.050m

1.004 · 10−6m2/s
= 1.2 · 104, (A.1)
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where U is mean fluid velocity in the test section, L is a representative length scale

(chosen here to be 20% of the test section width which is about the size of the bodies

studied in this thesis) and ν is kinematic viscosity. Thus, this setup allows fluid-body

control problems at a Reynolds numbers on the order of 10,000 to be studied.

Figure A-1: Schematic of the water-tunnel hardware. The pumps circulate water
through pipes into the settling tank, after which it spills over and flows through
a flow straightening section consisting of three screens and a honeycomb of small-
diameter tubes to eliminate any vorticity. The water then goes through a contraction
section to smoothly accelerate the flow to 20cm/s in the test section, after which it
returns to the pumps.

A.1.1 Flow Straightening

I desired a reasonably uniform flow in the test section for the control experiments,

but did not require the flow to be as carefully regulated as would be required to study

the fluid dynamics of the immersed bodies themselves in detail. Thus, I designed a

reasonably effective flow straightening section without attempting to minimize every

source of nonuniformity in the flow. The first stage in this straightening section is the
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Figure A-2: Photo of the water-tunnel hardware. The upper left shows the settling
tank filled of water as it is fed by the stainless steel pump. Note the black fabric used
to prevent any unwanted reflections of the laser sheet back into the lab.

settling tank, into which the pumps discharge. The water entering this tank has a high

speed, and the settling tank allows much of this energy to be dissipated. The water

moves travels from this tank to the rest of the straightening section by a spillover,

causing it to be relatively uniform across the water tunnel’s width. After this spillover,

the flow is straightened using three wire meshes and an aluminum honeycomb. The

meshes act to reduce velocity variation over across the width of the water tunnel,

and dampen out small-length scale vorticity. The goal of the honeycomb is eliminate

medium scale vortices before entering the contraction section. This can be shown to

be the case for a test section flow rate of 20cm/s (the maximum in these experiments)

by the following calculation.

The volume flow rate in the test section is:

V̇ = w · h · U = 0.25m · 0.20m · 0.20m/s = 0.010m3/s, (A.2)

where w is width of test section, h is height of test section and U is mean fluid

velocity in the test section. From this, Us, the mean velocity in the straightening
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section (ignoring the cross-section of the tube walls, a reasonable approximation for

our setup), can be calculated as:

Us =
V̇

ws · h
=

0.010m3/s

0.80m · 0.20m
= 0.063m/s, (A.3)

with ws the width of test section and the height h the same as in the test section

(seen in practice to be a good approximation).

The honeycomb tubes, which are hexagonal, have a hydraulic diameter of 1.0 cm.

Thus, the Re in the tube, using the hydraulic diameter as a length scale and water

at 20 C, is:

Retube =
0.063m/s · 0.010m

1.004 · 10−6
= 630, (A.4)

less than Re = 2000 which is generally considered the point at which flow in a pipe

begins a transition to turbulence, thus the flow in the straightener is laminar. The

entrance length for flow in a laminar pipe is a dimensionless number defined as:

ELlaminar = le/d, (A.5)

where le is the length to a fully developed velocity profiled and d is the pipe diameter.

ELlaminar can be approximated as:

ELlaminar = 0.06 ·Re = 37.8, (A.6)

for this situation, giving an entrance length of 38 cm. The straightening honeycomb

is only 20 cm long, so fully-developed flow is not entirely achieved in the straightener

tubes, but at half the entry length slug flow has developed and a sufficient degree of

straightening has be achieved to provide uniform incoming flow.
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Figure A-3: The high-QE camera used in PIV: a pco.1600 CCD.

A.2 PIV Hardware

This section describes the details of the hardware used to perform PIV.

A.2.1 Camera

I use a PCO.1600 cooled-CCD, high-Quantum Efficiency (high-QE) camera (see

Fig. A-3) for imaging. The camera has a resolution of 1600x1400, but to increase

the signal-to-noise ratio and increase the frame rate, I use 2x2 binning resulting in

images that are 800x600. Using this setting I can easily capture single images at 32

frames per second, when using an exposure of approximately 2.5ms-5ms. This fast

exposure has been seen in practice to minimize blurring while maintaining sufficient

contrast. Alternatively, I can capture image pairs at 16 frames per second, allow less

frequent sampling at lower interframe times. This feature makes it possible to observe

much faster flows. The magnification of the lens is such that 1 pixel = 0.158 mm, or

equivalently, 6.33 pixels per mm.

The camera is placed below the test section, imaging upwards. Because of this,

the risk of leaked water dripping onto the camera and lens must be considered. To

protect the camera, a box was built out of aluminum, with a top of optical quality

glass (see Fig. A-4). The glass seals against a rubber gasket, effectively preventing
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Figure A-4: SolidWorks rendering of box built to mount camera, and protect it from
any droplets of water leaked from the test section.

any water leaking from the test section from damaging the camera. Finally, the extra

layer of glass has been seen to not significantly reduce the brightness of the particles

when imaged, an important feature as we do not have a great deal of contrast ”to

spare”.

A.2.2 Laser and Optics

For illumination I have used two lasers: a LaVision 2 Watt continuous wave (CW)

for lower speeds and a 100mJ double pulsed laser for higher speeds. Both lasers

have the same wavelength: green at a wavelength of 532nm. The wavelength of

these lasers is matched with the high-QE wavelength range of our camera, ensuring

maximum efficiency and contrast. The continuous wave laser is cheaper and simpler,

but it lacks the beneficial strobing effect of the pulsed laser, which eliminates the

concerns regarding exposure time. However, for some of the experiments pursued

in this thesis/footnoteIn the PIV chapter the vortex tracking results use the CW
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Pulsed Laser
Cylindrical Lens

Figure A-5: Pulsed laser and optics.

laser, while the PIV-enabled control chapter the pulsed laser was used. it was more

convenient.

The laser beam was turned into a sheet via a cylindrical lens which was rigidly

mounted to the laser itself, limiting the opportunity for lens alignment issues (which

can be both experimentally inconvenient and unsafe). The lens was a ThorLabs

anti-reflectivity coated cylindrical lens with a focal length of -38.1mm (part number

LK1325L1-A). The anti-reflectivity coating was chosen to match our laser frequency,

minimizing the amount of light lost when passing through the lens.

A.2.3 Particle Seeding

I seed the water with 50µm polymer particles from Dantec Dynamics (part number

PSP-50). These particles are approximately neutrally buoyant (in fact they are very

slightly denser than water), and thus remain suspended easily when mixed via the

pumps. The images produced are of sufficient quality that PIV software can generally

process them quite easily (see Fig. A-6 and Fig. A-7 for an example of the images

obtained and the vector fields resulting). Smaller particles (10µm glass spheres, also
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Figure A-6: Unprocessed PIV image of stagnation flow on setup (flow is vertical
against a bluff body).

Figure A-7: Processed PIV image of stagnation flow on the water-tunnel setup (the
algorithm struggles in the corners due to the edges of the image being out of focus).

from Dantec) were also tried, but did not scatter enough light to produce clear images

with a short exposure.
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A.3 Observer Gain Selection

The poles for the error dynamics of the observer in the case of a linear system are

given by the eigenvalues of the matrix:

M = A− LC, (A.7)

and thus are dependent on the system dynamics present in A and the measurement

matrix C. However, first consider a second-order mechanical system with n/2 degrees

of freedom, n states, and only integrator dynamics, as given in As below:

As =

 0 I

0 0

 , (A.8)

where I ∈ Rn/2×n/2 is the identity matrix. If only the positions are measurable (as is

the case in the HCP) the measurement matrix C is:

C =
[
I 0

]
, (A.9)

where I ∈ Rn/2×n/2 is again the identity matrix. In the case of a 2 degree of freedom

system, the observer gain matrix L:

L =


2/ε 0

0 2/ε

1/ε2 0

0 1/ε2

 . (A.10)

places all the poles at exactly at at −1/ε. For the actual dynamics of the HCP the

poles will not be precisely at this location. However, so long as ε is sufficiently small

the importance of the lower two rows of the matrix A become negligible and the real

parts of the poles (i.e., the parts that determines convergence rate) are all very near
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−1/ε relative to their distance from 0.

The value of ε used in this work is ε = .05. Note that because the system is

observable an L could be chosen that places the observer poles at any location, but in

practice there are bandwidth limits on the observer beyond which tracking becomes

very poor and possibly unstable.

For the HCP system, the linearized model gives observer poles at:

s = −20,−20,−21.1± 5.687i, (A.11)

where s is the laplace variable.

A.4 Centering the Balance Controller

Another feature of many underactuated systems, and balancing systems in particular,

is a strong sensitivity to appropriate “zeroing.” In other words, if the controller

believes the equilibrium state of the controller to be slightly different from the true

equilibrium, performance can rapidly degrade. Intuitively this occurs, because when

the controller is at what it believes the equilibrium to be the system is actually causing

it to accelerate away from the true center. Because the controller is unaware of this,

it waits longer to take a corrective action, resulting in a larger ultimate deviation

to correct the error than was necessary. Similarly, when at the true upright the

controller takes an action to push it towards what it believes to be the center, and

an unnecessary error is created.

To demonstrate this effect, the balancing controller designed above was executed

on the HCP with two different zero points, one 1.5◦ greater than the other. While this

disparity is small enough that it cannot easily be seen when setting up the system, is

has a noticeable effect on performance, as demonstrated in Fig. A-8.
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Figure A-8: Six trajectories of the HCP with two different centers, different by only
1.5◦. This dramatic sensitivity to such a small angular offset demonstrates the im-
portance of obtaining an accurate zero, either through careful calibration or through
online adaptation of the center point.
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A.4.1 Adapting the Center

To alleviate this problem, an estimate of the true system zero can be produced online

as the system executes. The important caveat in producing this online estimate is that

it must adapt at a slower timescale that the system itself, both in terms of the system’s

intrinsic dynamics (e.g., the fluid timescales) and the timescale of the controller. In

this sense, adapting to calibration error in the centering is effectively adding integral

term, though in the estimator rather than the controller. Furthermore, because we

have a roughly accurate model of the system available from § 2.2, we can do better

than simply integrate the error.

First we must examine the torque equations presented above, but with an included

angular offset term, θ0:

τaero = −1

2
c2sρV 2 sin (α− θ0) (A.12)

τinertial =
1

2
Maddc cos (θ + θ0)u (A.13)

θ̈ =
τaero + τinertial

Itotal
− kdθ̇ (A.14)

(A.15)

From these we can solve for θ0 as a function of the current state and angular accel-

eration. By assuming θ0 is small (but not making that assumption for the measured

angle θ), we find that:

θ0 =
1

cosα

(
sinα− θ̈Itotal − τinertial + Itotalkdθ̇

−1
2
c2sρV 2

)
(A.16)

This requires us to measure θ̈, which we must obtain by double-differentiating

position measurements, resulting in a noisy estimate. However, as the timescale of the

adaptation must be slower than the system timescale anyway, passing the estimated

θ0 through a low-pass filter resolves the problem, and allows us to compensate for
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Figure A-9: Six trajectories of the HCP with the center being adapted online in the
method described in §3.2. Note that despite the calibration disparity, both subsets
of trajectories have means that are very close to the specified trajectory, and to each
other.

calibration error. The success of this technique can be seen in Fig. A-9, in which the

same angular error of 1.5◦ that caused difficulty in Fig. A-8 is canceled out effectively.
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Appendix B

Robust Learning Control

This thesis has focused on iterative, data-driven local-model based control for solving

fluid-body control problems. As evidenced in the previous chapters the data-driven

model approach is very powerful, and can be successful in relatively complex control

domains. However, a significantly different approach to controlling fluid-body systems

that has also shown promise on complex fluid systems is Reinforcement Learning, or

RL.

RL is in many ways a much larger departure from traditional model-based control

than the other work in this thesis, as in contrast to the results presented in the

remainder of this thesis RL does not require even a local model to be fit to measured

data. Instead, it can directly learn the control policy for the fluid-body system without

ever explicitly attempting to model the system’s behavior. This approach worked

well in my Master’s Thesis [79] when finding an energetically-optimal trajectory for

a flapping wing. The flapping wing, however, was not open-loop unstable, and the

feedback controller used track the nominal trajectory was fixed at the beginning of the

experiment based upon standard loop-shaping design techniques. This is in contrast

to the HCP problem in which a poor controller can result in a failure event (e.g.,

falling over), and in which the controllers were updated automatically during the

iteration.
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Using RL controller-design methods without risking a failure during learning is a

non-trivial problem, but not an insuperable one. The work presented in this appendix

deals with learning a controller for a system with uncertain dynamics1 while guaran-

teeing that no controller used during the learning process will cause the system to go

unstable. The system used as an example in this appendix is not a fluid-body system

(building an accurate model of such system, along with bounds on performance, is

often a thesis project in itself), but it is a system that can be driven unstable by a

poor choice of controller. There is still much further research to be done in this do-

main, but the work presented in the following sections present a good starting point

for stability-guaranteed RL.

B.1 Introduction

Reinforcement Learning offers a very general set of methods for optimization which

has been used successfully in numerous controls applications, particularly in robotics.

Most uses of learning which have been successful on hardware involved learning an

open-loop trajectory or control tape (see, for example [3, 47, 81, 88]). These trajec-

tories can then be wrapped in stabilizing controllers designed using more traditional

methods, such as Model Predictive Control [19] or the Linear Quadratic Regulator

(LQR). More rarely, feedback policies themselves have been learned directly on hard-

ware (e.g., [48, 101]), but not in situations in which instability greatly disrupts the

learning process2.

There is less work focusing on RL for feedback design when the system and task

are such that instability can be an issue even as the policy converges. This has

prevented the use of RL in high-performance tasks near the edge of stability, such as

1The uncertainty must be bounded for the techniques to work, with the class of uncertainties
and the level of conservative similar to that seen in work on Robust Control.

2Feedback policies have been developed for stability critical systems through the use of Iterative
LQR (see, for example, [2]), but the only policies which can result are those produced as a byproduct
of iLQR , i.e., an LQR policy about the converged-to trajectory.
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learning with hardware in-the-loop when the hardware could be damaged through the

use of an unstable controller. This lack of work is not because RL is ill-suited to this

domain of high-performance, low-stability-margin control, but because what seem to

be the most natural parameterizations actually behave poorly in this domain.

In this chapter we will study four parameterizations of linear feedback controllers

and examine their performance on an example learning task in which instability can

be a significant issue. The task is to quickly reach with a flexible manipulator to

catch a ball, with learning performed using REINFORCE. While the manipulator

is modeled as an open-loop stable linear system, it is underactuated, lacks full-state

information and can easily be driven unstable through the choice of an inappropriate

controller.

Two of the most natural-seeming parameterizations (state feedback gains with a

fixed observer and a feedback controller transfer function) do not guarantee stability,

and suffer both from non-convexity of the set of stabilizing controllers and from small

changes in parameters causing a policy to go from high-performance to unstable.

The other two parameterizations studied (LQR cost matrices with a fixed observer

and the Youla Parameterization (YP)) do guarantee stability. The LQR cost matrix

parameterization can offer high-performance, high-bandwidth controllers in situations

where there is no delay, the cost function is of a form similar to the quadratic cost

assumed by LQR, and the noise is not excessively structured. However, the Youla

Parameterization offers a richer set of controllers, allowing for better performance

when the cost function is significantly non-quadratic or when the noise is structured

but non-Gaussian.

The remainder of this chapter is organized as follows:

• Section II An introduction to the four parameterizations for linear feedback

control studied in this chapter: Feedback Controller Transfer Function, State

Feedback Gains with a Fixed Observer, LQR Cost Matrices with a Fixed Ob-

server and the Youla Parameterization
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• Section III A description of the flexible arm ball-catching dynamics and task

• Section IV A presentation of the REINFORCE method used for learning in

this chapter

• Section V An analysis of the various parameterizations’ performance in the

context of the ball-catching task and REINFORCE learning

• Section VI A discussion of extensions of the YP to broader classes of systems

• Section VII A brief conclusion highlighting the critical points of this chapter

B.2 Linear Feedback Controller Parameterizations

The general task of designing a linear feedback controller may be thought of in the

context of Fig. B-1, where K(s) and P (s) are linear transfer functions in the laplace

variable s. The designer must choose a K(s) that, from measurements of the output y

produces an input u that results in good performance by some designer-specified met-

ric. In this section we consider four representations of K(s) in the context of learning:

Directly learning a linear transfer function for K(s) in § B.2.1, representing K(s) as a

Kalman filter combined with learned state feedback gains (§ B.2.2), representing K(s)

as a Kalman filter then finding LQR feedback gains by learning LQR cost matrices Q

and R (§ B.2.3) and finally, representing the controller in the Youla Parameterization

(§ B.2.4). In § B.5 we present their performance using REINFORCE learning on the

example ball-catching task described in § B.3.

B.2.1 Feedback Transfer Function

Perhaps the simplest parameterization is to learn the transfer function of a feedback

controller K(s) (see Fig. B-1) directly. As in theory K(s) can be of arbitrary order,

one must choose a set of K(s) over which to actually search. In this chapter, the
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K(s) considered were of the form:

K(s) =

∏n
i=0 βis

i∏n
i=1(s− αi)

, (B.1)

where the βi are learned and the αi are fixed. In effect, the poles of K(s) are set by

the designer while the numerator coefficients (and thus the zeros) are learned.

The αi used for K(s) are given below:

• α1 through α15 are distributed logarithmically between −10−0.5 and −100.5

• α16 and α17 are −0.5± 0.1i

• α18 and α19 are −1.1± 0.05i

• α20 and α21 are −1.1± 0.5i

• α22 and α23 are −2.3± 1i

These αi were chosen because they covered a range of time-scales around the time-

scale of the system, as well as several oscillatory modes with frequencies near the

open-loop oscillation frequency of the system.

Learning K(s) directly effectively allows the possibility of an arbitrary observer

structure and the behavior of additional controller states (e.g., for integral control) to

be learned. This parameterization is quite rich, with any linear controller possessing

the poles specified with the αi capable of being represented. However, less knowledge

of the system is encoded in the structure of the parameterization than in the other

parameterizations explored in this chapter and thus achievable performance can de-

pend greatly on the set of transfer functions K(s) that are actually considered. Also,

stability is not guaranteed in this case, with the relationship between the structure

of K(s) and the stability of the resulting system quite complicated.
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Figure B-1: Block diagram of the system used for Direct K(s) Learning. Controllers
are parameterized by selecting a linear system K(s), with the specific form shown in
Eq. (B.1).

B.2.2 State Feedback Gains with Fixed Observer

Fixing a high-performance observer (e.g., a Kalman Filter) and learning state-feedback

gains seems like a very natural parameterization for learning a feedback controller (see

Fig. B-2), with LQR optimal controllers being within the set of available controllers.

The dimension of the learned policy is the same dimension as the state, and it is easy

to initialize the policy to LQR gains found for reasonably chosen Q and R matrices.

However, as §B.5.2 shows, the performance of this parameterization during learning

is actually very poor.

B.2.3 LQR Cost Matrices

Directly parameterizing controllers in the space of LQR cost matrices and using a

fixed observer (see Fig. B-3) has a number of advantages. Perhaps foremost among

these is that by restricting one’s attention to the cone of positive-definite matrices for

Q and R (a convex set) only stabilizing controllers are considered. However, the set of

possible controllers that can be represented in this parameterization is actually quite

limited due to being restricted to scalar gains on the state variables. Furthermore, the

set of controllers is heavily overparameterized. While symmetric positive definite Q
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Figure B-2: Block diagram of the State Feedback Gain parameterization with a fixed
observer. Controllers are parameterized by selecting n scalar gains k1 through kn
where n is the number of states of the system.

and R matrices have n(n+1)/2 and m(m+1)/2 free parameters respectively for an n

state system with m inputs, the space of controllers is of dimension nm. Thus, the set

of controllers will always be over-parameterized, making for a possibly inefficient rep-

resentation as learning must operate in an unnecessarily high-dimensional space. As

learning performance has been shown to degrade with the number of learned param-

eters (see [80]), this is best avoided. Furthermore, dealing with delays in continuous

time is non-trivial, and as the stability margins of LQR controllers with Kalman filters

can be very small [33], even a small delay can be destabilizing.

B.2.4 The Youla Parameterization

As the Youla Parameterization (YP) is not widely known outside of the controls

literature, we will first briefly describe the YP for single-input single-output linear

systems, for which the main arguments are very simple, although similar parameter-

izations exist for much more complex systems (see Section B.6).

Given a stable plant P (s) and a feedback controller K(s), both finite-dimensional
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Figure B-3: Block diagram of the LQR Cost Matrix parameterization. Controllers
are parameterized by two positive definite cost matrices Q and R, as is done in the
design LQR controllers.

SISO systems, the closed-loop system from u to y is:

H(s) :=
Y (s)

U(s)
=

P (s)

1− P (s)K(s)
. (B.2)

Note that the relationship between the parameters of the feedback controller K(s)

and the closed loop system are highly nonlinear. The Youla parameter associated

with this controller is defined as

Q(s) :=
K(s)

1−K(s)P (s)
. (B.3)

Clearly for any K(s) this Q(s) exists.

Alternatively, given a plant P (s) and a Youla parameter Q(s), it is simple to

construct the controller K(s):

K(s) =
Q(s)

1 +Q(s)P (s)
(B.4)
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and the closed-loop system is

H(s) = P (s)[1 +Q(s)P (s)] (B.5)

which is affine in Q(s). Furthermore, since P (s) is stable it is clear that H(s) is stable

if and only if Q(s) is stable.

In summary, every controller K(s) can be represented equivalently by a Q(s), and

the closed loop system is affine in Q(s) and stable if and only if Q(s) is, so the set of

stable Q(s) is complete affine parameterization of all stabilizing linear controllers for

P (s). Given a Youla parameter Q(s), one can easily construct the feedback controller

from (B.4). Note that it is not necessarily the case that K(s) itself is stable considered

as an isolated system.

Furthermore, since the closed-loop system H(s) is affine in Q(s), many important

cost functions are convex in the Q(s), including LQG, H∞, and time-domain bounds

on overshoot, rise-time, and settling time. For this reason it has long been a central

tool for designing feedback controllers via optimization methods (see, e.g, [113, 115,

17, 6, 38] and many others).

There are many cases in which, even if the system model P (s) is known well, online

learning can be advantageous over model-based design. For example, if reference or

disturbance commands have characteristics which are changing over time, or do not

fit a mathematical framework which is easy to optimize over, such as Gaussian noise

with a known spectral density, or bounded energy signals. Another case is when

the cost/reward for the learning process is not easily represented mathematically,

e.g. qualitative ranking by human teachers. Furthermore, the results proposed in

this chapter can be easily extended to cases in which P (s) is only approximately

known, and clear advantage could be gained by optimizing on hardware-in-the-loop

experiments (see Section B.6).

The most intuitive view of the YP is to consider it as a stable system P (s) (pos-
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Figure B-4: Block diagram of the Youla Parameterization (YP). Controllers are pa-
rameterized by selecting a stable linear system Q(s) of the form Eq. (B.1).

sibly with a disturbance input w) in feedback with controller consisting of a copy of

the system dynamics P (s) (without the disturbance input) and a second arbitrary

stable system Q(s) acting on the difference (see Fig. B-4a). As Q(s) varies over all

stable linear systems, the combination of P (s) and Q(s) will produce only stabilizing

controllers.

While theoretically Q(s) can be any stable linear system, in practice one must

choose some limited subset of systems to study (much as was done in the case of

representing K(s)). While the literature has proposed a number of affine representa-

tions of Q(s) (see [17]), this chapter will focus on choosing a Q(s) of the form shown

in Eq. (B.1). This representation of Q(s) is clearly affine, is relatively rich and has

shown good performance in practice.
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B.3 Catching with a Flexible Arm: An Example

System

The simulations in this chapter are based on a simulated repeated ball-catching task

for a flexible arm (see Fig. B-5). The task is as follows: A flexible manipulator

starts at rest at the zero position (i.e., y = ẏ = 0). A ball enters at a distance xb

traveling at a speed vb and at a height such that it will be caught if the manipulator’s

end effector reaches an angle yb. The speed vb and target angle yb are drawn from

uniform random distributions, with the distance xb fixed. The arm reaches for the

ball, inducing flexural modes in the beam that can not be directly sensed or controlled.

The frequency and magnitude of the flexural modes are of the same order as those of

the reaching task, causing them to have non-negligible effects on end-effector position,

and thus catching performance.

The arm is modeled as a homogeneous rectangular beam of length L, Young’s

Modulus E, linear density λ and cross-sectional moment of inertia Iy. The total

rotational inertia of the arm and actuator about the revolute joint is I. The actuator

acts with a torque u on the base of the arm while the end of the arm is measured,

giving an angular measurement y. A spring and very weak damper with constants k

and b respectively work to hold the arm at zero, making the system weakly open-loop

stable. A structured disturbance acts on the base of the beam with a torque w. This

disturbance is sinusoidal with fixed frequency ωd and amplitude fd, as shown below:

w(t) = fd sin(ωdt) (B.6)

The system is modeled in the linear regime (i.e., small deformations and neglecting

the centrifugal component of the dynamics) using the first three resonant modes of

the system. The parameters may be seen in Table B.1.

This system is underactuated and does not have full-state information, making it
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Figure B-5: Diagram of the simulated system. A ball enters at a distance xb traveling
at a speed vb and at a height such that it will be caught if the manipulator’s end
effector reaches an angle yb. The speed vb and target angle yb are drawn from uniform
random distributions, with the distance xb fixed. The input is a torque u, the distur-
bance a torque w and the output a measured angle y. The arm attempts to catch the
ball by driving y to yb in time to catch the ball, while minimizing arm velocity at the
time the ball arrives. Costs are also imposed for torque, as well as additional costs
for exceeding specified torque and angle values. Catching performance is judged by
Eq. (B.10).

a non-trivial control task. While it is open-loop stable, it is easily capable of being

driven unstable with a poorly chosen control law.

A catching trajectory was considered “good” if the end of the arm was at the

desired position and a low velocity when the ball arrives. A trajectory was penalized

for using torque and exceeding specified torque and angle thresholds. The specific

function used to quantitatively evaluate a trajectory is shown in Eq. (B.10). An

example of a successful catching trajectory can be seen in Fig. B-7.

B.4 The Learning Algorithm: Episodic REINFORCE

The algorithm used for learning is Episodic REINFORCE, in which the policy π(y;φ)

is a function of the output of the system y and a set of parameters φ. The learning is

128



Table B.1: Parameters of flexible-arm ball-catching task.

L 1.5 m Iy 2.77× 10−7 m4

E 3 GPa b 0.01 Ns/m

k 0.5 kN/rad vb 60± 3 m/s

yb 1± 0.05 rad xb 100 m

fd 10 Nm ωd π rad/s

λ 0.1 kg/m I 1 kg m2

performed episodically (i.e., the system states are reset between policy evaluations),

and the stochasticity of the policy is on the policy parameters, rather than the out-

puts. The update appears in [109] for learning the mean of a Gaussian element, but

we will briefly derive here the specific update used in this chapter, in which a vector

of parameters is learned with identical noise and learning rate.

Consider the REINFORCE update (formulated for cost instead of reward) in

which a vector of parameters share the same learning rate eta:

φi+1 = φi − η (J(φ′i)− b)
∂

∂φ′i
ln(g(φ′i)), (B.7)

with φ′i the actual parameters used on trial i, b a cost baseline, J(φ′i) the cost asso-

ciated with the policy parameters φ′i and g(φ′i) the probability of using parameters

φ′i on trial i. If g(φ′i) is a multivariate Gaussian distribution with mean φi and inde-

pendent noise on each element with covariance σ2, the eligibility ∂
∂φi

ln(g(φpi)) can be

computed as:
∂

∂φi
ln(g(φpi)) ∝ (φ′i − φi) . (B.8)

Clearly, φ′i = φi +φpi , thus, after including all scalars in the learning rate, the update

may be written:

φi+1 = φi − η (J(φi + φpi)− J(φi))φpi . (B.9)

Note that while an averaged baseline is common in the literature, we have here used
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a second policy evaluation (i.e., a “nominal” policy evaluation). This was found to

learn using fewer total policy evaluations on the system, even though two evaluations

were needed per update. Thus, the resulting learning algorithm was performed as

follows: at iteration i the policy φi is executed and used to find the baseline cost

b. The policy is then perturbed by a small amount φpi . This perturbed policy is

executed, and the difference in performance is used to compute the policy update,

which is shown above in Eq. (B.9):

The cost function J(φ) used for this experiment is shown below:

J(φ) =

∫ xb/vb

0

ru2dt+ c1
(
(y − yb)|xb/vb

)2
+ c2

(
ẏ|xb/vb

)2
+csat max

(
0,max((u/usat)

2 − 1)
)

+ccrash max
(
0,max((y/ycrash)

2 − 1)
)
. (B.10)

It rewards achieving the desired angle and velocity y = yb, ẏ = 0 when the ball arrives

at t = xb/vb, while minimizing applied torque u and avoiding angles greater than

ycrash and torques greater than usat. The constants r, c1, c2, csat and ccrash are used

to weight the relative importance of these costs.

B.5 Results

The four parameterizations previously introduced in § B.2 were used for REINFORCE

learning of controllers for the ball-catching example task. The specific results for each

parameterization are discussed below, but the primary result is that the Youla Param-

eterization provides the best learning performance as well as the best performance

from the resulting controller. While clearly the performance for both the YP and

directly learning K(s) depend on the selection of the the roots of K(s) (or Q(s)),

several reasonable selections of the αi produced effectively the same behavior.

130



0 100 200 300 400
0

1

2

3

4

Evaluation

C
os

t

 

 

Youla Parameterization
Direct K(s) Learning
LQR Cost Matrix Learning
Unstable Policy Evaluations

Figure B-6: Performance of YP and learning K(s) directly for zero initial policy
parameters and using tuned policy gradient. Ten trials of 200 iterations (400 evalua-
tions) were performed for each curve, then averaged. The Y-axis is normalized by the
cost of the initial LQR controller performing this task. Note how the weakly stable
nature of the task and system result in many unstable policy evaluations even as the
Direct K(s) learning converges.

B.5.1 Direct K(s) Learning Results

Experiments on the flexible arm ball-catching task have shown that although learning

converges reasonably well (see Fig. B-6) for direct K(s) learning, numerous unstable

controllers are applied to the system throughout the learning process, even as the

controller converges. This is due to the task effectively rewarding behavior on the

margin of stability. Moreover, the convergence was significantly slower than that of

the YP. Finally, while the resulting cost was similar to that of the YP (due to be-

ing capable of avoiding saturations and actually reaching the target point reasonably

well), the actual trajectory followed was somewhat erratic. Thus, while this param-

eterization is reasonably well-suited to learning when instability is not a significant

issue, and in theory a sufficiently rich K(s) can produce the same controllers as any

of the parameterizations examined here, in practice performance is worse for K(s)

with natural selections of the αi than for similarly reasonable selections of Q(s) .
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Figure B-7: Tracking performance of resulting controllers from the YP, LQR Cost
Matrices Learning and Direct K(s) Learning. Note that while all three parameter-
izations shown here hit the target point well for the nominal values, randomization
of vb (as well as greater use of actuation) degraded the performance of the controller
from Direct K(s) Learning and overshoot that could not be eliminated by learning
caused the LQR Cost Matrix controller to incur unacceptable cost. As a result, the
Youla Parameterization controller achieved the best performance.
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Figure B-8: Cost landscape for state feedback gains with a fixed observer for k1 and
k2 with k3 through k8 set to their LQR values. Colors correspond to the log of the
cost normalized to the LQR cost, and policies with with a cost greater than five times
that of LQR are omitted. Note the very non-uniform gradients and non-convexity.

B.5.2 State Feedback Gain Learning Results

When applied to the example system, it was found that the sensitivity of cost to

the state feedback gains is very non-uniform, resulting in either unacceptably slow

learning (by learning slowly enough to identify the steep gradients warning of insta-

bility) or frequent unstable policy evaluations (by using perturbations and updates

too large to identify oncoming instability). Both of these will result in unaccept-

ably poor learning performance. Figure B-8 shows the cost landscape for two of the

eight feedback gains on the flexible arm catching task. The non-convexity and non-

uniformity evident in the figure makes learning in this parameterization completely

impractical. Because of this the other limitations of this approach (e.g., a limited set

of representable controllers) are of minor importance compared with the fundamental

difficulty of excessively non-uniform cost sensitivity to parameters.
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B.5.3 LQR Cost Matrix Learning Results

When the LQR Cost Matrix parameterization was used for learning, it was found to

improve policy performance very little, if at all, from its initial value. This is likely

due to the quite limited set of controllers available in this parameterization, and the

very large parameter changes required to effect reasonable change in the output. No

unstable controllers were applied to the system, and reasonable trajectory tracking

was achieved, but performance with respect to the given cost function did not improve.

As the cost function was not quadratic on state and action, is is quite likely that the

true optimal controller was not within the set of controllers parameterized by LQR

cost matrices, and indeed it could be that no controller of performance comparable

to that attained by other parameterizations was capable of being represented. Thus,

the ultimately achievable performance is inferior to that obtainable by representations

that parameterize a more general controller set.

B.5.4 Youla Parameterization Learning Results

As Figures B-6 and B-7 show, the YP provided the best overall performance, with

good learning performance (i.e., quick, predictable convergence) and good ultimate

controller performance. The fact that no intermediate trials were unstable is an added

benefit, as it would allow for the application of learning using the YP even to sensitive

hardware-in-the-loop learning systems that could be too delicate to experience exces-

sively violent unstable controllers. The ultimate ball-catching performance is clearly

quite good (though with imperfect noise rejection), and the control and output sat-

urations that are problematic in the context of the LQR Cost Matrix learning are

easily dealt with through learning in the YP. While rise-time and noise rejection were

not as strong as for the LQR cost matrix control, these performance measures de-

pend upon the selection of the representation for Q(s), as with appropriate Q(s) any

stabilizing linear controller can be represented, including the LQR controller. While
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Figure B-9: Cost landscape for the Youla Parameterization for βn−1 and βn with the
rest of the βi set to their converged to values. Colors correspond to the log of the
cost normalized to cost of the converged to policy. Note the uniform gradients and
convexity.

this chapter has not addressed in detail how Q(s) should be represented, a wealth

of work in the controls literature deals with this very problem, and exploring these

different representations in the context of learning is an interesting future direction.

Furthermore, the convexity of many common cost functions in the YP (including

Linear Quadratic costs and saturation costs in the time domain as were used here)

can result in the convexity of the value function learning must descend (see Fig. B-9).

While this convexity is not guaranteed for arbitrary cost functions, if regions of the

value function have this property it can still be advantageous to both the rate at

which learning converges and to the avoidance of local minima.

B.6 Extensions of the YP to More Complex Sys-

tems

As the Youla Parameterization clearly demonstrated the best performance, we will

focus here on the possible extensions to the simple YP described in this chapter. Due
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to their utility in feedback optimization problems, finding convex parameterizations

of stabilizing controllers has been a major focus of control theory research for many

decades. In this section we briefly overview a few major results related to the Youla

parameterization which may also be applied in a policy learning architecture.

B.6.1 Unstable and Multivariable Systems

In this chapter we have considered a stable single-input single-output system, mainly

for simplicity’s sake. The Youla parameterization for unstable and multivariable

systems is classical and is widely used in control design, however the construction is

somewhat more involved (see, e.g., [113, 17, 25]).

B.6.2 Rapid Switching Between Controllers

In this chapter we have assumed that the learning is performed over repeated per-

formances of a task, all starting from the same initial conditions. If, on the other

hand, learning is performed by switching between candidate controllers during contin-

uous operation (as in supervisory adaptive control) then stability under the switching

process becomes an issue [53].

It is well known that even if two or more feedback controllers are stabilizing for

a given system when considered in isolation, it is possible destabilize the system by

rapidly switching between them. Giving tight conditions on stability of switched

systems is intrinsically difficult – NP-Hard or undecideable, depending on the exact

formulation [15, 102].

When the switching is chosen by the controller, stability can be ensured by en-

forcing a dwell-time between switching [53]. Particularly relevant to the work in this

chapter are designs in which switching can be performed arbitrarily rapidly. One such

design is to represent all controllers in the Youla parameterization, with a reset on

the states of Q(s) at the moment of controller switch [39].

136



B.6.3 Uncertain Models

A natural application of learning or adaptive control is where the system model is

not exactly known in advance. In this case, common methods include online system

identification and control design, or direct policy search.

An alternative, made feasible in the framework proposed here, is to enforce that

all control policies searched over are robustly stabilizing, but use the learning proce-

dure to evaluate performance. In the control literature it is common to enforce robust

stability via a small-gain condition by limiting the H∞ norm of the closed-loop trans-

fer function [115, 25, 17]. This constraint is convex in the Youla Parameterization.

Characterizating uncertainty via a small-gain bound may be crude if more is known

about the modelling errors. Convex parameterizations are also available for some

tighter definitions of uncertainty [73].

B.6.4 Nonlinear Systems

For certain classes of nonlinear systems there exists parameterizations of all stabi-

lizing controllers, similar to the Youla parameterization, for a variety of definitions

of stability (see, e.g., [23, 70, 55, 8] and many others). In these cases, the Youla

parameterization still gives a complete parameterization of all stabilizing controllers

in terms of a stable nonlinear operator Q. However the closed-loop dynamics of the

feedback system is no-longer affine in Q and the optimization process is much more

difficult.

B.6.5 Decentralized Systems

For a long time, the problem of decentralized control - in which each controller/agent

has access to data from a limited subset of sensors - has been a very difficult prob-

lem. Witsenhausen’s classic counterexample showed that even in the linear-quadratic-

gaussian case, the optimal decentralized controller may not be linear, and searching
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for the optimal linear controller can be a nonconvex problem with many local minima

[111]. Recently, very interesting results have emerged describing conditions under

which the search for an optimal linear decentralized control is convex in the Youla

parameter [82, 51]. An extension to the nonlinear case has also been considered [112].

Note that for these results to be applied directly to our method, it would be

necessary that all controller locations have access to the reward signal. A substantially

more challenging problem would be one where each individual controller can only see

a subcomponent of the total reward.

B.7 Conclusion

This chapter has explored the possibility of learning feedback controllers in the Youla

Parameterization to avoid the issue of intermittent instability while learning, and to

make learning perform better via convexification of the underlying problem. The

system studied in this appendix is not a fluid-body system, but it is a complicated

system which can suffer from instability if improperly controlled. Deploying this

technique on a fluid-body system would require more accurate modeling than that

performed in this thesis on the HCP, as well as trustworthy bounds on the error.

However, the advantages of learning directly in the policy space, and of using RL on

experimental systems without the risk of applying unstable controllers, could justify

the additional difficulties if the modeling is possible for the system of interest.

This work as has shown that the significance of appropriately choosing a pa-

rameterization for learning is clear, with seemingly natural parameterizations making

learning seem impossible, while well-chosen parameterizations provide high-performance

both in the context of learning convergence and the resulting controller. For the flex-

ible arm system used as an example in this chapter, the Youla Parameterization

convincingly performed the best. Its flexibility, convexity in the case of many stan-

dard cost functions, guaranteed stability and richness make it very well-suited to
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learning in situations when the system model is known.

The extensions to the YP present in the controls literature offer a wealth of op-

portunities for study. From the appropriate representation of Q(s) to applications

in nonlinear and uncertain systems, many possibilities exist for improving learning

through further study of the YP. With the stability guarantees offered by the Youla

Parameterization, fluid-body systems which are open-loop unstable could be explored

without fear of damage to an experimental apparatus, or a controlled system.
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