
Feedback Controller Parameterizations for
Reinforcement Learning

John W. Roberts
CSAIL, MIT

Cambridge, MA 02139

Email: jwr@mit.edu

Ian R. Manchester
CSAIL, MIT

Cambridge, MA 02139

Email: irm@mit.edu

Russ Tedrake
CSAIL, MIT

Cambridge, MA 02139

Email: russt@mit.edu

Abstract—Reinforcement Learning offers a very general
framework for learning controllers, but its effectiveness is closely
tied to the controller parameterization used. Especially when
learning feedback controllers for weakly stable systems, inef-
fective parameterizations can result in unstable controllers and
poor performance both in terms of learning convergence and
in the cost of the resulting policy. In this paper we explore
four linear controller parameterizations in the context of RE-
INFORCE, applying them to the control of a reaching task with
a linearized flexible manipulator. We find that some natural but
naive parameterizations perform very poorly, while the Youla
Parameterization (a popular parameterization from the controls
literature) offers a number of robustness and performance
advantages.

I. INTRODUCTION

Reinforcement Learning (RL) offers a very general set of

methods for optimization which has been used successfully in

numerous controls applications, particularly in robotics. Most

uses of learning which have been successful on hardware

involved learning an open-loop trajectory or control tape (see,

for example [2], [13], [20], [23]). These trajectories can then

be wrapped in stabilizing controllers designed using more

traditional methods, such as Model Predictive Control [7] or

the Linear Quadratic Regulator (LQR). More rarely, feedback

policies themselves have been learned directly on hardware

(e.g., [14], [24]), but not in situations in which instability

greatly disrupts the learning process1.

There is less work focusing on RL for feedback design when

the system and task are such that instability can be an issue

even as the policy converges. This has prevented the use of RL

in high-performance tasks near the edge of stability, such as

learning with hardware in-the-loop when the hardware could

be damaged through the use of an unstable controller. This lack

of work is not because RL is ill-suited to this domain of high-

performance, low-stability-margin control, but because what

seem to be the most natural parameterizations actually behave

poorly in this domain.

In this paper we will study four parameterizations of linear

feedback controllers and examine their performance on an

example learning task in which instability can be a significant

1Feedback policies have been developed for stability critical systems
through the use of Iterative LQR (see, for example, [1]), but the only policies
which can result are those produced as a byproduct of iLQR , i.e., an LQR
policy about the converged-to trajectory.

issue. The task is to quickly reach with a flexible manipulator

to catch a ball, with learning performed using REINFORCE.

While the manipulator is modeled as an open-loop stable

linear system, it is underactuated, lacks full-state information

and can easily be driven unstable through the choice of an

inappropriate controller.

Two of the most natural-seeming parameterizations (state

feedback gains with a fixed observer and a feedback controller

transfer function) do not guarantee stability, and suffer both

from non-convexity of the set of stabilizing controllers and

from small changes in parameters causing a policy to go from

high-performance to unstable. The other two parameterizations

studied (LQR cost matrices with a fixed observer and the

Youla Parameterization (YP)) do guarantee stability. The LQR

cost matrix parameterization can offer high-performance, high-

bandwidth controllers in situations where there is no delay, the

cost function is of a form similar to the quadratic cost assumed

by LQR, and the noise is not excessively structured. However,

the Youla Parameterization offers a richer set of controllers,

allowing for better performance when the cost function is

significantly non-quadratic or when the noise is structured but

non-Gaussian.

The remainder of this paper is organized as follows:

• Section II An introduction to the four parameterizations

for linear feedback control studied in this paper: Feedback

Controller Transfer Function, State Feedback Gains with

a Fixed Observer, LQR Cost Matrices with a Fixed

Observer and the Youla Parameterization

• Section III A description of the flexible arm ball-catching

dynamics and task

• Section IV A presentation of the REINFORCE method

used for learning in this paper

• Section V An analysis of the various parameterizations’

performance in the context of the ball-catching task and

REINFORCE learning

• Section VI A discussion of extensions of the YP to

broader classes of systems

• Section VII A brief conclusion highlighting the critical

points of this paper



II. LINEAR FEEDBACK CONTROLLER

PARAMETERIZATIONS

The general task of designing a linear feedback controller

may be thought of in the context of Fig. 1, where K(s) and

P (s) are linear transfer functions in the laplace variable s.

The designer must choose a K(s) that, from measurements

of the output y produces an input u that results in good

performance by some designer-specified metric. In this section

we consider four representations of K(s) in the context of

learning: Directly learning a linear transfer function for K(s)
in § II-A, representing K(s) as a Kalman filter combined with

learned state feedback gains (§ II-B), representing K(s) as a

Kalman filter then finding LQR feedback gains by learning

LQR cost matrices Q and R (§ II-C) and finally, representing

the controller in the Youla Parameterization (§ II-D). In § V

we present their performance using REINFORCE learning on

the example ball-catching task described in § III.

A. Feedback Transfer Function

Perhaps the simplest parameterization is to learn the transfer

function of a feedback controller K(s) (see Fig. 1) directly.

As in theory K(s) can be of arbitrary order, one must choose

a set of K(s) over which to actually search. In this paper, the

K(s) considered were of the form:

K(s) =
∏n

i=0 βis
i∏n

i=1(s− αi)
, (1)

where the βi are learned and the αi are fixed. In effect, the

poles of K(s) are set by the designer while the numerator

coefficients (and thus the zeros) are learned.

The αi used for K(s) are given below:

• α1 through α15 are distributed logarithmically between

−10−0.5 and −100.5

• α16 and α17 are −0.5± 0.1i
• α18 and α19 are −1.1± 0.05i
• α20 and α21 are −1.1± 0.5i
• α22 and α23 are −2.3± 1i

These αi were chosen because they covered a range of

time-scales around the time-scale of the system, as well as

several oscillatory modes with frequencies near the open-loop

oscillation frequency of the system.

Learning K(s) directly effectively allows the possibility

of an arbitrary observer structure and the behavior of ad-

ditional controller states (e.g., for integral control) to be

learned. This parameterization is quite rich, with any linear

controller possessing the poles specified with the αi capable

of being represented. However, less knowledge of the system

is encoded in the structure of the parameterization than in

the other parameterizations explored in this paper and thus

achievable performance can depend greatly on the set of

transfer functions K(s) that are actually considered. Also,

stability is not guaranteed in this case, with the relationship

between the structure of K(s) and the stability of the resulting

system quite complicated.

y
w

)(sP
y

u )(sKu

Fig. 1: Block diagram of the system used for Direct K(s)
Learning. Controllers are parameterized by selecting a linear

system K(s), with the specific form shown in Eq. (1).

)(sP
y

w

u

Kalman
Filter�k

�

Fig. 2: Block diagram of the State Feedback Gain parameteri-

zation with a fixed observer. Controllers are parameterized by

selecting n scalar gains k1 through kn where n is the number

of states of the system.

B. State Feedback Gains with Fixed Observer

Fixing a high-performance observer (e.g., a Kalman Filter)

and learning state-feedback gains seems like a very natu-

ral parameterization for learning a feedback controller (see

Fig. 2), with LQR optimal controllers being within the set of

available controllers. The dimension of the learned policy is

the same dimension as the state, and it is easy to initialize

the policy to LQR gains found for reasonably chosen Q and

R matrices. However, as §V-B shows, the performance of this

parameterization during learning is actually very poor.

C. LQR Cost Matrices

Directly parameterizing controllers in the space of LQR

cost matrices and using a fixed observer (see Fig. 3) has a

number of advantages. Perhaps foremost among these is that

by restricting one’s attention to the cone of positive-definite

matrices for Q and R (a convex set) only stabilizing controllers

are considered. However, the set of possible controllers that



)(sP
y

w

u

Kalman
Filter

LQR
Gains

RQ,Q,

Fig. 3: Block diagram of the LQR Cost Matrix parameteriza-

tion. Controllers are parameterized by two positive definite

cost matrices Q and R, as is done in the design LQR

controllers.

can be represented in this parameterization is actually quite

limited due to being restricted to scalar gains on the state

variables. Furthermore, the set of controllers is heavily over-

parameterized. While symmetric positive definite Q and R
matrices have n(n + 1)/2 and m(m + 1)/2 free parameters

respectively for an n state system with m inputs, the space of

controllers is of dimension nm. Thus, the set of controllers

will always be over-parameterized, making for a possibly

inefficient representation as learning must operate in an unnec-

essarily high-dimensional space. As learning performance has

been shown to degrade with the number of learned parameters

(see [21]), this is best avoided. Furthermore, dealing with

delays in continuous time is non-trivial, and as the stability

margins of LQR controllers with Kalman filters can be very

small [10], even a small delay can be destabilizing.

D. The Youla Parameterization

As the Youla Parameterization (YP) is not widely known

outside of the controls literature, we will first briefly describe

the YP for single-input single-output linear systems, for which

the main arguments are very simple, although similar parame-

terizations exist for much more complex systems (see Section

VI).

Given a stable plant P (s) and a feedback controller K(s),
both finite-dimensional SISO systems, the closed-loop system

from u to y is:

H(s) :=
Y (s)
U(s)

=
P (s)

1− P (s)K(s)
. (2)

Note that the relationship between the parameters of the

feedback controller K(s) and the closed loop system are

highly nonlinear. The Youla parameter associated with this

controller is defined as

Q(s) :=
K(s)

1−K(s)P (s)
. (3)

Clearly for any K(s) this Q(s) exists.

Alternatively, given a plant P (s) and a Youla parameter

Q(s), it is simple to construct the controller K(s):

K(s) =
Q(s)

1 + Q(s)P (s)
(4)

and the closed-loop system is

H(s) = P (s)[1 + Q(s)P (s)] (5)

which is affine in Q(s). Furthermore, since P (s) is stable it

is clear that H(s) is stable if and only if Q(s) is stable.

In summary, every controller K(s) can be represented

equivalently by a Q(s), and the closed loop system is affine in

Q(s) and stable if and only if Q(s) is, so the set of stable Q(s)
is complete affine parameterization of all stabilizing linear

controllers for P (s). Given a Youla parameter Q(s), one can

easily construct the feedback controller from (4). Note that it

is not necessarily the case that K(s) itself is stable considered

as an isolated system.

Furthermore, since the closed-loop system H(s) is affine in

Q(s), many important cost functions are convex in the Q(s),
including LQG, H∞, and time-domain bounds on overshoot,

rise-time, and settling time. For this reason it has long been a

central tool for designing feedback controllers via optimization

methods (see, e.g, [29], [30], [6], [3], [11] and many others).

There are many cases in which, even if the system model

P (s) is known well, online learning can be advantageous

over model-based design. For example, if reference or dis-

turbance commands have characteristics which are changing

over time, or do not fit a mathematical framework which is

easy to optimize over, such as Gaussian noise with a known

spectral density, or bounded energy signals. Another case is

when the cost/reward for the learning process is not easily

represented mathematically, e.g. qualitative ranking by human

teachers. Furthermore, the results proposed in this paper can be

easily extended to cases in which P (s) is only approximately

known, and clear advantage could be gained by optimizing on

hardware-in-the-loop experiments (see Section VI).

The most intuitive view of the YP is to consider it as a stable

system P (s) (possibly with a disturbance input w) in feedback

with controller consisting of a copy of the system dynamics

P (s) (without the disturbance input) and a second arbitrary

stable system Q(s) acting on the difference (see Fig. 4a). As

Q(s) varies over all stable linear systems, the combination of

P (s) and Q(s) will produce only stabilizing controllers.

While theoretically Q(s) can be any stable linear system,

in practice one must choose some limited subset of systems to

study (much as was done in the case of representing K(s)).
While the literature has proposed a number of affine represen-

tations of Q(s) (see [6]), this paper will focus on choosing

a Q(s) of the form shown in Eq. (1). This representation of



y
w

)(sP
y

)(P
�ŷ

)(sP �

)(sK )(sK

)(sQu �

Fig. 4: Block diagram of the Youla Parameterization (YP).

Controllers are parameterized by selecting a stable linear

system Q(s) of the form Eq. (1).

Q(s) is clearly affine, is relatively rich and has shown good

performance in practice.

III. CATCHING WITH A FLEXIBLE ARM: AN EXAMPLE

SYSTEM

The simulations in this paper are based on a simulated

repeated ball-catching task for a flexible arm (see Fig. 5).

The task is as follows: A flexible manipulator starts at rest

at the zero position (i.e., y = ẏ = 0). A ball enters at a

distance xb traveling at a speed vb and at a height such that

it will be caught if the manipulator’s end effector reaches an

angle yb. The speed vb and target angle yb are drawn from

uniform random distributions, with the distance xb fixed. The

arm reaches for the ball, inducing flexural modes in the beam

that can not be directly sensed or controlled. The frequency

and magnitude of the flexural modes are of the same order

as those of the reaching task, causing them to have non-

negligible effects on end-effector position, and thus catching

performance.

The arm is modeled as a homogeneous rectangular beam

of length L, Young’s Modulus E, linear density λ and cross-

sectional moment of inertia Iy . The total rotational inertia of

the arm and actuator about the revolute joint is I . The actuator

acts with a torque u on the base of the arm while the end of the

arm is measured, giving an angular measurement y. A spring

and very weak damper with constants k and b respectively

work to hold the arm at zero, making the system weakly open-

loop stable. A structured disturbance acts on the base of the

beam with a torque w. This disturbance is sinusoidal with

fixed frequency ωd and amplitude fd, as shown below:

w(t) = fd sin(ωdt) (6)

The system is modeled in the linear regime (i.e., small

deformations and neglecting the centrifugal component of the

bx

bv

y

by

ybkywu ������

Fig. 5: Diagram of the simulated system. A ball enters at a

distance xb traveling at a speed vb and at a height such that

it will be caught if the manipulator’s end effector reaches an

angle yb. The speed vb and target angle yb are drawn from

uniform random distributions, with the distance xb fixed. The

input is a torque u, the disturbance a torque w and the output

a measured angle y. The arm attempts to catch the ball by

driving y to yb in time to catch the ball, while minimizing arm

velocity at the time the ball arrives. Costs are also imposed

for torque, as well as additional costs for exceeding specified

torque and angle values. Catching performance is judged by

Eq. (10).

L 1.5 m Iy 2.77 × 10−7 m4

E 3 GPa b 0.01 Ns/m

k 0.5 kN/rad vb 60 ± 3 m/s

yb 1 ± 0.05 rad xb 100 m

fd 10 Nm ωd π rad/s

λ 0.1 kg/m I 1 kg m2

TABLE I: Parameters of flexible-arm ball-catching task.

dynamics) using the first three resonant modes of the system.

The parameters may be seen in Table I.

This system is underactuated and does not have full-state

information, making it a non-trivial control task. While it is

open-loop stable, it is easily capable of being driven unstable

with a poorly chosen control law.

A catching trajectory was considered “good” if the end of

the arm was at the desired position and a low velocity when the

ball arrives. A trajectory was penalized for using torque and

exceeding specified torque and angle thresholds. The specific

function used to quantitatively evaluate a trajectory is shown

in Eq. (10). An example of a successful catching trajectory

can be seen in Fig. 7.



IV. THE LEARNING ALGORITHM: EPISODIC REINFORCE

The algorithm used for learning is Episodic REINFORCE,

in which the policy π(y; φ) is a function of the output of the

system y and a set of parameters φ. The learning is performed

episodically (i.e., the system states are reset between policy

evaluations), and the stochasticity of the policy is on the policy

parameters, rather than the outputs. The update appears in [26]

for learning the mean of a Gaussian element, but we will

briefly derive here the specific update used in this paper, in

which a vector of parameters is learned with identical noise

and learning rate.

Consider the REINFORCE update (formulated for cost

instead of reward) in which a vector of parameters share the

same learning rate eta:

φi+1 = φi − η (J(φ′i)− b)
∂

∂φ′i
ln(g(φ′i)), (7)

with φ′i the actual parameters used on trial i, b a cost baseline,

J(φ′i) the cost associated with the policy parameters φ′i and

g(φ′i) the probability of using parameters φ′i on trial i. If

g(φ′i) is a multivariate Gaussian distribution with mean φi

and independent noise on each element with covariance σ2,

the eligibility ∂
∂φi

ln(g(φpi
)) can be computed as:

∂

∂φi
ln(g(φpi)) ∝ (φ′i − φi) . (8)

Clearly, φ′i = φi + φpi
, thus, after including all scalars in the

learning rate, the update may be written:

φi+1 = φi − η (J(φi + φpi
)− J(φi)) φpi

. (9)

Note that while an averaged baseline is common in the

literature, we have here used a second policy evaluation (i.e.,

a “nominal” policy evaluation). This was found to learn using

fewer total policy evaluations on the system, even though

two evaluations were needed per update. Thus, the resulting

learning algorithm was performed as follows: at iteration i the

policy φi is executed and used to find the baseline cost b. The

policy is then perturbed by a small amount φpi
. This perturbed

policy is executed, and the difference in performance is used to

compute the policy update, which is shown above in Eq. (9):

The cost function J(φ) used for this experiment is shown

below:

J(φ) =
∫ xb/vb

0

ru2dt + c1

(
(y − yb)|xb/vb

)2 + c2

(
ẏ|xb/vb

)2

+csat max
(
0, max((u/usat)2 − 1)

)
+ccrash max

(
0, max((y/ycrash)2 − 1)

)
. (10)

It rewards achieving the desired angle and velocity y = yb, ẏ =
0 when the ball arrives at t = xb/vb, while minimizing applied

torque u and avoiding angles greater than ycrash and torques

greater than usat. The constants r, c1, c2, csat and ccrash are

used to weight the relative importance of these costs.

0 100 200 300 400
0

1

2

3

4

Evaluation

C
os

t

Youla Parameterization
Direct K(s) Learning
LQR Cost Matrix Learning
Unstable Policy Evaluations

Fig. 6: Performance of YP and learning K(s) directly for zero

initial policy parameters and using tuned policy gradient. Ten

trials of 200 iterations (400 evaluations) were performed for

each curve, then averaged. The Y-axis is normalized by the

cost of the initial LQR controller performing this task. Note

how the weakly stable nature of the task and system result

in many unstable policy evaluations even as the Direct K(s)
learning converges.

V. RESULTS

The four parameterizations previously introduced in § II

were used for REINFORCE learning of controllers for the ball-

catching example task. The specific results for each parameter-

ization are discussed below, but the primary result is that the

Youla Parameterization provides the best learning performance

as well as the best performance from the resulting controller.

While clearly the performance for both the YP and directly

learning K(s) depend on the selection of the the roots of K(s)
(or Q(s)), several reasonable selections of the αi produced

effectively the same behavior.

A. Direct K(s) Learning Results

Experiments on the flexible arm ball-catching task have

shown that although learning converges reasonably well (see

Fig. 6) for direct K(s) learning, numerous unstable controllers

are applied to the system throughout the learning process,

even as the controller converges. This is due to the task

effectively rewarding behavior on the margin of stability.

Moreover, the convergence was significantly slower than that

of the YP. Finally, while the resulting cost was similar to that

of the YP (due to being capable of avoiding saturations and

actually reaching the target point reasonably well), the actual

trajectory followed was somewhat erratic. Thus, while this

parameterization is reasonably well-suited to learning when

instability is not a significant issue, and in theory a sufficiently

rich K(s) can produce the same controllers as any of the



0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

Time (sec)

Y

Target Point
Best Performing Trajectory (from YP)
Best Performing Trajectory (from K)
LQG Trajectory
ycrash

Fig. 7: Tracking performance of resulting controllers from the

YP, LQR Cost Matrices Learning and Direct K(s) Learning.

Note that while all three parameterizations shown here hit

the target point well for the nominal values, randomization

of vb (as well as greater use of actuation) degraded the

performance of the controller from Direct K(s) Learning and

overshoot that could not be eliminated by learning caused the

LQR Cost Matrix controller to incur unacceptable cost. As a

result, the Youla Parameterization controller achieved the best

performance.

parameterizations examined here, in practice performance is

worse for K(s) with natural selections of the αi than for

similarly reasonable selections of Q(s) .

B. State Feedback Gain Learning Results

When applied to the example system, it was found that the

sensitivity of cost to the state feedback gains is very non-

uniform, resulting in either unacceptably slow learning (by

learning slowly enough to identify the steep gradients warning

of instability) or frequent unstable policy evaluations (by

using perturbations and updates too large to identify oncoming

instability). Both of these will result in unacceptably poor

learning performance. Figure 8 shows the cost landscape for

two of the eight feedback gains on the flexible arm catching

task. The non-convexity and non-uniformity evident in the

figure makes learning in this parameterization completely

impractical. Because of this the other limitations of this

approach (e.g., a limited set of representable controllers) are

of minor importance compared with the fundamental difficulty

of excessively non-uniform cost sensitivity to parameters.

C. LQR Cost Matrix Learning Results

When the LQR Cost Matrix parameterization was used for

learning, it was found to improve policy performance very

little, if at all, from its initial value. This is likely due to

the quite limited set of controllers available in this param-

eterization, and the very large parameter changes required to

Fig. 8: Cost landscape for state feedback gains with a fixed

observer for k1 and k2 with k3 through k8 set to their LQR

values. Colors correspond to the log of the cost normalized

to the LQR cost, and policies with with a cost greater than

five times that of LQR are omitted. Note the very non-uniform

gradients and non-convexity.

effect reasonable change in the output. No unstable controllers

were applied to the system, and reasonable trajectory tracking

was achieved, but performance with respect to the given

cost function did not improve. As the cost function was

not quadratic on state and action, is is quite likely that the

true optimal controller was not within the set of controllers

parameterized by LQR cost matrices, and indeed it could be

that no controller of performance comparable to that attained

by other parameterizations was capable of being represented.

Thus, the ultimately achievable performance is inferior to that

obtainable by representations that parameterize a more general

controller set.

D. Youla Parameterization Learning Results

As Figures 6 and 7 show, the YP provided the best

overall performance, with good learning performance (i.e.,

quick, predictable convergence) and good ultimate controller

performance. The fact that no intermediate trials were unstable

is an added benefit, as it would allow for the application

of learning using the YP even to sensitive hardware-in-the-

loop learning systems that could be too delicate to experience

excessively violent unstable controllers. The ultimate ball-

catching performance is clearly quite good (though with im-

perfect noise rejection), and the control and output saturations

that are problematic in the context of the LQR Cost Matrix

learning are easily dealt with through learning in the YP.

While rise-time and noise rejection were not as strong as

for the LQR cost matrix control, these performance measures

depend upon the selection of the representation for Q(s), as

with appropriate Q(s) any stabilizing linear controller can be

represented, including the LQR controller. While this paper

has not addressed in detail how Q(s) should be represented,



Fig. 9: Cost landscape for the Youla Parameterization for βn−1

and βn with the rest of the βi set to their converged to values.

Colors correspond to the log of the cost normalized to cost

of the converged to policy. Note the uniform gradients and

convexity.

a wealth of work in the controls literature deals with this very

problem, and exploring these different representations in the

context of learning is an interesting future direction.

Furthermore, the convexity of many common cost functions

in the YP (including Linear Quadratic costs and saturation

costs in the time domain as were used here) can result in the

convexity of the value function learning must descend (see

Fig. 9). While this convexity is not guaranteed for arbitrary

cost functions, if regions of the value function have this

property it can still be advantageous to both the rate at which

learning converges and to the avoidance of local minima.

VI. EXTENSIONS OF THE YP TO MORE COMPLEX

SYSTEMS

As the Youla Parameterization clearly demonstrated the

best performance, we will focus here on the possible ex-

tensions to the simple YP described in this paper. Due to

their utility in feedback optimization problems, finding convex

parameterizations of stabilizing controllers has been a major

focus of control theory research for many decades. In this

section we briefly overview a few major results related to the

Youla parameterization which may also be applied in a policy

learning architecture.

A. Unstable and Multivariable Systems

In this paper we have considered a stable single-input

single-output system, mainly for simplicity’s sake. The Youla

parameterization for unstable and multivariable systems is

classical and is widely used in control design, however the

construction is somewhat more involved (see, e.g., [29], [6],

[9]).

B. Rapid Switching Between Controllers

In this paper we have assumed that the learning is performed

over repeated performances of a task, all starting from the

same initial conditions. If, on the other hand, learning is

performed by switching between candidate controllers during

continuous operation (as in supervisory adaptive control) then

stability under the switching process becomes an issue [16].

It is well known that even if two or more feedback con-

trollers are stabilizing for a given system when considered

in isolation, it is possible destabilize the system by rapidly

switching between them. Giving tight conditions on stability

of switched systems is intrinsically difficult – NP-Hard or

undecideable, depending on the exact formulation [5], [25].

When the switching is chosen by the controller, stability

can be ensured by enforcing a dwell-time between switching

[16]. Particularly relevant to the work in this paper are designs

in which switching can be performed arbitrarily rapidly. One

such design is to represent all controllers in the Youla param-

eterization, with a reset on the states of Q(s) at the moment

of controller switch [12].

C. Uncertain Models

A natural application of learning or adaptive control is

where the system model is not exactly known in advance. In

this case, common methods include online system identifica-

tion and control design, or direct policy search.

An alternative, made feasible in the framework proposed

here, is to enforce that all control policies searched over

are robustly stabilizing, but use the learning procedure to

evaluate performance. In the control literature it is common to

enforce robust stability via a small-gain condition by limiting

the H∞ norm of the closed-loop transfer function [30], [9],

[6]. This constraint is convex in the Youla Parameterization.

Characterizating uncertainty via a small-gain bound may be

crude if more is known about the modelling errors. Convex

parameterizations are also available for some tighter defini-

tions of uncertainty [19].

D. Nonlinear Systems

For certain classes of nonlinear systems there exists param-

eterizations of all stabilizing controllers, similar to the Youla

parameterization, for a variety of definitions of stability (see,

e.g., [8], [18], [17], [4] and many others). In these cases, the

Youla parameterization still gives a complete parameterization

of all stabilizing controllers in terms of a stable nonlinear

operator Q. However the closed-loop dynamics of the feedback

system is no-longer affine in Q and the optimization process

is much more difficult.

E. Decentralized Systems

For a long time, the problem of decentralized control -

in which each controller/agent has access to data from a

limited subset of sensors - has been a very difficult problem.

Witsenhausen’s classic counterexample showed that even in

the linear-quadratic-gaussian case, the optimal decentralized

controller may not be linear, and searching for the optimal



linear controller can be a nonconvex problem with many local

minima [27]. Recently, very interesting results have emerged

describing conditions under which the search for an optimal

linear decentralized control is convex in the Youla parameter

[22], [15]. An extension to the nonlinear case has also been

considered [28].

Note that for these results to be applied directly to our

method, it would be necessary that all controller locations have

access to the reward signal. A substantially more challenging

problem would be one where each individual controller can

only see a subcomponent of the total reward.

VII. CONCLUSION

This paper has demonstrated the significance of appropri-

ately choosing a parameterization for learning, with seem-

ingly natural parameterizations making learning seem im-

possible, while well-chosen parameterizations provide high-

performance both in the context of learning convergence and

the resulting controller. For the flexible arm system studied

here, the Youla Parameterization convincingly performed the

best. Its flexibility, convexity in the case of many standard

cost functions, guaranteed stability and richness make it very

well-suited to learning in situations when the system model is

known.

The extensions to the YP present in the controls literature

offer a wealth of opportunities for study. From the appropriate

representation of Q(s) to applications in nonlinear and uncer-

tain systems, many possibilities exist for improving learning

through further study of the YP. With the stability guarantees

offered by the Youla Parameterization, the authors hope more

researchers will feel confident applying learning to actual

hardware, offering improved performance and further insights

into how best to use Reinforcement Learning to solve problems

of real-world importance.

ACKNOWLEDGMENT

The authors would like to acknowledge the support of NSF

Award IIS-0746194.

REFERENCES

[1] Pieter Abbeel, Adam Coates, Morgan Quigley, and Andrew Y. Ng. An
application of reinforcement learning to aerobatic helicopter flight. In
Proceedings of the Neural Information Processing Systems (NIPS ’07),
volume 19, December 2006.

[2] Pieter Abbeel, Varun Ganapathi, and Andrew Y. Ng. Learning vehicular
dynamics, with application to modeling helicopters. NIPS, 2006.

[3] Anderson, J. M. Streitlien, K. Barrett, D.S. Triantafyllou, and M.S. Os-
cillating foils of high propulsive efficiency. Journal of Fluid Mechanics,
360:41–72, 1998.

[4] Brian D.O. Anderson. From youla-kucera to identification, adaptive and
nonlinear control. Automatica, 34(12):1485 – 1506, 1998.

[5] Vincent D. Blondel and John N. Tsitsiklis. The boundedness of all
products of a pair of matrices is undecidable. Systems & Control Letters,
41(2):135 – 140, 2000.

[6] Stephen P. Boyd and Craig H. Barratt. Linear Controller Design: Limits
of Performance. Prentice Hall, NJ, 1991.

[7] E. F. Camacho and Carlos Bordons. Model Predictive Control. Springer-
Verlag, 2nd edition, 2004.

[8] C. A. Desoer and R. W. Liu. Global parametrization of feedback systems
with nonlinear plants. Systems & Control Letters, 1(4):249 – 251, 1982.

[9] John C. Doyle, Bruce A. Francis, and Allen R. Tannenbaum. Feedback
Control Theory. Macmillan Publishing Company, New York, 1992.

[10] M. Green and D.J.N. Limebeer. Linear Robust Control. Prentice Hall,
1995.

[11] Joao P. Hespanha. Linear Systems Theory. Princeton Press, 2009.
[12] Joao P. Hespanha and A. Stephen Morse. Switching between stabilizing

controllers. Automatica, 38(11):1905 – 1917, 2002.
[13] J. Kober, B. Mohler, and J. Peters. Imitation and reinforcement learning

for motor primitives with perceptual coupling. In From Motor to
Interaction Learning in Robots. Springer, 2009.

[14] J. Zico Kolter and Andrew Y. Ng. Policy search via the signed derivative.
Proceedings of Robotics: Science and Systems (RSS), 2009.

[15] L. Lessard and S. Lall. Quadratic invariance is necessary and sufficient
for convexity. In submitted to 2011 American Control Conference, 2011.

[16] Daniel Liberzon. Switching in Systems and Control. Birkhauser, Boston,
2003.

[17] Wei-Min Lu. A state-space approach to parameterization of stabilizing
controllers for nonlinear systems. IEEE Transactions on Automatic
Control, 40(9):1576 –1588, sep. 1995.

[18] A. D. B. Paice and J. B. Moore. On the youla-kucera parametrization for
nonlinear systems. Systems & Control Letters, 14(2):121 – 129, 1990.

[19] Rantzer, A., Megretski, and A. A convex parameterization of robustly
stabilizing controllers. Automatic Control, IEEE Transactions on,
39(9):1802 –1808, sep. 1994.

[20] John W. Roberts, Lionel Moret, Jun Zhang, and Russ Tedrake. Motor
learning at intermediate reynolds number: Experiments with policy
gradient on the flapping flight of a rigid wing. In From Motor to
Interaction Learning in Robots. Springer, 2009.

[21] John W. Roberts and Russ Tedrake. Signal-to-noise ratio analysis
of policy gradient algorithms. In Advances of Neural Information
Processing Systems (NIPS) 21, page 8, 2009.

[22] Rotkowitz, M., Lall, and S. A characterization of convex problems
in decentralized control. IEEE Transactions on Automatic Control,
51(2):274 – 286, feb. 2006.

[23] Stefan Schaal, Auke Ijspeert, and Aude Billard. Computational ap-
proaches to motor learning by imitation. Philosophical Transactions:
Biological Sciences, 358(1431):537–547, March 2003.

[24] Russ Tedrake, Teresa Weirui Zhang, and H. Sebastian Seung. Learning
to walk in 20 minutes. In Proceedings of the Fourteenth Yale Workshop
on Adaptive and Learning Systems, Yale University, New Haven, CT,
2005.

[25] Tsitsiklis, John N., Blondel, and Vincent D. The lyapunov exponent and
joint spectral radius of pairs of matrices are hardwhen not impossibleto
compute and to approximate. Mathematics of Control, Signals, and
Systems (MCSS), 10:31–40, 1997. 10.1007/BF01219774.

[26] R.J. Williams. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine Learning, 8:229–256,
1992.

[27] H. S. Witsenhausen. A counterexample in stochastic optimum control.
SIAM Journal on Control, 6(1):131–147, 1968.

[28] J. Wu and S. Lall. Nonlinear youla parametrization and information
constraints for decentralized control. In American Control Conference
(ACC), 2010, pages 5614 –5619, Baltimore, MD, Jun 2010.

[29] D. Youla, H. Jabr, and J. Bongiorno Jr. Modern Wiener-Hopf design of
optimal controllers–part II: The multivariable case. IEEE Transactions
on Automatic Control, 21(3):319–338, 1976.

[30] Zames and G. Feedback and optimal sensitivity: Model reference
transformations, multiplicative seminorms, and approximate inverses.
Automatic Control, IEEE Transactions on, 26(2):301 – 320, apr. 1981.


