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Abstract This work describes the development of a model-free reinforcement
learning-based control methodology for the heaving plate, a laboratory experimental
fluid system that serves as a model of flapping flight. Through an optimized policy
gradient algorithm, we were able to demonstrate rapid convergence (requiring less
than 10 minutes of experiments) to a stroke form which maximized the propulsive
efficiency of this very complicated fluid-dynamical system. This success was due
in part to an improved sampling distribution and carefully selected policy parame-
terization, both motivated by a formal analysis of the signal-to-noise ratio of policy
gradient algorithms. The resulting optimal policy provides insight into the behavior
of the fluid system, and the effectiveness of the learning strategy suggests a number
of exciting opportunities for machine learning control of fluid dynamics.

1 Introduction

The possible applications of robots that swim and fly are myriad, and include ag-
ile UAVs, high-maneuverability AUVs and biomimetic craft such as ornithopters
and robotic fish. However, controlling robots whose behavior is heavily dependent
upon their interaction with a fluid can be particularly challenging. Whereas in many
regimes robots are able to make use of either accurate dynamical models or easy-
to-stabilize dynamics, in the case of flapping and swimming robots neither of these
conditions apply. The models available to swimming and flying robots tend to be
very limited in their region of validity (such as quasi-steady models of fixed-wing
aircraft), very expensive to evaluate (such as direct numerical simulation of the gov-
erning equations) or almost completely unavailable (as is the case with interactions
between a complex flow and a compliant body).

Here we investigate the problem of designing a controller for a specific experi-
mental system: the heaving plate (see Figure 1). This setup is a model of forward
flapping flight developed by the Applied Math Lab (AML) of the Courant Institute
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Fig. 1: (A) Schematic of experimental flapping system. The white arrow shows the
driven vertical motion determined by the controller, while the black arrow shows the
passive rotational motion resulting from the fluid forces. Figure from (Vandenberghe
et al., 2006), with slight modifications. (B) Original experimental flapping system.
The wing shown is an earlier design used to study the fluid system, while the wing
used for this work was a simple rigid rectangle.

of Mathematical Sciences at New York University (Vandenberghe et al., 2004; Van-
denberghe et al., 2006). This system consists of a symmetric rigid horizontal plate
that is driven up and down along its vertical axis and is free to rotate in the horizontal
plane. Previous work demonstrated that driving the vertical motion with a sinusoidal
waveform caused the system to begin rotating in a stable “forward flight” (Vanden-
berghe et al., 2004). Here we will investigate a richer class of waveforms in an
attempt to optimize the efficiency of that forward flight. This system is an excellent
candidate for control experiments as it is perhaps the simplest experimental model
of flapping flight, is experimentally convenient for learning experiments1, and cap-
tures the essential qualities of the rich fluid dynamics in fluid-body interactions at
intermediate Reynolds numbers. While accurate Navier-Stokes simulations of this
system do exist for the case of a rigid wing (Alben & Shelley, 2005), they require
a dramatic amount of computation2. As such, model-based design of an effective
controller for this system is a daunting task.

Model-free reinforcement learning algorithms, however, offer an avenue by
which controllers can be designed for this system despite the paucity of the avail-

1 Particularly when compared to a flapping machine that falls out of the sky repeatedly during
control design experiments.
2 At the time, this simulation required approximately 36 hours to simulate 30 flaps on specialized
hardware (Shelley, 2007).
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able models by evaluating the effectiveness of a controller directly on the physical
system (Peters et al., 2003; Tedrake et al., 2004). In fact, learning through exper-
imentally collected data can be far more efficient than learning via simulation in
these systems, as high-fidelity simulations can take orders of magnitude longer than
an experiment to obtain the same data. One of the limitations of this experimen-
tal approach, however, is the potential difficulty in directly measuring the state of
the fluid, which, naively, is infinite-dimensional (a continuum model). Therefore,
the problem is best formulated as a partially-observable Markov decision process
(POMDP) (Kaelbling et al., 1998). In the experiment described here, we solve the
POMDP with a pure policy gradient approach, choosing not to attempt to approxi-
mate a value function due to our poor understanding of even the dimensionality of
the fluid state.

The difficulty in applying policy gradient techniques to physical systems stems
from the fact that model-free algorithms often suffer from high variance and rel-
atively slow convergence rates (Greensmith et al., 2004), resulting in the need for
many evaluations. As the same systems on which one wishes to use these algorithms
tend to have a high cost of policy evaluation, much work has been done on maximiz-
ing the policy improvement from any individual evaluation (Meuleau et al., 2000;
Williams et al., 2006). Techniques such as Natural Gradient (Amari, 1998; Peters
et al., 2003) and GPOMDP (Baxter & Bartlett, 2001) have become popular through
their ability to converge on locally optimal policies using fewer policy evaluations.

During our experiments with policy gradient algorithms on this system, we de-
veloped a number of optimizations to the vanilla policy gradient algorithm which
provided significant benefits to learning performance. The most significant of these
is the use of non-Gaussian sampling distributions on the parameters, a technique
which is appropriate for systems with parameter-independent additive noise (a com-
mon model for sensor-driven observation noise). We make these observations con-
crete by formulating a signal-to-noise ratio (SNR) analysis of the policy gradient
algorithms, and demonstrate that our modified sampling distributions improve the
SNR.

With careful experiments and improvements to the policy gradient algorithms,
we were able to reliably optimize the stroke form (i.e., the periodic vertical tra-
jectory of the plate through time) of the heaving plate for propulsive efficiency to
the same optima from different initial conditions (in policy space) in less than ten
minutes of trial-and-error experiments on the system. The remainder of this chapter
details these experiments and the theory behind them.

2 Experimental Setup

The heaving plate is an ideal physical system to use as a testbed for developing
control methodologies for the broader class of problems involving fluid-robot in-
teractions. The system consists of a symmetric rigid titanium plate pinned in the
horizontal plane. It is free to rotate about the point at which it is pinned with very
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little non-fluid related friction. The control input is the vertical position of the plate
z (note that the input is the kinematic position, not the force on the plate). This ver-
tical driven flapping motion is coupled through the fluid with the passive angular
rotation such that once the system begins to flap, fluid forces cause it to spin. To
ensure that the rotational dynamics are dominated by fluid forces, and not friction
due to the slip ring and bearings used to mount the wing, the decay in angular speed
was measured for both a submerged and non-submerged wing. Figure 2 shows the
result of this experiment, demonstrating that the fluid forces are far more significant
than the bearing friction in the regime of operation.

Fig. 2: Comparison of fluid and bearing friction for large rigid wing. The foil (not
undergoing a heaving motion) was spun by hand in both air and water, with the
angular velocity measured as a function of time. Five curves for both cases were
truncated to begin at the same speed then averaged and filtered with a zero-phase
low-pass filter to generate these plots. The quick deceleration of the wing in water
as compared to air indicates that fluid viscous losses are much greater than bear-
ing losses. At the speeds achieved at the convergence of the learning, the frictional
forces in water were over six times that seen in air.

The only measurements taken were the vertical position of the plate (z) and angu-
lar position of the plate (x) by optical encoders and the axial force applied to the plate
(Fz), obtained by an analog tension-compression load cell. While these measure-
ments were sufficient for formulating interesting optimization problems, note that
the fluid was never measured directly. Indeed, the hidden state of the fluid, including
highly transient dynamic events such as the vortex pairs created on every flapping
cycle, provide the primary mechanism of thrust generation in this regime (Vanden-
berghe et al., 2004). Sensing the state of the flow is possible using local flow sensors
or even real-time far-field optical flow measurement (Bennis et al., 2008), but ex-
perimentally more complex. However, this work demonstrates such sensing is not
necessary for the purpose of learning to move effectively in the fluid, despite the
critical role the fluid state plays in the relevant dynamics.
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The setup was originally used to study the fluid dynamics of forward flapping
flight, and possess a Reynolds number of approximately 16,000, putting it in the
same regime as dragonflies and other small biological flapping fliers3. The plate is
unalloyed titanium (chosen for its corrosion resistance), 72 cm long, 5 cm wide and
.3175 cm thick. The vertical motion was produced by a scotch yoke, which con-
verted the rotational motion of the motor into the desired linear driven motion of
the plate. Due to the high gear ratio between the motor and the scotch yoke, the
system was not back-drivable, and thus the plate was controlled be specifying a de-
sired kinematic trajectory which was followed closely using tuned high-gain linear
feedback. While the trajectories were not followed perfectly (e.g., there is some lag
in tracking the more violent motions), the errors between specified trajectory and
followed trajectory were small (on the order of 5% of the waveform’s amplitude).

3 Optimal Control Formulation

We formulate the goal of control as maximizing the propulsive efficiency of forward
flight by altering the plate’s stroke form. We attempt to maximize this efficiency
within the class of strokeforms that can be described by a given parameterization. In
this section we discuss both the reward function used to measure performance, and
the parameterization used to represent policies (i.e., stroke forms).

3.1 Reward Function

We desire our reward function to capture the efficiency of the forward motion pro-
duced by the stroke form. To this end, we define the (mechanical) cost-of-transport
over one period T as:

cmt =
∫

T |Fz(t)ż(t)|dt
mg
∫

T ẋ(t)dt
. (1)

where x is the angular position, z is the vertical position, Fz is the vertical force, m is
the mass of the body and g is gravitational acceleration. The numerator of this quan-
tity is the energy used, while the denominator is the weight times distance traveled.
It was computed on our system experimentally by filtering and integrating the force
measured by the load cell and dividing by the measured angular displacement, all
over one period. This expression is the standard means of measuring transport cost
for walking and running creatures (Collins et al., 2005), and thus seems a sensible
place to start when measuring the performance of a swimming system.

This cost has the advantage of being dimensionless, and thus invariant to the
units used. The non-dimensionalization is achieved by dividing by a simple scalar

3 This Reynolds number is determined using the forward flapping motion of the wing, rather than
the vertical heaving motion. The vertical heaving motion possesses a Re of approximately 3,000
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(in this case mg), and thus does not change as the policy changes. While alternatives
to the mass such as using the difference in mass between the plate and the displaced
fluid were debated (to take into account the importance of the fluid to the motion
of the plate), changes such as these would affect the magnitude of the cost, but
not the optima and learning behavior, as these are invariant to a scaling. Therefore,
implementing this change would not effect the found optimal policy.

Another possibility would be non-dimensionalizing by dividing by expected en-
ergy to travel through the fluid (as opposed to weight times distance), but this would
depend upon the speed of travel as drag is velocity dependent, and thus would have
a more complicated form. While this could obviously still be implemented, and
new behavior and optima may be found, rewarding very fast flapping gaits strongly
(as this would tend to do) was undesirable simply because the experimental setup
struggled mechanically with the violent motions found when attempting to max-
imize speed. The cost function selected often produced relatively gentle motions,
and as such put less strain on the setup.

Finally, note that our learning algorithm attempts to maximize the cost of trans-
port’s inverse (turning it from a cost into a reward), which is equivalent to minimiz-
ing the energy cost of traveling a given distance. This was done for purely practical
considerations, as occasionally when very poor policies were tried the system would
not move significantly despite flapping, which resulted in an infinite or near-infinite
cost of transport. The inverse, however, remained well-behaved.

3.2 Policy Parameterization

The parameterization chosen took the following form: the vertical heaving motion
of the wing was represented by a 13-point periodic cubic spline with fixed amplitude
and frequency, giving height z as a function of time t (see Figure 3). There were five
independent parameters, as the half-strokes up and down were constrained to be
symmetric about the t axis (i.e., the first, seventh and last points were fixed at zero,
while points 2 and 8, 3 and 9 etc. were set to such that they were equal in absolute
value but opposite in sign which were determined by the control parameters).

This parameterization represented an interesting class of waveforms, had a rela-
tively small number of parameters, and was both smooth and periodic. We will also
see that many of the properties are desirable when viewed through the SNR (these
advantages are discussed in greater detail in Section 6.1).

4 The Learning Algorithm

In light of the challenges faced by learning on a system with such dynamic com-
plexity and partial observability, we made use of the weight-perturbation (WP) al-
gorithm: a model-free policy gradient method that has been shown empirically to be
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Fig. 3: A schematic of the parameterization of policies used in this work. Note the
symmetry of the up and down strokes, and the fact that five independent parameters
are used to encode the shape of the waveform.

well-suited to these sorts of problems due to its robustness to noise and insensitivity
to the complexity of the system dynamics.

4.1 The weight perturbation update

Consider minimizing a scalar function J(w) with respect to the parameters w (note
that it is possible that J(w) is a long-term cost and results from running a system
with the parameters w until conclusion). The weight perturbation algorithm (Jabri
& Flower, 1992) performs this minimization with the update:

∆w =−η (J(w+ z)− J(w))z, (2)

where the components of the “perturbation”, z, are drawn independently from a
mean-zero distribution, and η is a positive scalar controlling the magnitude of the
update (the “learning rate”). Performing a first-order Taylor expansion of J(w + z)
yields:

∆w =−η

(
J(w)+∑

i

∂J
∂w i

zi− J(w)

)
z =−η ∑

i

∂J
∂w i

zi · z. (3)

In expectation, this becomes the gradient times a (diagonal) covariance matrix, and
reduces to

E[∆w] =−ησ
2 ∂J

∂w
, (4)

an unbiased estimate of the gradient, scaled by the learning rate and σ2, the variance
of the perturbation. However, this unbiasedness comes with a very high variance, as
the direction of an update is uniformly distributed. It is only the fact that updates
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near the direction of the true gradient have a larger magnitude than do those nearly
perpendicular to the gradient that allows for the true gradient to be achieved in
expectation. Note also that all samples parallel to the gradient are equally useful,
whether they be in the same or opposite direction, as the sign of the change in cost
does not affect the resulting update.

The WP algorithm is one of the simplest examples of a policy gradient rein-
forcement learning algorithm, and in the special case when z is drawn from a
Gaussian distribution, weight perturbation can be interpreted as a REINFORCE up-
date (Williams, 1992).

4.2 The Shell Distribution

Rather than the Gaussian noise which is most commonly used for sampling, in our
work we used a distribution in which z (the perturbation) is uniformly distributed in
direction, but always has a fixed magnitude. We call this the shell distribution. This
style of sampling was originally motivated by the intuitive realization that when a
Gaussian distribution produced a small noise magnitude, the inherent noise in the
system effectively swamped out the change in cost due to the policy perturbation,
preventing any useful update from taking place. When the SNR was studied in this
domain (noisy policy evaluations and possibly poor baselines), it was found to sup-
port these conclusions (as discussed in Section 5.4). For these reasons, the shell
distribution was used throughout this work, and as Section 5.5 demonstrates, tangi-
ble benefits were obtained.

5 Signal-to-Noise Ratio Analysis

Our experiments with sampling distributions quickly revealed that significant per-
formance benefits could be realized through a better understanding of the effect
of sampling distributions and measurement noise on learning performance. In this
section we formulate a signal-to-noise ration (SNR) analysis of the policy gradient
algorithms. This analysis formalized a number of our empirical observations about
WP’s performance, and gave insight in several improvements that offered real ben-
efits to the speed of convergence.

5.1 Definition of the Signal-to-Noise Ratio

The SNR is the expected power of the signal (update in the direction of the true
gradient) divided by the expected power of the noise (update perpendicular to the
true gradient). Taking care to ensure that the magnitude of the true gradient does not
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effect the SNR, we have:

SNR =
E
[
∆wT
‖ ∆w‖

]
E
[
∆wT
⊥∆w⊥

] , (5)

∆w‖ =
(

∆wT Jw

‖Jw‖

)
Jw

‖Jw‖
, ∆w⊥ = ∆w−w‖, (6)

and using Jw(w0) = ∂J(w)
∂w

∣∣∣
(w=w0)

for convenience.

Intuitively, this expression measures how large a proportion of the update is “use-
ful”. If the update is purely in the direction of the gradient the SNR would be infinite,
while if the update moved perpendicular to the true gradient, it would be zero. As
such, all else being equal, a higher SNR should generally perform as well or better
than a lower SNR, and result in less violent swings in cost and policy for the same
improvement in performance. For a more in depth study of the SNR’s relationship
to learning performance, see (Roberts & Tedrake, 2009).

5.2 Weight perturbation with Gaussian distributions

Evaluating the SNR for the WP update in Equation 2 with a deterministic J(w) and
z drawn from a Gaussian distribution yields a surprisingly simple result. If one first
considers the numerator:

E
[
∆wT
‖ ∆w‖

]
= E

[
η2

‖Jw‖4

(
∑
i, j

JwiJw j ziz j

)
Jw

T ·

(
∑
k,p

Jwk Jwpzkzp

)
Jw

]

= E

[
η2

‖Jw‖2 ∑
i, j,k,p

JwiJw j Jwk Jwpziz jzkzp

]
= Q, (7)

where we have named this term Q for convenience as it occurs several times in the
expansion of the SNR. We now expand the denominator as follows:

E
[
∆wT
⊥∆w⊥

]
= E

[
∆wT

∆w−2∆wT
‖ (∆w‖+∆w⊥)+∆wT

‖ ∆w‖
]
= E

[
∆wT

∆w
]
−2Q+Q

(8)
Substituting Equation (2) into Equation (8) and simplifying results in:

E
[
∆wT
⊥∆w⊥

]
=

η2

‖Jw‖2 E

[
∑
i, j,k

JwiJw j ziz jz2
k

]
−Q. (9)

We now assume that each component zi is drawn from a Gaussian distribution with
variance σ2. Taking the expected value, it may be further simplified to:
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Q =
η2

‖Jw‖4

(
3σ

4
∑

i
Jwi

4 +3σ
4
∑

i
Jwi

2
∑
j 6=i

Jw j
2

)
=

3σ4

‖Jw‖4 ∑
i, j

Jwi
2Jw j

2 = 3σ
4,

(10)

E
[
∆wT
⊥∆w⊥

]
=

η2σ4

‖Jw‖2

(
2∑

i
Jwi

2 +∑
i, j

Jwi
2

)
−Q = σ

4(2+N)−3σ
4 = σ

4(N−1),

(11)
where N is the number of parameters. Canceling σ results in:

SNR =
3

N−1
. (12)

Thus, for small noises and constant σ the SNR and the parameter number have a
simple inverse relationship. This is a particularly concise model for performance
scaling in PG algorithms.

5.3 SNR with parameter-independent additive noise

In many real world systems, the evaluation of the cost J(w) is not deterministic,
a property which can significantly affect learning performance. In this section we
investigate how additive noise in the function evaluation affects the analytical ex-
pression for the SNR. We demonstrate that for very high noise WP begins to behave
like a random walk, and we find in the SNR the motivation for the shell distribution;
an improvement in the WP algorithm that will be examined in Section 5.4.

Consider modifying the update seen in Equation (2) to allow for a parameter-
independent additive noise term v and a more general baseline b(w), and again per-
form the Taylor expansion. Writing the update with these terms gives:

∆w =−η

(
J(w)+∑

i
Jwizi−b(w)+ v

)
z =−η

(
∑

i
Jwizi +ξ (w)

)
z. (13)

where we have combined the terms J(w), b(w) and v into a single random variable
ξ (w). The new variable ξ (w) has two important properties: its mean can be con-
trolled through the value of b(w), and its distribution is independent of parameters
w, thus ξ (w) is independent of all the zi.

We now essentially repeat the calculation seen in Section 5.2, with the small
modification of including the noise term. When we again assume independent zi,
each drawn from identical Gaussian distributions with standard deviation σ , we
obtain the expression:

SNR =
φ +3

(N−1)(φ +1)
, φ =

(J(w)−b(w))2 +σ2
v

σ2‖Jw‖2 (14)
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where σv is the standard deviation of the noise v and we have termed the error
component φ . This expression depends upon the fact that the noise v is mean-zero
and independent of the parameters, although the assumption that v is mean-zero is
not limiting. It is clear that in the limit of small φ the expression reduces to that seen
in Equation (12), while in the limit of very large φ it becomes the expression for the
SNR of a random walk (see (Roberts & Tedrake, 2009)). This expression makes it
clear that minimizing φ is desirable, a result that suggests two things: (1) the optimal
baseline (from the perspective of the SNR) is the value function (i.e., b∗(w) = J(w))
and (2) higher values of σ are desirable as they reduce φ by increasing the size of
its denominator. However, there is clearly a limit on the size of σ due to higher-
order terms in the Taylor expansion; very large σ will result in samples which do
not represent the local gradient. Thus, in the case of noisy measurements, there is
some optimal sampling distance that is as large as possible without resulting in poor
sampling of the local gradient. This is explored in the next section.

Fig. 4: SNR vs. update magnitude for a 2D quadratic cost function. Mean-zero mea-
surement noise is included with variances from 0 to .65 (the value function’s Hes-
sian was diagonal with all entries equal to 2). As the noise is increased, the sampling
magnitude producing the maximum SNR is larger and the SNR achieved is lower.
Note that the highest SNR achieved is for the smallest sampling magnitude with
no noise where it approaches the theoretical value (for 2D) of 3. Also note that for
small sampling magnitudes and large noises the SNR approaches the random walk
value of 1/N−1 (see (Roberts & Tedrake, 2009)).

5.4 Non-Gaussian Distributions

The analysis in Section 5.3 suggests that for a function with noisy measurements
there is an optimal sampling distance which depends upon the local noise and
gradient as well as the strength of higher-order terms in that region. For a two-
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dimensional cost function that takes the form of a quadratic bowl in parameter space,
Figure 4 shows the SNR’s dependence upon the radius of the shell distribution (i.e.,
the magnitude of the sampling). For various levels of additive mean-zero noise the
SNR was computed for a distribution uniform in angle and fixed in its distance from
the mean (this distance is the “sampling magnitude”). The fact that there is a unique
maximum for each case suggests the possibility of sampling only at that maximal
magnitude, rather than over all magnitudes as is done with a Gaussian, and thus
improving SNR and performance. While determining the exact magnitude of maxi-
mum SNR may be impractical, by choosing a distribution with uniformly distributed
direction and a constant magnitude close to this optimal value, performance can be
improved.

5.5 Experimental Evaluation of Shell Distributions

To provide compelling evidence that the shell distribution could improve conver-
gence in problems of interest, the shell distribution was implemented directly on the
heaving plate, and the resulting learning curves were compared to those obtained
using Gaussian sampling. For the purposes of this comparison, policy evaluations
were run for long enough to reach steady state (to eliminate any issues relating to
the coupling between consecutive evaluations). As can be seen in Figure 5, the shell
distribution provided a real advantage in convergence rate on this system of inter-
est, when dealing with the full dynamical complexity of a laboratory experimental
system.

(a)

Fig. 5: Five averaged runs on the heaving plate using Gaussian or Shell distributions
for sampling. The error bars represent one standard deviation in the performance of
different runs at that trial.
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5.6 Implications for Learning at Intermediate Reynolds Numbers

The SNR demonstrates many of the properties of WP that make it so well suited
to learning on partially observable and dynamically complicated system, such as
fluid systems in the intermediate Reynolds number regime. The SNR shows that the
system’s dynamical complexity does not (locally) effect the difficulty of learning,
as the dynamics appear nowhere in the expression. Instead, learning performance is
locally effected by the number of parameters in the policy (N), the level of stochas-
ticity in policy evaluations (σv), the quality of the baseline and the steepness of local
gradients.

The SNR does not take into account the effects of higher-order behavior such as
the roughness of the value function in policy space, which is in general a function of
the system, the choice of parameterization and the choice of the cost function. These
properties can be extremely important to the performance of WP, affecting both
number and depth of local minima and the rate of learning, but are not analytically
tractable in general.

6 Learning Results

6.1 Policy Representation Viewed Through SNR

Due to the importance of the policy parameterization to the performance of the
learning, it is important to pick the policy class carefully. Now armed with knowl-
edge of the SNR, some basic guidelines for choosing the parameterization, previ-
ously justified heuristically, become more precise. Finding a rich representation with
a small number of parameters can greatly improve convergence rates. Furthermore,
certain parameterizations can be found with fewer local minima and smoother gradi-
ents than others, although determining these properties a priori is often impractical.
A parameterization in which all parameters are reasonably well-coupled to the cost
function is beneficial, as this will result in less anisotropy in the magnitude of the
gradients, and thus larger sampling magnitudes and greater robustness to noise can
be achieved. Prior to the periodic cubic spline, several parameterizations were tried,
with all taking the form of encoding the z height of the wing as a function of time
t over one period T , with the ends of the waveform constrained to be periodic (i.e.,
the beginning and end have identical values and first derivatives).

Parameterizing the policy in the seemingly natural fashion of a finite Fourier
series was ruled out due to the difficulty in representing many intuitively useful
waveforms (e.g., square waves) with a reasonable number of parameters. A param-
eterization using the sum of base waveforms (i.e., a smoothed square wave, a sine
wave and a smoothed triangle wave) was used and shown to learn well, but was
deemed a too restrictive class which predetermined many features of the waveform.
Learning the base period T and the amplitude A of the waveform was also tried, and
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shown to perform well without significant difficulty. However, it was discovered that
periods as long as possible and amplitudes as small as possible were selected, and
thus these extra parameters were determined to not be of interest to the learning (this
result was useful in determining how the system’s dynamics related to the reward
function, and is discussed in detail in Section 7).

6.2 Reward Function Viewed Through SNR

The SNR also gives some greater insight into the formulation of the reward function.
The form of the reward was discussed in Section 3.1, and justified by its connection
to previous work in locomotive efficiency. We may now, however, understand more
of what makes it advantageous from the perspective of learning performance and
SNR. Its integral form performs smoothing on the collected data, which effectively
reduces the noise level for a given trial, and intuitively it should differentiate mean-
ingfully between different policies (e.g., a reward function that has no gradient with
respect to the parameters in some region of policy space will find it very difficult to
learn in that region).

6.3 Implementation of Online Learning

The SNR analysis presented here is concerned with episodic trials (i.e., a series of
distinct runs), but this does not preclude online operation, in which trials follow one
another immediately and the system runs continuously. While at first we ran longer
policy evaluations (on the order of 40 or more flaps, averaged together) to reduce
noise, and gave the system plenty of time (20 or more flaps) between trials to reach
steady state and avoid inter-trial coupling, as we became more proficient at dealing
with the high noise levels of the system we began to attempt to learn more aggres-
sively. Through techniques such as sampling from the shell distribution, we were
able to reduce trial length to a single flap (requiring just 1 second), and by reducing
noise levels (ultimately choosing a shell distribution with a radius of approximately
4% of the parameter value) were able to eliminate the inter-trial settling time. Inter-
trial correlation was explored, and while present, we found it did not significantly
hamper learning performance, and that including eligibility traces did not greatly
improve the rate of convergence.

6.4 Performance of Learning

In its final form, the SNR-optimized WP update was able to learn extremely effi-
ciently. Using the policy parameterization described above, along with shell sam-
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pling and one-flap trials, the optimal policy was found within 7 minutes (around
400 flaps) even when starting far away in state space (see Figure 6). This quick con-
vergence in the face of inter-trial coupling and high variance in policy evaluations
(resulting from running them for such a short period of time) demonstrates the WP
algorithm’s robustness to these complex but very common difficulties.

Fig. 6: The average of five learning curves using online learning (an update every
second, after each full flapping cycle), with markers for +/- one standard deviation.
The high variance is the result of large inter-trial variance in the cost, rather than
large differences between different learning curves.

7 Interpretation of Optimal Solution

Once the learning had been successfully implemented, and repeatable convergence
to the same optimum was achieved, it is interesting to investigate what the form of
the solution suggests about the physical system. Figure 7 shows an example of an
initial, intermediate and final waveform from a learning trial, starting at a smoothed
out square wave and ending at the triangle wave which was found to be optimal.

The result is actually quite satisfying from a fluid dynamics point of view, as
it is consistent with our theoretical understanding of the system, and indeed was
the predicted solution given our reward function by experts in the field of flapping
flight. If one considers the reward function used in this work (see 3.1), the basis of
this behavior’s optimality becomes clear.

Consider the cost of transport cmt . As drag force is approximately quadratic with
speed in this regime, the numerator behaves approximately as:∫

T
|Fz(t)ż(t)|dt ∼ 1

2
ρCd〈V 2〉T, (15)
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Fig. 7: A series of waveforms (initial, intermediate and final) seen during learning
on the rigid plate.

Fig. 8: Linear growth of forward speed with flapping frequency. The axes of this
curve have been non-dimensionalized as shown, and the data was taken for a sine
wave. Figure from (Vandenberghe et al., 2004).

where Cd is the coefficient of drag and 〈V 2〉 is the mean squared heaving speed.
However, forward rotational speed was found to grow linearly with flapping fre-
quency (see (Vandenberghe et al., 2004) and Figure 8), thus the denominator can be
written approximately as:

mg
∫

T
ẋ(t)dt ∼C f 〈V 〉T, (16)

where C f is a constant relating vertical speed to forward speed, and 〈V 〉 is the mean
vertical speed. Therefore, higher speeds result in quadratic growth of the numerator
of the cost and linear growth of the cost’s denominator. This can be seen as the
reward r (the inverse of cmt ) having the approximate form:
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r ∼C
〈V 〉
〈V 2〉

, (17)

with C a constant. This results in lower speeds being more efficient, causing lower
frequencies and amplitudes to be preferred. If period and amplitude are fixed, how-
ever, the average speed is fixed (assuming no new extrema of the stroke form are
produced during learning, a valid assumption in practice). A triangle wave, then,
is the means of achieving this average speed with the minimum average squared
speed.

The utility of this control development method now becomes more clear. For sys-
tems that, despite having complicated dynamics, can be reasonably described with
lumped-parameter or quasi-steady models, learning the controller directly serves
dual purposes: it suggests lines of reasoning that inform the creation of relatively
simple models, and it gives confidence that the modeling captures the aspects of the
system relevant to the optimization. Furthermore, on systems for which tractable
models are unavailable, the learning methodology can be applied just as easily while
model-centric techniques will begin to fail.

8 Conclusion

This work has presented a case study in how to produce efficient, online learning on
a complicated fluid system. The techniques used here were shown to be effective,
with convergence being achieved on the heaving plate in approximately seven min-
utes. The algorithmic improvements presented have additional applications to many
other systems, and by succeeding on a problem possessing great dynamic complex-
ity, a reasonably large dimensionality, partial observability and noisy evaluations,
they have been shown to be robust and useful. We believe the complexity of flow
control systems is an excellent match for the capabilities of learning control, and
expect to see many more applications for this domain in the future.
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