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Stability Analysis and Control of Rigid-Body
Systems with Impacts and Friction
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Abstract—Many critical tasks in robotics, such as locomotion
or manipulation, involve collisions between a rigid body and
the environment or between multiple bodies. Methods based on
sums-of-squares (SOS) for numerical computation of Lyapunov
certificates are a powerful tool for analyzing the stability of
continuous nonlinear systems, and can additionally be used to
automatically synthesize stabilizing feedback controllers. Here,
we present a method for applying sums-of-squares verification
to rigid bodies with Coulomb friction undergoing discontinuous,
inelastic impact events. The proposed algorithm explicitly gener-
ates Lyapunov certificates for stability, positive invariance, and
safety over admissible (non-penetrating) states and contact forces.
We leverage the complementarity formulation of contact, which
naturally generates the semialgebraic constraints that define this
admissible region. The approach is demonstrated on multiple
robotics examples, including simple models of a walking robot,
a perching aircraft, and control design of a balancing robot.

Index Terms—Lyapunov analysis and stability verification,
control design, rigid-body dynamics with impacts and friction,
sums-of-squares

I. INTRODUCTION

MANY tasks in robotics require making and breaking
contact with objects in the robot’s environment. For

highly dynamic tasks, such as walking [11], [60], and perching
[12], this drives the need for control design techniques capable
of handling impulsive dynamics and realistic friction models.
Recent work has demonstrated that, for smooth nonlinear
systems, techniques for stability verification can play a pivotal
role in incremental motion planning and control design strate-
gies, [53], and in direct optimization over feedback laws [18],
[28]. Motivated by these developments, this paper presents
a numerical approach for analyzing questions of stability, in-
variance, and safety for rigid-body systems subject to inelastic
collisions and friction.

Our central observation is that the complementarity frame-
work for modeling such systems (e.g. [6], [49], [22]) is
compatible with recent advances in polynomial optimization,
in particular sums-of-squares (SOS) optimization [37]. For
a polynomial to be non-negative, it is sufficient that it be
expressible as the sum of squares of polynomials. Optimizing
over such polynomials can be formulated as a semidefinite
program (SDP), which is a form of convex optimization.
In the controls community, SOS has been widely applied,
particularly in automating Lyapunov analysis of polynomial
dynamical systems [15] and hybrid systems [42]. Here, we
model the non-smooth and impulsive dynamics of systems
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with frictional impacts via the complementarity framework. A
major advantage of this framework over traditional approaches
using hybrid automata is that the dynamics can be expressed
without suffering from the combinatorial explosion of “modes”
resulting from distinct combinations of contacts. Hybrid meth-
ods which must explicitly enumerate each mode and transition
are fundamentally fated to scale poorly in the number of
potential contacts. This approach also naturally encompasses
instances of Zeno phenomena, which pose a challenge in some
frameworks [2], [20]. Instead, we describe the dynamics with
conditions expressed jointly in the coordinates, velocities and
feasible contact forces. The size of the resulting SDP grows
quadratically in the number of contact points.

This work demonstrates how Lyapunov analysis can be
performed by testing sufficient semialgebraic conditions in
these variables. We present algorithms based on testing these
semialgebraic conditions using SOS optimization. Procedures
are provided which solve convex programs (or a sequence of
such programs) to maximize the size of regions of positive
invariance or guaranteed regions of “safety”. We are addi-
tionally interested in the design of mode-invariant feedback
controllers–that is, control laws which are a smooth functions
of state, rather than a switching or hybrid policies. Verified,
mode-invariant control would be useful in providing robust-
ness to disturbances which affect the contact state, or on
systems with limited contact sensing. We apply the algorithms
detailed here on a set of systems of interest to the robotics
community.

A. Related Work

In this paper, we adopt the complementarity formulation for
modeling rigid bodies with frictional impacts [56], [7]. This
framework and its historical development are reviewed in [49]
and a more comprehensive bibliography and discussion are
provided in [6]. Notions of equilibria, stability, and extensions
of Lyapunov analysis to such systems are presented in [6]
and [22] (see also the related article [23]). The numerical
structure of the complementarity framework has previously
been exploited to avoid mode enumeration in the task of
trajectory optimization [39]. Section II will summarize the
aspects of these works used in this paper.

An alternative formalism for modeling and control of
non-smooth mechanical systems is that of hybrid automata
[5]. Example applications of this framework to the control
and analysis of hybrid mechanical systems can be found in
[27], [8], [47], and [35]. A number of numerical techniques
have been presented for addressing verification, stability, and
control design of general hybrid automata. These include
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methods based on approximate solutions of Hamilton-Jacobi
equations, [54], and the construction of discrete abstractions
[1]. Optimization has also been used to find polynomial barrier
certificates, [41], [42], as well as Lyapunov functions about
equilibria, [36], and of transverse dynamics about hybrid limit
cycles [31].

These last three approaches share a common computational
framework in that they employ sums-of-squares. In [36],
numerical techniques were presented for finding certificates
of stability for hybrid systems governed by polynomial vector
fields (both external switching and polynomial guards were
examined). The work in [42] examined safety verification for
both deterministic and stochastic systems. The fundamental
difference between the approaches in [42], [36], and [31] and
in this work stems from the choice of modeling framework.
These previous works require explicit enumeration of a set
of “modes,” in which the system is subject to a particular
differential equation or inclusion and conditions under which
these modes switch. When modeling a Lagrangian mechanical
system with m potential contact points, there may be as many
as 3m distinct modes related to the contact-free, sliding, and
sticking cases. By contrast, this work uses a complementarity
model and simultaneously reasons over the set of system
trajectories and feasible contact force trajectories. In doing
so, we exploit the inherent structure of rigid-body dynamics
and avoid this combinatorial mode enumeration.

A preliminary version of this paper was presented at the
2013 Hybrid Systems: Computation and Control (HSCC)
conference [40]. Here, we improve on the previous algorithms
by separating the effects of the contact forces (see Theorem 4)
and extending the previous work to include control design
via sums-of-squares. The updated algorithm also noticeably
increased the size of the verified region of the simple walking
model. We provide a more complete and rigorous analysis
of the method and background material and demonstrate the
proposed algorithm on a seven state system along with the
automatic synthesis of a feedback controller.

II. BACKGROUND

Here, we introduce a notion of solutions to discontinuous
rigid-body systems and describe the friction and impact laws
used in this paper.

A. Measure Differential Inclusions

We consider systems whose state is given by a set of gener-
alized coordinates q ∈ Rn and generalized velocities v ∈ Rn
and we let x = [qT vT ]T . For mechanical systems, q(t) will
evolve continuously whereas v(t) may have discontinuities due
to impacts, which present an obstacle to applying classical
Lyapunov analysis.

Recently, a number of authors have provided extensions
of Lyapunov analysis to discontinuous dynamics using the
framework of measure differential inclusions (MDIs), first
introduced by Moreau [33], with additional details and precise
definitions in [22] and [6]. By taking the time-derivative of
state from a set-valued (and not necessarily bounded) function,
MDIs address both the discontinuities and non-smoothness

of the system evolution that arise from impacts and standard
friction force laws. We provide a high-level overview of MDIs
here, focused on autonomous Lagrangian mechanical systems.

A solution of a measure differential inclusion will be
taken to be a pair of functions, q(t) and v(t), such that
q(t) is absolutely continuous and v(t) is of locally bounded
variation (LBV), allowing for countably many discontinuities.
The left and right limits of v(t), denoted v−(t) and v+(t), are
guaranteed to exist and we require that solutions satisfy:

q(t)− q(t0) =

∫ t

t0

v(τ)dτ, (1)

v+(t)− v−(t0) =

∫ t

t0

v̇(τ)dτ +

∫ t

t0

v+(τ)− v−(τ)dη(τ).

(2)

Here v̇(t) is an integrable function and η is a sum of Dirac
measures centered at times {tk}∞k=1, which model the con-
tinuous evolution and jumps in the velocity respectively. By
assumption, v(t) has no singular part (see [22], Ch. 3). To
describe the dynamics, we must give rules for specifying legal
values of v̇(t), the locations {tk}∞k=1, and the jumps v+(tk)−
v−(tk). Specific rules are given in the next section, but we
briefly note the following: we require v̇(t) ∈ F(q(t), v(t))
for almost all t, where F(q, v) is a set of possible values.
This use of differential inclusions rather than equations is a
standard approach for addressing Coulomb friction and similar
phenomena. Similarly, the value of jumps will be drawn from a
set which generally depends on q(t) and v−(t). The locations
of impacts will be defined implicitly by the locations where
v+(t) and v−(t) disagree. Finally, we take v(t) to be undefined
at points of discontinuity.

Our problems center around systems where solutions must
lie in an admissible set, A, defined by a finite family of
functions φi : Rn → R:

A = {(q, v) ∈ R2n | φi(q) ≥ 0 ∀ i ∈ {1, . . . ,m}}. (3)

Here, the functions φi(·) are gap functions, representing non-
penetration constraints for rigid bodies. φi(q) < 0 indicates
that configuration q is in penetration and φi(q) = 0 is
equivalent to contact at point i. We will focus on MDIs which
are consistent (see [22], Ch. 4).

Definition 1. A measure differential inclusion is consistent if
every solution defined for t0 is defined for almost all t ≥ t0,
all such solutions remain within A, and for each x0 ∈ A there
exists at least one solution passing through x0.

An equilibrium point for such a system is defined as any
point x0 ∈ A such that x(t) = x0 is a solution. As is typical
for models with dry friction, we do not expect to have unique
solutions from the systems covered by this work [6], [49]. For
systems governed by MDIs, there are natural extensions to the
notions of stability and positive invariance ([22] Ch. 6).

Definition 2. An equilibrium point x0 ∈ A of a consistent
MDI is stable in the sense of Lyapunov if, for each ε > 0,
there exists a δ > 0 such that every solution x(t) satisfying
|x0−x(t0)| < δ satisfies |x0−x(t)| < ε for almost all t ≥ t0.
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Definition 3. A set B ⊂ A is positively invariant if each
solution x(t) satisfying x−(t0) ∈ B satisfies x(t) ∈ B for
almost all t ≥ t0.

In order to apply Lyapunov analysis to MDIs, we make note
of the following fact (see [22], Proposition 6.3): if a function
V : D → R is a continuously differentiable function on a
compact set D ⊂ R2n, and x(t) is LBV, then V (x(t)) is also
LBV and

V (x+(t))− V (x−(t0)) =

∫ t

t0

∂V

∂x
ẋ(τ)dτ (4)

+

∫ t

t0

V (x+(τ))− V (x−(τ))dη(τ),

where ẋ(t) = [v(t)T v̇(t)T ]T , as in (1) and (2). For the
remainder of this paper, when we write dV (x) ≤ 0 for certain
x ∈ A we mean that, for any solution satisfying x−(t) = x,
we have ∂V

∂x ẋ(t) ≤ 0 and V (x+(t))− V (x−(t)) ≤ 0.

B. Rigid-Body Dynamics

Many robotic systems are appropriately modeled as a set of
rigid links connected through some combination of joints. The
continuous dynamics of these rigid-body systems subject to
frictional forces can be modeled by the manipulator equations

H(q)v̇ + C(q, v) = J(q)TλN + Jf (q)TλT , (5)

where the dependence of q, v, λN , and λT on time has been
suppressed for clarity. Here, H(q) is the inertia matrix and
C(q, v) is the combined Coriolis and gravitational terms.
For m potential contacts, the constraint forces are split into
those normal to the contacts, λN ∈ Rm, λN ≥ 0, and the
frictional forces tangential to the contact surface, λT . For
planar systems, λT ∈ Rm while λT ∈ R2m in the full three
dimensional case. We will also write λ to be the stacked vector[
λTN λTT

]T
. The matrices J(q) ∈ Rm×n and Jf (q) ∈ Rm×n

(in the planar case) project the normal and frictional contact
forces into joint coordinates. We will also refer to Ji(q) and
Jf,i(q) as the ith row of J and Jf , associated with the
particular contact forces λN,i and λT,i.

We will focus on the dynamics of rigid bodies interacting
at a fixed number of contact points, though these points may
not necessarily be fixed on their respective bodies. When φ(q)
represents the distances between pairs of bodies, we can take
J to be the Jacobian ∂φ

∂q and Jf defines the frictional plane.
Here, the velocity of the ith contact point has components
Jiv(t) and Jf,iv(t) normal to and tangential to the contact
surface. We use a simple Coulomb friction model to represent
our contact forces:

Jf,iv(t) = 0⇒ ||λT,i(t)|| ≤ µλN,i(t),

Jf,iv(t) 6= 0⇒ λT,i(t) = − Jf,iv(t)

||Jf,iv(t)||
µλN,i(t).

When the tangential velocity vanishes, λT,i can take on any
value within the friction cone. If the contact point is sliding,
then λT,i directly opposes the direction of slip.

C. Inelastic Collisions with Friction

Rigid-body impacts are often modeled as instantaneous
events where an impulse causes a discontinuity in the velocity.
Impacts occur when there is contact, φi(q(t)) = 0, and
when consistency requires an instantaneous change in velocity
to prevent penetration. As with the continuous case, we let
ΛN ,ΛT be the normal and tangential impulses. Derived from
the manipulator equations, the pre- and post-impact veloci-
ties for a collision at the ith contact point are related by
v+(t) = v−(t)+H−1(JTi ΛN,i+J

T
f,iΛT,i). In the special case

of a single, frictionless inelastic collision, we observe that the
inelastic condition is Jiv+(t) = 0 and so we can explicitly
solve for the normal impulse and post-impact state:

ΛN,i = −(JiH
−1JTi )−1Jiv

−(t), (6)

v+(t) =
(
I −H−1JTi (JiH

−1JTi )−1Ji
)
v−(t). (7)

However, when considering Coulomb friction, we have no
explicit formula. To model frictional collisions, we adopt
an impact law first proposed by Routh [44] and described
in detail in [59], [4]. Originally a graphical approach, this
method constructs a path in impulse space that will fit naturally
into our Lyapunov analysis. To briefly summarize Routh’s
technique for computing the net impulses and the post-impact
state:

1) Monotonically increase the normal impulse ΛN,i with
slope Λ′N,i.

2) Increment the tangential impulse ΛT,i with slope Λ′T,i,
according to the friction law:

Jf,iv̄ = 0⇒ ||Λ′T,i|| ≤ µΛ′N,i,

Jf,iv̄ 6= 0⇒ Λ′T,i = − Jf,iv̄

||Jf,iv̄||
µΛ′N,i,

where v̄ = v−(t) + H−1(JTi ΛN,i + JTf,iΛT,i) is the
velocity after impulses ΛN,i and ΛT,i.

3) Terminate when the normal contact velocity vanishes,
Jiv̄ = 0, and take v+(t) = v̄.

This method amounts to following continuous path in the
impulse space where the slopes of the impulses are Λ′N,i and
Λ′T,i. Diagrams showing the resolution of two potential planar
impacts are shown in Figure 1. Along each linear section, these
slopes must satisfy the Coulomb friction constraints. Solutions
may transition from sliding to sticking and vice versa and the
direction of slip may even reverse as a result of each impact.
Note, while this path is piecewise linear in the planar case,
this is not true in three dimensions.

1) Simultaneous Impacts: The question of simultaneous
impacts has been well studied in both simulation and analysis
[9], but remains a difficult problem. Here, since we are ulti-
mately interested in the question of stability, we take a permis-
sive view of simultaneous impacts. If the set J ⊂ {1, ...,m}
is the set of active impacts (φi = 0, Jiv̄ ≤ 0), then we proceed
with Routh’s method where the incremental impulses are any
arbitrary convex combination of the incremental impulses for
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Jfv

-JNv

v-

v+

(a) The contact velocity, in the contact frame, is plotted throughout
an impact resolution by Routh’s method. At the initial state, v−, the
extreme rays of the friction cone are shown as solid arrows. Since
the contact is sliding, Jfv < 0, the impulse increments along the
appropriate ray. When v(s), shown in the dotted line, intersects the
Jfv = 0 axis, the contact transitions to sticking and the impact
terminates when JNv(s) = 0.

Jfv

-JNv
v-

v+

(b) In this case, the impulse required to maintain sticking is not
within the friction cone. Therefore, when v(s) crosses the vertical
axis, the contact does not stick, but the direction of slip reverses, and
the impulse increments along the other extreme ray until termination.

Fig. 1: Example impact resolutions via Routh’s method.

each impact. That is, where ei are the standard basis vectors,

Λ′N =
∑
i∈J

eiΛ
′
N,i (8)

Λ′f =
∑
i∈J

eiΛ
′
f,i

1 =
∑
i∈J

Λ′N,i.

With this model, we allow the collisions to be resolved
simultaneously or in an arbitrary order. Additionally, we will
later show that this choice of model does not introduce any
complexity to the problem of Lyapunov analysis.

III. CONDITIONS FOR STABILITY

The highly-structured nature of rigid-body dynamics and the
complementarity formulation of contact allow us to construct
semialgebraic conditions for stability in the sense of Lyapunov
and positive invariance.

A. Lyapunov Conditions for MDIs
We begin by describing sufficient conditions for stability in

the sense of Lyapunov and positive invariance, stated in terms

of Lyapunov functions. Recall that a function α : [0,∞) →
[0,∞) belongs to class K if it is strictly increasing and α(0) =
0. The following theorem is adapted from [22], Theorem 6.23,
and is stated without proof.

Theorem 1. Let x0 be an equilibrium point for a consistent
MDI and let V : R2n → R be a continuously differentiable
function. If there exists a neighborhood U of x0 and a class
K function α such that x ∈ U ∩ A implies dV ≤ 0 and
V (x) ≥ α(‖x−x0‖) then x0 is stable in the sense of Lyapunov.

For a candidate Lyapunov function V (q, v), define the c-
sublevel set

Ωc = {(q, v) ∈ R2n | V (q, v) < c}.

For a system whose solutions are continuous functions of time,
dV ≤ 0 on Ωc ∩ A would be sufficient to show that each
connected component of Ωc ∩A is positively invariant. How-
ever, where v(t) is discontinuous, the pre- and post-impact
states may be in disjoint connected components. The following
theorem provides stronger conditions which guarantee positive
invariance of such a connected component. The proof can be
found in Appendix A.

Theorem 2. Let V : R2n → R be a continuously differentiable
function, and C be a connected component of Ωc ∩ A with
dV ≤ 0 on C. Then C is positively invariant if, for every
solution (q(t), v(t)) with (q(t), v−(t)) ∈ C, there exists a path
v̄(s) from v−(t) to v+(t) such that V (q(t), v̄(s)) is a non-
increasing function of s.

Theorem 2 holds for general Lyapunov functions and
systems where the unilateral constraints are defined by the
generalized positions q. While we are most often interested in
systems with friction, we briefly consider the special structure
implied by rigid-body dynamics and frictionless, inelastic
collisions. The following proposition, whose proof is in Ap-
pendix B, shows that for such systems, and if V is a convex
function in v for each fixed q, the above sufficient condition
for positive invariance is also necessary. In particular, no
additional conservatism is added by requiring v̄ to be the chord
connecting v−(t) to v+(t).

Proposition 3. For a rigid-body system undergoing friction-
less, inelastic impacts, let V : R2n → R be a continuously
differentiable function, and C be a connected component of
Ωc ∩ A such that dV ≤ 0 on C. If V is convex in v for each
fixed q the following conditions are equivalent:

(i) C is positively invariant.
(ii) For each solution (q(t), v(t)), when (q(t), v−(t)) ∈ C,

V (q(t), v̄(s)) is non-increasing along the path v̄(s) =
sv+(t) + (1− s)v−(t) for s ∈ [0, 1]

The proof for Proposition 3 fails for contacts with friction
since the Routh path from pre- to post-impact states is no
longer a line segment. The frictionless assumption does, how-
ever, cover a class of interesting problems including collisions
due to impacting hard joint limits.
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B. Conditions For Complementarity Systems

We now focus on Lagrangian mechanical systems with
impacts and friction described by complementarity conditions.
This section contains sufficient conditions for demonstrating
dV ≤ 0 and the additional constraint on jump discontinuities
in the statement of Theorem 2. We partition the admissible set
A into three disjoint sets: F , I, and U .

F = {(q, v) ∈ A : φi(q) = 0⇒ Ji(q)v > 0 ∀i ∈ {1, . . . ,m}}
I = {(q, v) ∈ A : ∃i ∈ {1, ...,m} φi(q) = 0, Ji(q)v < 0}
U = {(q, v) ∈ A \ I : ∃i ∈ {1, ...,m} φi(q) = 0, Ji(q)v = 0}

Intuitively, F is the region where there is no contact or all
contacts are being broken, so all the contact forces must
vanish. On F , we know that λ = Λ = 0 and so that dV ≤ 0
is equivalent to

∇V (q, v)T
[

v
−H−1C

]
≤ 0. (9)

On U , there may be forces due to contact and the condition
on continuous state evolution is

∇V (q, v)T
[

v
−H−1(C + JTλN + JTf λf )

]
≤ 0. (10)

On I, there must be a collision for a trajectory to remain within
A . Additionally, consistency may also require collisions on
U (for a detailed explanation of this, see the discussion of
Painlevé’s paradox in [49]). We now provide conditions on
V and a path for each jump discontinuity such that the
requirements of Theorem 2 are satisfied. Furthermore, this
path ensures that the jump conditions for dV ≤ 0 are met.
We implicitly define the path between pre- and post-impact
states. In the frictionless case, this path corresponds directly
to the path in Proposition 3. Recall that the Routh method
of Section II-C constructs a path through the space of contact
impulses. We take v̄(s) to be the velocities defined in step 2 of
the Routh method, where s is the path parameter varying the
impulses. As v̄ depends linearly on the forces, we can find the
derivative of v̄ with respect to s, defined almost everywhere
along each path segment:

dv̄(s)

ds
= H−1(JTi Λ′N,i + JTf,iΛ

′
T,i),

where Λ′N,i and Λ′T,i satisfy the Coulomb friction conditions.
To show V is non-increasing along the path, we require

∂V (q, v)

∂v

∣∣∣∣
(q,v̄(s))

H−1(JTi Λ′N,i + JTf,iΛ
′
T,i) ≤ 0. (11)

Since the Routh method for resolving impacts is memoryless,
any point (q, v̄(s)) is also a possible pre-impact state. So the
set of all possible (q, v̄(s)) is precisely equivalent to A\F and
it is equivalent to enforce (11) for all (q, v) ∈ A \ F instead
of along potential paths. This constraint must hold for all i, so
we construct a single condition that encompasses all contact
points:

∂V (q, v)

∂v
H−1(JTΛ′N + JTf Λ′T ) ≤ 0. (12)

Both (10) and (12) are defined in terms of permissible contact
forces λ and slopes of the impulse path Λ′ when resolving
collisions. Complementarity conditions can be used to describe
the set of feasible contact normal forces [6], [49], [22]:

φi, λN,i ≥ 0, (13)
φiλN,i = 0, (14)

(Jiv)λN,i ≤ 0. (15)

These constraints prohibit contact at a distance and ensure that
the contact normal is a compressive and dissipative force. Note
that (13-15) apply not only to the continuous force λ, but they
also describe the set of feasible impulse slopes Λ′. Observing
that the friction constraints on both are also identical, we write
the additional set of constraints:

(Jf,iv)λT,i ≤ 0, (16)

µ2λ2
N,i − λ2

T,i ≥ 0, (17)

(µ2λ2
N,i − λ2

T,i)(Jf,iv) = 0. (18)

Here, we describe the proper nonlinear friction cone and
diverge from the standard linear complementarity description
of Coulomb friction. However, for any (q, v), this full set of
conditions is exactly equivalent to our formulations of both
frictional, inelastic collisions and Coulomb friction.

C. Separability of Contacts
We now have three separate positivity conditions for stabil-

ity. We require (9) to hold on F , (10) on U , and (12) on U∪I,
with the contact forces and impulses subject to (13) – (18).
This formulation has the issue that the O(m) contact force
terms, when appearing together, will significantly increase the
size of verification programs we formulate in Section IV,
detailed in Section IV-E. However, the structure in the problem
leads to a significant reduction in complexity. For this, we
require an additional assumption, that the contact surfaces
themselves are distinguishable from one another. This rather
benign assumption is satisfied by most rigid-body systems of
interest, even including situations where “jamming” contact
may occur.

Assumption 1. For all i ∈ {1, ..,m} and for any (q, v) where
φi(q) = 0 and Jiv ≤ 0, there exists a sequence (qk, vk) →
(q, v) where

1) φi(qk) = 0 and Jivk ≤ 0 and
2) φj(qk) > 0 or Jjvk > 0 for all j 6= i.

Theorem 4. Given Assumption 1, dV ≤ 0 is equivalent to
requiring (9) to hold on F , and

∂V (q, v)

∂v
H−1(JTi + JTf,iλT,i) ≤ 0, ∀i = 1, ...,m (19)

whenever the following conditions hold:

φi = 0, (20)
Jiv ≤ 0, (21)

(Jf,iv)λT,i ≤ 0, (22)

µ2 − λ2
T,i ≥ 0, (23)

(µ2 − λ2
T,i)(Jf,iv) = 0, (24)

φj ≥ 0, ∀j 6= i. (25)
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Proof. First, observe that the original conditions on λ and
Λ are identical, and they appear in distinct conditions and
constraints, so we may combine them and treat the two
simply as λ. To show that these conditions are sufficient is
straightforward, and does not require Assumption 1. Since
(13) – (18) and (12) are homogeneous in (λN,i, λT,i), we
may fix λN,i = 1, so (20) – (25) is equivalent to (13) – (18).
Summing (19) for all i shows that (19) is a sufficient condition
for (12). By continuity, since (9) holds on F , it also holds on
U . By summing (9) with (19), we have also have sufficient
conditions for (10) on U .

(19) – (25) may seem stricter than the original formulation
when multiple contacts are active. However, by Assumption 1,
if (12) holds in any state (q, v), then for each active contact,
(19) must hold on some sequence converging to (q, v) and, by
continuity, must also hold at (q, v).

Theorem 4 provides a reduced set of conditions, where each
condition depends on at most one contact force indeterminate,
λT,i. These concise conditions will be used throughout the
remainder of the paper to generate stability certificates. Fur-
thermore, (20) – (25) restrict λT,i to be within a compact
region, whereas, by the original constraints, the forces are
unbounded since λN could be scaled arbitrarily. Not only is it
practically useful that the feasible set be compact, with respect
to numerical tolerances, but compactness also has theoretical
consequences for SOS-based methods [43].

D. Extension to Three Dimensions

For clarity of presentation, we have focused this discussion
on the planar case. While the examples in this work treat two
dimensions, the extension to the full three dimensional case,
where λT,i ∈ R2 and Jf,i ∈ R2×n, is straightforward and is
presented here without proof. Replace conditions (22) – (24)
with

(Jf,iv) ◦ λT,i ≤ 0, (26)

µ2 − ||λT,i||2 ≥ 0, (27)

(µ2 − ||λT,i||2)(Jf,iv) = 0, (28)
[λT,i]1[Jf,iv]2 − [λT,i]2[Jf,iv]1 = 0, (29)

where we take ◦ to represent the Hadamard product and [x]i
is the ith element of vector x. The first and third of these
constraints are vector-valued and are treated elementwise. Note
that the fourth constraint is new to the three dimensional case,
and is used to ensure that the frictional force exactly opposes
the direction of motion.

E. Semialgebraic Representation

To apply tools from algebraic geometry, like SOS program-
ming, it is important that the constraints above be expressible
as polynomials. While Taylor approximation of the preceding
conditions can always be used, rigid-body dynamics and the
manipulator equations offer a great deal of structure that we
can exploit to make the problems of control and verification es-
pecially amenable to algebraic methods. For many rigid-body
systems, especially those of interest in robotics, trigonometric

substitutions can reduce the task of kinematics to an algebraic
problem [58]. Concretely, for rotational joints, substituting
new indeterminates ci and si for cos(qi) and sin(qi) respec-
tively, with the constraint that s2

i + c2i = 1, will often result in
polynomial kinematics in ci and si. Prismatic (or translational)
joints, require no such substitution and naturally result on
polynomial kinematics. Most common robotic joints can be
represented as a sequence of such rotational and prismatic
transformations (see [48], Sec. 1.4), and so this polynomial
representation can be easily formed. Helical joints, however,
are a notable exception, since a single helical joint creates
both rotational and translational motion. For simple contact
surfaces, such as between a point contact and the ground,
the gap function and Jacobians φ, J, andJf are kinematic
functions, and thus polynomial in ci, si and the remaining
translational coordinates of q.

Similarly, the various terms of the manipulator equations
and constraints (H,C, and B) are also polynomial in the
same position coordinates and the standard velocity vector
v (see [48], Ch. 2). Several methods can be used to ac-
commodate the appearance of H(q)−1 in the conditions of
the previous section. First we note that by explicitly intro-
ducing an additional variable v̇ ∈ Rn, the condition (5) is
algebraic in v̇, v, λ, the translational components of q and
any introduced trigonometric variables. Alternatively, as H(q)
is positive definite and polynomial, its inverse is a rational
function, where the denominator is the det(H), and thus
strictly positive. Therefore, we can find equivalent conditions
by multiplying by the denominator. These facts imply that
semialgebraic conditions can be posed that are equivalent to
those in Section III-B.

IV. APPROACH

For our systems of interest, the Lyapunov conditions in Sec-
tion III amount to non-negativity constraints on polynomials
over basic semialgebraic sets. This formulation is amenable
to SOS-based techniques, which provide certificates that a
polynomial can be written as a sum of squares of polynomials,
a clearly sufficient condition for non-negativity. Searching
over polynomials which satisfy these sufficient conditions can
be cast as an SDP, allowing for the application of modern
convex optimization tools. For the examples in this paper
we use the YALMIP [25], [26] and SPOT [32] toolboxes
to generate programs for the semidefinite solvers SeDuMi
[52] and MOSEK [34]. For a portion of our approach, we
exploit bilinear alternation (related to the techniques of DK-
iteration [24] and also referred to as coordinate-wise descent).
We briefly review these concepts in Appendix C.

A. Global Verification

For some dynamic systems, we can verify the Lyapunov
conditions over the entire admissible set. Define Di to be the
set of all (q, v, λi) that satisfy the conditions (20) – (25). Note
that this also implies (q, v) ∈ A. If (0, 0) is an equilibrium
of the system, we can then pose the global feasibility SOS
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program:

find V (q, v) (30)
subj. to V (0, 0) = 0,

V (q, v) ≥ α(||q||+ ||v||) for (q, v) ∈ A,

∇V T
[
v
v̇

]
≤ 0 for (q, v) ∈ A,

∂V

∂v
H−1(JTi + JTf,iλT,i) ≤ 0 for (q, v, λi) ∈ Di,

with α(·) is in class K. SOS allows us to search over a family
of polynomial Lyapunov functions via SDP. By finding such
a function, we verify that every sublevel set of V is positively
invariant and that the origin is stable in the sense of Lyapunov.
This certificate of a nested set of invariant regions is weaker
than asymptotic stability but stronger than invariance of a
single set.

B. Regional Verification

For many problems of interest, we would like to maximize
the verified region about an equilibrium. Specifically, we aim
to find a Lyapunov function that maximizes the volume of a
connected component C ⊆ Ω1∩A, which is positively invariant
and, for all ρ ≤ 1, C ∩ Ωρ is also positively invariant. This
leads to the following optimization problem:

max
V

Volume(C) (31)

subj. to V (0, 0) = 0,

V (q, v) ≥ α(||q||+ ||v||) for (q, v) ∈ C,

∇V T
[
v
v̇

]
≤ 0 for (q, v) ∈ C,

∂V

∂v
H−1(JTi + JTf,iλT,i) ≤ 0 for (q, v, λi) ∈ Di

and (q, v) ∈ C.

As currently posed, this problem is not amenable to convex
optimization techniques. It is difficult to directly measure the
volume of C and, as C is only one connected component of
Ω1∩A, it is not naturally described as a semialgebraic set. We
approximate these regions by finding polynomials gI(q, v) and
gO(q, v) such that their one sublevel sets (GI and GO resp.)
are inner and outer approximations of C, i.e.

(GI ∩ A) ⊆ C ⊆ (GO ∩ A). (32)

By containing C within the semialgebraic set GO and veri-
fying the Lyapunov conditions on GO, we provide sufficient
conditions on C. The inner approximation GI is used to
estimate the volume of the verified region. In practice, we
parameterize gI and gO as quadratic forms. For gI(q, v) =[
qT vT

]
GI
[
qT vT

]T
, we will use −Trace(GI) as a proxy

for the volume of C. Given this, we pose the problem:

min
V,GI ,GO

Trace(GI) (33)

subj. to V (0, 0) = 0, GI , GO � 0,

V (q, v) ≥ α(||q||+ ||v||) for(q, v) ∈ A ∩ GO,

∇V T
[
v
v̇

]
≤ 0 for(q, v) ∈ A ∩ GO,

∂V

∂v
H−1(JTi + JTf,iλT,i) ≤ 0 for(q, v, λi) ∈ Di

and (q, v) ∈ GO,
V (q, v) ≥ 1 for(q, v) ∈ A

and gO(q, v) = 1,

gI(q, v) ≥ 1 for(q, v) ∈ A \ Ω1.

This problem verifies the Lyapunov conditions on the outer
approximation GO and ensures the containment in (32). It
is now posed in the familiar form of an optimization over
polynomials that are positive on a basic semialgebraic set.
As described in Appendix C, we use a bilinear alternation
technique to solve this problem. One of the potentially difficult
aspects of this alternation is that we must typically supply an
initial feasible Lyapunov candidate. Previous sums-of-squares
based methods have used local linearizations of the dynamics
to find initial candidates [55], [53], but this approach fails
when the dynamics are discontinuous. Instead, we have used
two potential methods for determining an initial Lyapunov
function. The simplest strategy is to use the observation that
the passive rigid-body dynamics and inelastic collisions are
energetically conservative, and that taking V to be the total
energy provides a viable starting point for most mechanical
systems. Alternatively, bilinear alternations can be initiated by
choosing candidates for GI and GO, such as ellipsoids with
GI small and GO relatively large. In the examples in this work,
we will generally take the later approach, to avoid initializing
the alternations at a particular Lyapunov candidate, and thus
biasing towards energy as a solution.

Solutions to (33) are guaranteed to be feasible Lyapunov
functions to the original problem (31), although they will
generally be suboptimal. This method, however, provides a
tractable technique to synthesize useful regional certificates
through contact discontinuities. An alternate approach to bi-
linear alternations is to fix GO and to fix the form of GI to
within a scalar factor and pose (33) as a feasibility problem.
The optimal scaling of GI can then be found by binary search.
Though it only searches over a subset of the solutions to
the first formulation, this SDP may be better conditioned
numerically for some applications.

C. Safety

The algorithm above for verifying stability and invariance
can be easily adapted to address questions of dynamic safety.
For instance, we might wish to determine the largest set of
initial conditions such that the infinite horizon reachable set
does not intersect some unsafe semialgebraic set Xu. We pose
this problem in a manner similar (33), although here we do
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not require that V be positive definite:

min
V,GI ,GO

Trace(GI) (34)

subj. to GI , GO � 0,

∇V T
[
v
v̇

]
≤ 0 for (q, v) ∈ A ∩ GO,

∂V

∂v
H−1(JTi + JTf,iλT,i) ≤ 0 for (q, v, λi) ∈ Di

and (q, v) ∈ GO,
V (q, v) ≥ 1 for (q, v) ∈ A

and gO(q, v) = 1,

V (q, v) ≤ 1 for (q, v) ∈ A ∩ GI ,
V (q, v) ≥ 1 for (q, v) ∈ A ∩ Xu.

The optimization program in (34) verifies that C is positively
invariant and that C ∩Xu = ∅, so no trajectory that originates
in C can leave the safe region.

D. Control Design

This approach to Lyapunov analysis of autonomous systems
can be naturally extended to the design of feedback control
laws, as detailed in [18]. The method was later extended
to verify stability along trajectories and then experimentally
tested in [28]. Traditionally applied to continuous systems,
here we consider the problem of designing a polynomial
feedback law u(q, v) that is smoothly dependent on state.
The use of such a control law, would provide robustness
to disturbances that may induce unexpected impacts and to
uncertainties in sensing the contact state. Design of a hybrid or
switching controller would additionally suffer from the same
combinatorial mode enumeration issues faced by verification
of such models. When controlling a robotic system near to
multiple contact surfaces, a stable, mode-invariant feedback
law would be both robust and simple to implement.

For control input u and (possibly state-dependent) matrix B,
the continuous dynamics are given in the standard controlled
manipulator form

H(q)v̇ + C(q, v) = B(q, v)u+ J(q)TλN + Jf (q)TλT .

The task of feedback design can then be expressed as finding
control law u(q, v) such that the conditions in Theorem 4
holds. This amounts to a modification of (9) to be

∇V (q, v)T
[

v
H−1(Bu(q, v)− C)

]
≤ 0. (35)

Since both V (q, v) and u(q, v) are optimization parameters,
this constraint is bilinear in V and u, and so, here too we
employ an alternating method. When merged with the regional
verification of Section IV-B, the problem remains bilinear, and
so a two-step alternation approach suffices.

The full process detailing initialization and iterations for
control design and regional verification is detailed in Al-
gorithm 1. In ITERATIONA, we fix GI and the Lyapunov
function, up to a scale factor, and we search for the scale
factor, the control policy u(q, v), and GO. Conversely, in
ITERATIONB, we fix GO and the control policy, and we

search for the Lyapunov function and GI . By splitting the
decision parameters in this manner, each alternation is convex
and can be represented by a SDP. Furthermore, the described
modifications for global analysis and safety are straightforward
to implement in practice.

Algorithm 1 Control Design Alternations

Require: Initial locally stabilizing controller u(q, v) and GO
and GI

Require: Termination criteria ε
1: i← 1
2: cost0 ←∞
3: INITIALIZE
4: do
5: ITERATIONA
6: ITERATIONB
7: costi ← −Trace(GI)
8: i← i+ 1
9: while costi − costi−1 > ε costi

10: function INITIALIZE
11: Fix u(q, v), GO, GI
12: Solve a modified form of SOS program (33) with two

changes:
1) Remove the cost, so the program is a question of

feasibility only
2) Since V is unknown and GI is fixed, replace the

final condition gI(q, v) ≥ 1 with

V ≤ 1 for (q, v) ∈ A ∩ GI

13: From solution, extract V (q, v) and S-procedure multi-
plier for GO.

14: end function
15: function ITERATIONA
16: V (q, v)← γV (q, v)
17: Fix GI and S-procedure multipliers related to GO
18: Solve a modified form of SOS program (33), where

the objective to maximize γ
19: From solution, extract u(q, v), GO, and S-procedure

multiplier for Ω1.
20: end function
21: function ITERATIONB
22: Fix u(q, v), GO, and S-procedure multiplier for Ω1

23: Solve SOS program (33)
24: From solution, extract V (q, v), GI , and S-procedure

multiplier for GO.
25: end function

E. Complexity

To numerical precision, SDPs can be efficiently solved in
practice and theoretically solved in polynomial time [57]. The
difficulty of these problems is dependent on the number of
variables and semidefinite constraints. Let n be the dimension
of the system state space, m the number of potential contacts,
and d the total degree of the polynomial representation used.
Then, the approaches presented in this section construct SOS
programs with O(m) non-negativity constraints to verify that
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dV ≤ 0. The inequality (25) results in the generation of
O(m) S-procedure multipliers per such constraint, each of
which is transformed into a semidefinite constraint of size
O((n+1)d) in the SDP. Therefore, there are O(m2) semidef-
inite constraints, and O(m2(n + 1)d) variables in the SDP.
Note that had we not used the formulation from Theorem 4
and decoupled the contact constraints, the SDP size would
be O(m(n + m)d). By comparison, hybrid formulations that
enumerate each mode and transition will introduce variables
and constraints that scale exponentially in m.

V. EXAMPLES

A. Bean Bag Toss

We first examine the simple problem of a bean bag, modeled
as a planar point mass, colliding inelastically with the ground.
This example serves to demonstrate the method on a system
simple enough where the calculations can be easily verified
by hand. With q =

[
y z

]T
and v =

[
ẏ ż

]T
, we define

φ(q) = z. The dynamics are given by

mÿ = λT , mz̈ = −mg + λN .

For this simple system, the dynamics are invariant under y
so we consider the equilibrium set where the mass rests on
the ground, {(y, z) ∈ R2 : z = 0}. Choosing our Lyapunov
candidate function be equal to the total energy of the system,
we will show stability in the sense of Lyapunov and invariance
of a series of nested sets. That is, each sublevel set of energy
is positively invariant. Substituting V (q, v) = E = 1

2mẏ
2 +

1
2mż

2 + mgz and the dynamics into (30), we have the two
conditions:

−∇V T
[
v
v̇

]
= −mgż +mgż ≥ 0 for (q, v, λ) ∈ D, (36)

−∂V
∂v

H(q)−1(J(q)TλN + Jf (q)TλT ) =

−ẏλT − żλN ≥ 0 for (q, v, λ) ∈ D. (37)

The first condition is trivially true. Observing that Jv = ż
and Jfv = ẏ, we use S-procedure type multipliers to verify
the second condition. Generating sums-of-squares multipliers
σi(q, v, λ) for the relevant unilateral constraints (15) and (16),
replace (37) with

−ẏλT − żλN + σ1ẏλT + σ2żλN is SOS. (38)

Choosing σ1 = σ2 = 1, the equation above vanishes and
is trivially non-negative. Thus, we have used our methods to
demonstrate the rather obvious fact that every sublevel set
of energy will be positively invariant. Note that the quartic
Lyapunov function

V = E + E2 +
1

2
ż3 +

1

2
zż

satisfies (30) but where we can additionally verify that V̇ <
−α(z + ẏ2 + ż2) for some class K function α. Combined
with the condition that dV ≤ 0, this is sufficient to verify
asymptotic stability of the equilibrium set, though we do not
prove this here. In general, it is difficult to find such Lyapunov
functions for discontinuous mechanical systems.

x

z

θ

Fig. 2: The rimless wheel shown in an equilibrium state, with
two feet on the ground. Verified trajectories pass through four
possible contact states (no contact, double-support, and both
single-support phases).

B. Rimless Wheel

The rimless wheel model is a single rigid body composed
of a number of equally-spaced spokes about a simple mass.
This simple model has been used extensively as a proxy
for a passive-dynamic walking robot [10]. Though previous
works have primarily been interested in analyzing the limit-
cycle behavior of the rimless wheel, here we focus on the
stability of a single, static configuration of the system. We
allow for frictional contacts between two of the spokes and the
ground, highlighted in Fig. 2, and we consider the equilibrium
set where both of these spokes rest on a flat ground. We
differentiate between resting on these two particular spokes
and any other equilibrium state. Trajectories of the rimless
wheel that come to rest in the equilibrium set may undergo an
infinite number of collisions rocking back and forth between
the two feet, in an example of Zeno phenomena.

The planar floating base model of the rimless wheel has
three degrees of freedom, q =

[
x z θ

]T
and v =[

ẋ ż θ̇
]T

. With the trigonometric substitutions s = sin(θ)
and c = cos(θ), the dynamics of the rimless wheel and
the contact related elements φi(q), Ji(q), and Jf,i(q) are
all polynomial functions of the redundant state variables
(x, z, s, c, ẋ, ż, θ̇) and the contact forces (λN,i, λT,i). As with
the point mass example, the dynamics are invariant under x
and so the equilibrium set is defined as {(x, z, θ) ∈ R3 : z =
0, θ = 0}.

Fixing gi and go, find an initial candidate Lyapunov function
as in Algorithm 1. We then use iterations search for a solution
to (33) to find a nested set of invariant regions and verify
stability in the sense of Lyapunov. When we parameterize V
as a quartic polynomial, we verify a significant region of state
space about the origin. A slice of this region is shown in
Fig. 3a where the verified region is the connected component
of Ω1 ∩A containing the origin. Fig. 3b illustrates the use of
GI and GO to provide inner and outer bounds on C.
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(a) The red region below the solid line indicates the inadmissible set,
where at least one of the contact points is penetrating the ground. For
reference, two particular states are indicated: the stable equilibrium in
double-support at the bottom and an unstable equilibrium in single-
support on the upper right. The blue region below the dashed line is
the connected component C ⊆ Ω1 ∩A that contains the equilibrium
(the verified region).

(b) Two additional curves are shown. Under the black curve is the
boundary of GI , tight to Ω1 ∩ A, which we use to approximate
the volume of the verified region. Under the magenta curve is GO ,
which must contain C. GO is parameterized as an ellipsoid in the
redundant state variables, including s and (1 − c), which is why it
is not ellipsoidal when plotted against θ. The hatched region, while
a subset of Ω1 ∩ A, is not connected to C and is unverified by our
algorithm (and also outside the true invariant region).

Fig. 3: A slice of the rimless wheel state space where all
velocities are zero.

It is interesting to note that if we parameterize V as a
quadratic polynomial, the alternations quickly converge to
verify a region that is identical to the maximal sublevel set of
energy that does not contain any additional equilibrium points.
Additionally, we recover a scaled version of energy as our
Lyapunov candidate. The quartic parameterization, however,
verifies a larger region with a Lyapunov function significantly
different from energy.

Note that the true region of attraction of this model is
unbounded. For instance, for any x, z, take q =

[
x z 0

]T
and all velocities to be zero. A trajectory starting from any

Fig. 4: A simple model of a perching aircraft using two rigid
links. The foot of the aircraft is pinned to the wall surface and
there is a contact point at the tail that can collide with and
slide along the wall. A torsional spring damper connects the
main body of the aircraft to the foot.

height will fall and then come to rest in the equilibrium set.
By our parameterizations of GI and GO, our regional approach
is limited to ellipsoidal volumes and so will not recover the
entire region of attraction. We do find a significant volume
about the equilibrium set that would be relevant to planning
or control applications.

C. Perching Glider

We also examine the problem of verifying a safe set of
initial conditions for a glider perching against a wall, by
adapting a model first presented in [12]. We consider the
instant after the glider feet, which have adhesive microspines,
have first impacted the wall and so we treat this contact as a
pin joint. The glider is then modeled as a two-link body, with
a spring damper connecting the bodies as shown in Fig. 4.
We allow the tail of the glider to impact the surface of the
wall and slide along it. The specific problem of verification
was earlier addressed in [13], although the authors there used
a model with a single joint and fixed the tail of the glider to
slide along the wall, disallowing collisions. In this paper, we
verify a significantly larger region than in our previous work,
though a direct comparison is impossible since our model is
higher dimension and uses Coulomb friction instead of viscous
damping at the tail contact.

There are two relevant failure modes for the perching
behavior of the glider, described in more detail in [13]. In
one, the nose of the glider impacts the wall, which would be
a potentially damaging event. In the other, the force limit of
the feet microspines is exceeded and the glider falls from the
wall. The force at the feet is a rational function of the state
variables, and so the force limit can be easily expressed as a
semialgebraic constraint.

This is a two degree of freedom model, with q =
[
θ̂1 θ̂2

]T
and we again use a trigonometric substitution for both angles.
We also change coordinates so that (0, 0) is an equilibrium
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(a) A slice of the glider state space where the tail is restricted to the
surface of the wall. The shaded blue region within the dashed line
indicates the verified region C ∩ A for a quartic Lyapunov function
and the solid black ellipse outlines GI . The green ellipse indicates
the maximal sublevel set of energy that does not intersect the unsafe
region, shown in gray.

(b) A second slice of state space where the joint velocities are zero
is also shown. In this slice, the general quartic Lyapunov function
vastly outperforms energy and GI is tight to C.

Fig. 5: Two slices of the glider state space

point with the tail resting against the wall, substituting θ1 =
θ̂1 − 0.2604 and θ2 = θ̂2 + 0.5207. With the rimless wheel,
H(q) was a constant matrix and so H−1(q) was also constant.
Here, H(q)−1 is rational and so, for our dynamical constraints,
we clear the denominator to ensure that our conditions are
algebraic.

We search for a solution to (34), to maximize the set
of initial conditions of trajectories that do not violate either
constraint. Letting GO be all of R2n, define

GI(ρ) = {(q, v) : 2(1− c1) + 2(1− c2) + 0.1||v||2 < ρ}.

We seek to maximize ρ through a binary search, observing that
2(1−ci) well approximates θ2

i near θi = 0. As with the rimless
wheel, if we restrict our search to parameterizations of V of

z

x

θ Φ

Fig. 6: A simple balancing robot with a rigid base and actuated
torso. Two feet can make contact with the ground, in a manner
similar to the rimless wheel.

equal degree to energy, we recover the maximal sublevel set
of energy that does not intersect either constraint boundary.
If we expand our search to include all quartic polynomials,
we find a Lyapunov function which verifies a visibly larger
region. Two slices of this region are visualized in Fig. 5a and
5b. Our binary search terminates finding ρ = 0.25 and we can
verify that an upper bound on the true optimal value is ρ =
0.327, since there GI(ρ) intersects the constraint boundary.
Of course, the true optimal value might be lower still since
there is no claim that any GI(ρ) is invariant. Here, we find a
significant invariant region that usefully approximates the safe
set of initial conditions.

D. Balancing Robot Control Design

Lastly, we present a control design example that builds on
the rimless wheel. The system here is a simple balancing robot
described by planar dynamics. The lower body is similar to
that of the rimless wheel, where the two legs are at a fixed
angle, each with a single contact point at the end. The upper
mass is connected to the lower body by a single actuated joint.
When both feet are motionless with respect to the ground, the
robot resembles an inverted pendulum. In all other contact
configurations, it has varying degrees of underactuation. As
with the rimless wheel, the dynamics are invariant in the x
direction, and so we can treat the robot as a 7 state system.
As with previous examples, the balancing robot also undergoes
Zeno phenomena. Typical simulated trajectories undergo a
lengthy sequence of contact transitions, including single and
double support phases as well as sliding modes.

For this example, we use cubic Taylor expansions of the
dynamics and contact constraints. Algorithm 1 is initialized
with a simple PD controller on φ and Gi and Go such
that both locally approximate total energy. Note that because
of the unilateral constraints, and the linear dependence of
gravitational potential on height, the Hessian of energy must be
modified slightly to form this approximation. For optimizing
the verified region, the controller was parameterized as a full
state feedback cubic controller. A quartic function was used
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to parameterize the Lyapunov candidates, and S-procedure
multiplier degrees were chosen to balance the total degree of
each sums-of-squares condition.

Using SPOT to generate the SDP and MOSEK to solve
it, each iteration of Algorithm 1 (two SOS programs) took
approximately 45 minutes. For ε = .01, convergence was
reached in 30 iterations. While this total running time is
substantial, the complexity is dominated by the dimensionality
of the plant, not the number of contact points. For comparison,
each iteration for rimless wheel, which has two fewer states
and no actuation, runs in approximately 90 seconds on a
desktop machine. As with the other examples, the algorithm
is able to verify a significant region of state space surrounding
the equilibrium, slices of which are illustrated in Figure 7. In a
7 dimensional state space, a true experimental evaluation of the
stabilized region is intractable. Similar to the rimless wheel,
the true stabilized region is unbounded in some directions.
In other slices, however, sampling the space and simulating
gives a rough indication that the verified region is a good
approximation of the true stabilized region, illustrated in
Figure 7b.

VI. CONCLUSIONS AND FUTURE WORK

Reliable planning and control through contact, as in lo-
comotion and manipulation tasks, are critical challenges in
robotics. The natural structure of rigid-body dynamics and the
complementarity formulation of frictional impacts provide a
framework for posing questions of stability and invariance as
sums-of-squares optimization problems. This paper presents
a class of algorithms for numerical computation of Lyapunov
certificates for such systems, as well as for the design of mode-
invariant stabilizing controllers. By invoking the complemen-
tarity model of contact, we avoid directly reasoning about
both the complexity of Zeno phenomena and the combinatorial
number of hybrid modes associated with the set of potential
contact states. Initial experiments in a simulated environment
have found physically significant certificates of stability and
invariance for multiple problems of interest to the robotics
community.

In this work, we have been primarily interested in stability
in the sense of Lyapunov and positive invariance, but we
hope to extend these methods to asymptotic stability. One
challenge with this extension is that friction often leads to
a connected set of equilibria, which poses difficulties for
methods based on analytic Lyapunov functions. That aside,
two common approaches to verifying asymptotic stability are
to find a Lyapunov candidate where V̇ is strictly negative
or to apply LaSalle’s Invariance Principle. With the former
method, energy no longer provides an initial feasible candidate
to begin bilinear alternation. In [22], Theorem 6.31 gives a
generalization of LaSalle to discontinuous systems with the
additional condition that the limit sets of trajectories also be
positively invariant. The algorithms presented here might be
extended to meet this condition and search for certificates of
asymptotic stability.

Future work in this area will also center on extending these
algorithms to more complex tasks. While the examples in

(a) A three dimensional slice of the state space, where all velocities
have been set to zero. Here, the blue region is the verified volume,
although, in the figure, it extends slightly past the contact surfaces
for viewing purposes.

(b) A second slice is shown with respect to the angular velocities,
where positions and translational velocities set to zero. This figure
additionally illustrates the boundaries of Gi and Go in in black
and magenta. With initial conditions in this slice, trajectories were
simulated by a time-stepping method ([50]) to find the experimental
region of attraction. The trajectories that converged to the equilibrium
are indicated with red stars.

Fig. 7: Two slices of robot the state space.

this paper are relatively low dimensional, commercial SDP
solvers are relatively immature and are rapidly improving.
Additionally, recent work on hierarchical relaxations of SOS
problems have shown promise in solving significantly larger
problems [29], [21]. In particular, we are interested in the
analysis of trajectories and limit cycles of robotics systems,
where previous work has demonstrated the effectiveness of
SOS-based methods [31]. By extending to trajectory analysis,
we might verify the stability of locomotion gait primitives [14]
or that of walking motions with respect to terrain variations
[45]. Mode-invariant analysis might also be applied to methods
which reduce the dimensionality of walking problems, such
as the form of zero dynamics explored in [19]. Furthermore,
a natural extension of this work would be to include elastic
impacts, where many models exist which are amenable to
complementarity formulations such as in [51]. Recent work
on the computation of regions of attraction for polynomial
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systems has included convex, moment based approaches [16],
with extensions to hybrid systems [46] and control design
[30]. A similar approach here might eliminate the requirement
for numerically challenging bilinear alternations and allow the
problem to be posed as a single convex optimization program.
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APPENDIX A
PROOF OF THEOREM 2

Proof. Fix a solution x(t) = (q(t), v(t)) with x−(t0) ∈ C.
Let τ̄ be the supremum over all τ such that x−(t) ∈ C
for all t ∈ [t0, τ ]. Assume for contradiction that τ̄ is finite.
We see that x−(τ̄) ∈ C as it is the limit of a sequence
in a connected component. The function s 7→ (q(τ̄), v̄(s))
provides a path from x−(τ̄) to x+(τ̄). This path lies in Ωc
as dV ≤ 0 on C implies V (x−(τ̄)) ≤ V (x−(t0)) < c and,
by assumption, V (q(τ̄), v̄(s)) is a non-increasing function of
s. The path lies in A as only the generalized velocities vary
(recall our definition of A in (3)). Thus x+(τ̄) belongs to C.
As V (x+(τ̄)) < c and V is continuous, there exists an r > 0
such that:

Ur = {x ∈ R2n : ‖x− x+(τ̄)‖∞ < r}

is contained in Ωc (where ‖ · ‖∞ is the maximum norm).
As x+(τ) is a right limit, there exists an ε > 0 such that
x(t) ∈ Ur for t ∈ (τ̄ , τ̄ + ε).

We show that x(t) ∈ C for almost all t ∈ (τ̄ , τ̄ + ε),
contradicting the definition of τ̄ . Fix t such that v(t) is defined
and examine the following functions:

σ1 7→(q(σ1), v+(τ̄)),

σ2 7→(q(t), σ2v(t) + (1− σ2)v+(τ̄)),

the first defined for σ1 ∈ [τ̄ , t] and the second for σ2 ∈ [0, 1].
Since q(·) is continuous, both functions are also continuous.
We see the range of both maps lie in A as {q(t)} ×Rn ⊂ A
for all t ≥ t0. We see the ranges of the functions also lie
in Ur: the first lies in Ur as (q1, v1), (q2, v2) ∈ Ur implies
(q2, v1) ∈ Ur and the second as Ur is convex. Together, these
functions provide a path from x+(τ̄) to x(t) that lies in Ωc∩A,
thus x(t) ∈ C.

APPENDIX B
PROOF OF PROPOSITION 3

Proof. That (ii) implies (i) is the content of Theorem 2.
Now assume (i) holds and fix a solution (q(t), v(t)) with
(q(t), v−(t)) ∈ C. For convenience, let q,v+, and v− denote
q(t), v+(t), v−(t). Take the path v̄(s) = sv+ + (1 − s)v−.
Since V is convex in v and dV ≤ 0, we know

V (q, v−) ≥ (1− s)V (q, v−) + sV (q, v+) ≥ V (q, v̄(s)),

so that the chord (q, v̄(s)) lies in Ωc, and clearly lies in A.

We show that dV (q,v̄(s))
ds ≤ 0. Observe that {(q, v̄(s) : s ∈

[0, 1)} are all possible pre-impact states since φ(q) = 0 and the
impact conditions Jv− < 0, Jv+ = 0 imply that Jv̄(s) < 0.
Let ΛN be a feasible impulse such that v+ = v−+H−1JTΛN .
Substituting into the definition of v̄(s),

v̄(s) = v− + sH−1JTΛN .

Since the constraints on ΛN are linear, we know that the
impulse (1 − s)ΛN > 0 will also be feasible. Applying this
impulse to (q, v̄(s)) we get the post-impact velocity

v̄+(s) = v̄(s) + (1− s)H−1JTΛN = v+.

And so v+ is a possible post-impact velocity from an impact
at any point along the chord. Since dV ≤ 0, we then know
V (q, v̄(s)) ≥ V (q, v+). This implies that the minimum of V
along the chord is achieved at (q, v+) and, since V is convex,
the derivative along the chord must be non-positive.

APPENDIX C
S-PROCEDURE AND BILINEAR ALTERNATION

Sum-of-squares methods enable optimization over linearly
parameterized polynomials that are guaranteed to be non-
negative. This can be extended to guarantee non-negativity
on basic semialgebraic sets in a process generally referred
to as the S-procedure [37]. To demonstrate that g(x) ≥ 0
implies f(x) ≥ 0 we introduce multiplier polynomials σi(x)
and require:

σ1(x)f(x)− σ2(x)g(x) ≥ 0, σ1(x)− 1 ≥ 0, σ2(x) ≥ 0.

In general, we may wish to simultaneously search over the free
coefficients of the multiplier polynomials σi(x) and those of
f(x) and g(x). However, such coefficients enter the condition
in a bilinear fashion. Fixing the free coefficients of f and g, we
can search over the free coefficients of σ1 and σ2, and vice
versa. These allows for a coordinate-descent strategy where
each step consists of a single convex optimization problem
and is guaranteed to improve the objective value. Similar
approaches have been applied to determine region-of-attraction
estimates for smooth dynamical systems [55].

In practice, bilinear alternations have the possibility of
failing due to numerical conditioning. Many of the SDPs
generated from SOS programs have no feasible interior, due
to an overparameterization of the the sums-of-squares basis.
This issue is referred to as facial reduction, and recent work
has been done to enhance the typical pre-processing steps
to reduce the dimensionality of the SDP [38]. However, no
tractable general solution exists for solving the facial reduction
problem. With no feasible interior, interior point algorithms
can solve each iteration to within some numerical tolerance,
but this tolerance, combined with alternations, can lead to
infeasible optimization problems. To address this issue, we
make two modifications to the standard SPOT and MOSEK
algorithms. First, we use a projection based method as a
post-processing step to reduce numerical residuals, similar to
the accelerated first-order approach of [3]. Second, we use
a regularization technique to perturb the SOS program by
some small amount, to ensure that a feasible interior exists
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and Slater’s condition will hold. This regularization is similar
to the recent approach used in [17]. Post-processing and
regularization have both been useful in stabilizing the bilinear
alternations used throughout this work.
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