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ABSTRACT
Many critical tasks in robotics, such as locomotion or ma-
nipulation, involve collisions between a rigid body and the
environment or between multiple bodies. Sums-of-squares
(SOS) based methods for numerical computation of Lya-
punov certificates are a powerful tool for analyzing the sta-
bility of continuous nonlinear systems, which can play a pow-
erful role in motion planning and control design. Here, we
present a method for applying sums-of-squares verification
to rigid bodies with Coulomb friction undergoing discontinu-
ous, inelastic impact events. The proposed algorithm explic-
itly generates Lyapunov certificates for stability, positive in-
variance, and reachability over admissible (non-penetrating)
states and contact forces. We leverage the complementarity
formulation of contact, which naturally generates the semi-
algebraic constraints that define this admissible region. The
approach is demonstrated on multiple robotics examples, in-
cluding simple models of a walking robot and a perching
aircraft.

Categories and Subject Descriptors
I.2.8 [Computing Methodologies]: Problem Solving, Con-
trol Methods, and Search—control theory ; I.1.2 [Computing
Methodologies]: Algorithms—algebraic algorithms; I.2.9
[Computing Methodologies]: Robotics—kinematics and
dynamics, manipulators

Keywords
Lyapunov analysis and stability verification, rigid body dy-
namics with impacts and friction, sums-of-squares

1. INTRODUCTION
Many tasks in robotics require making and breaking con-

tact with objects in the robot’s environment. For highly
dynamic tasks, such as walking [7, 35], and perching [8],
this drives the need for control design techniques capable of
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handling impulsive dynamics and realistic friction models.
Recent work has demonstrated that, for smooth nonlinear
systems, techniques for stability verification can play a piv-
otal role in incremental motion planning and control design
strategies, [30], and direct optimization over feedback laws
[18]. Motivated by these developments, this paper presents
a numerical approach for analyzing questions of stability, in-
variance, and reachability for rigid body systems subject to
inelastic collisions and friction.

Our central observation is that the complementarity frame-
work for modeling such systems (e.g. [4, 27, 12]) is com-
patible with recent advances in polynomial optimization, in
particular sums-of-squares (SOS) optimization [23]. For a
polynomial to be non-negative, it is sufficient that it be ex-
pressible as the sum of squares of polynomials. Optimiz-
ing over such polynomials can be formulated as a semidefi-
nite program (SDP), a form of convex optimization. In the
controls community, SOS has been widely applied, partic-
ularly in automating Lyapunov analysis of polynomial dy-
namical systems [10]. A major advantage of the comple-
mentarity framework over traditional approaches using hy-
brid automata is that non-smooth and impulsive dynamics
can be expressed without suffering from the combinatorial
explosion of “modes” resulting from distinct combinations
of contacts. This approach also naturally encompasses in-
stances of Zeno phenomena, which pose a challenge in some
frameworks. Instead, the dynamics are described by con-
ditions expressed jointly in the coordinates, velocities and
feasible contact forces, the number of which grows linearly
in the number of contact points.

This work demonstrates how Lyapunov analysis can be
performed by testing sufficient semialgebraic conditions in
these variables. We present algorithms based on testing
these semialgebraic conditions using SOS optimization. Pro-
cedures for maximizing the size of regions of positive invari-
ance or guaranteed regions of “safety” by solving a convex
program (or a sequence of such programs) are provided. We
apply the algorithms detailed here on multiple passive sys-
tems of interest to the robotics community.

1.1 Related Work
In this paper, we adopt the complementarity formula-

tion for modeling rigid bodies with frictional impacts. This
framework and its historical development are reviewed in
[27] and a more comprehensive bibliography and discussion
are provided in [4]. Notions of equilibria, stability, and ex-
tensions of Lyapunov analysis to such systems are presented



in [4] and [12] (see also the related article [13]). Section 2
will summarize the aspects of these works used in this paper.

An alternative formalism for modeling and control of non-
smooth mechanical systems is that of hybrid automata [3].
Example applications of this framework to the control and
analysis of hybrid mechanical systems can be found in [17],
[26], and [21]. A number of numerical techniques have been
presented for addressing verification, stability, and control
design of general hybrid automata. These include methods
based on approximate solutions of Hamilton-Jacobi equa-
tions, [31], and the construction of discrete abstractions [1].
SOS optimization has also been used to find polynomial bar-
rier certificates, [24], as well as Lyapunov functions about
equilibria, [22], and of transverse dynamics about hybrid
limit cycles [19].

The fundamental difference between the approaches in
[24], [22], and [19] and in this work stems from the choice
of modeling framework. For a general rigid body with m
possible contact points, 2m different hybrid modes are pos-
sible, each with a distinct associated differential inclusion.
By contrast, this work simultaneously reasons over the set
of system trajectories and feasible contact force trajectories.

2. BACKGROUND
Here, we introduce a notion of solutions to discontinuous

rigid body systems and describe the friction and impact laws
used in this paper.

2.1 Measure Differential Inclusions
We consider systems whose state is given by a set of gener-

alized coordinates q ∈ Rn and generalized velocities v ∈ Rn
and we let x = [qT vT ]T . For mechanical systems, q(t) will
evolve continuously whereas v(t) may have discontinuities
due to impacts which present an obstacle to applying clas-
sical Lyapunov analysis.

Recently, a number of authors have provided extensions
of Lyapunov analysis to discontinuous dynamics using the
framework of measure differential inclusions (MDIs), see [12]
Ch. 4 or [4] for more details. This framework addresses both
the discontinuities and non-smoothness of the system evolu-
tion that arise from impacts and standard friction force laws.
We provide a high-level overview of MDIs here, focused on
autonomous Lagrangian mechanical systems.

A solution of a measure differential inclusion will be taken
to be a pair of functions, q(t) and v(t), such that q(t) is ab-
solutely continuous and v(t) is of locally bounded variation,
allowing for countably many discontinuities. The left and
right limits of v(t), denoted v+(t) and v−(t), are guaranteed
to exist and we require that solutions satisfy:

q(t)− q(t0) =

∫ t

t0

v(τ)dτ, (1)

v+(t)− v−(t0) =

∫ t

t0

v̇(τ)dτ+

∫ t

t0

v+(τ)− v−(τ)dη(τ). (2)

Here v̇(t) is an integrable function and η is a sum of Dirac
measures centered at times {tk}∞k=1, which model the con-
tinuous evolution of and jumps in the velocity respectively.
By assumption, v(t) has no singular part (see [12], Ch. 3).
To describe the dynamics we must give rules for specifying
legal values of v̇(t), the locations {tk}∞k=1, and the values
of jumps v+(tk) − v−(tk). Specific rules are given in the
next section, but we briefly note the following: we require

v̇(t) ∈ F(q(t), v(t)) for almost all t, where F(q, v) is a function
which provides a set of possible values. This use of differen-
tial inclusions (i.e. set-valued laws) instead of equations is
a standard approach for addressing Coulomb friction. Sim-
ilarly, the value of jumps will be drawn from a set which
generally depends on q(t) and v−(t). The locations of im-
pacts will be defined implicitly by the locations where v+(t)
and v−(t) disagree. Finally, we take v(t) to be undefined at
points of discontinuity.

Our problems center around systems where solutions must
lie in an admissible set, A, defined by a finite family of func-
tions φi : Rn → R:

A = {(q, v) ∈ R2n | φi(q) ≥ 0 ∀ i ∈ {1, . . . ,m}}. (3)

Here the functions φi(·) represent non-penetration constraints
for the rigid body. We will focus on MDIs which are consis-
tent (see [12], Ch. 4).

Definition 1. A measure differential inclusion is consis-
tent if every solution defined for t0 is defined for almost all
t ≥ t0, all such solutions remain within A, and for each
x0 ∈ A there exists at least one solution passing through x0.

An equilibrium point for such a system is defined as any
point x0 ∈ A such that such that x(t) = x0 is a solution. In
general we do not expect to have unique solutions from the
systems covered by this work, particularly for models with
dry friction ([4, 27]).

For systems governed by MDIs, natural extensions exist to
the notions of stability and positive invariance ([12] Ch. 6).
An equilibrium point x0 ∈ A of a consistent MDI is stable
in the sense of Lyapunov if, for each ε > 0, there exists a
δ > 0 such that every solution x(t) satisfying |x0−x(t0)| < δ
satisfies |x0 − x(t)| < ε for almost all t ≥ t0. A set B ⊂ A is
positively invariant if each solution x(t) satisfying x−(t0) ∈
B satisfies x(t) ∈ B for almost all t ≥ t0.

In order to apply Lyapunov analysis to MDIs we make
note of the following fact (see [12] Proposition 6.3): if V :
D → R is a continuously differentiable function on a com-
pact set D ⊂ R2n, and x(t) is of locally bounded variation,
then V (x(t)) is of locally bounded variation and

V (x+(t))− V (x−(t0)) =

∫ t

t0

∂V

∂x
ẋ(τ)dτ (4)

+

∫ t

t0

V (x+(τ))− V (x−(τ))dη(τ),

where ẋ(t) = [v(t)T v̇(t)T ]T , as in (1) and (2). For the re-
mainder of this paper, when we write dV (x) ≤ 0 for certain
x ∈ A we mean that, for any solution satisfying x−(t) = x,
we have ∂V

∂x
ẋ(t) ≤ 0 and V (x+(t))− V (x−(t)) ≤ 0.

2.2 Rigid Body Dynamics
Many robotic systems are appropriately modeled as a set

of rigid links connected through some combination of joints.
The continuous dynamics of these rigid body systems sub-
ject to frictional forces are well described by the manipulator
equations

H(q)v̇ + C(q, v) = J(q)TλN + Jf (q)TλT , (5)

where the dependence of q, v, λN , and λT on time has been
suppressed for clarity. Here, H(q) is the inertia matrix and
C(q, v) is the combined Coriolis and gravitational terms. In
this paper, we primarily consider planar models, though the



extension to three dimensions is straightforward. For m po-
tential contacts, the constraint forces are split into those
normal to the contacts, λN ∈ Rm, λN ≥ 0, and the fric-
tional forces tangential to the contact surface, λT ∈ Rm. We

will also write λ to be the stacked vector
[
λTN λTT

]T
. The

Jacobian matrices J(q), Jf (q) ∈ Rm×n project the normal
and frictional contact forces into joint coordinates. We will
also refer to Ji(q) and Jf,i(q) as the ith row of the Jacobians
associated with the particular contact forces λN,i and λT,i.

We will focus on the dynamics of a planar rigid body con-
tacting a fixed environment (such as the ground or a wall) at
a finite number of contact points. Here, the velocity of the
ith contact point has components Jiv(t) and Jf,iv(t) normal
to and tangential to the contact surface. We use a simple
Coulomb friction model to represent our contact forces:

Jf,iv(t) = 0⇒ |λT,i(t)| ≤ µλN,i(t),
Jf,iv(t) 6= 0⇒ λT,i(t) = −sgn(Jf,iv(t))µλN,i(t).

When the tangential velocity vanishes, λT,i can take on any
value within the friction cone. If the contact point is sliding,
then λT,i directly opposes the direction of slip.

2.3 Inelastic Collisions with Friction
Rigid body impacts are often modeled as instantaneous

events where an impulse causes a discontinuity in the ve-
locity. Impacts occur when there is contact, φi(q(t)) = 0,
and when the velocity normal to the contact would cause
penetration, Jiv

−(t) < 0. As with the continuous case, we
let ΛN ,ΛT ∈ Rm be the normal and tangential impulses.
Derived from the manipulator equations, the pre- and post-
impact velocities for a collision at the ith contact point are
related by v+(t) = v−(t) +H−1(JTi ΛN,i + JTf,iΛT,i). In the
special case of frictionless inelastic collisions, we observe that
the inelastic condition is Jiv

+(t) = 0 and so we can explicitly
solve for the normal impulse and post-impact state:

ΛN,i = −(JiH
−1JTi )−1Jiv

−(t), (6)

v+(t) =
(
I −H−1JTi (JiH

−1JTi )−1Ji
)
v−(t). (7)

However, when considering Coulomb friction, we have no
explicit formula. We provide a model for inelastic impacts
into a single contact surface with friction. We additionally
assume that simultaneous collisions, a well studied problem
in both simulation and analysis[5], can be modeled as (po-
tentially non-unique) sequences of single surface impacts.

To model frictional collisions, we adopt an impact law first
proposed by Routh[25] that is described in detail in [34, 2].
Originally a graphical approach, this method constructs a
path in impulse space that will fit naturally into our Lya-
punov analysis. To briefly summarize Routh’s technique for
computing the net impulses and the post-impact state:

1. Monotonically increase the normal impulse ΛN,i.

2. Increment the tangential impulse ΛT,i according to the
friction law:

Jf,iv̄ = 0⇒ |Λ′T,i| ≤ µΛ′N,i,

Jf,iv̄ 6= 0⇒ Λ′T,i = −sgn(Jf,iv̄)µΛ′N,i,

where v̄ = v−(t) +H−1(JTi ΛN,i + JTf,iΛT,i).

3. Terminate when the normal contact velocity vanishes,
Jiv̄ = 0, and take v+(t) = v̄.

This method amounts to following a piecewise linear path in
the impulse space where the slopes of the impulses are Λ′N,i
and Λ′T,i. Along each linear section, these slopes must satisfy
the Coulomb friction constraints. Solutions may transition
from sliding to sticking and vice versa and the direction of
slip may even reverse as a result of each impact.

3. CONDITIONS FOR STABILITY
The highly structured nature of rigid body dynamics and

the complementarity formulation of contact allow us to con-
struct semialgebraic conditions for stability in the sense of
Lyapunov and positive invariance.

3.1 Lyapunov Conditions for MDIs
We begin by describing sufficient conditions for stabil-

ity in the sense of Lyapunov and positive invariance stated
in terms of Lyapunov functions. Say that a function α :
[0,∞)→ [0,∞) belongs to class K if it is strictly increasing
and α(0) = 0. The following theorem is adapted from [12],
Theorem 6.23, and stated without proof.

Theorem 1. Let x0 be an equilibrium point for a consis-
tent MDI and let V : R2n → R be a continuously differen-
tiable function. If there exists a neighborhood U of x0 and
a class K function α such that x ∈ U ∩ A implies dV ≤ 0
and V (x) ≥ α(‖x − x0‖) then x0 is stable in the sense of
Lyapunov.

For a candidate Lyapunov function V (q, v), define the c-
sublevel set

Ωc = {(q, v) ∈ R2n | V (q, v) < c}.

For a system whose solutions are continuous functions of
time, dV ≤ 0 on Ωc∩A would be sufficient to show that each
connected component of Ωc∩A is positively invariant. How-
ever, where v(t) is discontinuous, the pre- and post-impact
states may be in disjoint connected components. The fol-
lowing lemma provides stronger conditions which guarantee
positive invariance of such a connected component. The
proof can be found in the Appendix.

Lemma 2. Let V : R2n → R be a continuously differen-
tiable function, and C be a connected component of Ωc ∩ A
with dV ≤ 0 on C. Then C is positively invariant if, for
every solution (q(t), v(t)) with (q(t), v−(t)) ∈ C, there exists
a path v̄(s) from v−(t) to v+(t) such that V (q(t), v̄(s)) is a
non-increasing function of s.

Lemma 2 holds for general Lyapunov functions and sys-
tems where the unilateral constraints are defined by the gen-
eralized positions q. While we are generally interested in sys-
tems with friction, we briefly consider the special structure
implied by rigid body dynamics and frictionless, inelastic
collisions. The following lemma, whose proof is in the Ap-
pendix, shows that for such systems, and for V a convex
function in v for each fixed q, the above sufficient condition
for positive invariance is also necessary. In particular, no
additional conservatism is added by requiring v̄ to be the
chord connecting v−(t) to v+(t).

Lemma 3. For a rigid body system undergoing friction-
less, inelastic collisions, let V : R2n → R be a continuously
differentiable function, and C be a connected component of
Ωc ∩A such that dV ≤ 0 on C. If V is convex in v for each
fixed q the following conditions are equivalent:



(i) C is positively invariant.

(ii) For each solution (q(t), v(t)), when (q(t), v−(t)) ∈ C,
V (q(t), v̄(s)) is non-increasing along the path v̄(s) =
sv+(t) + (1− s)v−(t) for s ∈ [0, 1]

The proof for Lemma 3 fails for contacts with friction as a re-
sult of the piecewise linear resolution of collisions. Solutions
which transition from slip to stick or where the direction of
slip reverses may have intermediate points during the Routh
solution which leave Ωc. The frictionless assumption does,
however, cover a class of interesting problems including col-
lisions due to impacting hard joint limits.

3.2 Conditions For Complementarity Systems
We now focus on Lagrangian mechanical systems with im-

pacts and friction described by complementarity conditions.
This section contains sufficient conditions for demonstrat-
ing dV ≤ 0 and the additional constraint on jump discon-
tinuities in the statement of Lemma 2. We partition the

admissible set, A, into F and A \ F , where F =
m⋂
i=1

Fi and

Fi = {(q, v)|φi(q) > 0} ∪ {(q, v)|φi(q) = 0, Ji(q)v > 0}.

Intuitively, F is the region where there is no contact or all
contacts are being broken which forces the contact forces to
vanish. On F , we know that λ = Λ = 0 and so that dV ≤ 0
is equivalent to

∇V (q, v)T
[

v
−H(q)−1C(q, v)

]
≤ 0. (8)

On A\F , there may be frictional forces and collisions. The
condition on continuous state evolution is simply

∇V (q, v)T
[
v
v̇

]
≤ 0, (9)

where (5) gives an expression for v̇. We now provide condi-
tions on V and a path for each jump discontinuity such that
the requirements of Lemma 2 are satisfied. Furthermore,
this path ensures that the jump conditions for dV ≤ 0 are
met. We explicitly construct this path between pre- and
post-impact states. Recall that the Routh method of Sec-
tion 2.3 constructs a piecewise linear path through the space
of contact impulses. We take v̄(s) to be the velocities de-
fined in step 2 of the Routh method, where s is the path
parameter varying the impulses. As v̄ depends linearly on
the forces, we can find the derivative of v̄ with respect to s,
defined along each path segment:

dv̄(s)

ds
= H−1(Ji(q)

TΛ′N,i + Jf,i(q)
TΛ′T,i),

where Λ′N,i and Λ′T,i satisfy the Coulomb friction conditions.
To show V is non-increasing along the path, we require

∂V (q, v)

∂v

∣∣∣∣
(q,v̄(s))

H−1(JTi Λ′N,i + JTf,iΛ
′
T,i) ≤ 0. (10)

Since the Routh method for resolving impacts is memoryless,
any point (q, v̄(s)) is also a possible pre-impact state. So the
set of all possible (q, v̄(s)) is precisely equivalent to A \ F
and it is equivalent to enforce (10) for all (q, v) ∈ A \ F
instead of along potential paths. This constraint must hold

for all i, so we construct a single condition that encompasses
all contact points:

∂V (q, v)

∂v
H(q)−1(J(q)TΛ′N + Jf (q)TΛ′T ) ≤ 0. (11)

Both (9) and (11) are defined in terms of permissible contact
forces λ and slopes of the impulse path Λ′ when resolving
a collisions. Complementarity conditions can be used to
describe the set of feasible contact normal forces [4, 27, 12]:

φi(q), λN,i ≥ 0, (12)

φi(q)λN,i = 0, (13)

(Ji(q)v)λN,i ≤ 0. (14)

These constraints prohibit contact at a distance and ensure
that the contact normal is a compressive and dissipative
force. Note that (12-14) apply not only to the continuous
force λ, but they also describe the set of feasible impulse
slopes Λ′. Observing that the friction constraints on both
are also identical, we write the additional set of constraints:

(Jf,i(q)v)λT,i ≤ 0, (15)

µ2λ2
N,i − λ2

T,i ≥ 0, (16)

(µ2λ2
N,i − λ2

T,i)(Jf,i(q)v) = 0. (17)

Here, we diverge from the standard linear complementarity
description of Coulomb friction to avoid introducing addi-
tional slack variables. However, for any (q, v), this full set of
conditions is exactly equivalent to our formulations of both
frictional, inelastic collisions and Coulomb friction.

We now have three separate positivity conditions for sta-
bility. On F we have (8) and on A \ F we have (9) and
(11), with the contact forces and impulses subject to (12-
17). However, since the conditions on λ and Λ′ are iden-
tical, observe that (9) is equal to the sum of (8) and (11),
so it is a redundant condition. Note that since all of these
conditions are continuous and all points in A \ F are in the
closure of F , (8) holding on F implies that it will hold on
all of A. This precise overlap between the constraints on the
forces and impulses allows us to restrict our attention to the
conditions on (q, v, λ) for the remainder of the paper.

3.3 Semialgebraic Representation
Rigid body dynamics and the manipulator equations of-

fer a great deal of structure that we can exploit to make
the problems of control and verification more amenable to
algebraic methods. For many rigid body systems, espe-
cially those of interest in robotics, trigonometric substitu-
tions can reduce the task of kinematics to an algebraic prob-
lem[33]. Concretely, for rotational joints, substituting ci
and si for cos(qi) and sin(qi) respectively, with the con-
straint that s2

i + c2i = 1, will often result in polynomial
kinematics in ci and si. For simple contact surfaces, the
various terms of the manipulator equations and constraints
(H,C,B, J, Jf , and φ) are also polynomial in ci, si, v and
the remaining translational coordinates of q. Several meth-
ods can be used to accommodate the appearance of H(q)−1

in the conditions of the previous section. First we note that
by explicitly introducing an additional variable v̇ ∈ Rn, the
condition (5) is algebraic in v̇, v, λ, the translational compo-
nents of q and any introduced trigonometric variables. Al-
ternatively, as H(q) is positive definite and polynomial, its
inverse is a rational function and we can find equivalent con-
ditions by clearing the denominator. These facts imply that



semialgebraic conditions can be posed that are equivalent to
those in Section 3.2.

4. APPROACH
For our systems of interest, the Lyapunov conditions in

Section 3 amount to non-negativity constraints on poly-
nomials over basic semialgebraic sets. This formulation is
amenable to SOS based techniques, which provide certifi-
cates that a polynomial can be written as a sum of squares of
polynomials, a clearly sufficient condition for non-negativity.
Searching over polynomials which satisfy these sufficient con-
ditions can be cast as an SDP, allowing for the application of
modern convex optimization tools. For the examples in this
paper we use the YALMIP[15, 16] and SPOT[20] toolboxes
to generate programs for the semidefinite solver SeDuMi[29].
For a portion of our approach, we exploit bilinear alterna-
tion (related to the techniques of DK-iteration [14] and also
referred to as coordinate-wise descent). We briefly review
these concepts in the Appendix.

4.1 Global Verification
For some dynamic systems, we can verify the Lyapunov

conditions over the entire admissible set. Define D to be the
set of all (q, v, λ) that satisfy the complementarity conditions
(12-17). Note that this also implies (q, v) ∈ A. If (0, 0) is
an equilibrium of the system, we can then pose the global
feasibility SOS program:

find V (q, v) (18)

subj. to V (0, 0) = 0,

V (q, v) ≥ α(||q||+ ||v||) for (q, v) ∈ A,

∇V T
[
v
v̇

]
≤ 0 for (q, v) ∈ A,

∂V

∂v
H−1(JTλN + JTf λT ) ≤ 0 for (q, v, λ) ∈ D,

with α(·) is in class K (see Section 3.1). SOS allows us to
search over a parameterized family of polynomial Lyapunov
functions via SDP. By finding such a function, we verify that
every sublevel set of V is positively invariant and that the
origin is stable in the sense of Lyapunov. This certificate of
a nested set of invariant regions is weaker than asymptotic
stability but stronger than invariance of a single set.

4.2 Regional Verification
For many problems of interest, we would like to maximize

the verifiable region about an equilibrium. Specifically, find
a Lyapunov function that maximizes the volume of a con-
nected component C ⊆ Ω1 ∩A, which is positively invariant
and, for all ρ ≤ 1, C ∩ Ωρ is also positively invariant. This
leads to the following optimization problem:

max
V

Volume(C) (19)

subj. to V (0, 0) = 0,

V (q, v) ≥ α(||q||+ ||v||) for (q, v) ∈ C,

∇V T
[
v
v̇

]
≤ 0 for (q, v) ∈ C,

∂V

∂v
H−1(JTλN + JTf λT ) ≤ 0 for (q, v, λ) ∈ D

and (q, v) ∈ C.

As currently posed, this problem is not amenable to convex
optimization techniques. It is difficult to directly measure
the volume of C and, as C is only one connected component
of Ω1 ∩ A, it is not naturally described as a semialgebraic
set. We approximate these regions by finding polynomials
gi(q, v) and go(q, v) such that their one sublevel sets (Gi and
G0 resp.) are inner and outer approximations of C, i.e.

(Gi ∩ A) ⊆ C ⊆ (Go ∩ A). (20)

By containing C within the semialgebraic set Go and veri-
fying the Lyapunov conditions on Go, we provide sufficient
conditions on C. The inner approximation Gi is used to es-
timate the volume of the verified region. In practice, we
parameterize gi and go as quadratic forms. For gi(q, v) =[
qT vT

]
Gi
[
qT vT

]T
, we will use −Trace(Gi) as a proxy

for the volume of C. Given this, we pose the problem:

min
V,Gi,Go

Trace(Gi) (21)

subj. to V (0, 0) = 0, Gi, Go � 0,

V (q, v) ≥ α(||q||+ ||v||) for (q, v) ∈ A ∩ Go,

∇V T
[
v
v̇

]
≤ 0 for (q, v) ∈ A ∩ Go,

∂V

∂v
H−1(JTλN + JTf λT ) ≤ 0 for (q, v, λ) ∈ D

and (q, v),∈ Go,
V (q, v) ≥ 1 for (q, v) ∈ A

and go(q, v) = 1,

V (q, v) ≤ 1 for (q, v) ∈ A ∩ Gi.

This problem verifies the Lyapunov conditions on the outer
approximation Go and ensures the containment in (20). It
is now posed in the familiar form of an optimization over
polynomials that are positive on a basic semialgebraic set.
As described in the Appendix, we use a bilinear alternation
technique to solve this problem. One of the potentially diffi-
cult aspects of this alternation is that we must typically sup-
ply an initial feasible Lyapunov candidate. Previous sums-
of-squares based methods have used local linearizations of
the dynamics to find initial candidates [32, 30], but this ap-
proach fails when the dynamics are discontinuous. However,
since the passive rigid body dynamics and inelastic collisions
are energetically conservative, taking V to be the total en-
ergy provides a viable starting point for most mechanical
systems. Solutions to (21) are guaranteed to be feasible
Lyapunov functions to the original problem (19), although
they will generally be suboptimal. This method, however,
provides a tractable technique to synthesize useful regional
certificates through contact discontinuities.

An alternate approach to bilinear alternations is to fix Go
and to fix the form of Gi to within a scalar factor and pose
(21) as a feasibility problem. The optimal scaling of Gi can
then be found by binary search. Though it only searches
over a subset of the solutions to the first formulation, this
SDP may be better conditioned numerically for some appli-
cations.

4.3 Reachability
The algorithm above for verifying stability and invariance

can be easily adapted to address questions of dynamic reach-
ability. For instance, we might wish to determine the largest
set of initial conditions such that the infinite horizon reach-



able set does not intersect some unsafe semialgebraic set U .
We pose this problem in a manner similar (21), although
here we do not require that V be positive definite:

min
V,Gi,Go

Trace(Gi) (22)

subj. to Gi, Go � 0,

∇V T
[
v
v̇

]
≤ 0 for (q, v) ∈ A ∩ Go,

∂V

∂v
H−1(JTλN + JTf λT ) ≤ 0 for (q, v, λ) ∈ D

and (q, v) ∈ Go,
V (q, v) ≥ 1 for (q, v) ∈ A

and go(q, v) = 1,

V (q, v) ≤ 1 for (q, v) ∈ A ∩ Gi,
V (q, v) ≥ 1 for (q, v) ∈ A ∩ U .

The optimization program in (22) verifies that C is positively
invariant and that C∩U = ∅, so no trajectory that originates
in C can leave the safe region.

5. EXAMPLES

5.1 Bean Bag Toss
We first examine the simple problem of a bean bag, mod-

eled as a planar point mass, colliding with the ground. This
example serves to demonstrate the method on a system sim-
ple enough where the calculations can be easily verified by

hand. With q =
[
x z

]T
and v =

[
ẋ ż

]T
, we define

φ(q) = z and the dynamics are given by

mẍ = λT , mz̈ = −mg + λN .

For this simple system, the dynamics are invariant under
x so we consider the equilibrium set where the mass rests
on the ground, {(x, z) ∈ R2|z = 0}. Choosing our Lya-
punov candidate function be equal to the total energy of
the system, we will show stability in the sense of Lyapunov
and invariance of a series of nested sets. That is, each
sublevel set of energy is positively invariant. Substituting
V (q, v) = .5mẋ2 + .5mż2 +mgz and the dynamics into (18),
we have the two conditions:

−∇V T
[
v
v̇

]
= −mgż +mgż ≥ 0 for (q, v, λ) ∈ D, (23)

−∂V
∂v

H(q)−1(J(q)TλN + Jf (q)TλT ) =

−ẋλT − żλN ≥ 0 for (q, v, λ) ∈ D. (24)

The first condition is trivially true. Observing that Jv = ż
and Jfv = ẋ, we use S-procedure type multipliers to verify
the second condition. Generating sums-of-squares multipli-
ers σi(q, v, λ) for the relevant unilateral constraints (14) and
(15), replace (24) with

−ẋλT − żλN + σ1ẋλT + σ2żλN is SOS. (25)

Choosing σ1 = σ2 = 1, the equation above vanishes and is
trivially non-negative. Thus, we have used our methods to
demonstrate the rather obvious fact that every sublevel set
of energy will be positively invariant.

Note that there also exists a quartic Lyapunov function
that satisfies (18) but where we can additionally verify that

V̇ < −α(z2+ẋ2+ż2) for some class K function α. Combined

Figure 1: The rimless wheel shown in an equilib-
rium state, with two feet on the ground. Veri-
fied trajectories pass through four possible contact
states (no contact, double-support, and both single-
support phases).

Table 1: Rimless Wheel Parameters
mass 1 kg

moment of inertia 0.25 kgm2

center to foot distance 1 m

with the condition that dV ≤ 0, this is sufficient to verify
asymptotic stability of the equilibrium set, though we do
not prove this here. In general, it is difficult to find such
Lyapunov functions for discontinuous mechanical systems.

5.2 Rimless Wheel
The rimless wheel model is a single rigid body composed

of a number of equally-spaced spokes about a simple mass.
This simple model has been used extensively as a proxy for
a passive-dynamic walking robot[6]. Though previous works
have primarily been interested in analyzing the limit-cycle
behavior of the rimless wheel, here we focus on the stabil-
ity of a single, static configuration of the system. We allow
for frictional contacts between two of the spokes and the
ground, highlighted in Fig. 1, and we consider the equilib-
rium set where both of these spokes rest on a flat ground. We
differentiate between resting on these two particular spokes
and any other equilibrium state. Trajectories of the rimless
wheel that come to rest in the equilibrium set may undergo
an infinite number of collisions rocking back and forth be-
tween the two feet, in an example of Zeno phenomena.

The planar floating base model of the rimless wheel has

three degrees of freedom, q =
[
x z θ

]T
and v =

[
ẋ ż θ̇

]T
.

With the trigonometric substitutions s = sin(θ) and c =
cos(θ), the dynamics of the rimless wheel and the contact
related elements φi(q), Ji(q), and Jf,i(q) are all polynomial

functions of the redundant state variables (x, z, s, c, ẋ, ż, θ̇)
and the contact forces (λN,i, λT,i). As with the point mass
example, the dynamics are invariant under x and so the equi-
librium set is defined as {(x, z, θ) ∈ R3|z = 0, θ = 0}. The
parameters of the rimless wheel model are given in Table 1.

Taking the total mechanical energy of the system as an ini-
tial candidate Lyapunov function, we search for a solution
to (21) to find a nested set of invariant regions and verify



(a)

(b)

Figure 2: A slice of the rimless wheel state space
is shown where all velocities are zero. (a) The red
region below the solid line indicates the inadmissi-
ble set, where at least one of the contact points is
penetrating the ground. For reference, two partic-
ular states are indicated: the stable equilibrium in
double-support at the bottom and the unstable equi-
librium in single-support on the upper right. The
blue region below the dashed line is the connected
component C ⊆ Ω1 ∩A that contains the equilibrium
(the verified region). (b) Two additional curves are
shown. Under the black curve is Gi, tight to Ω1 ∩A,
which we use to approximate the volume of the ver-
ified region. Under the magenta curve is Go, which
must contain C. Go is parameterized as an ellipsoid in
the redundant state variables, including s and (1−c),
which is why it is not convex when plotted against θ.
The hatched region, while a subset of Ω1 ∩ A, is not
connected to C and is unverified by our algorithm
(and also outside the true invariant region).

Figure 3: A simple model of a perching aircraft using
two rigid links. The foot of the aircraft is pinned to
the wall surface and there is a contact point at the
tail that can collide with and slide along the wall. A
torsional spring damper connects the main body of
the aircraft to the foot.

stability in the sense of Lyapunov. When we parameterize
V as a quartic polynomial, we verify a significant region of
state space about the origin. A slice of this region is shown
in Fig. 2(a) where the verified region is the connected com-
ponent of Ω1 ∩A containing the origin. Fig. 2(b) illustrates
the use of Gi and Go to provide inner and outer bounds on C.

It is interesting to note that if we parameterize V as a
quadratic polynomial, the alternations quickly converge to
verify a region that is nearly identical to the maximal sub-
level set of energy that does not contain any additional equi-
librium points. Additionally, we recover a scaled version of
energy as our Lyapunov candidate. The quartic parameter-
ization, however, verifies a larger region with a Lyapunov
function significantly different from energy.

Note that the true region of attraction of this model is

unbounded. For instance, for any x, z, take q =
[
x z 0

]T
and all velocities to be zero. A trajectory starting from any
height will fall and then come to rest in the equilibrium
set. By our parameterizations of Gi and Go, our regional
approach is limited to ellipsoidal volumes and so will not re-
cover the entire region of attraction. We do find a significant
volume about the equilibrium set that would be relevant to
planning or control applications.

5.3 Perching Glider
We lastly examine the problem of verifying a safe set of

initial conditions for a glider perching against a wall, by
adapting a model first presented in [8]. We consider the in-
stant after the glider feet, which have adhesive microspines,
have first impacted the wall and so we treat this contact as
a pin joint. The glider is then modeled as a two-link body,
with a spring damper connecting the bodies as shown in
Fig. 3. We allow the tail of the glider to impact the surface
of the wall and slide along it. The specific problem of ver-
ification was earlier addressed in [9], although the authors
there used a model with a single joint and fixed the tail of
the glider to slide along the wall, disallowing collisions. In



Table 2: Glider Properties
Body Mass 0.4 kg Leg Length, c 0.15 m

Body Inertia 0.0164 kgm2 Spring Const. 4.1e-3 Nm/◦

Foot Mass 0.05 kg Damper Const. 1.2e-4 Nms/◦

Foot Inertia 0.001 kgm2 Friction Coef. µ 0.3

Body CG, a 0.03 m Nose Clearance θ̂1 ≥ 0
Foot Dist., b 0.15 m Force Limit fs + fn ≥ 0

this paper, we verify a significantly larger region than in
our previous work, though a direct comparison is impossi-
ble since our model is higher dimension and uses Coulomb
friction instead of viscous damping at the tail contact.

There are two relevant failure modes for the perching be-
havior of the glider, described in more detail in [9]. In one,
the nose of the glider impacts the wall, which would be a
potentially damaging event. In the other, the force limit of
the feet microspines is exceeded and the glider falls from the
wall. The force at the feet is a rational function of the state
variables, and so the force limit can be easily expressed as a
semialgebraic constraint. The full parameters of the glider
are given in Table 2.

This is a two degree of freedom model, with q =
[
θ̂1 θ̂2

]T
and we again use a trigonometric substitution for both an-
gles. We also change coordinates so that (0, 0) is an equilib-
rium point with the tail resting against the wall, substitut-
ing θ1 = θ̂1 − .2604 and θ2 = θ̂2 + .5207. With the rimless
wheel, H(q) was a constant matrix and so H−1(q) was also
constant. Here, H(q)−1 is rational and so, for our dynami-
cal constraints, we clear the denominator to ensure that our
conditions are algebraic.

We search for a solution to (22), to maximize the set of
initial conditions of trajectories that do not violate either
constraint. Here, we let Go be all of R2n and define

Gi(ρ) = {(q, v)|2(1− c1) + 2(1− c2) + 0.1||v||2 < ρ}.

We seek to maximize ρ through a binary search, observing
that 2(1− ci) well approximates θ2

i near θi = 0. As with the
rimless wheel, if we restrict our search to parameterizations
of V of equal degree to energy, we recover the maximal sub-
level set of energy that does not intersect either constraint
boundary. If we expand our search to include all quartic
polynomials, we find a Lyapunov function which verifies a
visibly larger region. Two slices of this region are shown in
Fig. 4(a) and 4(b). Our binary search terminates finding
ρ = 0.25 and we can verify that an upper bound on the
true optimal value is ρ = 0.327, since there Gi(ρ) intersects
the constraint boundary. Of course, the true optimal value
might be lower still since there is no claim that any Gi(ρ) is
invariant. Here, we find a significant invariant region that
usefully approximates the safe set of initial conditions.

6. CONCLUSIONS
Reliable planning and control through contact, as in lo-

comotion and manipulation tasks, are critical challenges in
robotics. The natural structure of rigid body dynamics and
the complementarity formulation of frictional impacts pro-
vide a framework for posing questions of stability and in-
variance as sums-of-squares optimization problems. This
paper presents a class of algorithms for numerical compu-
tation of Lyapunov certificates for such systems. By invok-

(a)

(b)

Figure 4: (a) A slice of the glider state space where
the tail is restricted to the surface of the wall. The
shaded blue region within the dashed line indicates
the verified region C∩A for a quartic Lyapunov func-
tion and the solid black ellipse outlines Gi. The green
ellipse indicates the maximal sublevel set of energy
that does not intersect the unsafe region, shown in
gray. (b) A second slice of state space where the
joint velocities are zero is also shown. In this slice,
the general quartic Lyapunov function vastly out-
performs energy and Gi is tight to C.



ing the complementarity model of contact, we avoid directly
reasoning about both the complexity of Zeno phenomena
and the combinatorial number of hybrid modes associated
with the set of potential contact states. Initial experiments
have found physically significant certificates of stability and
invariance for multiple problems of interest to the robotics
community.

In this work, we have been primarily interested in stabil-
ity in the sense of Lyapunov and positive invariance, but
we hope to extend these methods to asymptotic stability.
Here, we briefly discuss some of the challenges posed by this
extension. Two common approaches to verifying asymp-
totic stability are to find a Lyapunov candidate where V̇ is
strictly negative or to apply LaSalle’s Invariance Principle.
With the former method, energy no longer provides an ini-
tial feasible candidate to begin bilinear alternation. In [12],
Theorem 6.31 gives a generalization of LaSalle to discontinu-
ous systems with the additional condition that the limit sets
of trajectories also be positively invariant. The algorithms
presented here might be extended to meet this condition and
search for certificates of asymptotic stability.

Future work in this area will also center on extending
these algorithms to more complex tasks. In particular, we
are interested in the analysis of trajectories and limit cycles
of robotics systems, where previous work has demonstrated
the effectiveness of SOS based methods [19]. Numerical Lya-
punov analysis has also been experimentally demonstrated
to be an effective tool for controller synthesis, both at fixed
points and along trajectories [18]. Furthermore, a natural
extension of this work would be to include elastic impacts,
where many models exist which are amenable to comple-
mentarity formulations such as in [28]. Recent work on the
computation of regions of attraction for polynomial systems
has included methods for approximating the volume of semi-
algebraic sets [11]. A similar approach here might eliminate
the requirement for bilinear alternations and allow the prob-
lem to be posted as a single convex optimization program.
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APPENDIX
A. PROOFS

The following proof is for Lemma 2.

Proof. Fix a solution x(t) = (q(t), v(t)) with x−(t0) ∈ C.
Let τ̄ be the supremum over all τ such that x−(t) ∈ C for
all t ∈ [t0, τ ]. Assume for contradiction τ̄ is finite. We
see x−(τ̄) ∈ C as it is the limit of a sequence in a con-
nected component. The function s 7→ (q(τ̄), v̄(s)) is a path
from x−(τ̄) to x+(τ̄). This path lies in Ωc as dV ≤ 0 on
C implies V (x−(τ̄)) ≤ V (x−(t0)) < c and, by assumption,
V (q(τ̄), v̄(s)) is a non-increasing function of s. The path lies
in A as only the generalized velocities vary (recall our defini-
tion of A in (3)). Thus x+(τ̄) belongs to C. As V (x+(τ̄)) < c
and V is continuous, there exists an r > 0 such that:

Ur = {x ∈ R2n | ‖x− x+(τ̄)‖∞ < r}

is contained in Ωc (where ‖ · ‖∞ is the maximum norm).
As x+(τ) is a right limit there exists an ε > 0 such that
x(t) ∈ Ur for t ∈ (τ̄ , τ̄ + ε).

We show that x(t) ∈ C for almost all t ∈ (τ̄ , τ̄ + ε), con-
tradicting the definition of τ̄ . Fix t such that v(t) is defined
and examine the following functions:

σ1 7→(q(σ1), v+(τ̄)),

σ2 7→(q(t), σ2v(t) + (1− σ2)v+(τ̄)),

the first defined for σ1 ∈ [τ̄ , t] and the second for σ2 ∈ [0, 1].
The second function is clearly continuous, and the first is
continuous as q(t) is continuous. We see the range of both
maps lie in A as {q(t)} × Rn ⊂ A for all t ≥ t0. We see the
ranges of the functions also lie in Ur: the first lies in Ur as
(q1, v1), (q2, v2) ∈ Ur implies (q2, v1) ∈ Ur and the second as
Ur is convex. Together these functions provide a path from
x+(τ̄) to x(t) that lies in Ωc ∩ A, thus x(t) ∈ C.

The following proof is for Lemma 3.

Proof. That (ii) implies (i) is the content of Lemma 2.
Now assume (i) holds and fix a solution (q(t), v(t)) with
(q(t), v−(t)) ∈ C. For convenience, let q,v+, and v− denote
q(t), v+(t), v−(t). Take the path v̄(s) = sv+ + (1 − s)v−.
Since V is convex in v and dV ≤ 0, we know

V (q, v−) ≥ (1− s)V (q, v−) + sV (q, v+) ≥ V (q, v̄(s)),

so that the chord (q, v̄(s)) lies in Ωc, and clearly lies in A.

We show that dV (q,v̄(s))
ds

≤ 0. Observe that {(q, v̄(s)|s ∈
[0, 1)} are all possible pre-impact states since φ(q) = 0
and the impact conditions Jv− < 0, Jv+ = 0 imply that
Jv̄(s) < 0. Let ΛN be a feasible impulse such that v+ =
v− +H−1JTΛN . Substituting into the definition of v̄(s),

v̄(s) = v− + sH−1JTΛN .

Since the constraints on ΛN are linear, we know that the
impulse (1 − s)ΛN > 0 will also be feasible. Applying this
impulse to (q, v̄(s)) we get the post-impact velocity

v̄+(s) = v̄(s) + (1− s)H−1JTΛN = v+.

And so v+ is a possible post-impact velocity from an impact
at any point along the chord. Since dV ≤ 0, we then know
V (q, v̄(s)) ≥ V (q, v+). This implies that the minimum of V
along the chord is achieved at (q, v+) and, since V is convex,
the derivative along the chord must be non-positive.

B. BILINEAR ALTERNATION
Sum-of-squares optimization enables optimization over lin-

early parameterized polynomials that are guaranteed to be
non-negative. This can be extended to guarantee non-negativity
on basic semialgebraic sets in the following fashion[23]. To
demonstrate that g(x) ≥ 0 implies f(x) ≥ 0 we introduce
multiplier polynomials σi(x) and require:

σ1(x)f(x)− σ2(x)g(x) ≥ 0, σ1(x)− 1 ≥ 0, σ2(x) ≥ 0.

In general, we may wish to simultaneously search over the
free coefficients of the multiplier polynomials σi(x) and those
of f(x) and g(x). However, such coefficients enter the con-
dition in a bilinear fashion. Fixing the free coefficients of f
and g, we can search over the free coefficients of σ1 and σ2,
and vice versa. These allows for a coordinate-descent strat-
egy where each step consists of a single convex optimization
problem and is guaranteed to improve the objective value.
Similar approaches have been applied to determine region-
of-attraction estimates for smooth dynamical systems [32].
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