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Abstract

Direct methods for trajectory optimization are widely used for planning locally
optimal trajectories of robotic systems. Many critical tasks, such as locomotion
and manipulation, often involve impacting the ground or objects in the environ-
ment. Most state-of-the-art techniques treat the discontinuous dynamics that result
from impacts as discrete modes and restrict the search for a complete path to a
specified sequence through these modes. Here we present a novel method for
trajectory planning of rigid body systems that contact their environment through
inelastic impacts and Coulomb friction. This method eliminates the requirement
for a priori mode ordering. Motivated by the formulation of multi-contact dy-
namics as a Linear Complementarity Problem (LCP) for forward simulation, the
proposed algorithm poses the optimization problem as a Mathematical Program
with Complementarity Constraints (MPCC). We leverage Sequential Quadratic
Programming (SQP) to naturally resolve contact constraint forces while simul-
taneously optimizing a trajectory that satisfies the complementarity constraints.
The method scales well to high dimensional systems with large numbers of possi-
ble modes. We demonstrate the approach on four increasingly complex systems:
rotating a pinned object with a finger, simple grasping and manipulation, planar
walking with the Spring Flamingo robot, and high speed bipedal running on the
FastRunner platform.

1 Introduction
Trajectory optimization is a powerful framework for planning locally optimal tra-
jectories for linear or nonlinear dynamical systems. Given a control dynamical
system, ẋ = f (x,u), trajectory optimization aims to design a finite-time input tra-
jectory, u(t),∀t ∈ [0,T ], which minimizes some cost function over the resulting

∗A preliminary version of this paper was presented at the 2012 Workshop on the Algorithmic Foundations
of Robotics (WAFR) conference [27]
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input and state trajectories. There are a number of popular methods for transcrib-
ing the trajectory optimization problem into a finitely parameterized nonlinear op-
timization problem (see [7]). Broadly speaking, these transcriptions fall into two
categories: the shooting methods and the direct methods. In shooting methods,
such as Differential Dynamic Programming (DDP) [20], the nonlinear optimiza-
tion searches over (a finite parameterization of) u(t), using a forward simulation
from x(0) to evaluate the cost of every candidate input trajectory. In direct meth-
ods, the nonlinear optimization simultaneously searches over parameterizations of
u(t) and x(t); here no simulation is required and instead the dynamics are imposed
as a set of optimization constraints, typically evaluated at a selection of colloca-
tion points [19]. Mixtures of shooting and direct methods are also possible, and
fall under the umbrella of multiple shooting.

There are advantages and disadvantages to both direct and shooting methods,
which are outlined here. For a more detailed comparison, see the survey article
[6]. For many problems, direct methods enjoy a considerable numerical advantage
over the shooting methods, which can be plagued by poorly conditioned gradients;
for instance, a small change in the control input at t = 0 will often have a dramati-
cally larger effect on the cost than a small change near time T . Direct methods can
also be initialized with a guess for the state trajectory, x(t), which may be easier to
determine than an initial u(t). A reasonable initial trajectory is generally helpful
in avoiding problems with local minima. Since x(t) is also parameterized, direct
methods generate larger optimization problems but this increase in size is partially
offset by the sparsity of the resulting problem, allowing efficient (locally optimal)
solutions with large-scale sparse solvers such as SNOPT [18], and trivial paral-
lel/distributed evaluation of the cost and constraints. Dimitrov et al. demonstrate
the numerical benefits of sparse, direct optimization for MPC in [13]. We also
note that throughout the optimization process, shooting methods that determine
the state trajectory through simulation will always result in dynamically feasible
trajectories. However, in the case of direct methods, solvers enforce the system
dynamics through nonlinear constraints and must first converge to feasibility.

In this paper, we take advantage of the benefits of direct methods and consider
the problem of trajectory optimization for rigid-body systems subject to elastic col-
lisions and friction. This is an essential problem for robotics which arises in any
tasks involving locomotion or manipulation. The collision events that correspond
with making or breaking contact, however, greatly complicate the trajectory opti-
mization problem as they result in large or impulsive forces and rapid changes in
velocity. While it is possible to resolve contact through the use of continuous reac-
tion forces like simulated springs and dampers, the resulting differential equations
are typically stiff and require an extremely small time step, increasing the size and
complexity of the problem [7]. For numerical efficiency, a preferred method is to
approximate collisions as impulsive events that cause discontinuous jumps in ve-
locity. A popular method for control of such systems is as a autonomous hybrid
dynamical system that undergoes discontinuous switching (see [39]). The discrete
transitions are fully autonomous as we can directly control neither the switching
times nor the switching surface.

There are a number of impressive success stories for trajectory optimization
in these hybrid models, for instance the optimization of a 3D running gait [30].
These results primarily use direct methods. But they are plagued with one ma-
jor short-coming - the optimization is constrained to operate within an a priori
specification of the ordering of hybrid modes. For a human running where motion
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Figure 1: The bipedal FastRunner robot is designed to run at speeds of over 20 mph.
Each leg has 5 degrees of freedom and multiple passive springs and tendons. The legs
are driven at the hip to keep the leg mass as low as possible.

capture can provide a good initial guess on the trajectory, this may be acceptable.
It is much more difficult to imagine a mode specification for a multi-fingered hand
manipulating a complex object that is frequently making and breaking contact with
different links on the hand. Perhaps as a result, there is an apparent lack of plan-
ning solutions for robotic manipulation which plan through contact - most planners
plan up to a pre-grasp then activate a separate, heuristic based, grasping controller.
Indeed, the multi-contact dynamics engines used to simulate grasping [21, 23] do
not use hybrid models of the dynamics, because the permutations of different pos-
sible modes grows exponentially with the number of links and contact points, and
because hybrid models can be plagued by infinitely-frequent collisions (e.g., when
a bouncing ball comes to rest on a surface). Instead, simulation tools make use of
time-stepping solutions that solve contact constraints using numerical solutions to
linear or nonlinear complementarity problems (LCPs and NCPs) [34, 4].

We demonstrate that it is possible, indeed natural, to fold the complementar-
ity constraints directly into nonlinear optimization for trajectory design, result-
ing in a Mathematical Program with Complementarity Constraints (MPCC), or,
equivalently, a Mathematical Program with Equilibrium Constraints (MPEC) [22].
While these are generally difficult to solve, significant research has been done in
this area, and we leverage Sequential Quadratic Programming (SQP) techniques -
a particular class of algorithms for solving general nonlinear programs that have
been shown to be effective [3, 16]. Broadly speaking, SQP solves a sequence of
quadratic programs which each approximate the original nonlinear program. The
key to this formulation is in resolving the contact forces, the mode-dependent com-
ponent of the dynamics in the traditional formulation, as additional decision vari-
ables in the optimization. We demonstrate that this is an effective and numerically
robust way to solve complex trajectories without the need for a mode schedule.

Specifically, this work was motivated by the challenge of optimizing trajecto-
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Figure 2: (a) Hybrid trajectories can be found by individually optimizing over the con-
tinuous dynamics of a specified mode sequence. Here, the system evolves continuously
through one mode before striking a guard. The dashed line indicates the discontinuous
jump from one mode to another before continuous evolution in the other mode begins.
(b) When the hybrid transition map is more complex, the switching surfaces formed
by multiple guards functions may lie close together and the set of possible mode se-
quences can be extremely large. In these cases, it is no longer trivial to specify the
optimal mode sequence.

ries for a new running robot called “FastRunner” [12]. FastRunner, illustrated in
Figure 1 is a bipedal robot concept designed to run at speeds over 20 mph and up to
50 mph. Most notably, FastRunner has a clever, but also complex, leg design with
four-bar linkages, springs, clutches, hard joint stops, tendons and flexible toes. The
planar FastRunner the model has 13 degrees of freedom, 6 contact points, 16 ad-
ditional constraint forces, and only 2 actuators, and was beyond the scope of our
previously existing trajectory optimization tools.

2 Background
2.1 The pitfalls of mode schedules
For simple hybrid systems, including point foot models of walking robots, trajec-
tories of the hybrid system can be described by smooth dynamics up until a guard
condition is met (e.g., the robot’s foot hits the ground), then a discontinuous jump
in state-space, corresponding here to an instantaneous loss of velocity as energy is
dissipated through an impulsive collision–followed by another smooth dynamical
system, as cartooned in Figure 2(a). The discrete state, or mode, corresponds to the
set of active contacts. The vector field, ẋ = f (x,u), will also be mode dependent
due to continuous forces exerted by sustained contact.

For a fixed mode schedule, direct methods for hybrid trajectory optimization
proceed by optimizing each segment independently, with additional constraints
ensuring that the segments connect to each other through the hybrid events.
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However, when the dynamics are more complex, the geometric constraints im-
posed by the hybrid system become more daunting. The FastRunner model has a
hybrid event every time that any of the ground contact points (on either foot) make
or break contact with the ground. But the model also undergoes a hybrid transition
every time that any one of the joints hits a joint-limit, and every time that any one
of the ground reaction forces enters or leaves the friction cone (transitioning from
a sticking to a sliding contact). Indeed, the number of possible hybrid modes of
the system grows exponentially with the number of constraints. The geometry of
the hybrid guards becomes very complex, as cartooned in Figure 2(b). In these
models, small changes to the control input can result in a very different sched-
ule of hybrid modes. Restricting the trajectory optimization search to the initial
mode schedule can result in a very limited search and in failure to find a feasible
trajectory that satisfies all of the constraints.

Despite the obvious limitation of requiring this mode schedule, it has proven
surprisingly difficult to remove this assumption in the direct methods. Slight vari-
ations from the original sequence are possible if the formulation allows the time
duration of individual modes to vanish, as in the work of Srinivasan and Ruina
[32]. For problems with fewer possible modes, Wampler and Popović used outer
optimization loops to determine the hybrid mode schedule [38]. In some cases,
the combinatorial problem of solving for a mode schedule has been addressed by
combinatorial planners; a variant of the Rapidly-Exploring Random Tree (RRT)
algorithm was used in [31] to produce bounding trajectories for a quadruped over
terrain. Methods for optimal control which approximate the global optimum, such
as brute force methods based on dynamic programming, have also been applied
[9], but are so far limited to low dimensional problems.

2.2 Contact Dynamics as a Complementarity Problem
In order to avoid the combinatorial explosion of hybrid models, simulation tech-
niques in computer graphics and in grasping research use a different formulation
of contact, summarized briefly here [37]. In this work, we will focus on systems
comprised of multiple rigid bodies undergoing inelastic collisions and subject to
Coulomb friction. Note that in some cases, like FastRunner, the rigid links com-
posing the robot will be connected via (massless) passive elements like springs or
tendons, though this does not fundamentally change the structure of the equations
of motion. For simplicity, we first discuss the forward dynamics of a rigid-body
(e.g., with a floating base) subject to frictionless contact constraints, which can be
written as the problem of finding the acceleration and contact force vectors:

find q̈,λ (1)

subject to H(q)q̈+C(q, q̇)+G(q) = B(q)u+ J(q)T
λ , (2)

φ(q)≥ 0 (3)

λ ≥ 0 (4)

φ(q)T
λ = 0. (5)

where q ∈ Rn is the vector of generalized coordinates, H(·) is the inertial matrix,
C(·, ·) represents the Coriolis terms, G(·) the gravitational forces, and B(·) is the
input mapping. Vector inequalities are to be interpreted as element-wise inequality
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constraints. For m potential contacts, φ(q) : Rn → Rm where φ(q) ≥ 0 is an in-
equality representing a non-penetration constraint. Strict equality φi(q) = 0 holds
if and only if the ith contact is active. λ ∈ Rm represents the constraint forces
acting along the surface normal, and J(·) represents the Jacobian projecting con-
straint forces into the generalized coordinates. In simple examples, such as contact
between a point and a fixed surface, we will take φ(q) to be the signed distance
between the point and surface and then we have J(q) = ∂φ(q)

∂q . Taken together,
(3)-(5) form a complementarity constraint and ensure that the contact forces can
be non-zero if and only if the bodies are in contact. It should be noted that (3) may
be difficult to pose properly in the case where the non-penetrating configuration
space is non-convex, although work has been done in this area regarding simu-
lation [26]. Standard variations on this formulation can be made to also address
frictional contact [37, 8].

The solutions to these dynamics are potentially complex, involving large im-
pact forces occurring over very short time periods (e.g., at the moment of a new
collision). In the limiting case of purely rigid bodies, the constraint forces, λ (t),
are often modeled with Dirac δ functions, as impulsive events, or through mea-
sure differential inclusions [8, 33, 2]. However, many of these complexities can be
avoided by discretizing the system in time. Stewart and Trinkle introduced a time-
stepping method that only considers the integral of contact forces over a period
and so does not differentiate between continuous and impulsive forces [34].

For the Stewart and Trinkle time-stepping method, the dynamics and constraint
terms can be evaluated at the known q, q̇, allowing an Euler-approximation of the
state at the next time step to be written as the solution to a linear set of equa-
tions subject to linear complementarity constraints, resulting in an LCP. 3D con-
tact models also fit into the LCP framework, although Coulomb friction cone must
be approximated by a series of linear constraints. It has been proven that solu-
tions exist to this LCP and, under reasonable conditions, that these solutions can
be computed using pivoting methods like Lemke’s Algorithm or more general con-
vex optimization algorithms [34, 4, 23]. Here, solving each LCP corresponds to
simulating a single time step. This approach has proved to be remarkably efficient
and can rapidly simulate systems with thousands of simultaneous contacts.

2.3 Related Work
A number of researchers are currently pursuing mode invariant trajectory optimiza-
tion, as contrasted with the traditional hybrid systems based approach. In [5], Be-
rard et al. used the LCP formulation of contact to design trajectories of single body
on a vibrating plate. Here, they optimize over a small set of parameters describing
the oscillating behavior of the plate and the approach can best be described as a
shooting method. Tassa and Todorov have also explored the use of stochastic com-
plementarity for optimal control using DDP [36]. As this and similar approaches
make local, gradient-based, improvements to a nominal trajectory, they will not
naturally discover new contact sequences not already present and so rely on the
natural dynamics of the system to make contact. Mordatch et al. demonstrated
contact invariant optimization of complex, lifelike behaviors of humanoid figures
using relaxations of the contact complementarity constraints in [25]. To pose a
simpler problem, Mordatch et al. assume that the limbs of the figures are massless;
an assumption we do not make in the current paper. The work of Erez and Todorov
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optimized a human running gait by smoothing the contact dynamics to make use of
a custom inverse dynamics formulation [14]. In [24], Mordatch et al. include the
contact forces as optimization parameters, similar to the work in this paper and our
preliminary version [27]. Mordatch includes the feasibility of the contact forces as
a penalty term in the optimization cost function, rather than as a direct constraint.
Broadly speaking, compared to this paper, the work in [14, 25, 24] make varying
relaxations of physical or dynamic constraints to pose more tractable (and uncon-
strained) optimization problems. Relaxing the constraints allows contact forces
to act at a distance; while this may produce dynamically infeasible trajectories,
it has a smoothing effect and provides gradient information that would otherwise
be unavailable in typical shooting methods. Additionally, all three works make
heavy use of inverse dynamics. For highly underactuated systems, like the planar
FastRunner robot, arbitrary state or end effector trajectories are not dynamically
feasible and inverse dynamics is generally less useful. Formal comparison of these
various methods is difficult, as the field has not yet agreed upon a set of canonical,
hard problems; this is an important goal for collaborative future

3 Approach
Contact constraints formulated using the complementarity conditions fit naturally
into the direct formulation of trajectory optimization. Rather than solving the LCP
for the contact forces λ at each step, we directly optimize over the space of feasi-
ble states, control inputs, constraint forces, and trajectory durations. Treating the
contact forces as optimization parameters is similar to how direct methods treat the
state evolution implicitly. The number of parameters and constraints increases, but
the problem is often better conditioned and more tractable to state of the art solvers.
Where g(·, ·) and g f (·) are the integrated and final cost functions respectively, the
optimization problem can be written as

minimize
{h,x0,...,xN ,u1,...,uN ,λ1,...,λN}

g f (xN)+h
N

∑
k=1

g(xk−1,uk), (6)

though any nonlinear objective based on h,x0, ...,xN ,u1, ...,uN ,λ1, ...,λN is also
allowed.

3.1 Optimization Constraints
This optimization problem is subject to constraints imposed by the manipulator
dynamics and by rigid body contacts. To integrate the dynamics, both forwards
and backwards Euler methods are equally applicable. Time-stepping simulation
methods commonly use semi-implicit methods, but the dynamics constraints in
our optimization problem are already fully implicit and so we chose backwards
integration for added numerical stability. For ease of notation, we will write Hk =
H(qk) and likewise for other matrix functions in the manipulator equations. Where
h is the length of the time-steps and for k = 1, . . . ,N− 1, the dynamics from (2)
imply the constraints:

qk−qk+1 +hq̇k+1 = 0 (7)

Hk+1(q̇k+1− q̇k)+h
(

Ck+1 +Gk+1−Bk+1uk+1− JT
k+1λk+1

)
= 0.
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For notational simplicity, we first consider the case where the (frictional) con-
tact dynamics are planar and later discuss the extension to 3D contacts. For a
given contact point, write the contact force, λ =

[
λ+

x −λ−x λz
]T expressed in a

reference frame with x tangent to the contact surface and z normal to the surface.
Following the formulation of [34], we have split the tangential force into its posi-
tive and negative components and introduce the additional slack variable γ , which
is generally equal to the magnitude of the relative tangential velocity at a contact.
We then have the same set of unilateral and bilateral contact constraints:

φ(qk)≥ 0 (8)

λk,z,λ
+
k,x,λ

−
k,x,γk ≥ 0 (9)

µλk,z−λ
+
k,x−λ

−
k,x ≥ 0 (10)

γk +ψ(qk, q̇k)≥ 0 (11)

γk−ψ(qk, q̇k)≥ 0 (12)

φ(qk)
T

λk,z = 0 (13)(
µλk,z−λ

+
k,x−λ

−
k,x

)T
γk = 0 (14)

(γk +ψ(qk, q̇k))
T

λ
+
k,x = 0 (15)

(γk−ψ(qk, q̇k))
T

λ
−
k,x = 0. (16)

where ψ(q, q̇) is the relative tangential velocity at a contact. Taken together, (8)-
(16) are a set of complementarity equations that describe inelastic impacts and a
Coulomb coefficient of friction µ . In addition to preventing contact forces at a
distance, these complementarity constraints enforce the friction cone and ensure
that, if the contact is sliding, the tangential force properly lies on the edge of the
cone and directly opposes the direction of motion. Together, these directly equate
to the to the case structure of Coulomb friction where

ψ(qk, q̇k) 6=0⇒ λk,x =−sgn(ψ(qk, q̇k))µλz,k

ψ(qk, q̇k) =0⇒ λk,x ≤ µλz,k.

In addition to expressing frictional contacts, we can also describe simple po-
sition constraints such as hard joint limits or kinematic loops in a similar manner.
Here, λ is an internal torque or force acting directly on a joint. For example, if
there is a physical stop enforcing the requirement that q≤ qmax, write

φ(qk) = qmax−qk ≥ 0 (17)

−λk ≥ 0 (18)

φ(qk)
T

λk = 0. (19)

It is important to note the relative indexing of the complementarity and dynam-
ical constraints. Over the interval [tk, tk+1], the contact impulse can be non-zero if
and only if φ(qk+1) = 0; that is, the bodies must be in contact at the end of the
given interval. This allows the time-stepping integration scheme to approximate
inelastic collisions where the interacting bodies stick together. This is not neces-
sarily an appropriate approximation for bodies that may rapidly rebound off one
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another, since any compliance must be modeled through a linkage in one of the
bodies and the time step must be appropriately small.

3.2 Solving the Optimization Problem
The optimization problem (6), subject to the constraints in Section 3.1, forms an
MPCC: a class of nonlinear programs that is generally difficult to solve due to the
ill-posed nature of the constraints [22]. However, it is an area of optimization re-
search that has garnered significant attention in recent years. There are a number
of theoretical and practical results which we leverage here to ensure that our trajec-
tory optimization problem is solvable with current techniques, particularly those
used by the nonlinear solver SNOPT. Observing that, for vector-valued functions
G(x) and H(x), many of our constraints are of the form

G(x)≥ 0 (20)

H(x)≥ 0 (21)

G(x)T H(x) = 0. (22)

To improve the convergence properties of the optimization routines, we can con-
sider equivalent formulations of these complementarity conditions. Fukushima et
al. propose an iterative method that sequentially tightens relaxations of the comple-
mentarity constraints [17]. In our work, we primarily adopt the scheme of Anitescu
who proposed leveraging the elastic mode of SQP solvers like SNOPT to solve a
set of similar, and equivalent constraints [3],

G(x)≥ 0 (23)

H(x)≥ 0 (24)

Gi(x)Hi(x)≤ 0, (25)

where the last inequality is evaluated element-wise. Additionally, it was observed
by Fletcher et al. in [16] that, since SQP iterations always satisfy linear constraints,
the introduction of slack variables α and β can help avoid infeasible QP iterations:

α,β ≥ 0 (26)

α = G(x) (27)

β = H(x) (28)

αiβi ≤ 0. (29)

In practice, these seemingly innocuous substitutions have greatly improved the
speed and robustness of our optimization routines relative to our initial formula-
tion, described in [27]. For more complex examples, we have also found it to be
practically useful to temporarily relax the final constraint to αiβi ≤ ε and solve a
sequence of a few problems, starting with some ε > 0 and finishing with ε = 0
to achieve strict feasibility. This has the effect of allowing intermediate iterations
to exert contact force at a small distance, and experimentally has improved the
conditioning of the optimization problem and the quality of our solutions. This is
similar in principle to existing approaches, like that in [17].
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3.3 Extension to Three Dimensions
To handle three dimensional contacts, note that only the variables and constraints
in Section 3.1 related to the frictional force λx and tangential velocity ψ(q, q̇) are
specific to the 2D case. One straightforward approach to extending to 3D would
be to treat both λx and ψ(q, q̇) as two-vectors, and write down a set of nonlinear
constraints for Coulomb friction in the tangent plane, such as in [1]. However, to
preserve the MPCC structure of our problem, we instead use a polyhedral approx-
imation of the friction cone, as in [34]. Let Di for i = 1, ..,d be unit vectors in
R2 whose convex hull is the polyhedral approximation. Then, let λx = ∑

d
i Diλ i

x
be the net frictional force where each λ i

x is a scalar. We replace the friction cone
constraints (10)-(12) and (14)-(16) with

λ
i
k,x ≥ 0 (30)

µλk,z−
d

∑
i

λ
i
k,x ≥ 0 (31)

γk +ψ(qk, q̇k)
T Di ≥ 0 (32)(

µλk,z−
d

∑
i

λ
i
k,x

)T

γk = 0 (33)

(
γk +ψ(qk, q̇k)

T Di
)T

λ
i
k,x = 0, (34)

where (30),(32), and (34) are repeated for all i. By increasing d, the size of the
MPCC grows but the approximation can be made arbitrarily tight to the true fric-
tion cone.

3.4 Time Discretization
We also note here the role of the discrete time steps when resolving contacts. Since
we use a time-stepping model, our approach makes no effort to determine the ex-
act time that contact between bodies is made or broken. Impulsive and continuous
forces are not treated independently and so we avoid the difficult and potentially
combinatorial task of hybrid mode resolution. Instead, the constraint forces over
the time step directly before a collision are precisely those required for the two
bodies to be in contact. Additionally, since no force is permitted during the pe-
riod when contact is being broken, there is the implicit requirement that take-off
exactly coincide with one of the discrete time intervals. While it is common for
numerical implementations of trajectory optimization to allow the overall duration
of the trajectory to change, they typically do not adjust the individual time steps.
Here this would result in an overly restrictive optimization problem that may ex-
clude desirable trajectories. Overly simple parameterizations which use each time
step duration as a parameter can have trivial or undesirable solutions (e.g, with
many time steps having zero duration). One feasible approach is to create deci-
sion variables that divide each time step h into two periods. Where bxc= floor(x),
this can alternatively be expressed as having individual time steps hk with pairwise
constraints:

h2 j−1 +h2 j = h2 j+1 +h2 j+2, j = 1, . . . ,
⌊

N−3
2

⌋
, (35)
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In practice, these additional free parameters are useful in expanding the space
of feasible solutions while still allowing for relatively large time steps. Since both
state and constraint forces are solved implicitly, this program has a relatively large
number of decision variables and constraints. However, as is typical in direct meth-
ods, this resulting program is generally sparse and so is suitable for implementation
with sparse solvers.

For systems with a large number of bodies that could potentially interact with
each other, there is the potential for k2 collisions and O(k2) additional variables.
For trajectory optimization, however, we are generally interested in problems where
a robot is interacting with a limited set of environmental surfaces like the ground
or an object for manipulation. In these cases, while we must treat a significant
number of potential contacts, we avoid this additional quadratic complexity that
might necessitate such a design by enumerating a small set of permitted contact
body pairs.

4 Example Applications1

Here, we have presented a method for generating locally optimal solutions to the
task of mode agnostic trajectory optimization through contact. In this section, we
apply this algorithm to four increasingly complex examples. These problems were
solved on a standard desktop computer. While the solve time varied from problem
to problem, the simpler examples completed in a few minutes or less in about one
hundred major iterations of the solver, and the FastRunner trajectories took up
to an hour to converge. As discussed above, the MPCCs are formulated to take
advantage of the elastic mode in the SQP solver, although, in all cases, we achieve
final convergence to a strictly feasible solution.

4.1 Finger Contact
Recent research by Tassa and Todorov used a DDP based approach to find a tra-
jectory for the sample problem of a two link manipulator that must spin an ellipse.
This is a simple example with three degrees of freedom and only one contact point,
so there are only two possible modes [36]. However, it provided an early test for
our methods. We constrained the system to start from rest, q̇1 = 0, q̇2 = 0, q̇3 = 0,
and optimized for a quadratic cost on control input and velocity of the free ellipse:

g(x,u) =
N

∑
k=1

q̇3
T Qq̇3 +uT Ru (36)

The parameters for size and mass and for the cost function were chosen to
directly parallel the previous work by Tassa and Todorov [36]. Our approach suc-
ceeded in quickly finding a locally optimal trajectory. As we increased the overall
duration of the trajectory, the optimization process found an increasing number of
flicking motions where, after making contact, it drew the finger back up to make
another pass. Additionally, Tassa and Todorov note that the effect of gravity was
required to pull the manipulator into contact with the ellipse in order for the op-
timization process to discover the possibility of contact. Our approach does not
have this limitation. If we eliminate gravity from the system, even given an initial

1A brief movie of the trajectories generated here can be found in Extension 1.
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Figure 3: The two link finger, shown above, is fully actuated and makes contact with
the unactuated third ellipse to drive it about its axis. Here, φ(q) is the shortest distance
between the distal finger and the free ellipse.

trajectory that starts at rest with u(t) = 0, our methods successfully initiate contact
between the manipulator and ellipse. Both of these results speak to the capabil-
ity of our algorithm to actively identify a mode schedule that is not forced by the
initial trajectory or the system’s dynamics.

4.2 Simple Manipulation
Given the complexity of manipulator problems, trajectory optimization usually
involves dividing the planner into two parts: planning the motion to the object
through unobstructed space and then subsequently planning the grasp. During
grasp planning, specifying a mode schedule would require determining the order
in which the manipulator fingers should interact with the object. However, it is
clear that in many situations, the precise order is not important so long as a proper
grasp is ultimately achieved. Thus, an optimization technique that does not require
a priori specification of contact order is far more appropriate for these types of
problems. Furthermore, some grasp planners neglect the dynamics of manipulated
objects, essentially treating them as fixed to the manipulator. The method pre-
sented here fully accounts for the dynamical properties of the manipulated object
throughout optimization of the entire trajectory. The following example consists
of a planar manipulator tasked with grasping a circular object and lifting it into the
air. We model the gripper with three contact points and five actuated joints, shown
in Figure 4. Here, we desire to minimize the overall effort while moving the ball
to a strictly specified goal location.

There are, of course, a number of different ways in which to precisely specify
this optimization problem. Since we use a local method, the problem definition
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Figure 4: A simple planar gripper was modeled with five actuated joints and three con-
tact points, shown as black dots. Both the ball and the three contact points could also
interact with the ground, where the ball is initially resting, resulting in seven possible
contacts.

and initial trajectories can have a significant impact on the final result. We choose
an approach similar to standard grasp planning by specifying an intermediate state
where the manipulator fully grasps the ball before attempting to raise it and we
additionally specify the final state in terms of both ball and manipulator. For an
initial trajectory, we construct a simple, three point linear interpolation between
the initial, intermediate, and final states where the intermediate state is the grasp
chosen by the user. Additionally, the optimization problem is initialized with all
zeros for both control inputs and contact forces. Furthermore, we are able to re-
quire that the trajectory achieve a force closure on the ball, before attempting to
raise it. With this simple problem formulation, our algorithm quickly converges
to a trajectory that grasps and raises the ball. If, instead, we were to only specify
a fixed initial state with the manipulator held above the ball, the algorithm could
produce interesting motions that, while locally optimal, may not be what we had
desired. For instance, using a single finger to hit the ball into the air satisfies this
problem statement.

Since they are included as optimization parameters, the cost function and con-
straints can be easily modified to explicitly include the contact forces. For exam-
ple, to handle the object gently, we could minimize the total contact forces between
fingers and ball or even prohibit these forces from crossing a specified threshold.

4.3 Spring Flamingo Walking Gait
To analyze a more realistic system, we tested our methods on a planar simulation
of the Spring Flamingo robot [29]. On Spring Flamingo, each leg has three actu-
ated joints (hip, knee, and ankle) and there are contact points at the toe and heel of
each foot. Many hybrid walking models use a constrained form of the dynamics,
where a foot in contact with the ground is treated as a pin joint. Here, however,
we deal with the full constrained dynamics where the body of the robot is mod-
eled as a floating base parameterized by the variables (x,y,θ) which represent the
planar position and pitch of the robot. Periodic constraints were used to generate a
cyclic walking gait and the trajectory was optimized for mechanical cost of trans-
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Figure 5: (a) A walking gait for Spring Flamingo that minimizes mechanical cost of
transport. To generate this trajectory, the height of the swing foot was not considered,
so the solution is a minimalist trajectory with very little ground clearance. (b) The
height of the center of mass over the optimized and initial trajectories is plotted over
the sequence. The optimal trajectory minimizes unnecessary vertical motion of the
robot.

port. Cost of transport is a common, unitless indication of the energy consumption
required for locomotion, and the “mechanical” cost of transport is computed using
the total positive work done on the system independent of losses in the actuators
or costs due to onboard electronics [11]. Where d is the total distance traveled, we
write the cost as:

g(x,u) =
1

mgd

N

∑
k=1

∑
i
|q̇k,iuk,i|. (37)

Note that negative work, which could potentially be stored in an elastic element or
harvested by regenerative breaking, is simply treated here with an equivalent cost
to positive work.

Since the solutions to the MPCC are local, our methods discovered a wide va-
riety of feasible gaits that satisfied the general constraints dependent on the initial
condition set. For instance, given the task of finding a periodic gait that travels a
specific distance, hopping motions and gaits with relatively short or long strides are
possible local solutions. In particular, the input λ (t) and x(t) sequences implicitly
identify the nominal mode sequence of the initial guess. However, the solution is
not restricted to the given ordering. Figure 6 shows the initial and optimized mode
sequences of a particular Spring Flamingo gait. Here, the initial trajectory leads to
a solution with a right-left walking gait but details such as independent heel strike
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Figure 6: The optimized mode sequence of the left and right feet is plotted against
time and the mode transitions are labeled. The SQP was initialized with a significantly
different sequence, demonstrating the ability of the algorithm to independently plan
through contact discontinuities. Note that, in this case, the locally optimal trajectory
has distinct heel strike and heel off events.

and heel off were identified in the optimization process. To optimize for a cyclic
gait, it is natural to write the periodicity constraint:

xN = x1. (38)

Since we would prefer to search over the smaller space of a half gait, and we
wish the robot to walk a minimum distance, we reformulate the periodic require-
ment to account for symmetry and add a unilateral constraint on stride length.
Where ql and qr are the left and right joint vectors, respectively, dmin is the mini-
mum stride length, and (xCM ,yCM ,θ) represents the position and orientation of the
center of mass, we have: 

yN,CM
θN

ẋN,CM
ẏN,CM

θ̇N
qN,1
qN,r
q̇N,l
q̇N,r


=



y1,CM
θ1

ẋ1,CM
ẏ1,CM

θ̇1
q1,r
q1,l
q̇1,r
q̇1,l


, (39)

xN,CM ≥ x1,CM +dmin. (40)

With these linear constraints and given a nominal trajectory from Pratt’s orig-
inal work on the robot where the mechanical cost of transport was 0.18 [28], our
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Figure 7: A generated trajectory for the FastRunner robot running at over 20 mph. The
solid elements show the leg linkages and the thin lines indicate springs and tendons.
Only the hip joints of the robot are actuated.

methods identified a periodic walking gait which reduced the cost to 0.04. It is
important to note that this is merely the cost of the nominal gait as calculated from
(37), and that stabilizing the gait in the presence of any disturbances or model er-
ror will result in a higher closed loop cost, even in simulation. Using native C++
code for rapid computation of rigid body dynamics, interfaced with a general pur-
pose MATLAB framework, we are able to converge to solutions for the Spring
Flamingo in under ninety seconds. The other examples discussed in this work are
analyzed primarily in unoptimized MATLAB, and so are less relevant for compar-
ison. This is a significant reduction in cost and corresponds to an impressive level
of walking efficiency for a system with no passive elements to store and release
energy. Figure 5(a) shows the optimized walking gait and the height of the center
of mass (CM) throughout the trajectory, compared with that of the nominal gait.
The optimal trajectory minimizes wasteful up and down motion of the CM. Note
also that the foot swing height is very low to minimize any velocity at impact.

4.4 FastRunner Gait
The research behind this paper was motivated by the challenges posed by the Fas-
tRunner platform shown in Figure 1. For the previous examples, it is certainly
possible to identify a desired mode sequence. This is a difficult task, however, for
a system like FastRunner. A planar model of the robot has 13 degrees of freedom,
including three articulated toe segments on each foot that can make or break con-
tact with the ground. Additionally, there are a total of 16 unilateral joint limits,
many of which are designed to be used while running at high speed. Scheduling
the order of these contacts and joint limits is not practical.

Figure 7 shows a motion sequence of an optimized periodic running gait, av-
eraging over 20 mph. This gait and the others mentioned here may also be seen
in the video in Extension 1. As with Spring Flamingo, constraints (39) and (40)
restricted the search space and this trajectory was optimized for mechanical cost
of transport. Both the leg linkages and passive elements like springs and tendons
are shown in the figure. For our model, we treat the system is a linkage of rigid
bodies, where the passive elements are treated as massless. The complexity of
the system and the stiffness of some of the springs posed additional problems for
the optimization. In this case, additional linear constraints were useful in guiding
the solver away from poorly conditioned or infeasible regions. This is typical for
SQP methods, where the program can be difficult to solve if the local QP is a poor
estimate of the true nonlinear program.
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Figure 8: Out of more than 4 million possible discrete modes, the sequence for one
locally optimal cyclic trajectory is shown. This sequence, which passes through 15
different modes, is compressed and plotted above against the largely distinct mode
sequence of the initial trajectory.

Figure 9: Constrained trajectory optimization can be used to generate gaits that deviate
from the nominal motion. The images above show the robot ascending and descend-
ing 20 cm steps, more than double the height that has been achieved through passive
stabilization alone.

With 22 discrete variables, there are over 4 million possible discrete modes for
the FastRunner robot where each mode has a unique system of continuous dynami-
cal equations. One possible mode sequence discovered by the optimization process
is illustrated in Figure 8. The individual mode transitions shown occur when the
contact state of one of the toes changes or when a joint limit becomes active or in-
active. While the states of individual discrete variables, such as toe contacts, may
overlap between the initial and optimal trajectories, the aggregate discrete states
show almost no agreement. This speaks to the combinatorial complexity of plan-
ning a mode schedule for a system like FastRunner. Despite the complexity of the
system, by taking advantage of the complementarity constraint formulation, our
methods are now able to generate a locally optimal gait for FastRunner.

Our collaborators on the FastRunner project [12] have designed the robot to
be open loop stable while tracking a simple sinusoidal gait. The design of the
robot features an active clutch that connects a large suspensory spring to the knee
joint during stance and then disconnects the spring during swing. It is critical
that the clutch only be activated and deactivated when the spring is in the neutral
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Figure 10: The nominal gait can also be modified with explicit foot placement con-
straints. Here, the robot must significantly alter its stride length to bridge the gaps
shown above.

state and it has proven extremely difficult to design such a trajectory by hand.
Such a constraint, however, fits naturally into our optimization algorithm. If ck
corresponds to the clutch activation at time tk and and l(qk) is the length of the
spring, we then encode the two constraints:

c2
k − ck = 0 (41)

l(qk+1)(ck+1− ck) = 0 (42)

The first equation ensures that ck is binary, restricted to {0,1}. The second de-
scribes the requirement that the clutch activation can only change if the spring is
in the neutral position. With this new set of conditions, our optimization algorithm
generates the complex trajectories required for FastRunner.

The trajectory optimization algorithm presented here allows us to synthesize
efficient gaits for a wide range of different tasks. Of equal importance to generat-
ing a nominal gait is the ability to generate additional motions to handle atypical
situations. For example, by modifying the model of the environment, our algorithm
was successful at finding trajectories where the FastRunner robot must take 20 cm
steps up or down, simulating running over rough (but known) terrain, all while
running at high speeds. Figure 9 shows the robot mid-flight as it must step up and
down. For these tasks, the initial and final states of the trajectory were constrained
to precisely match the nominal running gait so that these motions can be smoothly
strung together. We also applied our method to the task of explicitly modifying
stride length, for situations where we must more tightly control foot placement.
Figure 10 shows a stop-motion of the results of this optimization, where the small
ledges force large deviations from the nominal stride length.

5 Discussion and Future work
In our approach, we write a complex MPCC that in practice has been tractable
for state of the art solvers. Since the problem is non-convex, we are limited to
locally optimal solutions. As is typical for non-convex problems, applying linear
constraints on the decision variables to steer the solver away from singularities or
other poorly conditioned regions can be critical to finding a desirable solution. In
the examples above, this is typically done by eliminating obviously undesirable or
infeasible regions of the joint space. As mentioned above, we have also found that
certain, intermediate, relaxations of the complementarity conditions can greatly
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improve the rate of convergence and reduce the likelihood of a poor, local solution.
These relaxations are then tightened so the algorithm results in a strictly feasible
trajectory. Other smoothing functions for nonlinear complementarity problems
exist and have been used to directly solve these problems, such as the Fischer-
Burmeister function [15] or the class of functions suggested in [10], and these
functions may be applicable here as well.

As is mentioned above, throughout this paper we have solely dealt with inelas-
tic collisions where the effective coefficient of restitution vanishes. While this is
an appropriate assumption for the locomotion and manipulation examples explored
here, there are other potential applications where the impacts are better modeled as
partially elastic events. The work in [4] has developed LCP based simulation tools
for multi-body contact and elastic collisions, and we believe our methods should
extend to these areas as well.

Future work will also include extension of the methods described here to stabi-
lize about the planned trajectory with a form of Model Predictive Control (MPC).
Robust, contact invariant MPC of underactuated systems remains an open problem,
although there has been significant recent work in this area, such as in [35]. We
believe that, given a nominal trajectory, this approach can be adapted to solve the
problem of real-time local control and that the controller will be capable of plan-
ning a finite-horizon path with a different mode sequence than that of the nominal
trajectory.

6 Conclusion
To control highly nonlinear robotic systems through real-world environments, it
is critical that we be able to generate feasible, high quality trajectories. Current,
state of the art techniques struggle when presented with complex systems where
the hybrid sequence is difficult to intuit. Here, we have presented a method for tra-
jectory optimization through the discontinuities of contact that does not rely on a
priori specification of a mode schedule. Our approach combines traditional, direct
local control approaches with an complementarity based contact model into a sin-
gle nonlinear program. By writing the dynamics and constraints without explicit
reference to hybrid modes, we are now able to easily plan through the discontin-
uous dynamics of contact. Additionally, unlike with other methods, we do not
require arbitrary or hand-tuned parameters nor do we rely on the passive system
dynamics to generate a mode schedule. Once convergence is reached, the solution
strictly satisfies all contact and dynamics constraints. We applied our method to
four different systems, including the high dimensional FastRunner robot where we
generated a high speed running gait. Future efforts will be focused on improving
the convergence properties of this algorithm and extending it to real-time trajectory
stabilization.
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A Index to Multimedia Extensions
The multimedia extensions to this article are at: http://www.ijrr.org.

Extension Type Description
1 Video Animations of the various trajectories generated in Section 4.
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