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Abstract Direct methods for trajectory optimization are widely used for planning
locally optimal trajectories of robotic systems. Most state-of-the-art techniques treat
the discontinuous dynamics of contact as discrete modes and restrict the search for a
complete path to a specified sequence through these modes. Here we present a novel
method for trajectory planning through contact that eliminates the requirement for
an a priori mode ordering. Motivated by the formulation of multi-contact dynamics
as a Linear Complementarity Problem (LCP) for forward simulation, the proposed
algorithm leverages Sequential Quadratic Programming (SQP) to naturally resolve
contact constraint forces while simultaneously optimizing a trajectory and satisfying
nonlinear complementarity constraints. The method scales well to high dimensional
systems with large numbers of possible modes. We demonstrate the approach using
three increasingly complex systems: rotating a pinned object with a finger, planar
walking with the Spring Flamingo robot, and high speed bipedal running on the
FastRunner platform.

1 Introduction

Trajectory optimization is a powerful framework for planning locally optimal tra-
jectories for linear or nonlinear dynamical systems. Given a control dynamical sys-
tem, ẋ = f (x,u), and an initial condition of the system x(0), trajectory optimization
aims to design a finite-time input trajectory, u(t),∀t ∈ [0,T ], which minimizes some
cost function over the resulting input and state trajectories. There are a number of
popular methods for transcribing the trajectory optimization problem into a finitely
parameterized nonlinear optimization problem (see [2]). Broadly speaking, these
transcriptions fall into two categories: the shooting methods and the direct methods.
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In shooting methods, the nonlinear optimization searches over (a finite parameteri-
zation of) u(t), using a forward simulation from x(0) to evaluate the cost of every
candidate input trajectory. In direct methods, the nonlinear optimization simulta-
neously searches over parameterizations of u(t) and x(t); here no simulation is re-
quired and instead the dynamics are imposed as a set of optimization constraints,
typically evaluated at a selection of collocation points[9]. Mixtures of shooting and
direct methods are also possible, and fall under the umbrella of multiple shooting.

Direct methods typically enjoy a considerable numerical advantage over the
shooting methods. Shooting methods are plagued by poorly conditioned gradients;
for instance, a small change in the input tape at t = 0 will often have a dramatically
larger effect on the cost than a small change near time T . Direct methods can also
be initialized with an initial guess for the state trajectory, x(t), which can often be
easier to determine than an initial tape for u(t). A reasonable initial tape is generally
helpful in avoiding problems with local minima. The resulting optimization prob-
lems are also sparse, allowing efficient (locally optimal) solutions with large-scale
sparse solvers such as SNOPT[8], and trivial parallel/distributed evaluation of the
cost and constraints.

In this paper, we consider the problem of designing direct trajectory optimiza-
tion methods for rigid-body systems with contact. This is an essential problem for
robotics which arises in any tasks involving locomotion or manipulation. The col-
lision events that correspond with making or breaking contact, however, greatly
complicate the trajectory optimization problem as they result in large or impulsive
forces and rapid changes in velocity. While it is possible to resolve contact through
the use of continuous reaction forces like simulated springs and dampers, the re-
sulting differential equations are typically stiff and require an extremely small time
step, making trajectory optimization very inefficient. For numerical efficiency, a pre-
ferred method is to approximate contact as an autonomous hybrid dynamical system
that undergoes discontinuous switching (see [20]). The discrete transitions are fully
autonomous as we can directly control neither the switching times nor the switching
surface.

There are a number of impressive success stories for trajectory optimization in
these hybrid models, for instance the optimization of an impressive 3D running
gait[14]. These results primarily use direct methods. But they are plagued with one
major short-coming - the optimization is constrained to operate within an a priori
specification of the ordering of hybrid modes. For a human running where motion
capture can provide a good initial guess on the trajectory, this may be acceptable.
It is much more difficult to imagine a mode specification for a multi-fingered hand
manipulating a complex object that is frequently making and breaking contact with
different links on the hand. Perhaps as a result, there is an apparent lack of plan-
ning solutions for robotic manipulation which plan through contact - most plan-
ners plan up to a pre-grasp then activate a separate grasping controller. Indeed, the
multi-contact dynamics engines used to simulate grasping[10, 11] do not use hy-
brid models of the dynamics, because the permutations of different possible modes
grows exponentially with the number of links and contact points, and because hy-
brid models can be plagued by infinitely-frequent collisions (e.g., when a bouncing
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Fig. 1 The bipedal FastRun-
ner robot is designed to run at
speeds of over 20 mph. Each
leg has 5 degrees of freedom
and multiple passive springs
and tendons. The legs are
driven at the hip to keep the
leg mass as low as possible.

ball comes to rest on a surface). Instead, simulation tools make use of time-stepping
solutions that solve contact constraints using numerical solutions to a linear com-
plementarity problem (LCP) which can be solved with well known methods like
Lemke’s Algorithm[17]. Significant additional work has been done to extend the
original LCP methods to guarantee solutions to multi-body contact[1, 11].

In many cases, solutions to the LCP for forward simulation can be found via the
minimization of a convex quadratic program (QP). In this paper we demonstrate that
it is possible, indeed natural, to fold the complementarity constraints directly into
nonlinear optimization for trajectory design, which we solve here using sequen-
tial quadratic programming (SQP). The key trick is resolving the contact forces,
the mode-dependent component of the dynamics in the traditional formulation, as
additional decision variables in the optimization. We demonstrate that this is an ef-
fective and numerically robust way to solve complex trajectories without the need
for a mode schedule.

Specifically, this work was motivated by the challenge of optimizing trajectories
for a new running robot called “FastRunner”[5]. FastRunner, illustrated in Figure 1
is a bipedal robot concept designed to run at speeds over 20 mph and up to 50 mph.
Most notably, FastRunner has an exceptionally clever, but also exceptionally com-
plex, leg design with four-bar linkages, springs, clutches, hard joint stops, tendons
and flexible toes. The planar FastRunner the model has 13 degrees of freedom, 6
contact points, and 16 additional constraint forces, and was beyond the scope of our
previously existing trajectory optimization tools.
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1.1 The pitfalls of mode schedules

For simple hybrid systems, including point foot models of walking robots, trajecto-
ries of the hybrid system can be described by a smooth dynamics up until a guard
condition is met (e.g., the robot’s foot hits the ground), then a discontinuous jump
in state-space, corresponding here to an instantaneous loss of velocity as energy is
dissipated into the ground–followed by another smooth dynamical system, as car-
tooned in Figure 2. For a fixed mode schedule, direct methods for hybrid trajectory
optimization proceed by optimizing each segment independently, with additional
constraints enforcing that the segments connect to each other through the hybrid
events.

Fig. 2 Hybrid trajectories
can be found by individually
optimizing over the continu-
ous dynamics of a specified
mode sequence. The dashed
line indicates the discontinu-
ous jump from one mode to
another.

However, when the dynamics get more complex, the geometric constraints im-
posed by the hybrid system become more daunting. The FastRunner model has a
hybrid event every time that any of the ground contact points (on either foot) make
or break contact with the ground. But the model also undergoes a hybrid transi-
tion every time that any one of the joints hits a joint-limit, and every time that any
one of the ground reaction forces enters or leaves the friction cone (transitioning
from rigid to a sliding contact). Indeed, the number of possible hybrid modes of the
system grows exponentially with the number of constraints. The geometry of the hy-
brid guards becomes very complex, as cartooned in Figure 3. In these models, small
changes to the input tape can result in a very different schedule of hybrid modes.
Restricting the trajectory optimization search to the initial mode schedule can result
in a very limited search and often in failure to find a feasible trajectory that satisfies
all of the constraints.

Fig. 3 When the hybrid tran-
sition map of Figure 2 be-
comes increasingly complex,
it is no longer trivial to specify
the optimal mode sequence.

Despite the obvious limitation of requiring this mode schedule, it has proven sur-
prisingly difficult to remove this assumption in the direct methods. Slight variations
from the original sequence are possible if the formulation allows the time duration
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of individual modes to vanish, as in [16]. For problems with fewer possible modes,
outer optimization loops have been used to determine the hybrid mode schedule, as
in [19]. In some cases, the combinatorial problem of solving for a mode schedule
have been addressed by combinatorial planners; a variant of the Rapidly-Exploring
Random Tree (RRT) algorithm was used in [15] to produce bounding trajectories
for a quadruped over terrain. Methods for optimal control which approximate the
global optimal, such as brute force methods based on dynamic programming, have
also been applied[3], but are so far limited to low dimensional problems.

1.2 Contact Dynamics as a Linear Complementarity Problem

In order to avoid the combinatorial explosion of hybrid models, simulation tech-
niques in computer graphics and in grasping research use a different formulation of
contact, summarized briefly here. The forward dynamics of a rigid-body (e.g., with
a floating base) subject to contact constraints can be written as

find q̈,λ (1)

subject to H(q)q̈+C(q, q̇)+G(q) = B(q)u+ J(q)T
λ , (2)

φ(q)≥ 0 (3)
λ ≥ 0 (4)
∀i,φi(q)λi = 0 (5)

where q ∈ Rn is the vector of generalized coordinates, H(·) is the inertial matrix,
C(·, ·) represents the Coriolis terms, G(·) the gravitational forces, and B(·) is the
input mapping. φ(q)≥ 0 represents a non-penetration constraint where the equality
holds if and only if the two bodies are in contact, λ represents the constraint forces,
and J(·) = ∂φ

∂q represents the Jacobian projecting constraint forces into the general-
ized coordinates. Vector inequalities are to be interpreted as element-wise inequality
constraints. Equation 5, often referred to as a complementarity constraint, ensures
that the contact forces can be non-zero if and only if the bodies are in contact. Solv-
ing these equations for q̈ requires solving a Nonlinear Complementarity Problem
(NCP).

The solution to these dynamics are potentially complex, involving high impact
forces occurring across very short time periods (e.g., at the moment of a new colli-
sion). In the limiting case of purely rigid bodies, the constraint forces, λ (t), must be
modeled with the Dirac δ functions, or as hybrid impulsive events. However, many
of these complexities can be avoided by discretizing the system in time. [17] intro-
duced a time-stepping method that only considers the integral of contact forces over
a period and so does not differentiate between continuous and impulsive forces.

For the Stewart and Trinkle time-stepping method, the manipulator dynamics and
constraint terms can be evaluated at the known q, q̇, allowing the state at the next
time step to be written as the solution to a linear set of equations subject to linear
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complementarity constraints, resulting in an LCP. For 3D models, the Coulomb fric-
tion cone must be approximated by a series of linear constraints, but otherwise still
fits into the LCP framework. It has been proven that solutions exist to this LCP and,
under reasonable conditions, can be computed using Lemke’s Algorithm or similar
methods. Here, solving each LCP corresponds to simulating a single time step.

Despite the success in forward simulation, to our knowledge the LCP formulation
has not been used in direct trajectory optimization. In related work, [18] explored
the use of Stochastic Complementarity Problems in a shooting method. Their ap-
proach does not require an explicit mode schedule, but instead relies on the passive
dynamics of the system to initiate contact. In cases where the simulated dynamics
of the initial tape do not find the desired mode sequence, no gradient information
will be available to guide the local search.

2 Approach

Contact constraints formulated using the complementarity conditions fit naturally
into the direct formulation of trajectory optimization. Rather than solving the LCP
for the contact forces λ at each step, we directly optimize over the space of feasible
states, control inputs, constraint forces, and trajectory durations. Treating the contact
forces as optimization parameters is similar to how direct methods treat the state
evolution implicitly. The number of parameters and constraints increases, but the
problem is often better conditioned and more tractable to state of the art solvers.

minimize
{h,x0,...,xN ,u1,...,uN ,λ1,...,λN}

g f (xN)+h
N

∑
k=1

g(xk−1,uk) (6)

Here, g(·, ·) and g f (·) are the integrated and final cost functions respectively. This
optimization problem is subject to constraints imposed by the manipulator dynamics
and by rigid body contacts. To integrate the dynamics, both forwards and backwards
Euler methods are equally applicable. Unlike with forward simulation, our methods
are already implicit and so backwards integration adds no computational cost. Given
that we wish to use large time intervals, we chose backwards integration for added
numerical stability. For ease of notation, we will write Hk = H(qk) and likewise for
other matrix functions in the manipulator dynamics. Where h is the length of the
time-steps and for k = 1, . . . ,N− 1, the manipulator dynamics from (2) imply the
constraints:

qk−qk+1 +hq̇k+1 = 0 (7)

Hk+1(q̇k+1− q̇k)+h
(
Ck+1 +Gk+1−Bk+1uk+1− JT

k+1λk+1
)
= 0

For the rest of this paper, we will, for simplicity, only consider the case where
the contact dynamics are planar. However, since we use the unsimplified nonlinear
constraints, these methods easily extend to 3D contacts. For a given contact point,
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write the contact force in a reference frame aligned to the contact surface, λ =[
λx λz

]T . We then have the same set of unilateral and bilateral contact constraints
as before:

φ(qk)≥ 0 (8)
λk,z ≥ 0 (9)

(µλk,z)
2−λ

2
k,x ≥ 0 (10)

φ(qk)λk,z = 0 (11)
ψ(qk, q̇k)λk,z = 0 (12)

where ψ(q, q̇) is the relative velocity between two bodies that can make contact and
Equation 12 represents an additional no-slip constraint.

Unlike with the task of pure simulation where these constraints and the dynami-
cal constraints in (7) can be linearized about the initial state, here we must consider
the higher order behavior and so we use the true formulation as a Nonlinear Com-
plementarity Problem (NCP). Coulomb friction is described in (10), although any
differentiable friction formulation could be used. We can construct an alternative
formulation that allows for trajectories that violate the no-slip constraint by model-
ing sliding and kinetic friction. To do this, we introduce the slack variable γk ≥ 0
that, when the lateral force is non-zero, represents the magnitude of the contact ve-
locity. Additionally, substitute λk,x = λ

+
k,x−λ

−
k,x where λ

+
k,x,λ

−
k,x ≥ 0. With these new

contact parameters, replace (10) and (12) with:

γk +ψ(qk, q̇k)≥ 0 (13)
γk−ψ(qk, q̇k)≥ 0 (14)

µλk,z−λ
+
k,x−λ

−
k,x ≥ 0 (15)

(γk +ψ(qk, q̇k))λ
+
k,x = 0 (16)

(γk−ψ(qk, q̇k))λ
−
k,x = 0 (17)

(µλk,z−λ
+
k,x−λ

−
k,x)γk = 0 (18)

Simple position constraints, like joint limits, can be written in a similar manner.
Here, λ is a torque or force acting directly on a joint. To express the requirement
that q≤ qmax, write:

φ(qk) = qmax−qk ≥ 0 (19)
λk ≤ 0 (20)

φ(qk)λk = 0 (21)

It is important to note the relative indexing of the complementarity and dynam-
ical constraints. Over the interval [tk, tk+1], the contact impulse can be non-zero if
and only if φ(qk+1) = 0; that is, the bodies must be in contact at the end of the given
interval. This allows the time-stepping integration scheme to approximate inelastic
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collisions where the interacting bodies stick together. This is not necessarily an ap-
propriate approximation for bodies that may rapidly rebound off one another, since
any compliance must be modeled through a linkage in one of the bodies and the
time step must be appropriately small.

We also note here the role of the discrete time steps when resolving contacts.
Our approach makes no effort to determine the exact time that contact between
bodies is made or broken. The constraint forces over the time step directly before
collision are precisely those required for the two bodies to be tangentially in contact.
Additionally, since no force is permitted during the period when contact is being
broken, there is the implicit requirement that take-off exactly coincide with one of
the discrete time intervals. Traditional optimal control approaches allow the overall
duration of the trajectory to change, but not the individual time steps. This results in
an overly restrictive optimization problem that may exclude desirable trajectories.
One feasible solution is to create decision variables that divide each time step h into
two periods. This can alternatively be expressed as having individual time steps hk
with pairwise constraints:

h2 j−1 +h2 j = h2k+1 +h2 j+2, j = 1, . . . ,bN−3
2
c (22)

In practice, these additional free parameters are useful in expanding the space
of feasible solutions while still allowing for relatively large time steps. Unlike the
tools designed for multi-body simulation, we still do not need to explicitly solve for
the zero-crossings when two bodies make and break contact[1]. Additionally, we
are generally interested in problems where a robot is interacting with a limited set
of environmental surfaces like the ground or an object for manipulation. In these
cases, we avoid the combinatorial complexity of the number of potential contacts
that might necessitate such a design.

Since both state and constraint forces are solved implicitly, this program has a
relatively large number of decision variables and constraints. However, as is typ-
ical in direct methods, this resulting NP is generally sparse and so is suitable for
implementation with SNOPT[7].

3 Example Applications

3.1 Finger Contact

Recent research by Tassa and Todorov has explored the possibility of using stochas-
tic complementarity with optimal control[18]. In this work, they use a Dynamic
Programming based approach to find a trajectory for the sample problem of a two
link manipulator that must spin an ellipse. This is a simple example with three de-
grees of freedom and only one contact point where the optimal mode schedule is
immediately obvious. However, it provided an early test for our methods. We con-
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Fig. 4 The finger, shown
in red, is fully actuated and
makes contact with the third
ellipse to drive it about its
axis. Here, φ(q) is the shortest
distance between the distal
finger and the free ellipse.

q
3

-q
1

-q
2

strained the system to start from rest, q̇1 = 0, q̇2 = 0, q̇3 = 0, and optimized for a
quadratic cost on control input and velocity of the free ellipse:

g(x,u) =
N

∑
k=1

q̇3
T Qq̇3 +uT Ru (23)

The parameters for size and mass and for the cost function were chosen to di-
rectly parallel the previous work by Tassa and Todorov. As we hoped, our approach
succeeded in quickly finding a locally optimal trajectory. For N = 20, convergence
is reached in roughly 30 seconds. As we increased the overall duration of the tra-
jectory, the optimization process found an increasing number of flicking motions
where, after making contact, it drew the finger back up to make another pass. Ad-
ditionally, Tassa and Todorov note that the effect of gravity was required to pull
the manipulator into contact with the ellipse in order for the optimization process
to discover the possibility of contact. Our approach does not have this limitation.
If we eliminate gravity from the system, even given an initial trajectory that starts
at rest with u(t) = 0, our methods successfully initiate contact between the manip-
ulator and ellipse. Both of these results speak to the capability of our algorithm to
actively identify a mode schedule that is not forced by the initial tape or the system’s
dynamics.
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Fig. 5 (a) A walking gait for Spring Flamingo that minimizes mechanical cost of transport. To
generate this trajectory, the height of the swing foot was not considered, so the solution is a min-
imalist trajectory with very little ground clearance. (b) The height of the center of mass over the
optimized and initial trajectories is plotted over the sequence. The optimal trajectory minimizes
unnecessary vertical motion of the robot.

3.2 Spring Flamingo Walking Gait

To analyze a more realistic system, we tested our methods on a planar simulation
of the Spring Flamingo robot[13]. On Spring Flamingo, each leg has three actuated
joints (hip, knee, and ankle) and there are contact points at the toe and heel of each
foot. Many hybrid walking models use a constrained form of the dynamics, where a
foot in contact with the ground is treated as a pin joint. Here, however, we deal with
the full constrained dynamics where the body of the robot is modeled as a floating
base parameterized by the variables (x,y,θ) which represent the planar position and
pitch of the robot. Periodic constraints were used to generate a cyclic walking gait
and the trajectory was optimized for mechanical cost of transport. Cost of transport
is a good, unitless indication of the energy consumption required for locomotion.
Where d is the total distance traveled, we write the cost as:

g(x,u) =
1

mgd

N

∑
k=1

∑
i
|q̇k,iuk,i| (24)
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Fig. 6 The optimized mode sequence of the left and right feet is plotted against time and the
mode transitions are labeled. The SQP was initialized with the significantly different sequence,
demonstrating the ability of the algorithm to independently plan through contact discontinuities.
Note that, in this case, the locally optimal trajectory has distinct heel strike and heel off events.

Since the solutions to the NP are local, our methods discovered a wide variety
of feasible gaits that satisfied the general constraints dependent on the initial condi-
tion set. For instance, given the task of finding a periodic gait that travels a specific
distance, hopping motions and gaits with relatively short or long strides are pos-
sible local solutions. In particular, the input λ tape implicitly identifies the mode
sequence of the initial guess. However, the solution is not restricted to the given
ordering. Figure 6 shows the initial and optimized mode sequences of a particu-
lar Spring Flamingo gait. Here, the initial tape leads the trajectory to a right-left
walking gait but details such as independent heel strike and heel off were identified
in the optimization process. To optimize for a cyclic gait, it is natural to write the
periodicity constraint:

xN = x1 (25)

Since we would prefer to search over the smaller space of a half gait, and we wish
the robot to walk a minimum distance, we reformulate the periodic requirement to
account for symmetry and add a unilateral constraint on stride length. Where ql and
qr are the left and right joints, respectively, and dmin is the minimum stride length,
we have:
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yN
θN
ẋN
ẏN
θ̇N
ql,N
qr,N
q̇l,N
q̇r,N


=



y1
θ1
ẋ1
ẏ1
θ̇1
qr,1
ql,1
q̇r,1
q̇l,1


(26)

xN ≥ x1 +dmin (27)

With these linear constraints and given a nominal trajectory from Pratt’s original
work on the robot where the cost of transport was 0.18[12], our methods identified a
periodic walking gait which reduced the cost to 0.04. This is a significant reduction
in cost and is impressive in its own right, especially for a system with no passive
elements to store and release energy. Figure 5(a) shows the optimized walking gait
and the height of the center of mass (CM) throughout the trajectory, compared with
that of the nominal gait. The optimal trajectory minimizes wasteful up and down
motion of the CM. Note also that the foot swing height is very low to minimize any
velocity at impact.

3.3 FastRunner Gait

The research behind this paper was motivated by the challenges posed by the Fas-
tRunner platform shown in Figure 1. For the previous examples, it is certainly pos-
sible to identify a desired mode sequence. This is a difficult task, however, for a
system like FastRunner. A planar model of the robot has 13 degrees of freedom,
including three articulated toe segments on each foot that can make or break contact
with the ground. Additionally, there are a total of 16 unilateral joint limits, many of
which are designed to be used while running at high speed. Scheduling the order of
these contacts and joint limits is not practical.

Fig. 7 A generated trajectory for the FastRunner robot running at over 20 mph. The solid elements
show the leg linkages and the blue lines indicate springs and tendons. Only the hip joints of the
robot are actuated.
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Figure 7 shows a motion sequence of an optimized periodic running gate, aver-
aging over 20 mph. As with Spring Flamingo, constraints (26) and (27) restricted
the search space and this trajectory was optimized for mechanical cost of transport.
Both the leg linkages and passive elements like springs and tendons are shown in the
figure. The complexity of the system and the stiffness of some of the springs posed
additional problems for the optimization. In this case, additional linear constraints
were useful in guiding the NP solver away from poorly conditioned or infeasible re-
gions. This is typical for SQP methods, where the program can be difficult to solve
if the local QP is a poor estimate of the true nonlinear program.
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0
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e

FastRunner Mode Sequence
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Fig. 8 Out of more than 4 million possible discrete modes, the sequence for one locally optimal
cyclic trajectory is shown. This sequence, which passes through 15 different modes, is compressed
and plotted above against the largely distinct mode sequence of the initial trajectory.

With 22 discrete variables, there are over 4 million possible discrete modes for
the FastRunner robot where each mode has a unique system of continuous dynami-
cal equations. One possible mode sequence discovered by the optimization process
is illustrated in Figure 8. The individual mode transitions shown occur when the
contact state of one of the toes changes or when a joint limit becomes active or in-
active. While the states of individual discrete variables, such as toe contacts, may
overlap between the initial and optimal trajectories, the aggregate discrete states
show almost no agreement. This speaks to the combinatorial complexity of plan-
ning a mode schedule for a system like FastRunner. Despite the complexity of the
system, by taking advantage of the NCP constraint formulation, our methods are
now able to generate a locally optimal gait for FastRunner.

4 Discussion and Future work

In our approach, we write a complex NP that in practice has been tractable for state
of the art solvers. Since the problem is non-convex, we are limited to locally op-
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timal solutions. As is typical for non-convex problems, applying linear constraints
on the decision variables to steer the solver away from singularities or other poorly
conditioned regions can be critical to finding a desirable solution. In the examples
above, this is typically done by eliminating obviously undesirable or infeasible re-
gions of the joint space. However, we have also found that certain relaxations of
the complementarity conditions can greatly improve the rate of convergence and
reduce the likelihood of a poor, local solution. In particular, the simple relaxation
φ(q)λ ≤ α works well in practice. This has the intuitive effect of smoothing out
the complementarity conditions by allowing force to be applied at a distance during
early phases of the algorithm. This additionally grows the feasible state space of
the NP to include regions where the complementarity gradient is more useful to the
solver. As α is driven to 0 over a few passes, the slack in the constraint helps allow
the solver to converge to a better trajectory by improving the conditioning of the
SQP. Many smoothing functions for NPs exist and have been used to directly solve
these problems, such as the Fischer-Burmeister function [6] or the class of functions
suggested in [4], and these functions may be applicable here as well.

As is mentioned above, throughout this paper we have solely dealt with the case
of the robot interacting with a single object in the environment. While this is not
a hard constraint, an increase in the number of interacting bodies will lead to a
potentially combinatorial number of contacts and corresponding contact forces. Of
course, this also implies O(exp(n2)) potential hybrid modes. We have also focused
on purely inelastic collisions where the effective coefficient of restitution vanishes.
The works in [1, 11] have developed LCP based simulation tools for multi-body
contact and elastic collisions, and we believe our methods should extend to these
areas as well.

Future work will also include extension of the methods described here to stabilize
about the planned trajectory with a form of Model Predictive Control (MPC). We
believe that, given a nominal trajectory, this approach will solve the problem of real-
time local control as a convex optimization program and that the controller will be
capable of planning a finite-horizon path with a different mode sequence than that
of the nominal trajectory.

5 Conclusion

To control highly nonlinear robotic systems through real-world environments, it is
critical that we be able to generate feasible, high quality trajectories. Current, state of
the art techniques struggle when presented with complex systems where the hybrid
sequence is difficult to intuit. Here, we have presented a method for trajectory opti-
mization through the discontinuities of contact that does not rely on a priori speci-
fication of a mode schedule. Our approach combines traditional, direct local control
approaches with an complementarity based contact model into a single Nonlinear
Program. By writing the dynamics and constraints without reference to explicit hy-
brid modes, we are now able to easily plan through the discontinuous dynamics
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of contact. Additionally, unlike with other methods, we do not require arbitrary or
hand-tuned parameters nor do we rely on the passive system dynamics to generate a
mode schedule. Once convergence is reached, the solution strictly satisfies all con-
tact and dynamics constraints. We applied our method to three different systems,
including the high dimensional FastRunner robot where we generated a high speed
running gait. Future efforts will be focused on improving the convergence properties
of this algorithm and extending it to real-time trajectory stabilization.

6 Acknowledgments

This work was supported by the DARPA Maximum Mobility and Manipulation
program, BAA-10-65-M3-FP-024.

References

1. M. Anitescu and F.A. Potra. Formulating dynamic multi-rigid-body contact problems with
friction as solvable linear complementarity problems. Nonlinear Dynamics, 14(3):231–247,
1997.

2. John T. Betts. Practical Methods for Optimal Control Using Nonlinear Programming. SIAM
Advances in Design and Control. Society for Industrial and Applied Mathematics, 2001.

3. Katie Byl and Russ Tedrake. Approximate optimal control of the compass gait on rough
terrain. In Proc. IEEE International Conference on Robotics and Automation (ICRA), 2008.

4. C. Chen and O.L. Mangasarian. A class of smoothing functions for nonlinear and mixed com-
plementarity problems. Computational Optimization and Applications, 5(2):97–138, 1996.

5. S. Cotton, I. Olaru, M. Bellman, T. van der Ven, J. Godowski, and J. Pratt. Fastrunner: A fast,
efficient and robust bipedal robot. concept and planar simulation. In Proceeding of the IEEE
International Conference on Robotics and Automation (ICRA), 2012.

6. A. Fischer. A special newton-type optimization method. Optimization, 24(3-4):269–284,
1992.

7. Philip E. Gill, Walter Murray, and Michael A. Saunders. SNOPT: An SQP algorithm for
large-scale constrained optimization. SIAM Review, 47(1):99–131, 2005.

8. Philip E. Gill, Walter Murray, and Michael A. Saunders. User’s Guide for SNOPT Version 7:
Software for Large -Scale Nonlinear Programming, February 12 2006.

9. C. R. Hargraves and S. W. Paris. Direct trajectory optimization using nonlinear programming
and collocation. J Guidance, 10(4):338–342, July-August 1987.

10. N. Koenig and A. Howard. Design and use paradigms for gazebo, an open-source multi-robot
simulator. In Intelligent Robots and Systems, 2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ
International Conference on, volume 3, pages 2149–2154. IEEE, 2004.

11. A.T. Miller and H.I. Christensen. Implementation of multi-rigid-body dynamics within a
robotic grasping simulator. In Robotics and Automation, 2003. Proceedings. ICRA’03. IEEE
International Conference on, volume 2, pages 2262–2268. IEEE, 2003.

12. Jerry Pratt. Exploiting Inherent Robustness and Natural Dynamics in the Control of Bipedal
Walking Robots. PhD thesis, Computer Science Department, Massachusetts Institute of Tech-
nology, 2000.

13. Jerry Pratt and Gill Pratt. Intuitive control of a planar bipedal walking robot. In Proceedings
of the IEEE International Conference on Robotics and Automation (ICRA), 1998.



16 Michael Posa and Russ Tedrake

14. G. Schultz and K. Mombaur. Modeling and optimal control of human-like running.
IEEE/ASME Transactions on Mechatronics, 15(5):783 –792, Oct. 2010.

15. Alexander Shkolnik, Michael Levashov, Ian R. Manchester, and Russ Tedrake. Bounding on
rough terrain with the littledog robot. The International Journal of Robotics Research (IJRR),
30(2):192–215, Feb 2011.

16. Manoj Srinivasan and Andy Ruina. Computer optimization of a minimal biped model discov-
ers walking and running. Nature, 439:72–75, January 5 2006.

17. D.E. Stewart and J.C. Trinkle. An implicit time-stepping scheme for rigid body dynamics
with inelastic collisions and coulomb friction. International Journal for Numerical Methods
in Engineering, 39(15):2673–2691, 1996.

18. Y. Tassa and E. Todorov. Stochastic complementarity for local control of discontinuous dy-
namics. In Proceedings of Robotics: Science and Systems (RSS). Citeseer, 2010.

19. K. Wampler and Z. Popovic. Optimal gait and form for animal locomotion. In ACM Transac-
tions on Graphics (TOG), volume 28, page 60. ACM, 2009.

20. Eric R. Westervelt, Jessy W. Grizzle, Christine Chevallereau, Jun Ho Choi, and Benjamin
Morris. Feedback Control of Dynamic Bipedal Robot Locomotion. CRC Press, Boca Raton,
FL, 2007.


