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Abstract— Most approaches to grasp planning assume that The application of these techniques to grasping requires
the configurations of the object to be grasped and any potential sjgnificant abstraction of the underlying grasp synthesis
obstacles are known perfectly. As a result, implementations of problem [10]. Instead, this paper applies recent ideas from

these “perfect information” approaches to grasp synthesis are . . . .
necessarily preceded by a perception stage where the the state the belief space planning literature [11], [12]. A beli¢hte

of the object and obstacles are estimated. Unfortunately, small iS @ probability distribution over an underlying state spac
perceptual errors during the perception stage can cause even that represents the state of information of the robot. The

good grasp plans to fail. A potentially more robust approach goal of belief space planning is to terminate in a beliefestat
would be to combine perception and grasp synthesis in a \yhere a greater-than-threshold amount of probability mass

single process. Our paper formalizes this as the simultaneous . tained i | . Thi )
localization and grasping (SLAG) problem. Our formalization IS contained in a goal region. 1NhiS paper summarizes a new

casts SLAG as an instance of the belief space planning problem @pproach to belief space planning that is capable of plgnnin
where the robot must reach a configuration where it is very in high-dimensional non-Gaussian belief spaces and applie

likely that the robot has achie\_/ed the task (.e._grasp) o_bjective_s. it to the grasp synthesis problem. We apply this approach
We apply an approach to belief space planning that is effective 15 5 gimultaneous localization and grasping problem where

in non-Gaussian belief spaces. The approach is demonstrated . . "
in a SLAG problem where a robot must locate a cardboard box & robot must take actions to estimate the position and shape

using a wrist-mounted laser scanner. If a second box occludes Of an object during the grasp synthesis process. We call this
the box to be grasped, the robot must push the occlusion out the SLAG problem (simultaneous localization and grasping)

of the way. We empirically demonstrate that our approach is . . . .

capable of solving this problem and present results over many This pa‘?er Investigates a partlcglar exar_nple where robot

trials. must localize a cardboard box using a wrist-mounted laser
scanner while moving into a grasp configuration. In our

|. INTRODUCTION scenario, the algorithm generates robot arm trajectohias t

Creating robot grasping or manipulation plans in perfectlyd@in information by “scanning” the boxes using the laser
observed environments is a well-studied problem. GiveRcanner. However, the possibility that an additional box ha
perfect information regarding the position of an object pbeen pla(_:_ed adjacent to the first box complicates locatizati
grasped and the associated obstacles, a number of tecaniqlig® additional box could prevent the laser scanner from
exist that can be used to plan arm motions [1], [2] and gragpfrceiving the extenF of the box to be grasped. If the algo-
configurations [3], [4], [5] that will accomplish the grasp.”thm finds that the first bpx cannot be localized accurately
However, it is difficult to apply these ideas directly to real du€ to the second box, it may choose to push the second
world grasping problems because the perfect informatidh®X out of the way in order to facilitate localization. The
assumption is rarely met. For example, it is possible in Sonﬂ_:lgorlthm contln_ues to exe_cute until the likelihood of hayi
situations to estimate object pose and shape using overhdgerrectly localized the first box drops below a threshold.
cameras. However, it is common for these methods to fall"® approach is tested over a range of randomly selected
due to occlusions, shape uncertainty, or a lack of distiacti box configurations that are initially unknown to the system.
perceptual features. In general, it is sometimes necessary
interact with the world in order to gain the sensor inforrati
needed to perceive the locations of objects to be grasped
accurately enough. For example, it might be necessary to
move a sensor or to push an object in order to perceive the

information needed t(_) grasp sufficiently accur_ately. We view simultaneous localization and grasping (SLAG)
One way to formalize the problem of grasping under un:

N . g as an instance of the belief space planning problem. The goal
certainty is as a partially observable Markov decision pssc P b gp g

(POMDP) [6]. Unfortunately, finding optimal solutions to of belief space planning is to reach a belief state where the

: likelihood that task goals have been meet exceeds a given
POMDPs has been shown to be PSPACE hard in the Wor?}treshold. In SLAG, we are interested reaching a belieéstat

calsei_ [7]. POE’ n?mla(lj t|m_e app_rotxkl)matlgn; Ot&sge Olpt'makhere we are very confident that the grasp has succeeded.
S0 gtrl]on an ; aun using potlnf-t:se laorith SOIVET &g might be accomplished in different ways. For example,
gorithms [8], [9]. However, most of these algorithms requir the robot might become more certain of a successful grasp by

discretization of the state, action, and observation Spaceactively perceiving the location of the object. Alternatiy

The authors are with the Computer Science and Artificial ligehce & roboF_mig_ht move in such a WaY_th_at the entire prior
Laboratory at MIT. probability distribution is “captured” within the grasp.

I[l. SLAG AS A BELIEF-SPACE PLANNING PROBLEM



A. System C. Objective

Consider a discrete-time system with continuous non- Starting from an initial belief state;, the objective of

linear deterministic process dynamics, belief-space planning is to achieve task objectives with a
given minimum probability. Specifically, we want to reach a
i1 = f(xe, ug), (1) belief statep,, at some timer > 0 andr > 0 such that
defined over a state space embedded imatimensional / (2 + x4;b7) > w,
Euclidean spacex C R"™, and a continuous action space, ©€Br

U. We will find it useful to integrate the process dynamicsyhere B, = {§ € X, ||§||2 < r?} denotes the-ball in X,
over time. LetF(z,u1.,—1) be the state at time if the ; c x denotes the goal state, anddenotes the minimum
system begins in stateat time1 and takes actions;.- 1 =  probability of success. In the case of SLAG, might
{ui,...,u;—1}. Denote the true state of the system apescribe a relative hand-object configuration that cartstit
time ¢ as x;. In the context of SLAG, state denotes they good grasp (prior to grasping) afj describes the radius

configuratipn of the object to bg graspeq relative to th@bout that goal state from which the grasp will still succeed
robot manipulator. We are also given continuous non-linear

stochastic observation dynamics, [1l. PLANNING ALGORITHM

This section describes an extension of the approach pro-
posed in [12] to non-Gaussian belief spaces. The algorithm
iteratively creates and executes a series of belief-spacs.p
A re-planning step is triggered when, during plan execytion
the true belief state diverges too far from the nominal

zZt = h(.’l?t) + V¢, (2)

where the observations are embedded inmadimensional
Euclidean spaceZ C R™, andv; ~ N(0,Q) is zero-mean
Gaussian noise with variana@. The Jacobian matrix ok .
at « will be denotedH(z) = Oh(x)/dz. In SLAG, the trajectory.

observation function describes the range, visual, orléactip_ Creating plans

measurements we expect to perceive. ) i )
The key to the approach is a mechanism for creating

horizon" belief-space plans that guarantees that new in-

formation is incorporated into the belief distribution on
Although the true system state is not directly observed, gach planning cycle. The basic idea is as follows. Given a

is possible to track a probability distribution over staging prior belief state,, define a “hypothesis” state be at the

Bayesian filtering. At timet, suppose that: is a random maximum of the distribution,

variable that denotes system state with probability digtri L

tion P(x). If the system takes action, and subsequently T =arg gﬂggﬂw;bl)«

observes the measurementhen the probability distribution

becomes:

B. Bayesian filtering

Then, samplé: — 1 states from the prior distribution,

1 Iiwﬁ(x;b1)7i€ [27k]a (5)
P2 |z,u) = 7P(z\x/)/P(x'|x,u)P(x). 3
P(z) z such that the pdf at each sample is greater than a specified

threshold, 7 (2% b;) > ¢ > 0, and there are at least two
function (a pdf),(z;b) : X — R* with parameters € B. unique states (including). We search for a sequence of

The parametersy, of the pdf are called theelief stateand ~ 2€tions,u1.7—1, that result in as wide a margin as possible
the parameter spach, is called thebelief-spaceEquation 3 between the observations that would be expected if the

can be re-written using the deterministic process dynamiyStém were in the hypothesis state and the observations
and the belief-space parametrization: that would be expected in any other sampled state. As a

result, a good plan enables the system to “confirm” that the

m(x; b)) P41, ur) @) hypothesis state is in fact the true state or to “disprove” th

P(z41) ‘ hypothesis state. If the hypothesis state is disproved, ttne
o ) ) ) algorithm selects a new hypothesis on the next re-planning
In general, it is impossible to implement Equation 4 exactlylyde, ultimately causing the system to converge to the true
using a finite-dimensional parametrization of belief-spac gtate.
However, a variety of approximations exist in practice [13] 1o he more specific, consider that the expected observation
In particular, particle filtering is a popular choice foréiling  (Gaussian observation noise) upon arriving in statat time
applications in manipulation []. This paper assumes that th g h(z,) (Equation 2). If the system starts in stateand
system designer will use whichever representation of belieiaes a sequence of actions,;_;, then we expect to see

space and implementation of Bayes filtering that is moshe following sequence of observations (written as a column
appropriate in the application scenario. The implemeuorati vector):

of Equation 4 used by the designer will be writtép,; = .
G (bg, ug, 2441)- hF(z,u1.4—1) = (h(F(x, ul))T, ooy h(F(x, ulzt,l))T) .

In this paper,P(z) is described by a probability density

T(f(2,u); bey1) =




We are interested in finding a sequence of actions over/s a result, we can upper-bound the cast(Equation 6),
planning horizonT', u;.r—1, that maximizes the squared by
observation distance,

E

T ) < Ze ST G 1), P 1)

||hF($i,U1:T71) - hF(mlyulszl)”?@» k

kol

summed over alli € [2,k], where |lal|la = VaTA la A ) (e 1))
denotes the Mahalanobis distance &pe- diag(Q, ..., Q) =% Z H ST

denotes a block diagonal matrix of the appropriate size =1 )

composed of observation covariance matrices. The wider the

observation distance, the more accurately Bayes filteritig wAs a result, the planning problem can be written in terms of a

be able to determine whether or not the true state is near thath through a parameter space; ...z}, w,..., w}) €

hypothesis in comparison to the other sampled states. R?*, where z{ denotes the state associated with e
Notice that the expression for observation distance ®ample at timet and the weightw;, denotes the “partial

only defined with respect to the sampled points. Ideally, weost” associated with sampleThis form of the optimization

would like a large observation distance between a regidproblem is stated as follows.

of states about the hypothesis state and regions about thé®roblem 1:

\ —

other samples. Such a plan would “confirm” or “disprove” 1k -,

regions about the sampled points - not just the zero-measuvénimize z Z (sz) +a Z u? (8)

points themselves. We incorporate this objective to the firs =1 ‘

order by minimizing the gradient of the measurementsubject to =}, = f(xy, u),i € [1, K] 9)

HF(z',u1.p7—1) for all i € [1, k], where we define Wiy = wie B ure—) F (e 1) 1,

T

HF(x,u1.r—1) = (H(F(x,ul))T,.,,,H(F(x,ul;T_ﬂ)T) _ o (10)

] =z’ w] = 1,1 € [1,k] (11)

to be the column of measurement function Jacobian matrices
at each state along the trajectory given that we execute
uy.7—1. These dual objectives, maximizing measurement dis-
tance and minimizing measurement gradient, are simultane-Notice that we have included a quadratic action cost term
ously optimized by minimizing the following cost function: in the cost function (Equation 8) scaled fyn order to favor

Th = Tg. (12)

& short paths. Equation 9 encodes the constraints cause by th
J(@¥* uyp_1) = 1 Zefé(a:",ulﬁl)’ (6) Process dynamics. Equation 10 incorporates a weight update

k Py that incrementally constructs the product in Equation 7.

Lk L . Equations 11 and 12 incorporate the initial and final value
wherez' " = {z*,..., 2"} and constraints, respectively. Problem 1 can be solved using a

number of planning techniques such as rapidly exploring
random trees [14], differential dynamic programming [15],
The weighting matrix i(e. the covariance matrix) above is or sequential quadratic programming [16]. We use sequentia
defined guadratic programming to solve the direct transcription of
Problem 1. The direct transcription solution will be dembte

‘I)(Ia Ul:T—l) = HhF(l‘,U1:T—1)—hF(ZU17U1:T—1)

2
HF(.’I:,Ul:T—l).

T(2,ur.r—1) =2Q + HF (z,u1.7—1)HF (2, u1.7—1)" ) X
+ HF (2" uy.r—1)HF (z" up.r—1)". UrT-1 = DIRTRAN(x v @y 29, T), (13)
for samplesz!, ..., z*, goal state constraint;,, and time

In order to find plans that minimize Equation 6, it |shorlzon T Sometlmes we will call IRTRAN without

convenient to restate the problgm in terms of flnd!ng paﬂ} Be final value goal constraint (Equation 12). This will be
through a parameter space. Notice that for any positive-semi

g . written, = DIRTRAN(z . T). It is important
deﬂmteﬁmatnx,A, and vectorz, we havez” Az > 2" Az, to reco zllzTe ihat the com (utat|on7axl c’:or% lexit ol? lannin
where A is equal toA with all the off-diagonal terms set to g P plexity of p 9

sero. Therefore. we have the followina lower-bound depends only on the number of samples used (the sikzerof
' ' 9 ' step 3 of Algorithm 1) and not strictly on the dimensionality

of the underlying space. This suggests that the algorithm

(2’ urs-1) Z O(F(x', ur:e—1), F(z' u1:-1)), is potentially efficient in high-dimensional belief spacés
is a subject for future work to determine how algorithm
where performance falls off as the dimensionality of the undexdyi
1 space increases.
o(2,9) = SlIA() = h(y)[3 0 P
B. Re-plannin
and P ¢

After creating a plan, our algorithm executes it while track
Y(z,y) =2Q + H(z)H(z)" + H(y)H(y)". ing belief state using the specified belief-state updatelf



the true belief state diverges too far from a nominal trajgct to the first except that it does not enforce the goal state
derived from the plan, then execution stops and a new plaonstraints. This allows the algorithm to gain information
is created. The overall algorithm is outlined in Algorithm 1 incrementally in situations where a single plan does nat lea
Steps 2 through 4 samplestates from the distribution with to a sufficiently “peaked” belief state. When the system gains
the hypothesis state;! = argmax,cx 7(7;b), located at sufficient information, this branch is no longer executed an
the maximum of the prior distribution. The prior likelihood instead plans are created that meet the goal state comstrain
of each sample is required to be greater than a minimum

threshold,1 > ¢ > 0. In step 5, QREATEPLAN creates  |nput : initial belief state,b, sample setz!, ..., z*,

a horizon?” plan, uy.7—1, that optimizes Equation 6 and goal statex,, and time horizon7.

generates a nominal belief-space trajectdnyy. Steps 7 Output: nominal trajectoryp.;- and uy.7_q

through 13 execute the plan. Step 9 updates the beligfy, . , = DirTr an(',..., 2% z,T);

state given the new action and observation using the Bayesy, = p; Vvt € [1:T —1], b1 = G(be, ug, h(z}));

filter implementation chosen by the designer. Step 10 breaksif (b, r,z,) < w then

plan execution when the actual belief state departs t09 | ;.0 = DirTran(z!,...,2* 1)

far from the nominal trajectory, as measured by the Kls by=b;Vte[l:T—1], bpy = G(by, ug, h(z]));
divergence,D; [m(e;by41), w(e;b,11)] > 6. The second 4 end

condition, J(x!, ..., 2% u1.;_1) < 1—p, guarantees that the Algorithm 2: CREATEPLAN procedure

while loop does not terminate before a (partial) trajectory

with cost.J < 1 executes. The outarhile loop terminates

when there is a greater thanprobability that the true state IV. ILLUSTRATION OF SLAG
is located withinr of the goal state: We evaluated this approach to SLAG in the context of a
robot box grasping task.
O(b,r,xg4) :/ w(zg + 8;0) > w,
0€B, A. Scenario
where B, is ther-ball, B, = {3 € X : [|3]]* < r*}. We evaluate Algorithm 1 in the context of the SLAG
problem illustrated in Figure 1(a). Two boxes of unknown
Input : initial belief state,b, goal state;,, planning dimensions are presented to the robot. It is assumed that
horizon,T', and belief-state updaté;. one of these boxes can be found in front of the left paddle.
1 while ©(b, 7, z4) < w do The objective is for robot to localize this box and move the
2 a! = arg maXgex m(x;b); . left paddle into a “pre-grasp” configuration where the tip of
3 | Vi€ [2,k],2" ~m(x;b) : w(zth) > the paddle is aligned with and just touching the left corner
4 bir,urr—1 = of the box. It is assumed that a mechanism exists to move
CreatePlan(b,z',... 2% z,,T); the right paddle into opposition with the left as long as the
5 b1 =b; left paddle is positioned correctly (for example, by clasin
6 | fort«+1toT—1do slowly from a safe distance until a force is perceived). The
7 execute action,, perceive observation; 1; robot is equipped with a laser scanner mounted to the wrist
8 birr = G(be,us, 2e41)5 of the robot left arm that can be used to localize the boxes.
9 if Dy [m(2;by1),7(2;b41)] > 6 and The laser scanner produces range data in a plane of@r a
J(G,u14-1) <1— p then degree field of view. The left paddle of the robot is capable
10 | break of reaching and pushing the left box.
11 end
12 end B. Implementation
13 b= b1, The algorithm localizes the planar pose of the two boxes
14 end (parametrized by a six-dimensional underlying metric spac
Algorithm 1: Belief-space re-planning algorithm The boxes are assumed to have been placed at a known

height. The straightforward application of Algorithm 1 toro

Algorithm 2 shows the EEATEPLAN procedure called in box problem is to create plans in a belief space defined over
step 4 of Algorithm 1. Step 1 calls IRTRAN parametrized the six-dimensional underlying space. However, we reduce
by the final value constraint;,. If DIRTRAN fails to satisfy the dimensionality of the planning problem by introducing
the goal state constraint, then the entire algorithm tesei an initial perception step that localizes the depth andnerie
in failure. Step 2 creates a nominal belief-space trajgctotation of the right box using RANSAC [17]. From a prac-
by integrating the user-specified Bayes filter update over thical perspective, this is a reasonable simplification bsea
planned actions, assuming that observations are generaRANSAC is well-suited to finding the depth and orientation
by the hypothesis state. If this nominal trajectory does naif a box that is assumed to be found in a known region of
terminate in a belief state that is sufficiently confidentt thathe laser scan. The remaining (four) dimensions that are not
the true state is located within of the hypothesis, then localized using RANSAC describe the horizontal dimension
a new plan is created in steps 4 and 5 that is identicalf the right box location and the three-dimensional pose of



(b) (©

Fig. 1. [lllustration of the grasping problem, (a). The robotsiniocalize the boxes using the laser scanner mounted on ftherlst. This is relatively
easy when the boxes are separated as in (b) but hard whenxhe & pressed together as in (c).
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Fig. 2. Example of a box localization task. In (a) and (d), thbat believes the gap between the boxes is large and plarecatize the boxes by
scanning this gap. In (b) and (e), the robot has recognizattlie boxes abut each other and creates a plan to increaseidfapby pushing the right
box. In (c) and (f), the robot localizes the boxes by scantiegnewly created gap.

the left box. These dimensions are localized using a Bayesmmands were projected into the joint space using standard
filter that updates a histogram distribution over the fourdacobian Pseudoinverse techniques [18]. The algorithm was
dimensional state space based on laser measurements pathmetrized by accurate analytical models of the process
arm motions measured relative to the robot. The histograemd observation dynamics. The process dynamics described
filter is comprised of20000 bins: 20 bins (1.2 cm each) how the arms moved in response to the velocity commands.
describing right box horizontal position timd$ bins 2.4 They also modeled the expected box motions produced
cm each) describing left box horizontal position times by arm pushing trajectories based on assumptions that the
bins 2.4 cm each) describing left box vertical position timespaddle does not slip while pushing the box and assumptions
10 bins (.036 radians each) describing left box orientationregarding the location of the box center of friction. The
While it is relatively easy for the histogram filter to locaiz observation dynamics describe the set of range measure-
the remaining four dimensions when the two boxes amments expected in a given paddle-box configuration. For
separated by a gap (Figure 1(b)), notice that this is mom@anning purposes, the observation dynamics were singblifie
difficult when the boxes are pressed together (Figure 1(cPy modeling only a single forward-pointing scan rather than
In this configuration, the laser scans lie on the surfaceleof tthe full 60 degree scan range. However, notice that since
two boxes such that it is difficult to determine where one bothis is a conservative estimate of future perception, logt co
end and the next begins. Note that it is difficult to locate thelans under the simplified observation dynamics are also low
edge between abutting boxes reliably using vision or otheost under the true dynamics. Nevertheless, the obsemvatio
sensor modalities — in general this is a hard problem. model used fottracking (step 8 of Algorithm 1) accurately
described measurements from alb@) scans over th&0

Our implementation of Algorithm 1 used a set ®5-  gegree range. The termination threshold in Algorithm 1 was

samples including the hypothesis sample. The algorithm coBet t050% rather than a higher threshold because we found

trolled the left paddle by specifying Cartesian end-efiect oyr opservation noise model to overstate the true observati
velocities in the horizontal plane. These Cartesian valoci



noise. marks. Each error trajectory is referenced to the grourtt tru
Our hardware implementation of the algorithm includecderror by measuring the distance between the final position
some small variations relative to Algorithm 1. Rather thamwf the paddle tip and its goal position in the left corner
monitoring divergence explicitly in step 9, we instead moniof the right box using a ruler. There are two results of
tored the ratio between the likelihood of the hypothesitestawhich to take note. First, all trials terminate with lessrtha
and the next most probable bin in the histogram filter. Whe® cm of error. Some of this error is a result of the coarse
this ratio fell below0.8, plan execution was terminated anddiscretization of possible right box positions in the higtom
the while loop continued. Since the hypothesis state musilter (note also the discreteness of the error plots). Sihee
always have a maximal likelihood over the planned trajeaight box position bin size in the histogram filter i2 cm,
tory, a ratio of less than one implies a positive divergencave would expect a maximum error of at leds® cm. The
Second, rather than finding a non-goal directed plan in stepsmaining error is assumed to be caused by errors in the
3-5 of Algorithm 2, we always found goal-directed plans. range sensor or the observation model. Second, notice that
i localization occurs much more quickly (generally in lesath
C. Example trajectory 100 filter updates) and accurately in the easy contingency,
Figure 2 illustrates an example of an information-gathggrinwhen the boxes are initially separated by a gap that the
trajectory. The algorithm begins with a hypothesis stata thfilter may used to localize. In contrast, accurate locailwat
indicates that the two boxes are 10 cm apart (the solid bluekes longer (generally between 100 and 200 filter updates)
boxes in Figure 2(a)). As a result, the algorithm creates @uring the hard contingency experiments. Also error pior t
plan that scans the laser in front of the two boxes undexccurate localization is much larger reflecting the sigaiftc
the assumption that this will enable the robot to perceivpossibility of error when the boxes are initially placed liret
the (supposed) large gap. In fact, the two boxes abut eaabutting configuration. The key result to notice is that even
other as indicated by the black dotted lines in Figure 2(ajhough localization may be difficult and errors large during
After beginning the scan, the histogram filter in Algorithm 1*hard” contingency, all trials ended with a small localipat
recognizes this and terminates execution of the initiahpla error. This suggests that our algorithm termination caoodit
At this point, the algorithm creates the pushing trajectorin step 1 of Algorithm 1 was sufficiently conservative. Also
illustrated in Figure 2(b). During execution of the pushe th notice that the algorithm was capable of robustly genegatin
left box moves in an unpredicted way due to uncertaintinformation gathering trajectories in all of the randomly
in box friction parameters (this is effectively processse)i generated configurations during the “hard” contingencies.
This eventually triggers termination of the second trajgct  Without the box pushing trajectories found by the algorithm
The third plan is created based on a new estimate of baixis likely that some of the hard contingency trials would
locations and executes a scanning motion in front of thieave ended with larger localization errors.
boxes is expected to enable the algorithm to localize the
boxes with high confidence. V. CONCLUSION
When humans try to reconstruct the process of grasping
D. Expected Performance introspectively from their own experiences, it is natuml t
At a high level, the objective of SLAG is to robustly decompose grasp synthesis into two stages: a perception
localize and grasp objects even when the pose or shapestége followed by a grasping stage. Sometimes, a second
those objects is uncertain. We performed a series of expéraptic refinement stage is added to an initial gross pexepti
iments to evaluate how well this approach performs whestage [19], [20]. This general approach is based on the
used to localize boxes that are placed in initially uncertaipremise that certain types of information will be accunatel
locations. On each grasp trial, the boxes were placed inperceived at certain stages of the grasp process. There is
uniformly random configuration (visualized in Figures 3(a)ypically no convenient recourse if one of the perception
and (c)). There were two experimental contingencies: “easytages should fail. The difficulty with which the research
and “hard”. In the easy contingency, both boxes were placeabmmunity has attempted to build robust grasping solutions
randomly such that they were potentially separated by suggests that we should re-examine this assumption. Cer-
gap. The right box was randomly placed inla x 16 cm tainly, grasp robustness might be improved if perception
region over a range of5 degrees. The left box was placedoccurred during the entire grasping process and not just
uniformly randomly in a0 x 20 cm region over20 degrees at certain times. Another possibility is for the robot to
measured with respect to the right box (Figure 3(a)). In thiake actions that improve the information available to gras
hard contingency, the two boxes were pressed against eaymthesis. Our paper explores this approach in the con-
other and the pair was placed randomly inl&ix 16 cm  text of a new problem statement, simultaneous localization
region over a range of5 degrees (Figure 3(b)). and grasping (SLAG). Essentially, SLAG incorporates the
Figures 3(c) and (d) show right box localization erromperception process into the problem. It turns out that this
as a function of the number of updates to the histograman be conveniently expressed in terms of a belief space
filter since the trial startl2 trials were performed in each planning problem. In belief space planning, the objectvii
contingency. Each blue line denotes the progress of a singkeach a configuration where the algorithm strongly believes
trial. The termination of each trial is indicated by the red “ that it has achieved task.€. grasp) objectives. This paper
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Fig. 3. “Easy” and “hard” experimental contingencies. (apvsb images of the 12 randomly selected “easy” configurationsh(box configurations
chosen randomly) superimposed on each other. (b) shows imégles #2 randomly selected “hard” configurations (boxes ammteach other). (c) and
(d) are plots of error between the maximum a posteriori loatibn estimate and the true box pose. Each line denotes adimgl The red “X” marks
denote localization error at algorithm termination.
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