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Abstract— Most approaches to grasp planning assume that
the configurations of the object to be grasped and any potential
obstacles are known perfectly. As a result, implementations of
these “perfect information” approaches to grasp synthesis are
necessarily preceded by a perception stage where the the state
of the object and obstacles are estimated. Unfortunately, small
perceptual errors during the perception stage can cause even
good grasp plans to fail. A potentially more robust approach
would be to combine perception and grasp synthesis in a
single process. Our paper formalizes this as the simultaneous
localization and grasping (SLAG) problem. Our formalization
casts SLAG as an instance of the belief space planning problem
where the robot must reach a configuration where it is very
likely that the robot has achieved the task (i.e. grasp) objectives.
We apply an approach to belief space planning that is effective
in non-Gaussian belief spaces. The approach is demonstrated
in a SLAG problem where a robot must locate a cardboard box
using a wrist-mounted laser scanner. If a second box occludes
the box to be grasped, the robot must push the occlusion out
of the way. We empirically demonstrate that our approach is
capable of solving this problem and present results over many
trials.

I. I NTRODUCTION

Creating robot grasping or manipulation plans in perfectly-
observed environments is a well-studied problem. Given
perfect information regarding the position of an object to be
grasped and the associated obstacles, a number of techniques
exist that can be used to plan arm motions [1], [2] and grasp
configurations [3], [4], [5] that will accomplish the grasp.
However, it is difficult to apply these ideas directly to real-
world grasping problems because the perfect information
assumption is rarely met. For example, it is possible in some
situations to estimate object pose and shape using overhead
cameras. However, it is common for these methods to fail
due to occlusions, shape uncertainty, or a lack of distinctive
perceptual features. In general, it is sometimes necessaryto
interact with the world in order to gain the sensor information
needed to perceive the locations of objects to be grasped
accurately enough. For example, it might be necessary to
move a sensor or to push an object in order to perceive the
information needed to grasp sufficiently accurately.

One way to formalize the problem of grasping under un-
certainty is as a partially observable Markov decision process
(POMDP) [6]. Unfortunately, finding optimal solutions to
POMDPs has been shown to be PSPACE hard in the worst
case [7]. Polynomial time approximations to the optimal
solution can be found using point-based POMDP solver al-
gorithms [8], [9]. However, most of these algorithms require
discretization of the state, action, and observation spaces.

The authors are with the Computer Science and Artificial Intelligence
Laboratory at MIT.

The application of these techniques to grasping requires
significant abstraction of the underlying grasp synthesis
problem [10]. Instead, this paper applies recent ideas from
the belief space planning literature [11], [12]. A belief-state
is a probability distribution over an underlying state space
that represents the state of information of the robot. The
goal of belief space planning is to terminate in a belief state
where a greater-than-threshold amount of probability mass
is contained in a goal region. This paper summarizes a new
approach to belief space planning that is capable of planning
in high-dimensional non-Gaussian belief spaces and applies
it to the grasp synthesis problem. We apply this approach
to a simultaneous localization and grasping problem where
a robot must take actions to estimate the position and shape
of an object during the grasp synthesis process. We call this
the SLAG problem (simultaneous localization and grasping).

This paper investigates a particular example where robot
must localize a cardboard box using a wrist-mounted laser
scanner while moving into a grasp configuration. In our
scenario, the algorithm generates robot arm trajectories that
gain information by “scanning” the boxes using the laser
scanner. However, the possibility that an additional box has
been placed adjacent to the first box complicates localization.
The additional box could prevent the laser scanner from
perceiving the extent of the box to be grasped. If the algo-
rithm finds that the first box cannot be localized accurately
due to the second box, it may choose to push the second
box out of the way in order to facilitate localization. The
algorithm continues to execute until the likelihood of having
incorrectly localized the first box drops below a threshold.
The approach is tested over a range of randomly selected
box configurations that are initially unknown to the system.

II. SLAG AS A BELIEF-SPACE PLANNING PROBLEM

We view simultaneous localization and grasping (SLAG)
as an instance of the belief space planning problem. The goal
of belief space planning is to reach a belief state where the
likelihood that task goals have been meet exceeds a given
threshold. In SLAG, we are interested reaching a belief state
where we are very confident that the grasp has succeeded.
This might be accomplished in different ways. For example,
the robot might become more certain of a successful grasp by
actively perceiving the location of the object. Alternatively,
a robot might move in such a way that the entire prior
probability distribution is “captured” within the grasp.



A. System

Consider a discrete-time system with continuous non-
linear deterministic process dynamics,

xt+1 = f(xt, ut), (1)

defined over a state space embedded in ann-dimensional
Euclidean space,X ⊆ Rn, and a continuous action space,
U . We will find it useful to integrate the process dynamics
over time. LetF (x, u1:τ−1) be the state at timeτ if the
system begins in statex at time1 and takes actionsu1:τ−1 =
{u1, . . . , uτ−1}. Denote the true state of the system at
time t as κt. In the context of SLAG, state denotes the
configuration of the object to be grasped relative to the
robot manipulator. We are also given continuous non-linear
stochastic observation dynamics,

zt = h(xt) + vt, (2)

where the observations are embedded in anm-dimensional
Euclidean space,Z ⊆ Rm, andvt ∼ N(0, Q) is zero-mean
Gaussian noise with varianceQ. The Jacobian matrix ofh
at x will be denotedH(x) = ∂h(x)/∂x. In SLAG, the
observation function describes the range, visual, or tactile
measurements we expect to perceive.

B. Bayesian filtering

Although the true system state is not directly observed, it
is possible to track a probability distribution over state using
Bayesian filtering. At timet, suppose thatx is a random
variable that denotes system state with probability distribu-
tion P (x). If the system takes actionu, and subsequently
observes the measurementz, then the probability distribution
becomes:

P (x′|z, u) = 1

P (z)
P (z|x′)

∫

x

P (x′|x, u)P (x). (3)

In this paper,P (x) is described by a probability density
function (a pdf),π(x; b) : X → R+ with parametersb ∈ B.
The parameters,b, of the pdf are called thebelief stateand
the parameter space,B, is called thebelief-space. Equation 3
can be re-written using the deterministic process dynamics
and the belief-space parametrization:

π(f(x, ut); bt+1) =
π(x; bt)P (zt+1|x, ut)

P (zt+1)
. (4)

In general, it is impossible to implement Equation 4 exactly
using a finite-dimensional parametrization of belief-space.
However, a variety of approximations exist in practice [13].
In particular, particle filtering is a popular choice for filtering
applications in manipulation []. This paper assumes that the
system designer will use whichever representation of belief-
space and implementation of Bayes filtering that is most
appropriate in the application scenario. The implementation
of Equation 4 used by the designer will be written,bt+1 =
G(bt, ut, zt+1).

C. Objective

Starting from an initial belief state,b1, the objective of
belief-space planning is to achieve task objectives with a
given minimum probability. Specifically, we want to reach a
belief state,bτ , at some timeτ > 0 andr > 0 such that

∫

x∈Br

π(x+ xg; bτ ) > ω,

whereBr = {δ ∈ X , ‖δ‖2 ≤ r2} denotes ther-ball in X ,
xg ∈ X denotes the goal state, andω denotes the minimum
probability of success. In the case of SLAG,xg might
describe a relative hand-object configuration that constitutes
a good grasp (prior to grasping) andBr describes the radius
about that goal state from which the grasp will still succeed.

III. PLANNING ALGORITHM

This section describes an extension of the approach pro-
posed in [12] to non-Gaussian belief spaces. The algorithm
iteratively creates and executes a series of belief-space plans.
A re-planning step is triggered when, during plan execution,
the true belief state diverges too far from the nominal
trajectory.

A. Creating plans

The key to the approach is a mechanism for creating
horizon-T belief-space plans that guarantees that new in-
formation is incorporated into the belief distribution on
each planning cycle. The basic idea is as follows. Given a
prior belief state,b1, define a “hypothesis” state be at the
maximum of the distribution,

x1 = argmax
x∈X

π(x; b1).

Then, samplek − 1 states from the prior distribution,

xi ∼ π(x; b1), i ∈ [2, k], (5)

such that the pdf at each sample is greater than a specified
threshold,π(xi; b1) ≥ ϕ ≥ 0, and there are at least two
unique states (includingα). We search for a sequence of
actions,u1:T−1, that result in as wide a margin as possible
between the observations that would be expected if the
system were in the hypothesis state and the observations
that would be expected in any other sampled state. As a
result, a good plan enables the system to “confirm” that the
hypothesis state is in fact the true state or to “disprove” the
hypothesis state. If the hypothesis state is disproved, then the
algorithm selects a new hypothesis on the next re-planning
cycle, ultimately causing the system to converge to the true
state.

To be more specific, consider that the expected observation
(Gaussian observation noise) upon arriving in statext at time
t is h(xt) (Equation 2). If the system starts in statex and
takes a sequence of actions,u1:t−1, then we expect to see
the following sequence of observations (written as a column
vector):

hF (x, u1:t−1) =
(

h(F (x, u1))
T , . . . , h(F (x, u1:t−1))

T
)T

.



We are interested in finding a sequence of actions over a
planning horizonT , u1:T−1, that maximizes the squared
observation distance,

‖hF (xi, u1:T−1)− hF (x1, u1:T−1)‖2Q,

summed over alli ∈ [2, k], where ‖a‖A =
√
aTA−1a

denotes the Mahalanobis distance andQ = diag(Q, . . . , Q)
denotes a block diagonal matrix of the appropriate size
composed of observation covariance matrices. The wider the
observation distance, the more accurately Bayes filtering will
be able to determine whether or not the true state is near the
hypothesis in comparison to the other sampled states.

Notice that the expression for observation distance is
only defined with respect to the sampled points. Ideally, we
would like a large observation distance between a region
of states about the hypothesis state and regions about the
other samples. Such a plan would “confirm” or “disprove”
regions about the sampled points - not just the zero-measure
points themselves. We incorporate this objective to the first
order by minimizing the gradient of the measurements,
HF (xi, u1:T−1) for all i ∈ [1, k], where we define

HF (x, u1:T−1) =
(

H(F (x, u1))
T , . . . , H(F (x, u1:T−1))

T
)T

to be the column of measurement function Jacobian matrices
at each state along the trajectory given that we execute
u1:T−1. These dual objectives, maximizing measurement dis-
tance and minimizing measurement gradient, are simultane-
ously optimized by minimizing the following cost function:

J̄(x1:k, u1:T−1) =
1

k

k
∑

i=1

e−Φ(xi,u1:T−1), (6)

wherex1:k = {x1, . . . , xk} and

Φ(x, u1:T−1) = ‖hF (x, u1:T−1)−hF (x1, u1:T−1)‖2Γ(x,u1:T−1)
.

The weighting matrix (i.e. the covariance matrix) above is
defined

Γ(x, u1:T−1) =2Q+HF (x, u1:T−1)HF (x, u1:T−1)
T

+HF (x1, u1:T−1)HF (x1, u1:T−1)
T .

In order to find plans that minimize Equation 6, it is
convenient to restate the problem in terms of finding paths
through a parameter space. Notice that for any positive semi-
definite matrix,A, and vector,x, we havexTAx ≥ xT Āx,
whereĀ is equal toA with all the off-diagonal terms set to
zero. Therefore, we have the following lower-bound,

Φ(xi, u1:t−1) ≥
T−1
∑

t=1

φ(F (xi, u1:t−1), F (x1, u1:t−1)),

where

φ(x, y) =
1

2
‖h(x)− h(y)‖2γ(x,y)

and

γ(x, y) = 2Q+H(x)H(x)T +H(y)H(y)T .

As a result, we can upper-bound the cost,J̄ (Equation 6),
by

J̄(x1:k, u1:T−1) ≤
1

k

k
∑

i=1

e−
∑

T−1

t=1
φ(F (xi,u1:t−1),F (x1,u1:t−1))

=
1

k

k
∑

i=1

T−1
∏

t=1

e−φ(F (xi,u1:t−1),F (x1,u1:t−1)).

(7)

As a result, the planning problem can be written in terms of a
path through a parameter space,(x1

t , . . . , x
k
t , w

1
t , . . . , w

k
t ) ∈

R2k, where xi
t denotes the state associated with theith

sample at timet and the weight,wi
t, denotes the “partial

cost” associated with samplei. This form of the optimization
problem is stated as follows.

Problem 1:

Minimize
1

k

k
∑

i=1

(

wi
T

)2
+ α

T−1
∑

t=1

u2
t (8)

subject to xi
t+1 = f(xi

t, ut), i ∈ [1, k] (9)

wi
t+1 = wi

te
−φ(F (xi,u1:t−1),F (x1,u1:t−1)), i ∈ [1, k]

(10)

xi
1 = xi, wi

1 = 1, i ∈ [1, k] (11)

x1
T = xg. (12)

Notice that we have included a quadratic action cost term
in the cost function (Equation 8) scaled byα in order to favor
short paths. Equation 9 encodes the constraints caused by the
process dynamics. Equation 10 incorporates a weight update
that incrementally constructs the product in Equation 7.
Equations 11 and 12 incorporate the initial and final value
constraints, respectively. Problem 1 can be solved using a
number of planning techniques such as rapidly exploring
random trees [14], differential dynamic programming [15],
or sequential quadratic programming [16]. We use sequential
quadratic programming to solve the direct transcription of
Problem 1. The direct transcription solution will be denoted

u1:T−1 = DIRTRAN(x1, . . . , xk, xg, T ), (13)

for samples,x1, . . . , xk, goal state constraint,xg, and time
horizon, T . Sometimes, we will call DIRTRAN without
the final value goal constraint (Equation 12). This will be
written, u1:T−1 = DIRTRAN(x1, . . . , xk, T ). It is important
to recognize that the computational complexity of planning
depends only on the number of samples used (the size ofk in
step 3 of Algorithm 1) and not strictly on the dimensionality
of the underlying space. This suggests that the algorithm
is potentially efficient in high-dimensional belief spaces. It
is a subject for future work to determine how algorithm
performance falls off as the dimensionality of the underlying
space increases.

B. Re-planning

After creating a plan, our algorithm executes it while track-
ing belief state using the specified belief-state update,G. If



the true belief state diverges too far from a nominal trajectory
derived from the plan, then execution stops and a new plan
is created. The overall algorithm is outlined in Algorithm 1.
Steps 2 through 4 samplek states from the distribution with
the hypothesis state,x1 = argmaxx∈X π(x; b), located at
the maximum of the prior distribution. The prior likelihood
of each sample is required to be greater than a minimum
threshold,1 > ϕ ≥ 0. In step 5, CREATEPLAN creates
a horizon-T plan, u1:T−1, that optimizes Equation 6 and
generates a nominal belief-space trajectory,b̄1:T . Steps 7
through 13 execute the plan. Step 9 updates the belief
state given the new action and observation using the Bayes
filter implementation chosen by the designer. Step 10 breaks
plan execution when the actual belief state departs too
far from the nominal trajectory, as measured by the KL
divergence,D1

[

π(•; bt+1), π(•; b̄t+1)
]

> θ. The second
condition,J̄(x1, . . . , xk, u1:t−1) < 1−ρ, guarantees that the
while loop does not terminate before a (partial) trajectory
with cost J̄ < 1 executes. The outerwhile loop terminates
when there is a greater thanω probability that the true state
is located withinr of the goal state:

Θ(b, r, xg) =

∫

δ∈Br

π(xg + δ; b) > ω,

whereBr is ther-ball, Br = {δ ∈ X : ‖δ‖2 ≤ r2}.

Input : initial belief state,b, goal state,xg, planning
horizon,T , and belief-state update,G.

1 while Θ(b, r, xg) ≤ ω do
2 x1 = argmaxx∈X π(x; b);
3 ∀i ∈ [2, k], xi ∼ π(x; b) : π(xi; b) ≥ ϕ;
4 b̄1:T , u1:T−1 =

CreatePlan(b, x1, . . . , xk, xg, T);
5 b1 = b;
6 for t← 1 to T − 1 do
7 execute actionut, perceive observationzt+1;
8 bt+1 = G(bt, ut, zt+1);
9 if D1

[

π(x; bt+1), π(x; b̄t+1)
]

> θ and
J̄(G, u1:t−1) < 1− ρ then

10 break
11 end
12 end
13 b = bt+1;
14 end

Algorithm 1: Belief-space re-planning algorithm

Algorithm 2 shows the CREATEPLAN procedure called in
step 4 of Algorithm 1. Step 1 calls DIRTRAN parametrized
by the final value constraint,xg. If D IRTRAN fails to satisfy
the goal state constraint, then the entire algorithm terminates
in failure. Step 2 creates a nominal belief-space trajectory
by integrating the user-specified Bayes filter update over the
planned actions, assuming that observations are generated
by the hypothesis state. If this nominal trajectory does not
terminate in a belief state that is sufficiently confident that
the true state is located withinr of the hypothesis, then
a new plan is created in steps 4 and 5 that is identical

to the first except that it does not enforce the goal state
constraints. This allows the algorithm to gain information
incrementally in situations where a single plan does not lead
to a sufficiently “peaked” belief state. When the system gains
sufficient information, this branch is no longer executed and
instead plans are created that meet the goal state constraint.

Input : initial belief state,b, sample set,x1, . . . , xk,
goal state,xg, and time horizon,T .

Output : nominal trajectory,̄b1:T andu1:T−1

1 u1:T−1 = DirTran(x1, . . . , xk,xg,T);
2 b̄1 = b; ∀t ∈ [1 : T − 1], b̄t+1 = G(b̄t, ut, h(x

1
t ));

3 if Θ(b, r, xg) ≤ ω then
4 u1:T−1 = DirTran(x1, . . . , xk,T);
5 b̄1 = b; ∀t ∈ [1 : T − 1], b̄t+1 = G(b̄t, ut, h(x

1
t ));

6 end
Algorithm 2: CREATEPLAN procedure

IV. I LLUSTRATION OF SLAG

We evaluated this approach to SLAG in the context of a
robot box grasping task.

A. Scenario

We evaluate Algorithm 1 in the context of the SLAG
problem illustrated in Figure 1(a). Two boxes of unknown
dimensions are presented to the robot. It is assumed that
one of these boxes can be found in front of the left paddle.
The objective is for robot to localize this box and move the
left paddle into a “pre-grasp” configuration where the tip of
the paddle is aligned with and just touching the left corner
of the box. It is assumed that a mechanism exists to move
the right paddle into opposition with the left as long as the
left paddle is positioned correctly (for example, by closing
slowly from a safe distance until a force is perceived). The
robot is equipped with a laser scanner mounted to the wrist
of the robot left arm that can be used to localize the boxes.
The laser scanner produces range data in a plane over a60
degree field of view. The left paddle of the robot is capable
of reaching and pushing the left box.

B. Implementation

The algorithm localizes the planar pose of the two boxes
(parametrized by a six-dimensional underlying metric space).
The boxes are assumed to have been placed at a known
height. The straightforward application of Algorithm 1 to our
box problem is to create plans in a belief space defined over
the six-dimensional underlying space. However, we reduce
the dimensionality of the planning problem by introducing
an initial perception step that localizes the depth and orien-
tation of the right box using RANSAC [17]. From a prac-
tical perspective, this is a reasonable simplification because
RANSAC is well-suited to finding the depth and orientation
of a box that is assumed to be found in a known region of
the laser scan. The remaining (four) dimensions that are not
localized using RANSAC describe the horizontal dimension
of the right box location and the three-dimensional pose of



(a) (b) (c)

Fig. 1. Illustration of the grasping problem, (a). The robot must localize the boxes using the laser scanner mounted on the left wrist. This is relatively
easy when the boxes are separated as in (b) but hard when the boxes are pressed together as in (c).
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Fig. 2. Example of a box localization task. In (a) and (d), the robot believes the gap between the boxes is large and plans to localize the boxes by
scanning this gap. In (b) and (e), the robot has recognized that the boxes abut each other and creates a plan to increase gapwidth by pushing the right
box. In (c) and (f), the robot localizes the boxes by scanningthe newly created gap.

the left box. These dimensions are localized using a Bayes
filter that updates a histogram distribution over the four-
dimensional state space based on laser measurements and
arm motions measured relative to the robot. The histogram
filter is comprised of20000 bins: 20 bins (1.2 cm each)
describing right box horizontal position times10 bins (2.4
cm each) describing left box horizontal position times10
bins (2.4 cm each) describing left box vertical position times
10 bins (0.036 radians each) describing left box orientation.
While it is relatively easy for the histogram filter to localize
the remaining four dimensions when the two boxes are
separated by a gap (Figure 1(b)), notice that this is more
difficult when the boxes are pressed together (Figure 1(c)).
In this configuration, the laser scans lie on the surfaces of the
two boxes such that it is difficult to determine where one box
end and the next begins. Note that it is difficult to locate the
edge between abutting boxes reliably using vision or other
sensor modalities – in general this is a hard problem.

Our implementation of Algorithm 1 used a set of15-
samples including the hypothesis sample. The algorithm con-
trolled the left paddle by specifying Cartesian end-effector
velocities in the horizontal plane. These Cartesian velocity

commands were projected into the joint space using standard
Jacobian Pseudoinverse techniques [18]. The algorithm was
parametrized by accurate analytical models of the process
and observation dynamics. The process dynamics described
how the arms moved in response to the velocity commands.
They also modeled the expected box motions produced
by arm pushing trajectories based on assumptions that the
paddle does not slip while pushing the box and assumptions
regarding the location of the box center of friction. The
observation dynamics describe the set of range measure-
ments expected in a given paddle-box configuration. For
planning purposes, the observation dynamics were simplified
by modeling only a single forward-pointing scan rather than
the full 60 degree scan range. However, notice that since
this is a conservative estimate of future perception, low cost
plans under the simplified observation dynamics are also low
cost under the true dynamics. Nevertheless, the observation
model used fortracking (step 8 of Algorithm 1) accurately
described measurements from all (100) scans over the60
degree range. The termination threshold in Algorithm 1 was
set to50% rather than a higher threshold because we found
our observation noise model to overstate the true observation



noise.
Our hardware implementation of the algorithm included

some small variations relative to Algorithm 1. Rather than
monitoring divergence explicitly in step 9, we instead moni-
tored the ratio between the likelihood of the hypothesis state
and the next most probable bin in the histogram filter. When
this ratio fell below0.8, plan execution was terminated and
the while loop continued. Since the hypothesis state must
always have a maximal likelihood over the planned trajec-
tory, a ratio of less than one implies a positive divergence.
Second, rather than finding a non-goal directed plan in steps
3-5 of Algorithm 2, we always found goal-directed plans.

C. Example trajectory

Figure 2 illustrates an example of an information-gathering
trajectory. The algorithm begins with a hypothesis state that
indicates that the two boxes are 10 cm apart (the solid blue
boxes in Figure 2(a)). As a result, the algorithm creates a
plan that scans the laser in front of the two boxes under
the assumption that this will enable the robot to perceive
the (supposed) large gap. In fact, the two boxes abut each
other as indicated by the black dotted lines in Figure 2(a).
After beginning the scan, the histogram filter in Algorithm 1
recognizes this and terminates execution of the initial plan.
At this point, the algorithm creates the pushing trajectory
illustrated in Figure 2(b). During execution of the push, the
left box moves in an unpredicted way due to uncertainty
in box friction parameters (this is effectively process noise).
This eventually triggers termination of the second trajectory.
The third plan is created based on a new estimate of box
locations and executes a scanning motion in front of the
boxes is expected to enable the algorithm to localize the
boxes with high confidence.

D. Expected Performance

At a high level, the objective of SLAG is to robustly
localize and grasp objects even when the pose or shape of
those objects is uncertain. We performed a series of exper-
iments to evaluate how well this approach performs when
used to localize boxes that are placed in initially uncertain
locations. On each grasp trial, the boxes were placed in a
uniformly random configuration (visualized in Figures 3(a)
and (c)). There were two experimental contingencies: “easy”
and “hard”. In the easy contingency, both boxes were placed
randomly such that they were potentially separated by a
gap. The right box was randomly placed in a13 × 16 cm
region over a range of15 degrees. The left box was placed
uniformly randomly in a20× 20 cm region over20 degrees
measured with respect to the right box (Figure 3(a)). In the
hard contingency, the two boxes were pressed against each
other and the pair was placed randomly in a13 × 16 cm
region over a range of15 degrees (Figure 3(b)).

Figures 3(c) and (d) show right box localization error
as a function of the number of updates to the histogram
filter since the trial start.12 trials were performed in each
contingency. Each blue line denotes the progress of a single
trial. The termination of each trial is indicated by the red “X”

marks. Each error trajectory is referenced to the ground truth
error by measuring the distance between the final position
of the paddle tip and its goal position in the left corner
of the right box using a ruler. There are two results of
which to take note. First, all trials terminate with less than
2 cm of error. Some of this error is a result of the coarse
discretization of possible right box positions in the histogram
filter (note also the discreteness of the error plots). Sincethe
right box position bin size in the histogram filter is1.2 cm,
we would expect a maximum error of at least1.2 cm. The
remaining error is assumed to be caused by errors in the
range sensor or the observation model. Second, notice that
localization occurs much more quickly (generally in less than
100 filter updates) and accurately in the easy contingency,
when the boxes are initially separated by a gap that the
filter may used to localize. In contrast, accurate localization
takes longer (generally between 100 and 200 filter updates)
during the hard contingency experiments. Also error prior to
accurate localization is much larger reflecting the significant
possibility of error when the boxes are initially placed in the
abutting configuration. The key result to notice is that even
though localization may be difficult and errors large duringa
“hard” contingency, all trials ended with a small localization
error. This suggests that our algorithm termination condition
in step 1 of Algorithm 1 was sufficiently conservative. Also
notice that the algorithm was capable of robustly generating
information gathering trajectories in all of the randomly
generated configurations during the “hard” contingencies.
Without the box pushing trajectories found by the algorithm,
it is likely that some of the hard contingency trials would
have ended with larger localization errors.

V. CONCLUSION

When humans try to reconstruct the process of grasping
introspectively from their own experiences, it is natural to
decompose grasp synthesis into two stages: a perception
stage followed by a grasping stage. Sometimes, a second
haptic refinement stage is added to an initial gross perception
stage [19], [20]. This general approach is based on the
premise that certain types of information will be accurately
perceived at certain stages of the grasp process. There is
typically no convenient recourse if one of the perception
stages should fail. The difficulty with which the research
community has attempted to build robust grasping solutions
suggests that we should re-examine this assumption. Cer-
tainly, grasp robustness might be improved if perception
occurred during the entire grasping process and not just
at certain times. Another possibility is for the robot to
take actions that improve the information available to grasp
synthesis. Our paper explores this approach in the con-
text of a new problem statement, simultaneous localization
and grasping (SLAG). Essentially, SLAG incorporates the
perception process into the problem. It turns out that this
can be conveniently expressed in terms of a belief space
planning problem. In belief space planning, the objective is to
reach a configuration where the algorithm strongly believes
that it has achieved task (i.e. grasp) objectives. This paper
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Fig. 3. “Easy” and “hard” experimental contingencies. (a) shows images of the 12 randomly selected “easy” configurations (both box configurations
chosen randomly) superimposed on each other. (b) shows images of the 12 randomly selected “hard” configurations (boxes abutting each other). (c) and
(d) are plots of error between the maximum a posteriori localization estimate and the true box pose. Each line denotes a single trial. The red “X” marks
denote localization error at algorithm termination.

describes a new sampled-based approach to planning in non-
Gaussian belief spaces. Then, the approach is explored in
the context of a particular SLAG problem where a robot
must localize one of two boxes that are placed in front
of it in unknown configurations. The algorithm generates
information gathering trajectories that move the arm in such
a way that a laser scanner mounted on the end-effector is able
to localize the two boxes. The algorithm potentially pushes
the boxes as necessary in order to gain information.
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