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Abstract— We cast the partially observable control problem as
a fully observable underactuated stochastic control problem in
belief space and apply standard planning and control techniques.
One of the difficulties of belief space planning is modeling the
stochastic dynamics resulting from unknown future observations.
The core of our proposal is to define deterministic belief-
system dynamics based on an assumption that the maximum
likelihood observation (calculated just prior to the observation)
is always obtained. The stochastic effects of future observations
are modeled as Gaussian noise. Given this model of the dynamics,
two planning and control methods are applied. In the first, linear
quadratic regulation (LQR) is applied to generate policies in the
belief space. This approach is shown to be optimal for linear-
Gaussian systems. In the second, a planner is used to find locally
optimal plans in the belief space. We propose a replanning
approach that is shown to converge to the belief space goal
in a finite number of replanning steps. These approaches are
characterized in the context of a simple nonlinear manipulation
problem where a planar robot simultaneously locates and grasps
an object.

I. I NTRODUCTION

Control problems in partially observable environments are
important to robotics because all robots ultimately perceive the
world through limited and imperfect sensors. In the context
of robotic manipulation, tactile and range sensors mounted
on the manipulator near the contact locations can provide a
tremendous advantage in precision over remote sensing [1, 2].
However, co-locating the sensors with the contacts this way
complicates planning and control because it forces the system
to trade off sensing and acting. It essentially requires the
system to solve a difficult instance of the partially observable
control problem, often modeled as a partially observable
Markov decision process (POMDP). Unfortunately this prob-
lem has been shown to be PSPACE complete, even for a finite
planning horizon, discrete states, actions, and observations [3].

One solution to the partially observable control problem
is to form plans in the “belief space” of the manipulator -
the space of all possible distributions over the state space.
The controller then selects actions based not only on the
current most-likely state of the robot, but more generically
on the information available to the robot. A hallmark of
belief-space planning is the ability to generate information-
gathering actions. However, planning in the belief space is
challenging for a number of reasons. Even coarse finite-
dimensional approximations of the belief state distributions
require planning in dimensions that are much larger than the

original state space. Furthermore, the resulting belief state
dynamics are nonlinear, underactuated (number of control
inputs is smaller than the dimension of the belief space), and
stochastic (transitions depend on observations which havenot
yet been made).

A number of powerful tools exist for planning and control of
high-dimensional non-linear underactuated systems. In order
to apply these tools, this paper defines nominal belief space
dynamics based on an assumption that all future observations
will obtain their maximum likelihood values (this assumption
is also made in [4, 5]). During execution, the system tracks
the true belief based on the observations actually obtained.
Departures from the nominal belief dynamics caused by these
unexpected observations are treated as Gaussian process noise.
As a result, it is possible to apply standard control and
planning techniques. In particular, we use linear quadratic
regulation (LQR) to calculate belief space policies based on
a local linearization of the belief space dynamics. In spiteof
this linearization, the resulting belief space policy is shown to
be optimal for underlying linear-Gaussian systems. For non-
linear systems, it produces reasonable policies within a local
region about the linearization point. When large observations
cause system belief to leave the locally stabilized region,we
propose replanning from the new belief state. We analyze
this replanning approach and demonstrate that, under certain
conditions, it is guaranteed to ultimately reach a goal region
in belief space in a finite number of replanning steps.

A. Related Work

Finding an exact optimal solution to a POMDP is an
intractable problem [3]. As a result, research has focused
on various approaches to approximating the solution. One
approach is the ‘most-likely state’ approximation. This method
assumes that the true state of the MDP that underlies the
POMDP is in fact the mode of the current belief state. Actions
are taken according to the optimal policy in the underlying
MDP. The approach considers stochasticity in the underlying
process dynamics, but assumes no state uncertainty exists in
the future. More sophisticated versions of this approximation
include Q-MDP [6] and FIB [7]. A fundamental failing of
these approaches is that the system never takes actions for the
explicit purpose of reducing uncertainty because the planner
assumes that no uncertainty exists.

Another approach that is applicable to some kinds of



POMDPs with continuous state, action, and observation spaces
is the belief roadmap approach [8]. This method ranks paths
through a probabilistic roadmap defined in the underlying state
space in terms of the change in covariance over the path. Van
der Berget. al. propose a related approach where a set of
potential trajectories are evaluated by tracking the belief state
along each trajectory and selecting the one that minimizes the
likelihood of failure [9]. In contrast to this class of work,the
current paper proposes planning directly in the belief space.
This enables our planner to utilize knowledge of the belief
dynamics during the planning process rather than evaluating a
set of paths through the underlying space.

Our approach is also related to the ‘determinize-and-replan’
approximation to MDPs that assumes world dynamics are
deterministic for the purposes of planning. It takes the first
action, observes the actual resulting state, and then replans.
This approach, as embodied in FF-Replan, has been very
successful (won the ICAPS06 planning competition) in a
variety of contexts [10]. Our approach can be viewed as
‘determinize-and-replan’, applied to POMDPs. It has the sig-
nificant advantage over the most-likely state approach that
it can and does explicitly plan to gain information. And,
by replanning when surprising observations are obtained, it
remains robust to unlikely outcomes.

Two approaches closely related to our current proposal are
the nominal belief-state observation (NBO) of Milleret. al. [4]
and the work of Erez and Smart [5]. Both approaches plan
in belief space using extended Kalman filter dynamics that
incorporate an assumption that observations will be consistent
with a maximum likelihood state. In relation to these works,
this paper has a greater focus on methods for control and
replanning. We analyze the conditions under which LQR
in belief space is optimal and show that our replanning
framework must eventually converge.

II. PROBLEM SPECIFICATION

We reformulate the underlying partially observable problem
as a fully observable belief space problem with an associated
cost function.

A. Underlying system

Consider the following partially observable control problem.
Let xt ∈ X be the unobservedd-dimensional combined state
of the robot and the environment at timet. Although the
state is not observed directly, noisy observations,zt ∈ Z, are
available as a non-linear stochastic function ofxt:

zt = g(xt) + ω, (1)

whereg is the deterministic component of the measurement
function andω is zero-mean Gaussian noise with possibly
state-dependent covariance,Wt. This paper only considers the
case where the underlying process dynamics are deterministic:

xt+1 = f(xt, ut). (2)

Both g andf are required to be a differentiable functions of
xt and ut. Although we expect our technique to extend to

systems with noisy process dynamics, consideration is limited
to deterministic systems to simplify the analysis.

B. Belief system

Although the underlying state of the system is not directly
observed, we assume that the controller tracks a fixed param-
eterization of a probability distribution over the state,P (x).
The parameters of the probability density function (pdf) of
this distribution will be referred to as the “belief state” and
can be tracked using Bayesian filtering as a function of control
actions and observations:

P (xt+1) = ηP (zt+1|xt+1)

∫

x

P (xt+1|x, ut)P (x),

where η is a normalization constant. Notice that since the
belief update is a function of the measured observations
accrued during execution, it is impossible in general to predict
ahead of time exactly how system belief will change until the
observations are made.

For the rest of this paper, we will focus on Gaussian belief
state dynamics where the extended Kalman filter belief update
is used. On each update, the extended Kalman filter linearizes
the process and observation dynamics (Equations 2 and 1)
about the current mean of the belief distribution:

xt+1 ≈ At(xt −mt) + f(mt, ut), (3)

and
zt ≈ Ct(xt −mt) + g(mt) + ω, (4)

wheremt is the belief state mean, andAt =
∂f
∂x

(mt, ut), and
Ct =

∂g
∂x

(mt), are Jacobian matrices linearized about the mean
and action.

For the Gaussian belief system, the distribution is a
Gaussian with mean,mt, and covariance,Σt: P (x) =
N (x|mt,Σt). This belief state will be denoted by a vector,
bt = (mT

t , s
T
t )

T , where s = (sT1 , . . . , s
T
d )

T is a vector
composed of thed columns ofΣ = (s1, . . . , sd). If the system
takes action,ut, and makes observation,zt, then the EKF
belief state update is:

Σt+1 = Γt − ΓtC
T
t (CtΓtC

T
t +Wt)

−1CtΓt, (5)

mt+1 = ft + ΓtC
T
t (CtΓtC

T
t +Wt)

−1(zt+1 − g(ft)), (6)

where
Γt = AtΣtA

T
t

andft denotesf(mt, ut).

C. Cost function

In general, we are concerned with the problem of reaching
a given region of state space with high certainty. For a
Gaussian belief space, this corresponds to a cost function
that is minimized at zero covariance. However, it may be
more important to reduce covariance in some directions over
others. Let{n̂1, . . . , n̂k} be a set of unit vectors pointing in
k directions in which it is desired to minimize covariance and
let the relative importance of these directions be described by
the weights,w1, . . . , wk. For a given state-action trajectory,



bτ :T , uτ :T , we define a finite horizon quadratic cost-to-go
function:

J(bτ :T , uτ :T ) =

k
∑

i=1

wi

(

n̂T
i ΣT n̂i

)2
+

T−1
∑

t=τ

m̃T
t Qm̃t+ ũT

t Rũt,

(7)
where m̃t = mt − m̄t and ũt = ut − ūt are the mean and
action relative to a desired state-action point or trajectory, m̄t

and ūt, and ΣT is the covariance matrix at the end of the
planning horizon. The first summation penalizes departures
from zero covariance along the specified directions on the final
timestep. The second summation over the planning horizon
penalizes departures from a desired mean and action with
positive definite cost matricesQ andR. While Equation 7 is
quadratic, the first summation is not expressed in the standard
form. However, its terms can be re-written in terms ofs, the
vector of the columns ofΣ:

(n̂T
i Σn̂i)

2 = sTLis,

where the cost matrix,Li, is a function ofn̂i:

Li =







n̂ini,1

...
n̂ini,d













n̂ini,1

...
n̂ini,d







T

,

whereni,j is the jth element ofn̂i. As a result, we re-write
the cost-to-go function as:

J(bτ :T , uτ :T ) = sTTΛsT +
T−1
∑

t=τ

m̃T
t Qm̃t + ũT

t Rũt, (8)

where

Λ =
K
∑

i=1

wiLi.

Although not included in Equation 8, all plans in the belief
space are required to satisfy certain final value constraints.
First, a constraint on the final value mean of the belief system
is specified:mT = m̄T . B-LQR (Section IV) incorporates
this constraint by augmenting the cost-to-go function (Equa-
tion 14). Direct transcription (Section V-A) incorporatesthis
constraint directly.

For a policy defined over the belief space,

ut = π(bt),

the expected cost-to-go from a belief state,bτ , at timeτ with a
planning horizonT−τ (the planning horizon could be infinite)
is:

Jπ(bτ ) = Ezτ:T−1
{J(bτ :T , π(bτ :T−1))} , (9)

where the expectation is taken over future observations.
The optimal policy minimizes expected cost:π∗(bτ ) =
argminπ J

π(bτ ).

III. S IMPLIFIED BELIEF SPACE DYNAMICS

In order to apply standard control and planning techniques
to the belief space problem, it is necessary to define the
dynamics of the belief system. Given our choice to use
the EKF belief update, Equations 5 and 6 should be used.
Notice that Equation 6 depends on the observation,zt. Since
these observations are unknown ahead of time, it should
be necessary to evaluate the expected value of seeing each
observation and take the expectation over all observations.
However, since it is difficult to evaluate this marginalization,
we make a key simplifying assumption for the purposes of
planning and control: we assume that future observations are
normally distributed about a maximum likelihood. If action
ut is taken from belief statebt, then the maximum likelihood
observation is:

zml = argmax
z

P (z|bt, ut). (10)

Evaluating the maximum likelihood observation for the EKF
using Equation 10, we have:

zml = argmax
z

∫

P (z|xt+1)P (xt+1|bt, ut)dxt+1

≈ argmax
z

∫

N (z|Ct(xt+1 − ft) + g(ft),Wt)

N (xt+1|ft,Γt)dxt+1

= argmax
z
N (z|g(ft), CtΓtC

T
t +Wt)

= g(ft).

Substituting into Equation 6, and restating Equation 5, the
simplified dynamics are:

bt+1 = F (bt, ut), (11)

where F evaluates to thebt+1 corresponding tomt+1 and
Σt+1,

mt+1 = ft + v, (12)

Σt+1 = Γt − ΓtC
T
t (CtΓtC

T
t +Wt)

−1CtΓt, (13)

andv is Gaussian noise.

IV. LQR IN BELIEF SPACE

Linear quadratic regulation (LQR) is an important and
simple approach to optimal control [11]. While LQR is optimal
only for linear-Gaussian systems, it is also used to stabilize
non-linear systems in a local neighborhood about a nominal
point or trajectory in state space. LQR in belief space (B-
LQR) is the application of LQR to belief space control using
the simplified belief system dynamics (Equations 12 and 13).
Since the belief system dynamics are always non-linear, poli-
cies found by B-LQR can be expected to be only locally stable.
However, as we show below, it turns out that B-LQR is optimal
and equivalent to linear quadratic Gaussian (LQG) control
for systems with linear-Gaussian process and observation
dynamics. Moreover, B-LQR produces qualitatively interesting
policies for systems with non-linear dynamics.

We are interested in the finite horizon problem with a final
state constraint on the mean of the belief system. The final



state constraint is accommodated by adding an additional term
to Equation 8 that assigns a large cost to departures from the
desired final mean value. Also, the LQR cost function used in
the current work is linear about the planned trajectory:

J(bτ :T , uτ :T ) = m̃T
TQlargem̃T + s̃TTΛs̃T

+

T−1
∑

t=τ

m̃T
t Qm̃t + ũT

t Rũt. (14)

Notice that the second term in the above does not measure
covariance cost about zero (that would besTTΛsT ). Instead, we
keep the system linear by measuring cost relative to the belief
trajectory, s̄T . Nevertheless, note that it should be possible
measure covariance cost relative to zero by using an affine
rather than linear version of the LQR controller.

Since B-LQR is operating in belief space, is necessary
to linearize Equation 11 about a nominal belief and action,
denoted̄bt and ūt:

At =
∂F

∂b
(b̄t, ūt)

and
Bt =

∂F

∂u
(b̄t, ūt).

Notice that the mean of the Gaussian belief system has the
same nominal dynamics as the underlying system. As a result,
At always has the form:

At =

(

At 0

∂st+1

∂mt

∂st+1

∂st

)

,

whereAt =
∂f
∂x

(m̄t, ūt) (see Equation 3). Also, note that since
the control input never directly affects covariance,B always
has the form

Bt =

(

Bt

0

)

,

whereBt =
∂f
∂u

(m̄t, ūt). Finally, since Equation 14 only as-
signs departures from the mean a recurring cost, the recurring
cost matrix for belief state is

Q =

(

Q 0

0 0

)

.

Using the above, the Riccati equation for the discrete time
finite horizon problem is:

St = Q+ AT
t St+1At

−AT
t St+1Bt(B

T
t St+1Bt +Rt)

−1BT
t St+1At,(15)

whereSt is the expected cost-to-go matrix for linear-Gaussian
systems,Jπ∗

(bt) = bTt Stbt. The optimal action for linear-
Gaussian systems is:

u∗ = −(BT
t St+1Bt +Rt)

−1BT
t St+1Atbt. (16)

The following theorem demonstrates that B-LQR is equiv-
alent to LQG control for linear-Gaussian systems.

Theorem 1:If the cost function is of the form of Equa-
tion 14, and the underlying process and observation dynamics
(Equations 1 and 2) are linear, then B-LQR is optimal.

Proof: We show that under the conditions of the theorem,
B-LQR is equivalent to LQG and is optimal as a result.

First, if the underlying observation dynamics are linear, then
∂st+1

∂mt

= 0 andAt is block diagonal. Also, note that if the cost
is of the form in Equation 14, then the state cost,Q, is also
block diagonal with respect to mean and covariance (m and
s). As a result of these two facts, the solution to the belief
space Riccati equation (Equation 15) at timet, St, always has
the form,

St =

(

St 0

0 Pt

)

,

where St is the solution of the Riccati equation in the
underlying space,

St = Q+AT
t St+1At

−AT
t St+1Bt(B

T
t St+1Bt +Rt)

−1BT
t St+1At,

andPt is arbitrary. Substituting into Equation 16, we have:

u∗ = −(BT
t St+1Bt +Rt)

−1BT
t St+1Atmt.

Since this is exactly the solution of the LQG formulation, and
LQG is optimal for linear-Gaussian process and observation
dynamics, we conclude the B-LQR is optimal.

V. PLANNING

Since B-LQR is based on a local linearization of the
simplified belief dynamics, it is clear that planning methods
that work directly with the non-linear dynamics can have better
performance. A number of planning methods that are applied
to underactuated systems are relevant to the belief space plan-
ning problem: rapidly expanding random trees (RRTs) [12],
LQR-trees [13], and nonlinear optimization methods [14].
Presently, we use an approach based on a nonlinear optimiza-
tion technique known as direct transcription. The resulting
trajectory is stabilized using time varying B-LQR.

A. Direct transcription

Direction transcription is an approach to transcribing the
optimal control problem to a nonlinear optimization problem.
Suppose we want to find a path from time1 to T starting
at b1 that optimizes Equation 8. Direction transcription pa-
rameterizes the space of possible trajectories by a series of
k segments. Letδ be a user-defined integer that defines the
length of each segment in time steps. Then the number of
segments isk = T

δ
. Let b′

1:k andu′

1:k−1
be sets of belief state

and action variables that parameterize the trajectory in terms
of the segments. Segmenti begins at timeiδ and ends at time
iδ + δ − 1. The cost function, Equation 8, is approximated in
terms of these segments:

J(b1:T , u1:T ) ≈ Ĵ(b′1:k, u
′

1:k)

= sTΛs+

k
∑

j=1

m̃′T
i Qm̃′

i + ũ′T
i Rũ′

i, (17)

where, for the purposes of planning,̃m′

i is measured with
respect to the final value constraint,̄m′

i = m̄T . The belief



state on the last time step of this segment can be found by
integratingF over δ:

φ(b′i) = F (b′i, ui) +

iδ+δ−1
∑

t=iδ

F (bt+1, ui)− F (bt, ui). (18)

It is now possible to define the nonlinear optimization problem
that approximates the optimal control problem. We want
assignments to the variables,b′

1:k and u′

1:k, that minimize
the approximate cost,̂J(b′

1:k, u
′

1:k) subject to constraints that
require each segment to be dynamically consistent with its
neighboring segments:

b′2 = φ(b′1, u
′

1)

...

b′k = φ(b′k−1, u
′

k−1). (19)

Since we have a final value constraint on the mean component
of belief, an additional constraint is added:

m′

k = m̄T . (20)

By approximating the optimal control problem using Equa-
tions 18 through 20, it is possible to apply any optimization
method available. In the current work, we use sequential
quadratic programming (SQP) to minimize the Lagrangian
constructed from the costs and constraints in Equations 18-20.
At each iteration, this method takes a Newton step found by
solving the Karush-Kuhn-Tucker (KKT) system of equations.
Ultimately SQP converges to a local minimum. For more
information, the reader is recommended to [14].

B. Replanning strategy

Input : initial belief state,b.
Output : vector of control actions,u1:T .
while b not at goaldo

(ū1:T , b̄1:T ) = create plan(b);
for t← 1 to T − 1 do

ut = lqr control(bt, ūt, b̄t);
bt+1 = EKF (bt, ut, zt);
if m̃t+1 > θ then break;

end
b = bt+1

end
Algorithm 1: Belief space planning algorithm.

Since the actual belief transition dynamics are stochastic,
a mechanism must exist for handling divergences from the
planned trajectory. One approach is to use time varying B-
LQR about the planned path to stabilize the trajectory. While
this works for small departures from the planned trajectory,
replanning is needed to handle larger divergences. We propose
the basic replanning strategy outlined in Algorithm 1 (above).
In thecreate plan step, the algorithm solves for a belief space
trajectory that satisfies the final value constraints on the mean
using direct transcription. Next,lqr control solves for and

executes a locally stable policy about the trajectory. TheEKF

step tracks belief state based on actual observations. When the
mean component of belief departs from the planned trajectory
by more than a given threshold,θ,

mt − m̄t = m̃t > θ,

the for loop breaks and replanning occurs. It is assumed that
the threshold,θ, is chosen such that B-LQR is stable within
the threshold.

C. Analysis of belief space covariance during replanning

Under Algorithm 1, the mean component of belief can be
shown to reach the final value constraint in a finite number of
replanning steps. Essentially, we show that each time the belief
system deviates from the planned trajectory by more thanθ,
covariance decreases by a finite amount. Each time this occurs,
it becomes more difficult for the belief state mean to exceed
the threshold again. After a finite number of replanning steps,
this becomes impossible and the system converges to the final
value constraint. In the following, we shall denote the spectral
norm of a matrix,A, by ‖A‖2. The spectral norm of a matrix
evaluates to its largest singular value.

We require the following conditions to be met:
1) The observation covariance matrix is positive definite

and there exists a strictly smaller matrix,Wmin, such
thatW > Wmin,

2) the underlying process dynamics are deterministic,
3) At has eigenvalues no greater than one,
4) the observations are bounded,‖zt‖ < zmax,
Lemma 1:Suppose that Algorithm 1 executes under the

conditions above. Then, the change in covariance between time
ta when m̃a = 0 and timetb when m̃b > θ (the replanning
threshold) is lower bounded by

‖Σa − Σb‖2 ≥

(

θ

τ‖W
−

1
2

min‖2zmax

)2

,

whereτ = tb − ta.
Proof: Sincem changes by at leastθ over τ timesteps,

there is at least one timestep betweenta andtb (time tc) where
∆mc = ‖m̃c+1 − m̃c‖ >

θ
τ

. This implies:

θ

τ
≤ |ΓcC

T
c (CcΓcC

T
c +Wc)

−1(zc+1 − z̄c+1)|

≤ ‖ΓcC
T
c (CcΓcC

T
c +Wc)

−1‖2zmax.

Since
‖(CcΓcC

T
c +Wc)

−
1
2 ‖2 ≤ ‖W

−
1
2

min‖2,

and using the properties of the spectral norm, we have that:

θ

τ
≤ ‖ΓcC

T
c (CcΓcC

T
c +Wc)

−
1
2 ‖2‖W

−
1
2

min‖2zmax.

Dividing through by‖W
−

1
2

min‖2zmax and squaring the result,
we have:
(

θ

τ‖W
−

1
2

min‖2zmax

)2

≤ ‖ΓcC
T
c (CcΓcC

T
c +Wc)

−1CcΓc‖2.



Considering the covariance update equation (Equation 13),and
considering that‖Ac‖2 ≤ 1, it must be that

‖Σa − Σb‖2 ≥

(

θ

τ‖W
−

1
2

min‖2zmax

)2

.

Since Lemma 1 establishes thatΣ decreases by a constant
amount each time algorithm 1 replans, the following Theorem
is able to conclude that after a finite number of replans,
the belief state mean converges exponentially toward the
final value constraint. We require the following additional
assumptions:

1) The planner always finds a trajectory such that the belief
space mean satisfies the final value constraint on the final
timestep,T .

2) B-LQR stabilizes the trajectory within the replanning
threshold,θ.

Theorem 2:Under the conditions of Lemma 1 and the
conditions above, Algorithm 1 causes the mean of belief state
to be exponentially convergent to the final value condition after
a finite number of replanning steps.

Proof: Under Algorithm 1, the system does one of two
things: 1) the mean of the belief system never exceeds the
replan threshold and B-LQR gives us exponential convergence
of the mean to the final value condition, or 2) the mean
exceeds the replan threshold. In the second case, we have by
Lemma 1 thatΣ decreases by a fixed minimum amount in one
or more directions. For an initialΣ with finite variance, this
is only possible a finite number of times. After that, condition
1 above becomes true and the mean of the belief system is
exponentially convergent.

VI. EXPERIMENTS

We explored the capabilities of our approach to belief space
planning in two experimental domains: the light-dark domain
and the planar grasping domain.

A. The light-dark domain

In the light-dark domain, a robot must localize its position
in the plane before approaching the goal. The robot’s ability
to localize itself depends upon the amount of light present at
its actual position. Light varies as a quadratic function ofthe
horizontal coordinate. Depending upon the goal position, the
initial robot position, and the configuration of the light, the
robot may need to move away from its ultimate goal in order
to localize itself. Figure 1 illustrates the configuration of the
light-dark domain used in our experiments. The goal position
is at the origin, marked by anX in the figure. The intensity in
the figure illustrates the magnitude of the light over the plane.
The robot’s initial position is unknown.

The underlying state space is the plane,x ∈ R2. The
robot is modeled as a first-order system such that robot
velocity is determined by the control actions,u ∈ R2. The
underlying system dynamics are linear with zero process noise,
f(xt, ut) = xt + u. The observation function is identity,

x

y

−1 0 1 2 3 4 5 6 7
−2

−1

0

1

2

3

4

Fig. 1. Comparison of the mean of the planned belief state trajectory found
by B-LQR (the dashed line) with the locally optimal trajectory found by direct
transcription (the solid line).

g(xt) = xt + ω, with zero-mean Gaussian observation noise
a function of state,ω ∼ N (·|0, w(x)), where

w(x) =
1

2
(5− xx)

2 + const.

has a minimum whenxx = 5, wherexx is the first element
of x. Belief state was modeled as an isotropic Gaussian pdf
over the state space:b = (m, s) ∈ R2 × R+. The cost
function (Equation 8) used recurring state and action costs
of R = diag(0.5, 0.5) and Q = diag(0.5, 0.5), and a final
cost on covariance,Λ = 200. B-LQR had an additional large
final cost on mean. Direct transcription used a final value
constraint on mean,m = (0, 0), instead. The true initial state
was x1 = (2.5, 0) and the prior belief (initial belief state)
was b1 = (2, 2, 5). The replanning threshold wasθ = 0.1.
At each replanning step, direct transcription was initialized
with a random trajectory. B-LQR linearized the belief system
dynamics about(0, 0, 0.5).

1) Results and discussion:Figure 1 shows solutions to
the light-dark problem domain found by B-LQR (the dotted
line) and by direct transcription (the solid line). The B-
LQR trajectory shows the integrated policy assuming that the
assumed observation dynamics were always obtained. The
direct transcription trajectory shows the initial plan found
before replanning. Most importantly, notice that even though
the B-LQR trajectory is based on a poor linearization of the
belief dynamics, it performs surprisingly well (compare with
the locally optimal direct transcription trajectory). However,
it is clear that B-LQR is sub-optimal because whereas the
locally optimal trajectory lingers in the minimum-noise region
atxx = 5, the B-LQR trajectory overshoots past the minimum
noise point toxx = 6.

Figure 2 illustrates the behavior of the replanning performed
by Algorithm 1. The dotted line shows the mean of the
belief space trajectory that was found on the first planning
step. The solid line shows the actual trajectory. Whereas the
system expected that it began execution atx = (2, 2), it
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Fig. 2. Comparison of the true robot trajectory (solid line) and the mean of
the belief trajectory that was initially planned by direct transcription (dotted
line).

Fig. 3. Laser-grasp domain. A range-finding laser (the dashedline) points
out from the robot end effector. The objective is to move the end-effector
to a point just in front of the puck on the left (the manipulatorapproach
configuration).

actually began execution atx = (2.5, 0). As a result of this
confusion, it initially took actions consistent with its initial
belief. However, as it moved into the light, it quickly corrected
its misperception. After reaching the point of maximum light
intensity, the system subsequently followed a nearly straight
line toward the goal.

B. Laser-grasp domain

In the laser-grasp domain, a planar robot manipulator must
locate and approach a round puck as illustrated in Figure 3.
The robot manipulator position is known, but the puck position
is unknown. The robot locates the puck using a range-bound
laser range finder that points out from the end-effector along a
line. The end-effector always points horizontally as indicated.
In order to solve the task, the manipulator must move back and
forth in front of the puck so that the laser (the laser is always
switched on) detects the puck location and then move to the
grasp approach point. The robot is controlled by specifying
Cartesian end-effector velocities.

1) Setup:The underlying state space,x ∈ R2, denotes the
position of the manipulator relative to an “approach point”
defined directly in front of the object. Although the end-
effector position is assumed to be known completely, state is
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Fig. 4. Trajectory found using direct transcription for thelaser-grasp domain.
The dotted line denotes the mean of the belief state trajectory. The ellipses
sample the covariance matrix at various points along the trajectory. The half
circle on the left represents the puck. Just to the right of the puck, the end-
effector is illustrated at the approach point.

not observed directly because the object position is unknown.
The control action,u ∈ R2, specifies the end-effector velocity:

f(xt, ut) = xt + ut.

In order to get a smooth measurement function that is not
discontinuous at the puck edges, the puck was modeled using
a symmetric squashing function about the origin. The result
was roughly circular with a “radius” of approximately0.65.
The measurement gradient,C, was zero outside of that radius.
State dependent noise was defined to be large when the laser
scan line was outside the radius of the puck (modeling an
unknown and noisy background). The noise function also in-
corporated a low-amplitude quadratic aboutxx = 5 modeling
a sensor with maximum measurement accuracy at5 units away
from the target. The belief space was modeled as a non-
isotropic Gaussian in the plane:b = (m, s) ∈ R2 × R3.
The parameterization of covariance inR3 rather thanR4

is a result of incorporating the symmetry of the covariance
matrix into the representation. The cost function was of the
form of Equation 8 withQ = diag(10, 10, 10, 10, 10), R =
diag(10, 10), andΛ = diag(10000, 0, 0, 10000) (denoting no
preference for covariance in one direction over another).

2) Results and discussion:Figure 4 shows a representative
plan found by direct transcription that moves the end-effector
along the dotted line from its starting location in the upper
right to the goal position in front of the puck (The geometry
of the experiment roughly follows Figure 3). The initial belief
state wasb1 = (9, 5, 5, 0, 5). The ellipses in Figure 4 illustrate
the planned trajectory of the Gaussian. First, notice that the
system plans to move the laser in front of the puck so that it
may begin to localize it. Covariance does not change until the
end-effector is actually in front of the puck. Also, notice that
the plan lingers in front of the puck near the optimal sensor
range. During this time, the trajectory makes short jumps up
and down, apparently “scanning” the puck. Finally, as time
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Fig. 5. Planned belief trajectory as a function of time step. The two black
lines denote the mean of the belief. The three gray lines denote the elements of
covariance. Notice that as the plan is “scanning” the puck, different elements
of covariance change in alternation.
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Fig. 6. Comparison between the initially planned trajectory(the gray line)
and the actual trajectory (the black line).

approaches the planning horizon, the end-effector moves off
to the approach point. Figure 5 provides a more in-depth
look at what is going on while the plan scans the puck.
First, notice that the plan spends almost all its time in the
“sweet spot” scanning the puck. Second, notice that different
elements of covariance change during different phases of the
scanning motion. This suggests that during scanning, the plan
actively alternates between reducing covariance in different
directions. The effect results from the fact that the dimension
of the observation (a scalar scan depth) is one while the
Gaussian belief is over a two-dimensional space. At a given
point in time, it is only possible to minimize one dimension of
covariance and the plan alternates between minimizing various
different dimensions, resulting in the scanning behavior.Fi-
nally, Figure 6 illustrates the behavior the replanning strategy
where time varying B-LQR stabilization was used. Initially,
the mean of the system prior is atm = (9, 5) but the true
state is atx = (10, 4.5). The incorrect belief persists until
the system reaches a point in front of the puck. At this point,
the incorrect prior is gradually corrected during the scanning
process until the true state of the system finally reaches the
origin.

VII. C ONCLUSION

This paper explores the application of underactuated plan-
ning and control approaches to the belief space planning
problem. Belief state dynamics are underactuated because
the number of controlled dimensions (the parameters of a
probability distribution) exceeds the number of independent
control inputs. As a result, the dynamics are constrained in
a way that can make planning difficult. Our contribution
is to recast the belief space planning problem in such a
way that conventional planning and control techniques are
applicable. As a result, we are able to find belief space
policies using linear quadratic regulation (LQR) and locally
optimal belief space trajectories using direct transcription. We
provide theoretical results characterizing the effectiveness of
a plan-and-replan strategy. Finally, we show that the approach
produces interesting and relevant behaviors on a simple grasp
problem where it is necessary to acquire information before
acting.
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