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Abstract— We cast the partially observable control problem as original state space. Furthermore, the resulting beliafest
a fully observable underactuated stochastic control problem in dynamics are nonlinear, underactuated (number of control
belief space and apply standard planning and control techniques. inputs is smaller than the dimension of the belief spaced, an

One of the difficulties of belief space planning is modeling the . - . .
stochastic dynamics resulting from unknown future observations stochastic (transitions depend on observations which have

The core of our proposal is to define deterministic belief- Y€t been made).
system dynamics based on an assumption that the maximum A number of powerful tools exist for planning and control of

likelihood observation (calculated just prior to the observation) high-dimensional non-linear underactuated systems. dieror
is always obtained. The stochastic effects of future observatisn to apply these tools, this paper defines nominal belief space

are modeled as Gaussian noise. Given this model of the dynamics,d ics b d tion that all fut b i
two planning and control methods are applied. In the first, linear ynamics based on an assumption that all tuture obsengtion

quadratic regulation (LQR) is applied to generate policies in the Wil obtain their maximum likelihood values (this assunupti
belief space. This approach is shown to be optimal for linear- is also made in [4, 5]). During execution, the system tracks

Gaussian systems. In the second, a planner is used to find locallythe true belief based on the observations actually obtained
optimal plans in the belief space. We propose a replanning penariyres from the nominal belief dynamics caused by these

approach that is shown to converge to the belief space goal ted ob fi treated G . .
in a finite number of replanning steps. These approaches are unexpected observations are treated as >aussian proegss no

characterized in the context of a simple nonlinear manipulation AS a result, it is possible to apply standard control and
problem where a planar robot simultaneously locates and grasps planning techniques. In particular, we use linear quadrati

an object. regulation (LQR) to calculate belief space policies based o
a local linearization of the belief space dynamics. In spite
this linearization, the resulting belief space policy iswh to
Control problems in partially observable environments atge optimal for underlying linear-Gaussian systems. For-non
important to robotics because all robots ultimately pereéie linear systems, it produces reasonable policies withincallo
world through limited and imperfect sensors. In the contexeégion about the linearization point. When large obserwatio
of robotic manipulation, tactile and range sensors mounteduse system belief to leave the locally stabilized regves,
on the manipulator near the contact locations can providepeopose replanning from the new belief state. We analyze
tremendous advantage in precision over remote sensing.[1,tRis replanning approach and demonstrate that, underirterta
However, co-locating the sensors with the contacts this wagnditions, it is guaranteed to ultimately reach a goalaegi
complicates planning and control because it forces theesystin belief space in a finite number of replanning steps.
to trade off sensing and acting. It essentially requires the
system to solve a difficult instance of the partially obsblga A- Related Work
control problem, often modeled as a partially observable Finding an exact optimal solution to a POMDP is an
Markov decision process (POMDP). Unfortunately this probatractable problem [3]. As a result, research has focused
lem has been shown to be PSPACE complete, even for a firote various approaches to approximating the solution. One
planning horizon, discrete states, actions, and obsen&{B]. approach is the ‘most-likely state’ approximation. Thisthosl
One solution to the partially observable control problerassumes that the true state of the MDP that underlies the
is to form plans in the “belief space” of the manipulator POMDP is in fact the mode of the current belief state. Actions
the space of all possible distributions over the state spaeee taken according to the optimal policy in the underlying
The controller then selects actions based not only on tMDP. The approach considers stochasticity in the undeglyin
current most-likely state of the robot, but more genencallprocess dynamics, but assumes no state uncertainty exists i
on the information available to the robot. A hallmark othe future. More sophisticated versions of this approxiomat
belief-space planning is the ability to generate informati include Q-MDP [6] and FIB [7]. A fundamental failing of
gathering actions. However, planning in the belief space tisese approaches is that the system never takes actiorigefor t
challenging for a number of reasons. Even coarse finitexplicit purpose of reducing uncertainty because the gann
dimensional approximations of the belief state distrifmti assumes that no uncertainty exists.
require planning in dimensions that are much larger than theAnother approach that is applicable to some kinds of

I. INTRODUCTION



POMDPs with continuous state, action, and observationespasystems with noisy process dynamics, consideration igdumi
is the belief roadmap approach [8]. This method ranks patttsdeterministic systems to simplify the analysis.

through a probabilistic roadmap defined in the underlyiagest .
space in terms of the change in covariance over the path. \%n Belief system

der Berget. al. propose a related approach where a set of Although the underlying state of the system is not directly
potential trajectories are evaluated by tracking the bstiate observed, we assume that the controller tracks a fixed param-
along each trajectory and selecting the one that minimizes €terization of a probability distribution over the stafe(x).
likelihood of failure [9]. In contrast to this class of worthe The parameters of the probability density function (pdf) of
current paper proposes p|anning direct|y in the be“ef epaéhis diStribution will be referred to as the “belief S’[ateﬁdil
This enables our planner to utilize knowledge of the belig@n be tracked using Bayesian filtering as a function of cbntr
dynamics during the planning process rather than evafyatin@ctions and observations:

set of paths through the underlying space. _
Our approach is also related to the ‘determinize-and-répla P(re1) = nP (e lren) . P(zei1lz, u)P(z),

apprOX|.m_at.|on to MDPs that assumes.world dynamics ,a\y\ﬁweren is a normalization constant. Notice that since the
detgrmlnlst|c for the purposes of 'plannlng. It takes thet flrEelief update is a function of the measured observations
action, observes the actual resulting state, and thenmepla,..,e4 during execution, it is impossible in general taijote

This approach, as embodied in FF-Replan, has been vefyo, of time exactly how system belief will change until the
successful (won the ICAPS06 planning competition) in 8bservations are made.

variety of contexts [10]. Our approach can be viewed aspq he rest of this paper, we will focus on Gaussian belief

‘determinize-and-replan’, applied to POMDPS. It has g Si 46 gynamics where the extended Kalman filter belief epdat
nificant advantage over the most-likely state approach thatseq on each update, the extended Kalman filter linearize

it can and_ does explicitly_ plan to gain_ information. _Andthe process and observation dynamics (Equations 2 and 1)
by replanning when surprising observations are obtained,4i),t the current mean of the belief distribution:
remains robust to unlikely outcomes.

Two approaches closely related to our current proposal are Top1 & Ag(ze — my) + f(me, u), 3)
the nominal belief-state observation (NBO) of Millet: al.[4]
and the work of Erez and Smart [5]. Both approaches plan
in belief space using extended Kalman filter dynamics that
incorporate an assumption that observations will be ctersis wherem;, is the belief state mean, antl = %(mt, ut), and
with a maximum likelihood state. In relation to these worksy; = %(mt), are Jacobian matrices linearized about the mean
this paper has a greater focus on methods for control aadd action.
replanning. We analyze the conditions under which LQR For the Gaussian belief system, the distribution is a
in belief space is optimal and show that our replanninGaussian with meanm;, and covarianceX;: P(z) =

zt = Cy(xy — my) + g(my) + w, 4)

framework must eventually converge. N (xz|my,X;). This belief state will be denoted by a vector,
by = (ml,s])T, wheres = (sT,...,sT)T is a vector

Il. PROBLEM S_PEC'F'C_AT'ON composed of the columns ofY = (s1,...,sq). If the system
We reformulate the underlying partially observable prabletakes action,u;, and makes observation,, then the EKF
as a fully observable belief space problem with an assatiatgelief state update is:

cost function. T - .
. ZH—I = Ft - FtCt (Ctrtct + Wt) Cch (5)
A. Underlying system

. ) . = r.cf (o of +wy)™! - , (6
Consider the following partially observable control prerl. Mt = fi #TCHOTCT + W)™ (e = (i), (6)
Let x; € X be the unobserved-dimensional combined statewhere
of the robot and the environment at time Although the I = AtZtAtT
state is not observed directly, noisy observations; Z, are
available as a non-linear stochastic functioncef and f, denotesf (my, us).

C. Cost function

In general, we are concerned with the problem of reaching

where g is the deterministic component of the measuremest given region of state space with high certainty. For a
function andw is zero-mean Gaussian noise with possiblgaussian belief space, this corresponds to a cost function
state-dependent covariand®;. This paper only considers thethat is minimized at zero covariance. However, it may be
case where the underlying process dynamics are deteriwinisinore important to reduce covariance in some directions over
) others. Let{n,...,7n;} be a set of unit vectors pointing in

k directions in which it is desired to minimize covariance and
Both g and f are required to be a differentiable functions ofet the relative importance of these directions be desdribe
z¢ and u;. Although we expect our technique to extend tthe weights,wy,...,wy. FOr a given state-action trajectory,

Zt = g(xt) + w, (1)

Ti41 = f(l't,ut)~



br.T,u-7, We define a finite horizon quadratic cost-to-go I11. SIMPLIFIED BELIEF SPACE DYNAMICS

function: In order to apply standard control and planning techniques
k T—1 to the belief space problem, it is necessary to define the
T(bror tmer) :Zwi (ﬁiTsz)2+thTth+ﬂtTR@t’ dynamics of- the belief system. Given our choice to use
im1 = the EKF belief update, Equations 5 and 6 should be used.
(7)  Notice that Equation 6 depends on the observatipnSince
wherem; = m; —m; and @ = u; — u; are the mean and these observations are unknown ahead of time, it should
action relative to a desired state-action point or trajg¢t@.:  be necessary to evaluate the expected value of seeing each
and u, and X7 is the covariance matrix at the end of theybservation and take the expectation over all observations
planning horizon. The first summation penalizes departurgwever, since it is difficult to evaluate this marginalizat
from zero covariance along the specified directions on tt# fifye make a key simplifying assumption for the purposes of
timestep. The second summation over the planning horizgmnning and control: we assume that future observatioas ar
penalizes departures from a desired mean and action Wigrmally distributed about a maximum likelihood. If action

positive definite cost matriceQ and R. While Equation 7 is 4, is taken from belief staté;, then the maximum likelihood
quadratic, the first summation is not expressed in the stdndgpservation is:

form. However, its terms can be re-written in termssothe
vector of the columns oF: Zmi = arg max P(z]bg, ug). (10)

Evaluating the maximum likelihood observation for the EKF

ATy \2 _ T71
(A5 £0q)" = s Lis, using Equation 10, we have:

where the cost matrix;, is a function offn;: Zmi = arg mzax/P(z|xt+1)P(:rt+1|bt,ut)dxtH
~ ~ T
L i .z,l i . 1 ~ argmzax//\/(dct(le — f1) + g(fe), Ws)
flﬁ.lz',d ﬁiﬁq‘,,d N(@ialfo To)dzi

= argmax N (z|g(f;), C:T.CT + W)
wheren; ; is the j'* element off;. As a result, we re-write T :
the cost-to-go function as: gue)-
Substituting into Equation 6, and restating Equation 5, the

-1 simplified dynamics are:

J(brorsurr) = spAsy + Y i) Qiing + @i Rite,  (8)
t=1 biy1 = F(bs, ue), (11)
where where F' evaluates to thé,,; corresponding ton:,; and
K Yit1,
A= szLz mey1 = ft + v, (12)
i=1

Yy =y - T,0F0 (O OF + W)~ toury,  (13)
Although not included in Equation 8, all plans in the belie&ndu is Gaussian noise.
space are required to satisfy certain final value consgaint
First, a constraint on the final value mean of the belief syste IV. LQR IN BELIEF SPACE
is specified:mr = mr. B-LQR (Section V) incorporates Linear quadratic regulation (LQR) is an important and
this constraint by augmenting the cost-to-go function @qusimple approach to optimal control [11]. While LQR is optimal
tion 14). Direct transcription (Section V-A) incorporatédss only for linear-Gaussian systems, it is also used to stabili

constraint directly. non-linear systems in a local neighborhood about a nominal
For a policy defined over the belief space, point or trajectory in state space. LQR in belief space (B-
LQR) is the application of LQR to belief space control using

uy = m(by), the simplified belief system dynamics (Equations 12 and 13).

] ) . Since the belief system dynamics are always non-lineai; pol
the expected cost-to-go from a belief stdtg,at timer with @ ¢jes found by B-LQR can be expected to be only locally stable.
planning horizoril’—7 (the planning horizon could be infinite) yowever, as we show below, it turns out that B-LQR is optimal
IS: and equivalent to linear quadratic Gaussian (LQG) control

J (b)) =& r AT by, 7(brr—1))}, (9) for systems with linear-Gaussian process and observation
dynamics. Moreover, B-LQR produces qualitatively intéres
where the expectation is taken over future observationmlicies for systems with non-linear dynamics.
The optimal policy minimizes expected cost*(b,) = We are interested in the finite horizon problem with a final
argmin, J7(b;). state constraint on the mean of the belief system. The final



state constraint is accommodated by adding an additioral te Proof: We show that under the conditions of the theorem,
to Equation 8 that assigns a large cost to departures from B¢.QR is equivalent to LQG and is optimal as a result.
desired final mean value. Also, the LQR cost function used in First, if the underlying observation dynamics are linlagrt
the current work is linear about the planned trajectory: aa‘%l = 0 andA, is block diagonal. Also, note that if the cost
is of the form in Equation 14, then the state cd3t,is also

_ =T ~ T A=
J(brr, urir) = mngl‘”gemT +spAsy block diagonal with respect to mean and covarianeeand
— o T s). As a result of these two facts, the solution to the belief
+ tz mi Qg + Uy R (14) space Riccati equation (Equation 15) at timé,, always has
- the form,
Notice that the second term in the above does not measure S, 0
covariance cost about zero (that woulddje\s7). Instead, we Se = 0 P )

keep the system linear by measuring cost relative to thetbeli h < is th \uti t the Ri . ion in th
trajectory, 7. Nevertheless, note that it should be possibl derel >1 1S the solution of the Riccati equation in the
measure covariance cost relative to zero by using an affif@derying space,
ratg_er thaBn tlg%ar_ version t(_)f thg Lt()gll? ?ontroller._ S, = Q+ATS, A,

ince B- is operating in belief space, is necessary 4T B.(BT B —1pT A
to linearize Equation 11 about a nominal belief and action, ¢ 41 BBy i1 But Bo) ™ By S Ay,

denotedb; and ;: and P, is arbitrary. Substituting into Equation 16, we have:
At = %(Etaat) u* = —(BtTSt+1Bt + Rt)_lB?St+1Atmt.
and Since this is exactly the solution of the LQG formulationdan
B, — 37F(5 i) LQG is optimal for linear-Gaussian process and observation
T ou dynamics, we conclude the B-LQR is optimal. [ |

Notice that the mean of the Gaussian belief system has the

same nominal dynamics as the underlying system. As a result, V. PLANNING

A, always has the form: Since B-LQR is based on a local linearization of the
simplified belief dynamics, it is clear that planning metkhod
Ay = < 6:{:1 85?+1 ) , that work directly with the non-linear dynamics can havedret
Om, Os; performance. A number of planning methods that are applied

do underactuated systems are relevant to the belief space pl
ning problem: rapidly expanding random trees (RRTs) [12],
LQR-trees [13], and nonlinear optimization methods [14].

B — ( B ) Presently, we use an approach based on a nonlinear optimiza-
t — )

whereA4,; = %(mt,at) (see Equation 3). Also, note that sinc
the control input never directly affects covarian@ always
has the form

0 tion technique known as direct transcription. The resgltin
of ) . ] trajectory is stabilized using time varying B-LQR.
where B; = yﬁ(mhat). Finally, since Equation 14 only as-
signs departures from the mean a recurring cost, the ragurrA. Direct transcription

cost matrix for belief state is Direction transcription is an approach to transcribing the
_(Q 0 optimal control problem to a nonlinear optimization prahle
Q= o 0/ Suppose we want to find a path from timeto 7' starting

Using the above, the Riccati equation for the discrete tirr%iet b ”‘?‘t optimizes Equation 8 D|rec_t|on t_ranscr|pt|0n pa-
finite horizon problem is: rameterizes the space of posqble tr_ajectorles by a sefies o
' k segments. Leb be a user-defined integer that defines the
S¢ = Q+ATS 1A length of each segment in time steps. Then the number of
“ATS, 1B, (BTS1:1B; + R,) " BTS,41A,(15) segments i = L Lett, andu’lzkfl_ be sets of belief state
and action variables that parameterize the trajectory imge
whereS; is the expected cost-to-go matrix for linear-Gaussiagf the segments. Segmenbegins at time§ and ends at time
systems,.J” (by) = _thStbt- The optimal action for linear- ;5 + § — 1. The cost function, Equation 8, is approximated in
Gaussian systems is: terms of these segments:

ut = _(B?St+1]3t + Rt)_leSt+1Atbt' (16) J(b1:T7 ul:T) ~ j( /1:k7 ullzk)

The following theorem demonstrates that B-LQR is equiv-
alent to LQG control for linear-Gaussian systems.

Theorem 1:If the cost function is of the form of Equa-
tion 14, and the underlying process and observation dyreamighere, for the purposes of planning:, is measured with
(Equations 1 and 2) are linear, then B-LQR is optimal. respect to the final value constraimty, = my. The belief

k
= sTAs+ Y Q)+ a) Rij, (17)
j=1



state on the last time step of this segment can be found dyecutes a locally stable policy about the trajectory. EHeF

integrating " over ¢: step tracks belief state based on actual observations. Ween t
61 mean component of belief departs from the planned trajgctor
B(b]) = F(b), u;) + Z F(bes1,ui) — Fbe,ug).  (18) by more than a given threshold,
t=1d

my — My = My > 0,
It is now possible to define the nonlinear optimization peoil
that approximates the optimal control problem. We wa
assignments to the variables, , and ), that minimize
the approximate cost/(b,.,,u}.,) subject to constraints that
require each segment to be dynamically consistent with & Analysis of belief space covariance during replanning

neighboring segments: Under Algorithm 1, the mean component of belief can be
B, o= (b, ) shown to reach the final value constraint in a finite number of
2 bt replanning steps. Essentially, we show that each time thef be
: system deviates from the planned trajectory by more than
b, o= (bl uhy). (19) _covariance decreas_eg by a finite amount. Each time thissiccur
it becomes more difficult for the belief state mean to exceed
Since we have a final value constraint on the mean componé threshold again. After a finite number of replanning step
of belief, an additional constraint is added: this becomes impossible and the system converges to the final
value constraint. In the following, we shall denote the s@éc
norm of a matrix,A, by ||A||2. The spectral norm of a matrix
By approximating the optimal control problem using Equaevaluates to its largest singular value.
tions 18 through 20, it is possible to apply any optimization We require the following conditions to be met:
method available. In the current work, we use sequentiall) The observation covariance matrix is positive definite
quadratic programming (SQP) to minimize the Lagrangian and there exists a strictly smaller matri¥/,,,;,, such
constructed from the costs and constraints in Equation20.8- that W > Win,
At each iteration, this method takes a Newton step found by2) the underlying process dynamics are deterministic,
solving the Karush-Kuhn-Tucker (KKT) system of equations. 3) A; has eigenvalues no greater than one,
Ultimately SQP converges to a local minimum. For more 4) the observations are boundéd,|| < z4z,
information, the reader is recommended to [14]. Lemma 1:Suppose that Algorithm 1 executes under the
conditions above. Then, the change in covariance between ti
t, whenm, = 0 and timet, whenm; > 6 (the replanning
threshold) is lower bounded by

the for loop breaks and replanning occurs. It is assumed that
rt1llle thresholdg, is chosen such that B-LOR is stable within
the threshold.

m;ﬂ =mr. (20)

B. Replanning strategy

Input : initial belief state,b. 2
Output: vector of control actionsiy.r. IS0 = Syll2 > 0

while b not at goaldo ¢ - THW*% lloZmas
(1.7, b1.7) = create_plan(b); e

for t+~1t0o7T—~1do wherer :f.tb — la. A I _
wuy = lgr_control(by, s, by); " P'root.I Slr;cemtg: an?esbb)f[ a; eaﬂ;tfov?rf t;mes:]eps,
b1 = EKF (b, up, ) Aerelis at least one |me§ e_IE)h_e_W ?an. ty (imet.) where
if ;41 > @ then break; me = |[fepr —me| > 7. This implies:
end B ~
b= bt+1 < |F(C¢T(CcFLC(T + Wc) 1(2(1+1 - Zc+1)|

end < |r.ct.r.of +w,)t .
Algorithm 1: Belief space planning algorithm. < ITeCe (CeleCe o) ll2Zmaa

N

Since

1 1

Since the actual belief transition dynamics are stochastic I(CeTeCe + We) ™ |2 < Wi ll2s
a mechanism must exist for handling divergences from t@d using the properties of the spectral norm, we have that:
planned trajectory. One approach is to use time varying B- 9 ) I
LQR about the planned path to stabilize the trajectory. While = < |T.CT(C.L.CF + W) "2 ||o||[W, 2 [l2Zmaz-
this works for small departures from the planned trajectory T )
replanning is needed to handle larger divergences. We peopDividing through by||W,, 2 |l2zme: @nd squaring the result,
the basic replanning strategy outlined in Algorithm 1 (adjov we have:

In the create_plan step, the algorithm solves for a belief space 2
trajectory that satisfies the final value constraints on tearm <9> < |r.cr(c.r.cr + W) el ..
T” ||2Zma:c

using direct transcription. Nextgr_control solves for and

_1
2

Wmin



Considering the covariance update equation (Equatiorah8l),
considering thaf| A.||2 < 1, it must be that

2
0
120 — pll2 > (4) :
T[Whinll22mas
n

Since Lemma 1 establishes thatdecreases by a constant
amount each time algorithm 1 replans, the following Theorem
is able to conclude that after a finite number of replans,
the belief state mean converges exponentially toward the
final value constraint. We require the following additional
assumptions:

1) The planner always finds a trajectory such that the belief

space mean satisfies the final value constraint on the final
timestep T Fig. 1. Comparison of the mean of the planned belief statectaje found

- . - . by B-LQR (the dashed line) with the locally optimal trajegtéound by direct
2) B-LQR stabilizes the trajectory within the replannlngr);nscr?ptio(n (the solid ”ne)). yop jest Y

threshold,f.
Theorem 2:Under the conditions of Lemma 1 and the
conditions above, Algorithm 1 causes the mean of belieéstat(z:) = z; + w, with zero-mean Gaussian observation noise
to be exponentially convergent to the final value condititera a function of statew ~ N (-0, w(x)), where
a finite number of replanning steps. 1
Proof: Under Algorithm 1, the system does one of two w(z) = 5(5 — x,)? + const
things: 1) the mean of the belief system never exceeds the
replan threshold and B-LQR gives us exponential convergerftds a minimum when:,, = 5, wherex, is the first element
of the mean to the final value condition, or 2) the mea®f =. Belief state was modeled as an isotropic Gaussian pdf
exceeds the replan threshold. In the second case, we hav®ysf the state spacéi = (m,s) € R®> x R*. The cost
Lemma 1 that: decreases by a fixed minimum amount in onfunction (Equation 8) used recurring state and action costs
or more directions. For an initial with finite variance, this of 2 = diag(0.5,0.5) and @ = diag(0.5,0.5), and a final
is only possible a finite number of times. After that, coruiti COSt on covariance) = 200. B-LQR had an additional large
1 above becomes true and the mean of the belief systenfifi@l cost on mean. Direct transcription used a final value

exponentially convergent. m constraint on meanyp = (0,0), instead. The true initial state
was z; = (2.5,0) and the prior belief (initial belief state)
VI. EXPERIMENTS was b; = (2,2,5). The replanning threshold was = 0.1.

We explored the capabilities of our approach to belief spaéé each replanning step, direct transcription was initied
planning in two experimental domains: the light-dark damawith a random trajectory. B-LQR linearized the belief syste

and the planar grasping domain. dynamics about0, 0, 0.5).
) ) 1) Results and discussionfFigure 1 shows solutions to
A. The light-dark domain the light-dark problem domain found by B-LQR (the dotted

In the light-dark domain, a robot must localize its positiotine) and by direct transcription (the solid line). The B-
in the plane before approaching the goal. The robot's gbilit QR trajectory shows the integrated policy assuming that th
to localize itself depends upon the amount of light presént assumed observation dynamics were always obtained. The
its actual position. Light varies as a quadratic functiortred direct transcription trajectory shows the initial plan fiou
horizontal coordinate. Depending upon the goal positibr, tbefore replanning. Most importantly, notice that even tiiou
initial robot position, and the configuration of the lighhet the B-LQR trajectory is based on a poor linearization of the
robot may need to move away from its ultimate goal in orddyelief dynamics, it performs surprisingly well (comparettwi
to localize itself. Figure 1 illustrates the configuratiohtiee the locally optimal direct transcription trajectory). Hewver,
light-dark domain used in our experiments. The goal pasitidt is clear that B-LQR is sub-optimal because whereas the
is at the origin, marked by ai in the figure. The intensity in locally optimal trajectory lingers in the minimum-noiseyien
the figure illustrates the magnitude of the light over thenpla atz, = 5, the B-LQR trajectory overshoots past the minimum
The robot’s initial position is unknown. noise point tox, = 6.

The underlying state space is the plane,c R2. The Figure 2 illustrates the behavior of the replanning periedm
robot is modeled as a first-order system such that roldm¢ Algorithm 1. The dotted line shows the mean of the
velocity is determined by the control actions,c R?. The belief space trajectory that was found on the first planning
underlying system dynamics are linear with zero processenoistep. The solid line shows the actual trajectory. Whereas the
f(zy,us) = x¢ + u. The observation function is identity, system expected that it began executionzat= (2,2), it



Fig. 2. Comparison of the true robot trajectory (solid lineplahe mean of Fig. 4. Trajectory found using direct transcription for theer-grasp domain.

the belief trajectory that was initially planned by diredrtscription (dotted The dotted line denotes the mean of the belief state trajecidre ellipses

line). sample the covariance matrix at various points along thect@jg The half
circle on the left represents the puck. Just to the right efghck, the end-
effector is illustrated at the approach point.

not observed directly because the object position is unknow
The control actiony, € R?, specifies the end-effector velocity:

f(ZEt, Ut) = Tt =+ Ut.

In order to get a smooth measurement function that is not
discontinuous at the puck edges, the puck was modeled using
a symmetric squashing function about the origin. The result
Fig. 3. Laser-grasp domain. A range-finding laser (the dasiheji points Was roughly circular with a “radius” of approximately65.
out from the robot end effector. The objective is to move the-effiector The measurement gradieKit, was zero outside of that radius.
tc%rﬁlgl?rlgaciz?t in front of the puck on the left (the manipulaapproach - gtate dependent noise was defined to be large when the laser
' scan line was outside the radius of the puck (modeling an
unknown and noisy background). The noise function also in-
actually began execution at = (2.5,0). As a result of this corporated a low-amplitude quadratic abayt= 5 modeling
confusion, it initially took actions consistent with itsitial @ Sensor with maximum measurement accuradyuatits away
belief. However, as it moved into the light, it quickly cacted from the target. The belief space was modeled as a non-
its misperception. After reaching the point of maximum tighSOtropic Gaussian in the plané: = (m,s) € R? x R°.
intensity, the system subsequently followed a nearly ghitai The parameterization of covariance R® rather thanR*

line toward the goal. is a result of incorporating the symmetry of the covariance
_ matrix into the representation. The cost function was of the
B. Laser-grasp domain form of Equation 8 withQ = diag(10,10,10,10,10), R =

In the laser-grasp domain, a planar robot manipulator mutig(10, 10), and A = diag(10000, 0,0, 10000) (denoting no
locate and approach a round puck as illustrated in Figure @eference for covariance in one direction over another).
The robot manipulator position is known, but the puck positi  2) Results and discussiotEigure 4 shows a representative
is unknown. The robot locates the puck using a range-boupl&n found by direct transcription that moves the end-édiec
laser range finder that points out from the end-effectorgkn along the dotted line from its starting location in the upper
line. The end-effector always points horizontally as iadkd. right to the goal position in front of the puck (The geometry
In order to solve the task, the manipulator must move back aofithe experiment roughly follows Figure 3). The initial tadl
forth in front of the puck so that the laser (the laser is akvatate wa$, = (9,5,5,0,5). The ellipses in Figure 4 illustrate
switched on) detects the puck location and then move to ttiee planned trajectory of the Gaussian. First, notice that t
grasp approach point. The robot is controlled by specifyirgystem plans to move the laser in front of the puck so that it
Cartesian end-effector velocities. may begin to localize it. Covariance does not change urdil th

1) Setup:The underlying state space,c R?, denotes the end-effector is actually in front of the puck. Also, notid¢et
position of the manipulator relative to an “approach pointthe plan lingers in front of the puck near the optimal sensor
defined directly in front of the object. Although the endrange. During this time, the trajectory makes short jumps up
effector position is assumed to be known completely, sgtednd down, apparently “scanning” the puck. Finally, as time
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Fig. 5. Planned belief trajectory as a function of time stelpe Two black
lines denote the mean of the belief. The three gray lines dehetelements of
covariance. Notice that as the plan is “scanning” the puiferént elements
of covariance change in alternation.

Fig. 6. Comparison between the initially planned traject{the gray line)
and the actual trajectory (the black line).

approaches the planning horizon, the end-effector movies of
to the approach point. Figure 5 provides a more in-depty
look at what is going on while the plan scans the puck.

VIl. CONCLUSION

This paper explores the application of underactuated plan-
ning and control approaches to the belief space planning
problem. Belief state dynamics are underactuated because
the number of controlled dimensions (the parameters of a
probability distribution) exceeds the number of indepernide
control inputs. As a result, the dynamics are constrained in
a way that can make planning difficult. Our contribution
is to recast the belief space planning problem in such a
way that conventional planning and control techniques are
applicable. As a result, we are able to find belief space
policies using linear quadratic regulation (LQR) and ltcal
optimal belief space trajectories using direct transriptWe
provide theoretical results characterizing the effectass of
a plan-and-replan strategy. Finally, we show that the agpgro
produces interesting and relevant behaviors on a simpkpgra
problem where it is necessary to acquire information before
acting.
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