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Abstract

Conic optimization, or cone programming, is a subfield of convex optimization that in-
cludes linear, second-order cone, and semidefinite programming as special cases. While
conic optimization problems arise in a diverse set of fields (including machine learning,
robotics, and finance), efficiently solving them remains an active area of research. De-
veloping methods that detect and exploit useful structure—such as symmetry, sparsity,
or degeneracy—is one research topic. Such methods include facial and symmetry re-
duction, which have been successful in several applications, often reducing solve time
by orders of magnitude. Nevertheless, theoretical and practical barriers preclude their
general purpose use: to our knowledge, no solver uses facial or symmetry reduction
as an automatic preprocessing step. This thesis addresses some of these barriers in
three parts: the first develops more practical facial reduction techniques, the second
proposes a more powerful and computationally efficient generalization of symmetry
reduction (which we call Jordan reduction), and the third specializes techniques to con-
vex relaxations of polynomial optimization problems. Throughout, we place emphasis
on semidefinite programs and, more generally, optimization problems over symmetric
cones. We also present computational results.
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Preface

Conic optimization, or cone programming, is a subfield of convex optimization that in-
cludes linear, second-order cone, and semidefinite programming as special cases. While
conic optimization problems arise in a diverse set of fields (including machine learning,
robotics, and finance), efficiently solving them remains an active area of research. One
research topic—the topic of this thesis—is detecting and exploiting useful structure
such as symmetry, sparsity, or degeneracy. This makes problems easier to solve, often
reducing solve time by orders of magnitude. Indeed, without structure exploitation,
some problems may be impossible to solve due to memory and time constraints.

Towards giving a concrete example of structure, consider polynomial interpolation
with nonnegativity constraints, i.e., consider the problem of finding a vector of coeffi-
cients c ∈ Rd+1 such that the polynomial

f(x) = c0 + c1x+ c2x
2 + · · ·+ cdx

d

satisfies f(x) ≥ 0 for all x ∈ R and f(xi) = yi for a given set of points

(x1, y1), (x2, y2), . . . , (xN , yN ).

In the context of data fitting, nonnegativity of f is desired if yi represents some nonneg-
ative physical quantity (e.g., energy or power). This interpolation problem also arises in
robot path planning [43], where nonnegativity of f(x) represents a collision avoidance
constraint and the data (xi, yi) represents a set of way points.

It turns out that finding such a polynomial f is a conic optimization problem over the
cone of polynomials that are nonnegative. For this problem, useful structure includes
the presence of symmetry or the presence of zeros in the data (Figure 1). In these cases,
one can restrict the problem to a special subset of nonnegative polynomials in advance
of solving, yielding a new problem of reduced dimension. Specifically, if the data is
symmetric about the y-axis, one can restrict to even functions, i.e., to polynomials that
satisfy f(x) = f(−x). If the data contains a zero, i.e., a point (xi, yi) with yi = 0,
one can restrict to nonnegative polynomials that have (x − xi)2 as a factor, i.e., to

13
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Figure 1: Useful structure in nonnegative polynomial interpolation, a conic optimiza-
tion problem over the cone of nonnegative polynomials.

polynomials that equal (x− xi)2g(x) for some g(x) ≥ 0.
Exploiting zeros and symmetry in nonnegative polynomial interpolation are special

cases of two general methods: facial reduction [46, 20, 102] and symmetry reduction
[59, 134, 37]. These methods simplify structured conic optimization problems arising in
many areas, including graph theory [144, 39, 146, 23, 6], control of differential equations
[141, 36, 34, 9], matrix completion [81, 47], distance geometry [2, 27], coding theory
[82], and polynomial optimization [139, 106, 59]. For instance, they are fruitfully ap-
plied for problems involving graphs with nontrivial automorphisms (i.e., permutations
of the node set that preserve edges and nonedges) and control of differential equations
with symmetries or multiple equilibria (Figure 2). Despite their broad success, how-
ever, facial and symmetry reduction are not automated preprocessing steps taken by
any publicly available solver, at least to our knowledge. In fact, both methods face sig-
nificant theoretical and practical barriers precluding such automated use. This thesis
attacks these barriers.

To explain in more detail, we first overview the high-level geometric picture of
symmetry and facial reduction, which is simple despite considerable mathematical so-
phistication under the hood. We then summarize the benefits of these methods (which
go beyond problem size reduction) and the challenges users of these methods face. We
highlight certain limitations of current facial and symmetry reduction algorithms. Fi-
nally, we outline how chapters of this thesis address these challenges and remove these
limitations.
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(a) A graph with nontriv-
ial automorphisms.

−5 0 5
−5

0

5

x

ẋ
(b) Phase diagram of a symmetric differen-
tial equation with multiple equilibria.

Figure 2: Useful structure for conic optimization problems arising in graph theory
and control of differential equations.

Symmetry and facial reduction

To explain the geometric picture behind symmetry and facial reduction, we must first fix
the form of our optimization problem. Therefore, consider the following cone program
in decision variable x ∈ Rn

minimize cTx

subject to Ax = b,

x ∈ K,
(1)

where Ax = b are linear equations, c ∈ Rn is a fixed cost vector, and K ⊆ Rn is a special
type of set called a convex cone. Such cones include the nonnegative orthant, the set of
positive semidefinite matrices and, as just mentioned, the set of degree d polynomials
that are nonnegative:

{c ∈ Rd+1 : c0 +
d∑
i=1

cix
i ≥ 0 ∀x ∈ R}.

Given a cone program, facial and symmetry reduction perform two steps:

1. find a subspace S ⊆ Rn containing solutions;
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S
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(a) Facial reduction

A ∩K

x?

Px?

x
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S
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(b) Symmetry reduction

Figure 3: Facial reduction finds a subspace S containing A := {x ∈ Rn : Ax = b}
that intersects the cone K on the boundary. Symmetry reduction takes S equal to the
range of a projection matrix P ∈ Rn×n that maps each feasible point x (resp., optimal
point x?) to a feasible point Px (resp., optimal point Px?).

2. write K ∩ S as a linear transformation of a simpler cone C ⊆ Rm

K ∩ S = {Φz : z ∈ C},

where m < n and Φ ∈ Rn×m. (We will make “simpler” precise in later chapters.)

Completing these steps allows one to instead solve

minimize (ΦT c)T z
subject to AΦz = b,

z ∈ C,

a cone program in decision variable z ∈ Rm formulated over a lower dimensional vector
space Rm. Further, from a solution z? of this cone program, one obtains a solution x?
to the original (1) simply by taking x? = Φz?.

Facial and symmetry reduction differ in how they identify S. Figure 3 illustrates the
different techniques. Here, we see that facial reduction finds S by exploiting a certain
form of geometric degeneracy. Specifically, it exploits an empty intersection between
A := {x ∈ Rn : Ax = b} and the interior of the cone K—a so-called failure of Slater’s
condition. Symmetry reduction, on the other hand, takes S equal to the range of a
projection matrix P ∈ Rn×n that maps feasible points to feasible points and optimal
points to optimal points. It constructs P from joint symmetries of the constraint sets
A and K and the objective function cTx.

Both facial and symmetry reduction write K ∩ S as a linear transformation of the
cone C using special structure of S and K. In facial reduction, the intersection of S
with K is a special subset of K called a face. (Hence, the name facial reduction.) In
symmetry reduction, S is the fixed-point subspace of a group action, a mathematical
object that formalizes notions of symmetry.
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Example: Non-negative interpolating polynomials

For the interested reader, we concretely illustrate the steps taken by facial and symmetry
reduction on the aforementioned nonnegative polynomial interpolation problem. This
(somewhat lengthy) example can be skipped, as no other material depends on it.

Interpolation via cone programming We first illustrate that nonnegative polynomial
interpolation is a cone program. To begin, recall that a polynomial f(x) interpolates a
set

D = {(x1, y1), (x2, y2), . . . , (xN , yN )} ⊂ R2

if f(xi) = yi for each (xi, yi) ∈ D and that a polynomial is nonnegative if f(x) ≥ 0 for
all x ∈ R. For a fixed-degree bound d, finding a nonnegative interpolating polynomial
is a cone program over coefficient vectors. To see this, let fu(x) denote the univariate
polynomial with coefficient vector u ∈ Rd+1, i.e., let

fu(x) := u0 + u1x+ u2x
2 + · · ·+ udx

d.

Finally, let Kd ⊆ Rd+1 and Ad ⊆ Rd+1 denote the polynomials satisfying the nonnega-
tivity and interpolation constraints, respectively:

Kd := {u ∈ Rd+1 : fu(x) ≥ 0 ∀x ∈ R}, Ad :=
{
u ∈ Rd+1 : fu(xi) = yi ∀(xi, yi) ∈ D

}
.

Clearly fu(x) is a nonnegative polynomial that interpolates D if and only if u ∈ Ad∩Kd.
Hence, we obtain a cone program in variable u ∈ Rd+1

minimize cTu

subject to u ∈ Ad ∩ Kd,
(2)

where the objective cTu is any linear function of the coefficient vector u, e.g., the value
of fu(x) or one of its derivatives at some distinguished point (say, x = 0).

Exploiting zeros (facial reduction) Suppose the data set D contains a real zero, i.e.,
suppose (a, 0) ∈ D for some a ∈ R. Then the subspace (indeed, hyperplane)

S =
{
u ∈ Rd+1 : fu(a) = 0

}
contains the set of interpolating polynomials Ad. Further, any nonnegative polynomial
in S necessarily factors as (x− a)2h(x) since the real roots of nonnegative polynomials
are repeated. In addition, the factor h(x) must be nonnegative by continuity. It follows
that

Kd ∩ S =
{
u ∈ Rd+1 : fu(x) = (x− a)2fv(x), for v ∈ Kd−2

}
,



18 PREFACE

i.e., Kd ∩ S is the cone Kd−2 transformed by multiplication with the fixed polynomial
(x − a)2. Note that this is a linear transformation of coefficients. For d = 4, we have
explicitly that

K4 ∩ S = {Φv : v ∈ K2} , Φ =


a2 0 0
−2a a2 0

1 −2a a2

0 1 −2a
0 0 1

 , (3)

where (1, x, x2) labels the columns of Φ and (1, x, x2, x3, x4) labels the rows.

Exploiting symmetry (symmetry reduction) Suppose that the data D is symmetric about
the y-axis, i.e., suppose that (−xi, yi) ∈ D whenever (xi, yi) ∈ D. Under this assump-
tion, existence of nonnegative interpolating polynomials implies existence of such poly-
nomials that are also even functions. In other words, if Ad ∩ Kd is nonempty, so is
Ad ∩ Kd ∩ S, where

S := {u ∈ Rd+1 : fu(x) = fu(−x)}.

To see this, note that fu(x) interpolatesD if and only if its reflection fu(−x) interpolates
D. Further, any convex combination of these polynomials interpolates D, including the
even polynomial

fevenu (x) := 1
2 (fu(−x) + fu(x)) .

Since fevenu (x) ≥ 0 when fu(x) ≥ 0, the claim follows. As an aside, note the linear map
from fu to fevenu is idempotent, i.e., (fevenu )even = fevenu ; hence, it is a projection map.

Under an additional assumption on the cost vector c, the subspace S will intersect
the set of optimal solutions. Specifically, let ueven denote the coefficients of fevenu and
suppose that cTueven = cTu for all u. Then clearly

inf{cTu : u ∈ Ad ∩ Kd} = inf{cTu : u ∈ Ad ∩ Kd ∩ S}

since for all u ∈ Ad ∩ Kd, the point ueven ∈ Ad ∩ Kd ∩ S has equal cost.
Finally, Kd ∩ S is a linear transformation of K̂d/2 := {u ∈ Rd/2+1 : fu(x) ≥ 0 ∀x ≥

0}—the cone of degree d/2 polynomials nonnegative on the nonnegative real line. Pre-
cisely,

Kd ∩ S = {u ∈ Rd+1 : fu(x) = fv(x2), for some v ∈ K̂d/2},

a linear transformation of K̂d/2 induced by (1, x, x2, . . . , xd/2) 7→ (1, x2, x4, . . . , xd). For
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d = 4, we have explicitly that

K4 ∩ S =
{

Φv : v ∈ K̂2
}
, Φ =


1 0 0
0 0 0
0 1 0
0 0 0
0 0 1

 ,

where (1, x, x2) labels the columns of Φ and (1, x, x2, x3, x4) labels the rows.

Benefits of reduction

Problem size reduction The obvious benefit of facial and symmetry reduction is the
transformation of a given problem into a smaller one. This can reduce total solve
time and memory requirements of solution algorithms. Problem size reduction is also
theoretically useful. For instance, it may provide analytic solutions, illuminate the
asymptotic behavior of a problem family (e.g., [117]), or clarify the relationship between
different formulations (e.g., [123]).

Improved conditioning Facial and symmetry reduction also improve accuracy. One
reason for this is simple: smaller problems can lead to more accurate floating point
computation. Another reason is less obvious: both facial and symmetry reduction can
improve the intrinsic conditioning of a cone program. Specifically, they can lower its
singularity degree [130], a quantity that bounds the difference between forward error
(distance to solutions) and backward error (constraint violation). Note this latter er-
ror is what a solver can easily compute, whereas the former—which may be hard or
impossible to compute—is the actual measure of solution quality.

Pathology removal (facial reduction) In general, cone programs can suffer a pathology:
certain sufficient conditions for optimality, unboundedness, and infeasibility can be si-
multaneously unsatisfiable. Almost all solvers directly attempt to satisfy one of these
conditions and will fail in this case. Facial reduction can remove this pathology and
hence this source of failure. Interestingly, symmetry reduction doesn’t remove patholo-
gies for reasons explained in Chapter 1.5.5.

Challenges of reduction

Cost Finding a subspace S ⊆ Rn that intersects the set of solutions may carry some
computational cost, as may finding a linear transformation Φ ∈ Rn×m and cone C ⊆ Rm

satisfying

K ∩ S = {Φz : z ∈ C}.
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Hence, one must trade off these computational costs with the aforementioned bene-
fits they afford. If this trade-off is not managed appropriately, facial and symmetry
reduction can actually increase total solve time.

Sparsity Reformulating a cone program using facial or symmetry reduction can destroy
problem sparsity. Indeed, if K ∩ S = {Φz : z ∈ C}, the reformulation takes the form

minimize (ΦT c)T z
subject to AΦz = b,

z ∈ C,

where (A, b, c) is the original problem data. Note that if the matrix A and vector c
are sparse, the compositions AΦ and (ΦT c) can be dense depending on Φ, increasing
the total number of nonzeros in the problem data. In practice, this becomes an issue
when facial and symmetry reduction achieve only a moderate decrease in dimension
(i.e., the matrix Φ is nearly square). Consider, for instance, the matrix Φ from (3) in
the polynomial interpolation example:

Φ =


a2 0 0
−2a a2 0

1 −2a a2

0 1 −2a
0 0 1

 .

Composing the following sparse matrix A with Φ yields a dense matrix AΦ

A =
[
0 1 1 0 0
0 0 1 1 0

]
, AΦ =

[
1− 2a a2 − 2 a a2

1 1− 2a a2 − 2a

]
.

While this example is too small to be compelling, it illustrates the issue, which can be
significant in practice.

Sensitivity Due to floating-point error, the identified subspace S may only approxi-
mately contain solutions. As a consequence, solving a reformulation over this subspace
may not solve the given cone program. This issue is particularly salient when the given
problem is ill posed, meaning its optimal value is infinitely sensitive to perturbations
of its problem data. Unfortunately, facial reduction finds reformulations only if the
problem is ill posed.

Dual recovery (facial reduction) A solution x of the given cone program is easily ob-
tained from a solution z of the reformulation: we simply take x = Φz. If one uses
facial reduction to construct the reformulation, the same is not true for the dual prob-
lem. Unfortunately, one cannot ignore this issue and incorporate facial reduction into a
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primal-dual solver. Such solvers must return solutions to a given cone program and its
dual; indeed, the dual may be the problem that is of actual interest to a user. Interest-
ingly, this is not an issue for symmetry reduction for reasons discussed in Chapter 1.5.5.

Algorithmic limitations

In additional to the aforementioned challenges (which are mostly practical), symmetry
reduction and facial reduction also have certain algorithmic limitations.

Symmetry reduction

There actually is no known algorithm for finding a subspace S of minimum dimen-
sion within the symmetry reduction framework. Existing algorithms may find larger
subspaces or are completely tailored to specific problem families. For semidefinite pro-
grams, the same is true for the related *-algebra reduction framework (e.g., [37]).

Facial reduction

Unlike symmetry reduction, there are algorithms [20, 102, 138] for finding a subspace of
minimum dimension within the facial reduction framework. (This subspace is the linear
span of the so-called minimal face.) Nevertheless, facial reduction has an algorithmic
limitation of a different flavor. To explain, note that facial reduction serves two main
and distinct purposes: to reduce the dimension of a problem and to remove pathologies
if they exist. There is no algorithm, however, that does facial reduction only if a
given program is pathological. Such an algorithm would avoid the challenges of facial
reduction unless the given problem is otherwise unsolvable.

Outline

This thesis addresses the aforementioned challenges and limitations of symmetry and
facial reduction. In addition to the following outline, we also include tables summarizing
key results. Table 1 indicates the challenges addressed by each chapter. Tables 2-3
summarize the features of a new facial reduction algorithm (developed in Chapter 4) and
a new reduction methodology (called Jordan reduction) that address the aforementioned
algorithmic limitations.

A detailed outline now follows. The opening chapter provides technical background,
and the remaining chapters present original research in three parts. Part I concerns
facial reduction, Part II concerns Jordan reduction, and Part III specializes techniques
to polynomial optimization.
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method cost sparsity accuracy dual soln.
recovery

Facial red. Ch. 2, 4 Ch. 2 Ch. 2 Ch. 3, 4
Jordan red. Ch. 7 Ch. 6, 7 Ch. 7 N/A

Table 1: Challenges of reduction considered by indicated chapter.

Facial red.
algorithm

termination
criterion

output if
no reduction

dual solution
recovery

[20, 102, 138] Slater’s condition
holds nothing sometimes

possible
via self-dual
embedding
(Ch. 4)

instance not
pathological

optimal
primal-dual
solutions

always possible
if duality gap

is zero

Table 2: Comparison of facial reduction algorithms when applied to feasible problems.

method type of
subspace S

alg. for
minimal S

removes
pathologies

dual
recovery

Facial
reduction

hyperplane
exposing face yes yes sometimes

possible

Symmetry
reduction

range of
projection
from groups

no no always
possible

Jordan red.
(Ch. 5)

range of
projection yes no always

possible

Table 3: Type of subspace found by method; existence of an algorithm for finding a
minimal subspace within framework of method; whether or not pathological instances
remain pathological if method is used; if recovery of solutions to original dual program
is possible.
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Chapter 1: Background

This chapter provides background material for the ensuing chapters. It overviews cone
programming, facial reduction, and symmetry reduction in full detail. It also reviews
Euclidean Jordan algebra theory, which provides the machinery needed for Part II.

Part I: Facial reduction approaches

Part I addresses the challenges encountered in facial reduction which, as mentioned,
relate to cost, sparsity, sensitivity, and dual solution recovery. We also give a new facial
reduction algorithm tailored only to pathological instances, correcting the mentioned
limitation of current facial reduction algorithms.

Chapter 2: Partial facial reduction

We show that introducing a user-specified approximation of the cone K overcomes the
cost, accuracy, and sparsity issues of facial reduction. This allows one to trade-off the
cost of facial reduction with its benefits. For polyhedral approximations, it allows one
to find faces in exact arithmetic. For a particular type of approximation, it allows one
to find provably sparse reformulations. While the use of approximations can decrease
the power of facial reduction, several examples illustrate practical effectiveness of the
technique. Results of this chapter appear in [105].

Chapter 3: Dual solution recovery

Suppose one solves a cone program with a primal-dual solver after facial reduction. In
this chapter, we give a simple algorithm for recovering solutions to the original dual.
Note that simple recovery is sometimes impossible, e.g., when facial reduction changes
the dual optimal value. Hence, this algorithm necessarily fails in some cases. We give
sufficient conditions for successful recovery. Results of this chapter appear in [105].

Chapter 4: Self-dual embeddings and facial reduction

In this chapter, we develop a procedure that does facial reduction only if a given in-
stance is pathological. This represents an extreme of the cost-benefit trade-off: the
costs of facial reduction are only paid when removing pathologies is actually needed to
solve the given problem. We build this procedure upon the self-dual embedding, the ba-
sis of widely-used solvers. As shown, extremely minor changes to solvers like SeDuMi
[128] or MOSEK [94] implement the procedure and only modify solver execution on
pathological instances. Nevertheless, provable correctness of such implementations re-
lies on an assumption rarely met in practice due to floating-point error and asymptotic
convergence of numerical algorithms. (Specifically, we assume that the solver tracks the
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central path precisely to its limit point.) Numerical experiments illustrate that failure
of this assumption can severely degrade performance. Results from this chapter appear
in [109] and are partially duplicated in the thesis of co-author Henrik Friberg [57].

Part II: Jordan reduction

The next part of this thesis develops Jordan reduction, a generalization of symmetry
reduction that is applicable to any optimization problem formulated over a symmetric
cone. Problems of this type include linear programs, second-order cone programs and
semidefinite programs.

Chapter 5: Minimal subspaces in Jordan reduction

This chapter contains methods for finding subspaces within the Jordan reduction frame-
work. Specifically, we show if an orthogonal projection satisfies key invariance proper-
ties, one can reformulate a given cone program over its range without changing primal or
dual optimal values. We also show the range intersected with the cone is isomorphic to a
lower-dimensional symmetric cone—namely, the cone-of-squares of a Euclidean Jordan
algebra. We then give a simple algorithm for minimizing the rank of this projection
(in polynomial time) and hence the dimension of the identified subspace S. Finally,
we prove minimizing the dimension of S also optimizes a decomposition of K ∩ S into
irreducible symmetric cones. Some results of this chapter appear in [108].

Chapter 6: Constructing isomorphisms between Euclidean Jordan algebras

This chapter provides an algorithm for writing K ∩ S as a linear transformation of
a “simpler” cone C within the Jordan reduction framework, i.e., when S is a subspace
found using techniques from Chapter 5 (and also Chapter 7). Indeed, this chapter solves
a more general problem: constructing isomorphisms between two Euclidean Jordan
algebras given a basis for each algebra. Under natural conditions, the constructed
isomorphism leads to sparse reformulations over C.

Chapter 7: Combinatorial variations and computational results

This chapter gives combinatorial versions of Chapter 5 techniques that only find sub-
spaces with appealing sparsity properties. Specifically, we restrict to subspaces that
have bases with efficient representations based on transitive relations and partitions.
This leads to algorithms based on partition refinement and transitive closures. As we
show, the structure of these bases also allows the Chapter 6 algorithm to find a sparse
transformation Φ between K∩S and the cone C. Results of this chapter appear in [108].
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Part III: Applications to polynomial optimization

Chapter 8: Reduction of sum-of-squares programs

An important class of semidefinite programs (SDPs) solve so-called sum-of-squares re-
laxations of polynomial optimization problems [15]. In this final chapter, we show
methods from Part I and Part II generalize and improve existing algorithms for simpli-
fying these SDPs. Some results of this chapter appear in [107, 106].
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Chapter 1

Background

We provide background material shared by multiple chapters, splitting it into six major
sections. The first section gives preliminaries results. The second overviews cone pro-
gramming. The third reviews facial reduction. The fourth reviews symmetry reduction
and the fifth related *-algebra techniques. Finally, the sixth overviews Euclidean Jor-
dan algebra theory. Some chapters only depend on a subset of this background material
as indicated in Table 1.1.

Chapters 2-4 Sections 1.1-1.3
Chapters 5-7 Sections 1.1-1.2, 1.4-1.6

Table 1.1: Background material for indicated chapters

� 1.1 Preliminaries

� 1.1.1 Inner product spaces

We let V denote a finite-dimensional vector space over R equipped with an inner product
〈·, ·〉 : V × V → R. For instance, V could denote Rn equipped with the dot product
xT y. It could also denote Sn, the vector space of n × n symmetric matrices equipped
with the trace inner product TrXY . Note that every linear functional ` : V → R equals
x 7→ 〈s`, x〉 for some fixed s` ∈ V. Hence, the vector space of all linear functionals, i.e.,
the dual space V∗, can be identified with V.

� 1.1.2 Affine sets

A set A ⊆ V is affine if it contains each line that passes between two points in A, i.e.,
if for all x, y ∈ A,

A ⊇ {tx+ (1− t)y : t ∈ R} .

Any affine set equals the solution set of linear equations. Further, any nonempty affine
set equals a linear subspace shifted by a point, i.e., if A is nonempty and affine, then

27
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A = {x0 + z : z ∈ L} for some x0 ∈ V and linear subspace L ⊆ V. Conversely, solution
sets of linear equations and shifted linear subspaces x0 + L are always affine.

� 1.1.3 Convex cones

A set C ⊆ V is convex if it contains each line segment that connects two points in C,
i.e., if for all x, y ∈ C,

C ⊇ {tx+ (1− t)y : t ∈ [0, 1]} .

A set K ⊆ V is a convex cone if it is convex and closed under positive scaling, i.e., if for
all x ∈ K,

K ⊇ {λx : λ > 0} .

Examples of convex cones include the nonnegative orthant Rn+, the Lorentz cone Qn+1,
and the cone of n× n positive semidefinite (psd) matrices Sn+:

• Rn+ := {x ∈ Rn : xi ≥ 0},

• Qn+1 := {(x0, x) ∈ R× Rn : x0 ≥ ‖x‖2},

• Sn+ :=
{
X ∈ Sn : zTXz ≥ 0 ∀z ∈ Rn

}
.

The dual cone K∗ of a convex cone K is the set {s ∈ V : 〈s, x〉 ≥ 0, ∀x ∈ K}. As
the name suggests, K∗ is a convex cone. If K is closed, then (K∗)∗ = K. Any linear
subspace L is also a convex cone with dual cone equal to its orthogonal complement
L⊥ := {s ∈ V : 〈s, x〉 = 0, ∀x ∈ L}. Finally, a cone is self dual if K = K∗. The cones
Rn+, Qn+1 and Sn+ are all self dual.

� 1.1.4 Symmetric cones

A convex cone K is homogeneous if for all pairs (x, y) in the interior of K × K there
exists an invertible linear map T : V → V, depending on (x, y), with the following two
properties:

Tx = y, {Tx : x ∈ K} = K.

A cone is symmetric if it is self dual and homogeneous. Note that the Cartesian product
K1 ×K2 of two symmetric cones K1 and K2 is symmetric. If a symmetric cone doesn’t
equal a Cartesian product of two symmetric cones (up-to invertible linear transforma-
tion), it is irreducible.

Though the class of symmetric cones may seem esoteric, it includes the nonnegative
orthant Rn+, the Lorentz cone Qn+1, and the psd cone Sn+. Both the Lorentz cone
Qn+1 and the psd cone Sn+ are irreducible. For n ≥ 2, the nonnegative orthant Rn+ is
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not irreducible since it equals the Cartesian product R1
+ × · · · × R1

+. Symmetric cones
have appealing computational properties. For instance, one can check membership
in any symmetric cone using linear algebra. One can also solve optimization problems
formulated over symmetric cones efficiently. Indeed, there is a unified theory for solving
these optimization problems that is expressed in the language of Euclidean Jordan
algebras [122, 54, 3]. We review these algebras in Section 1.6.

� 1.2 Cone programs

A cone program is the problem of minimizing a linear function over the intersection
of an affine set with a convex cone K ⊆ V. If we let x0 + L denote the affine set
{x0 + z : z ∈ L}, where L ⊆ V is a linear subspace and x0 ∈ V, a cone program takes
the form

P : minimize 〈c, x〉
subject to x ∈ (x0 + L) ∩ K, (1.1)

where c ∈ V is a fixed cost vector and x ∈ V is the decision variable. A point x ∈ V is
feasible if x ∈ (x0 +L)∩K. A feasible point x is optimal if it attains the optimal value
θ, i.e., if 〈c, x〉 = θ, where θ ∈ Rn ∪ {±∞} denotes the infimum

θ := inf {〈c, x〉 : x ∈ (x0 + L) ∩ K} .

If the feasible set (x0 +L)∩K is empty (θ = +∞), then one calls P infeasible. Similarly,
if θ = −∞, then one calls P unbounded. Note that for some cone programs, no point
attains the optimal value θ even when it is finite.

� 1.2.1 Sufficient conditions for optimality, infeasibility, and unboundedness

How does one show that a feasible point is optimal? Similarly, how does one show that
a cone program is infeasible or unbounded? For cone programs, succinct sufficient con-
ditions for optimality, infeasibility, and unboundedness exist. They are also necessary
if K is polyhedral, or if certain regularity conditions hold (see, e.g., Section 1.3.3). We
state them next in terms of the orthogonal complement L⊥ ⊆ V and the dual cone
K∗ ⊆ V.

Optimality

A point x ∈ V is optimal if for some dual variable s ∈ V

x ∈ (x0 + L) ∩ K, s ∈ (c+ L⊥) ∩ K∗, 〈s, x〉 = 0. (1.2)
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One calls the first condition primal feasibility, the second condition dual feasibility and
the third condition complementary slackness.

Infeasibility

The cone program P is infeasible if there is a hyperplane {x ∈ V : 〈s, x〉 = 0} strictly
separating K from x0 + L, or, equivalently, if there is s ∈ V satisfying

〈x0, s〉 < 0, s ∈ L⊥, s ∈ K∗. (1.3)

By the first two conditions, 〈s, x〉 < 0 for all x ∈ x0 + L and by the third 〈s, x〉 ≥ 0 for
all x ∈ K, proving (x0 + L) ∩ K is empty.

Unboundedness

The cone program P is unbounded if it is feasible and has an improving ray xr ∈ V,
i.e., a point xr satisfying

〈c, xr〉 < 0, xr ∈ L, xr ∈ K. (1.4)

Indeed, for any feasible x̂ and α ≥ 0, the point x̂+αxr is feasible and has cost 〈c, x+αxr〉
that tends to −∞ as α tends to ∞.

� 1.2.2 The dual problem

By symmetry, the optimality conditions (1.2) for the cone program P are also optimality
conditions for the cone program

D : minimize 〈x0, s〉
subject to s ∈ (c+ L⊥) ∩ K∗. (1.5)

Together, one calls P and D a primal-dual pair and refers to P as the primal problem
and D as the dual problem of P. From (1.3)-(1.4), we see that strictly separating
hyperplanes for P are improving rays for D and vice versa.

� 1.2.3 Alternative forms

Representations of the primal

The affine set x0 +L of the cone program P is usually given using one of two represen-
tations. The first is an implicit representation

x0 + L = {x ∈ V : Ax = b},
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where A : V → Rm is a linear map with kernel equal to L and b ∈ Rm satisfies b = Ax0.
The other is a parametric representation in parameter z ∈ Rn, given by

x0 + L = {x0 +Bz : z ∈ Rn},

where B : Rn → V is a linear map with range equal to L. Replacing x0 + L with each
of these representations gives implicit and parametric forms of P:

minimize 〈c, x〉
subject to Ax = b

x ∈ K,
(implicit),

minimize 〈c, x〉
subject to x = x0 +Bz

(x, z) ∈ K × Rn.
(parametric),

Induced representation of dual

The kernel of any linear map T and the range of its adjoint T ∗ are complementary
orthogonal subspaces, i.e., rangeT ∗ = (nullT )⊥. For this reason, a parametric (resp.
implicit) representation of x0 +L induces an implicit (resp. parametric) representation
of c+L⊥—the affine set of the dual problem D. Two forms of D corresponding to these
induced representations are

minimize 〈x0, s〉
subject to s = c+A∗u,

(s, u) ∈ K∗ × Rm,
(parametric)

minimize 〈x0, s〉
subject to B∗s = B∗c

s ∈ K∗,
(implicit),

where B∗ : V → R and A∗ : V → R are the adjoint maps of A and B.

Min-max representation and weak duality

One can also express P and D as a pair of minimization and maximization problems,
where the dual optimal value lower bounds the primal optimal value—an inequality
called weak duality. One obtains such a primal-dual pair from the implicit form of P
and the parametric form of D by modifying the latter’s objective function. Indeed, for
any feasible point s ∈ V, the objective 〈x0, s〉 of D satisfies

〈x0, s〉 = 〈x0, c+A∗u〉 = 〈x0, c〉+ 〈Ax0, u〉 = 〈x0, c〉+ 〈b, u〉.

Removing the constant term 〈x0, c〉 makes the objective linear without changing the
feasible or optimal set. Further, substituting u with −y converts D into a maximization
problem. Together, these changes yield a primal-dual pair with the aforementioned
properties:

minimize 〈c, x〉
subject to Ax = b,

x ∈ K

maximize 〈b, y〉
subject to s = c−A∗y

(s, y) ∈ K∗ × Rm.
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Indeed, for this pair, the weak duality inequality 〈b, y〉 ≤ 〈c, x〉 holds for feasible points,
i.e.,

0 ≤ 〈s, x〉 = 〈c−A∗y, x〉 = 〈c, x〉 − 〈y,Ax〉 = 〈c, x〉 − 〈y, b〉,

and it is tight, i.e., 〈b, y〉 = 〈c, x〉, if and only if 〈s, x〉 = 0.

� 1.2.4 Pathological instances

We say a cone program is pathological if none of the following three objects exist: a
solution to the optimality conditions, a feasible point paired with an improving ray, or
a strictly separating hyperplane, i.e., a dual improving ray. As we saw in Section 1.2.1,
these three objects demonstrate optimality of a point, or unboundedness/infeasibility of
the cone program. Linear programs are never pathological: exactly one of these objects
always exists. The same is not true for general cone programs.

Failure of the optimality conditions: duality gaps and unattainment

Suppose the optimal value of a cone program is finite. Then the cone program is
pathological if and only if the optimality conditions fail to have a solution. This failure
occurs for three (nonexclusive) reasons. The first is that the cone program itself has an
unattained optimal value. The next is that the dual has an unattained optimal value.
The third is that the primal and dual optimal values are different, i.e., there is positive
duality gap. The next examples illustrate both unattainment and duality gaps using
semidefinite programs.

Example 1.2.1 (Unattained optimal values). Consider the semidefinite program in
decision variable x = (x1, x2):

minimize x1

subject to
[
x1 1
1 x2

]
∈ S2

+.
(1.6)

A point x is feasible if and only if the one-by-one principal minors x1 and x2 and the
determinant x1x2 − 1 are all nonnegative. Hence, the optimal value of this SDP is

θ = inf {x1 : x1 ≥ 0, x2 ≥ 0, x1x2 ≥ 1} ,

which is finite (θ = 0) and unattained.

Example 1.2.2 (Positive dual gap). Consider the primal-dual pair of semidefinite
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programs

minimize TrCX
subject to TrAiX = bi ∀i ∈ {1, 2}

X ∈ S3
+,

maximize bT y

subject to S = C −
∑2
i=1 yiAi,

(S, y) ∈ S3
+ × R2,

where

C :=

1 0 0
0 0 0
0 0 0

 , A1 :=

1 0 0
0 0 1
0 1 0

 , A2 :=

0 0 0
0 1 0
0 0 0

 , b :=
[
1
0

]
.

The duality gap of this primal-dual pair equals one. Indeed, X is primal feasible only if
TrCX = 1, and (y, S) is dual feasible only if bT y = 0. Further, X = C and y = (0, 0)T
are primal-dual feasible points.

Failure of the infeasibility condition: weak infeasibility

Suppose a cone program has feasible set A ∩ K, where A ⊆ V is affine and K ⊆ V is a
convex cone. When A ∩K is empty, the cone program is pathological if and only if no
hyperplane strictly separates A from K. In this situation, we say the cone program is
weakly infeasible. The next example illustrates weak infeasibility of an SDP.

Example 1.2.3. Suppose a cone program has feasible set A ∩ K, where K is the psd
cone S2

+ and A is the affine set

A =
{[

t 1
1 0

]
: t ∈ R

}
.

The intersection A∩K is empty but no hyperplane strictly separates A from K, i.e., no
S ∈ Sn satisfies

TrSX < 0 ∀X ∈ A, TrSX ≥ 0 ∀X ∈ S2
+.

To see this, note that these separation conditions are equivalent to

S11 = 0, S12 < 0, S ∈ S2
+,

which are unsatisfiable since S11 = 0 and S ∈ S2
+ imply that S12 = 0.

Failure of the unboundedness condition: weak infeasibility of the dual

Suppose now that a cone program is unbounded. In this case it is pathological if
and only if it has no improving ray since a feasible point exists by the unboundedness
assumption. Equivalently, it is pathological if and only if its dual is weakly infeasible.
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� 1.2.5 Projected reformulations

Consider a primal-dual pair formulated over a linear transformation of a closed, convex
cone C ⊆ W:

PΦ : minimize 〈c, x〉
subject to x ∈ x0 + L,

x ∈ Φ · C,

DΦ : minimize 〈x0, s〉
subject to s ∈ c+ L⊥,

s ∈ (Φ · C)∗.

Here, Φ : W → V is an injective linear map and Φ · C := {Φz : z ∈ C} denotes the
image of C under Φ. Reformulating this primal-dual pair using only variables from W
is a goal of later chapters. We call reformulations over W projected reformulations.

We can always find a projected reformulation of the primal PΦ. Finding one for the
dual DΦ requires an additional assumption.

Assumption 1.2.1. The range of Φ contains x0 ∈ V, i.e., x0 = Φt0 for some t0 ∈ W.

Replacing x0 by any point in (x0 + L) ∩ range Φ does not change the primal-dual
solution sets. Hence, with this replacement, this assumption is satisfiable whenever
(x0 + L) ∩ range Φ is nonempty.

Projected primal Substituting x = Φz for z ∈ C and replacing the affine set x0 + L
with its inverse image under Φ yields the desired reformulation of PΦ:

minimize 〈Φ∗c, z〉
subject to z ∈ Φ−1(x0 + L),

z ∈ C,

where Φ−1(x0 + L) := {z : Φz ∈ x0 + L}. If z solves this problem, then Φz solves PΦ,
i.e., one recovers a solution to PΦ simply by evaluating Φ at z. We also have formulas
for Φ−1(x0 + L) under Assumption 1.2.1.

Lemma 1.2.1. Suppose that x0 = Φt0 for t0 ∈ W (Assumption 1.2.1). Then,

Φ−1(x0 + L) = t0 + Φ−1(L),

where, in addition, Φ−1(L) = Φ+ · (L ∩ range Φ).

Proof. The inclusion ⊇ is obvious. Suppose that z is in the inverse image, i.e., suppose
that Φz = Φt0 + r for r ∈ L. Then, r ∈ range Φ. Further,

z = Φ+Φz = Φ+(Φt0 + r) = t0 + Φ+r.

Since r ∈ range Φ, it holds that ΦΦ+r = r. Since r ∈ L, we conclude Φ+r ∈ Φ−1(L),
showing that z ∈ t0 + Φ−1(L).
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Under Assumption 1.2.1, the projected primal simplifies to

minimize 〈Φ∗c, z〉
subject to z ∈ t0 + Φ−1(L),

z ∈ C.

Partially projected dual To reformulate the dual, we let Φ+ : V → W denote the
pseudo-inverse of Φ, given by

Φ+ = (Φ∗Φ)−1Φ∗,

where Φ∗Φ is invertible since Φ is injective. Note that the orthogonal projection map
onto the range of Φ equals ΦΦ+ and the range of Φ equals that of (Φ+)∗. Consider now
the direct-sum decomposition of the dual variable s ∈ V induced by

V = (range Φ)⊕ (range Φ)⊥.

Using the equalities range(Φ+)∗ = range Φ and (range Φ)⊥ = null Φ∗, one can write this
as

s = (Φ+)∗y + w, Φ∗w = 0, (w, y) ∈ V ×W. (1.7)

Since (Φ · C)∗ = {s ∈ V : Φ∗s ∈ C∗} and Φ∗(Φ+)∗y = (Φ+Φ)∗y = (Φ+Φ)y = y, it follows
that

s ∈ (Φ · C)∗ ⇔ Φ∗s ∈ C∗ ⇔ y ∈ C∗.

This gives a partially projected dual reformulation that still includes a variable w ∈ V:

minimize 〈x0, (Φ+)∗y + w〉
subject to (Φ+)∗y + w ∈ c+ L⊥,

y ∈ C∗,Φ∗w = 0.

Note that if (y, w) solves this reformulation, then s = (Φ+)∗y + w solves DΦ by (1.7).

Fully projected dual Under the assumption x0 = Φt0 (Assumption 1.2.1), we can remove
the variable w from the partially projected dual. Indeed, if this assumption holds, the
objective function satisfies

〈x0, (Φ+)∗y + w〉 = 〈Φt0, (Φ+)∗y + w〉 = 〈t0,Φ∗(Φ+)∗y + Φ∗w〉 = 〈t0, y〉

since Φ∗w = 0 and Φ∗(Φ+)∗y = y. We can eliminate w ∈ (range Φ)⊥ from the affine
constraint by replacing c + L⊥ with its orthogonal projection onto the range of Φ.
Indeed, y satisfies the affine constraint for some w if and only if

(Φ+)∗y ∈ ΦΦ+ · (c+ L⊥).
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We now claim this projected affine constraint holds if and only if y ∈ Φ∗c + Φ∗ · L⊥.
Sufficiency follows given that (Φ+)∗Φ∗ = ΦΦ+. For necessity, suppose that (Φ+)∗y ∈
ΦΦ+(c+ L⊥). Multiplying both sides by Φ∗ and using the identities

Φ∗(Φ+)∗y = y, Φ∗ΦΦ+ = Φ∗Φ(Φ∗Φ)−1Φ∗ = Φ∗,

shows that y ∈ Φ∗(c+L⊥) as desired. This gives a fully projected reformulation of DΦ:

minimize 〈t0, y〉
subject to y ∈ Φ∗c+ Φ∗ · L⊥,

y ∈ C∗.

For any feasible y ∈ V, one can solve linear equations to find w satisfying Φ∗w = 0 and
(Φ+)∗y + w ∈ (c+ L⊥). This in turn gives a feasible point s = (Φ+)∗y + w of DΦ.

Primal-dual pair interpretation Under the assumption x0 = Φt0 (Assumption 1.2.1), we
have just individually reformulated the primal and dual as

minimize 〈Φ∗c, z〉
subject to z ∈ t0 + Φ−1(L),

z ∈ C,

minimize 〈t0, y〉
subject to y ∈ Φ∗c+ Φ∗ · L⊥,

y ∈ C∗.

These reformulations are a primal-dual pair in the sense of Section 1.2.2. Specifically,
the orthogonal complement of Φ−1(L) equals Φ∗ · L⊥.

� 1.3 Facial reduction

This section provides background on facial reduction [46, 20, 102]. The high level idea
behind this technique is fairly simple (Figure 1.1). Given the cone program

minimize 〈c, x〉
subject to x ∈ A ∩ K,

where A ⊆ V is affine and K ⊆ V is a convex cone, one finds a hyperplane s⊥ := {x ∈
V : 〈s, x〉 = 0} that contains A and hence the feasible set A∩K. One also imposes the
condition that s ∈ K∗, which implies that K ∩ s⊥ is a face of K exposed by s.

The set of s ∈ K∗ satisfying s⊥ ⊇ A is the feasible set of an auxiliary problem. This
problem has nontrivial solutions only if the intersection of A with the relative interior
of K is empty. Hence, finding hyperplanes requires a failure of Slater’s condition. To
give more details, we first review some basic concepts from convex analysis.
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s⊥

K

A
(a) Geometry

Find s ∈ K∗ \ (spanK)⊥
subject to s⊥ ⊇ A

(b) Auxiliary problem

Figure 1.1: Facial reduction finds a hyperplane s⊥ containing the affine set A that
exposes a face of K. This hyperplane is the solution of an auxiliary problem.

� 1.3.1 Relative interior, faces, and exposed faces

Important sets related to a convex cone K are its relative interior, its faces, and its
exposed faces, which we define next. Note that compatible (and more complicated)
definitions can be given for general convex sets.

Relative interior

The relative interior of a convex cone K is its interior relative to the smallest linear
subspace containing it. Specifically,

relintK := {x ∈ K : B(x, r) ∩ spanK ⊆ K for some r > 0} ,

where B(x, r) = {y ∈ V : ‖x− y‖ ≤ r} is a ball of radius r (in any norm) and

spanK := {t1x+ t2y : x, y ∈ K, t1, t2 ∈ R}.

Note that if spanK equals V then the relative interior is simply called the interior. The
interior of the nonnegative orthant Rn+ is the subset of vectors with strictly positive
entries. The interior of the Lorentz cone Qn+1 ⊆ R×Rn is the subset of (t, x) ∈ R×Rn

satisfying t > ‖x‖2. Finally, the interior of the psd cone Sn+ is the subset of symmetric
matrices X satisfying vTXv > 0 for all nonzero v ∈ Rn or, equivalently, the subset of
symmetric matrices with strictly positive eigenvalues (Table 1.2(a)).

The following proposition lists important properties of the relative interior.

Proposition 1.3.1. Let K ⊆ V be a nonempty, convex cone. The following statements
hold for all x ∈ relintK.

• There exists an α > 0 for which x± αy ∈ K for all y ∈ K.

• If s ∈ K∗ and 〈s, x〉 = 0, then 〈s, z〉 = 0 for all z ∈ K.

Proof. By definition, there exists r > 0 for which x±rz ∈ K for all z ∈ K with ‖z‖ = 1.
Taking α = r

‖y‖ shows x ± αy ∈ K, as desired. For the second statement, pick any
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z ∈ K. Then, x ± αz ∈ K for some α > 0. Hence, 〈s, x ± αz〉 ≥ 0 since s ∈ K∗. If
〈s, x〉 = 0, it follows that ±〈s, αz〉 ≥ 0, showing 1

α〈s, z〉 = 0.

The first statement is a convenient restatement of the definition of relative interior.
The second statement, among other things, allows us to conveniently describe the subset
of K∗ not contained in (spanK)⊥. Specifically, for any x ∈ relintK,

K∗ \ (spanK)⊥ = {s ∈ K∗ : 〈s, x〉 > 0}.

As we will see, this description ofK∗\(spanK)⊥ is critical for facial reduction algorithms.

Faces

A face of a convex cone K is a convex cone F ⊆ K for which a, b ∈ K and a + b ∈ F
imply a, b ∈ F . A face is proper if it is nonempty and not equal to K. When K is
closed, so are its faces. The arbitrary intersection of faces is a face, and faces of faces
are faces. This and other properties follow.

Proposition 1.3.2 (Properties of faces). For any face F ⊆ K of a convex cone K ⊆ V,
the following statements hold.

• If F ∩ relintK 6= ∅, then F = K.

• Any face of F is a face of K.

• F = K ∩ spanF .

• If G is a face of K, then F ∩ G is a face of K.

Further, if T is an arbitrary set of faces, then the intersection
⋂
G∈T G is a face.

Proof. Suppose x ∈ F ∩ relintK. Then for arbitrary y ∈ K, there exists α > 0 for
which x− αy ∈ K. Since x = αy + x− αy, the face F must contain both αy ∈ K and
x− αy ∈ K and therefore equal K.

Suppose G is a face of F and that a, b ∈ K satisfy a + b ∈ G. Since G ⊆ F , we
conclude a, b ∈ F since F is a face of K. Hence, a, b ∈ G since G is a face of F

The inclusion F ⊆ K ∩ spanF is obvious. For the reverse, we can write any z ∈
K ∩ spanF as z = x− y for x, y ∈ F . Since x = z + y, we conclude z ∈ F .

Suppose G is another face of K. If a, b ∈ K satisfy a + b ∈ F ∩ G. Then, a, b ∈ F
and a, b ∈ G since these sets are both faces. Hence, a, b ∈ F ∩ G.

Since the intersection of two faces is a face, the intersection of finitely-many faces
is face. For an arbitrary set of faces T ,

⋂
G∈T
G =

⋂
G∈T
K ∩ spanG = K ∩

 ⋂
G∈T

spanG

 = K ∩

⋂
G∈S

spanG


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for some finite subset S ⊆ T given that V has finite dimension. Hence, an arbitrary
intersection ⋂G∈T G equals a finite intersection ⋂G∈S G and is hence a face.

By this proposition, the intersection of all faces containing a subset C ⊆ K is a face.
One calls this intersection the minimal face of C.

Example 1.3.1. The nonzero, proper faces of the nonnegative orthant Rn+, Lorentz
coneQn+1, and psd cone Sn+ are easy to describe. Subsets of [n] := {1, . . . , n} parametrize
faces of Rn+; the face FI corresponding to I ⊆ [n] is

FI = {x ∈ Rn+ : xI = 0}.

Vectors in Rn parametrize faces of the Lorentz cone Qn+1 ⊆ R; the face Fu correspond-
ing to u ∈ Rn is the one-dimensional cone generated by (‖u‖2, u):

Fu = {λ(‖u‖2, u) : λ ≥ 0} .

Note that Fu = Fv if (‖u‖2, u) and (‖v‖2, v) are collinear. Finally, subspaces of Rn
parametrize faces of the psd cone; the face FL corresponding to the subspace L ⊆ Rn

is the set

FL = {X ∈ Sn+ : rangeX ⊆ L},

a result originally due to [10]. Note that if U ∈ Rn×d has full column rank and range
equal to L, then

FL = {UX̂UT : X̂ ∈ Sd+}.

Hence, we can also parametrize faces of Sn+ by full rank n × d matrices. Table 1.2(b)
summarizes these parametrization; see also [101]. Note that the faces FI , Fu, and FL
are injective linear transformations of Rn−|I|+ , R+ and Sd+, respectively; in other words,
each of these faces is isomorphic to a nonnegative orthant or a psd cone.

Exposed faces

For s ∈ V, let s⊥ denote the hyperplane normal to s passing through the origin, i.e.,

s⊥ := {s ∈ V : 〈s, x〉 = 0} .

If s ∈ K∗, then K ∩ s⊥ is a face. To see this, note that if x+ y ∈ K ∩ s⊥ and x, y ∈ K,
then

0 = 〈s, x+ y〉 = 〈s, x〉+ 〈s, y〉,
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K V interior faces
Rn+ x ∈ Rn xi > 0 ∀i ∈ [n] xi = 0 ∀i ∈ I
Qn+1 (x0, x) ∈ R× Rn x0 > ‖x‖2 x0 = ‖x‖2
Sn+ Sn zTXz > 0 ∀z ∈ Rn zTXz = 0 ∀z ∈W

(a) Ambient space V and extra constraints satisfied by interior and proper
faces of cone K, where I ⊆ {1, . . . , n} and W is a subspace of Rn.

K F F∗

Rn+
{
x ∈ Rn : xI = 0, x[n]\I ∈ Rd+

}
{s ∈ Rn : si ≥ 0 ∀i ∈ [n] \ I}

Qn+1 {λ(‖u‖2, u) : λ ∈ R+}
{

(s0, s) : s0‖u‖2 + sTu ≥ 0
}

Sn+
{
UXUT : X ∈ Sd+

} {
S ∈ Sn : UTSU ∈ Sd+

}
(b) Representations of faces as linear transformations of Rd+, R+ and Sd+ and
the induced representation of their dual cones, where I ⊆ {1, . . . , n}, u ∈ Rn
is nonzero, and U ∈ Rn×d has full column rank.

K, s Parameters of K ∩ s⊥ K ∩ s⊥

Rn+, s I = {i ∈ [n] : si > 0}
{
x ∈ Rn : xI = 0, x[n]\I ∈ Rd+

}
Qn+1, (‖s‖2, s) u = −s {λ(‖u‖2, u) : λ ∈ R+}

Sn+, S U ∈ Rn×d, UTS = 0.
{
UXUT : X ∈ Sd+

}
USd+UT , S B ∈ Rd×r, BT (UTSU) = 0

{
(UB)X(UB)T : X ∈ Sr+

}
(c) Relationship between exposing vector s ∈ K∗ and parameters I, u, U,B of
face K ∩ s⊥.

Table 1.2: Properties of nonnegative orthant Rn+, Lorentz cone Qn+1, and psd cone
Sn+ and their faces.

which shows that both 〈s, x〉 and 〈s, y〉 equal zero since they are both nonnegative.
Hence, K ∩ s⊥ contains both x ∈ K and y ∈ K if it contains their sum x + y. Faces
of the form K ∩ s⊥ are called exposed faces and s the exposing vector. A cone is called
facially exposed if all of its proper faces are exposed faces.

Example 1.3.1 (Continued). The nonnegative orthant Rn+, Lorentz cone Qn+1, and
psd cone Sn+ are all facially exposed. Further, for these cones, simple parameterizations
of K ∩ s⊥ are obtained from s; see Table 1.2(c).
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� 1.3.2 Separating hyperplanes

Two subsets C1 and C2 of an inner product space V are disjoint (i.e., their intersection
is empty) if there exists a hyperplane that strictly separates them, i.e., if there exists
s ∈ V and α ∈ R for which

C1 ⊆ {x ∈ V : 〈s, x〉 ≤ α}, C2 ⊆ {x ∈ V : 〈s, x〉 > α}.

If C1 and C2 are both convex, then partial converses hold that vary based on the specific
form of C1 and C2. The following provides such a converse assuming one set is the
relative interior of a convex cone and the other set is affine. As indicated, under this
assumption, there exists a separating hyperplane that actually contains the affine set.

Proposition 1.3.3. Let A = x0 +L denote the affine set defined by x0 ∈ V and a linear
subspace L ⊆ V. Let K ⊆ V be a nonempty, convex cone. The following are equivalent.

1. A ∩ relintK is empty.

2. There exists s ∈ K∗ ∩ L⊥ and α ≤ 0 with the following properties.

• The hyperplane {x ∈ V : 〈s, x〉 = α} contains A.
• s /∈ (span x0)⊥ ∩ (spanK)⊥.

Proof. Suppose the hyperplane exists. If α < 0, then A ∩ K = ∅ by definition of K∗.
Suppose α = 0. Then s ∈ (span x0)⊥ and is therefore not contained in (spanK)⊥. If
x ∈ A ∩ relintK exists, then 〈s, x〉 = 0, which implies s ∈ (spanK)⊥, a contradiction.

For the other direction (1 ⇒ 2), the main separation theorem [121, Theorem 11.3]
states that a hyperplane exists properly separating these sets. Using Theorem 11.7 of
[121], we can additionally assume this hyperplane passes through the origin since K is
a cone. In other words, there exists s ∈ K∗ and z ∈ A ∪ K satisfying

〈s, x〉 ≤ 0, ∀x ∈ A,
〈s, z〉 6= 0

Let α = 〈s, x0〉. The result follows by showing s ∈ L⊥. Suppose then that w ∈ L satisfies
〈s, w〉 6= 0. Then 〈s, x0 + βw〉 > 0 for some β with |β| large enough, a contradiction.

Farkas lemma

Note Proposition 1.3.3 does not apply to the affine set {x ∈ V : Ax = b} unless the
linear equations Ax = b have a solution. In other words, it does not apply to affine
sets that are empty. Nevertheless, we can easily extend Proposition 1.3.3 to handle this
case. This extension is the following conic version of Farkas Lemma.
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Corollary 1.3.1 (Farkas Lemma). Let x̂ be any point in the relative interior of a convex
cone K ⊆ V. For a linear map A : V → Rm and b ∈ Rm, the following statements are
equivalent.

1. There is no x ∈ relintK satisfying Ax = b.

2. There exists y ∈ Rm for which

• A∗y ∈ K∗ and 〈b, y〉 ≤ 0,
• 〈x̂, A∗y〉 > 0 or 〈b, y〉 < 0,

where A∗ : Rm → V denotes the adjoint map.

Proof. Suppose first that Ax = b has a solution x0. Then, directly applying Proposi-
tion 1.3.3, we conclude existence of A∗y ∈ K∗ where 〈x0, A

∗y〉 = 〈b, y〉 ≤ 0. If 〈b, y〉 = 0,
then A∗y /∈ (spanK)⊥, implying 〈x̂, A∗y〉 > 0 for all x̂ ∈ relintK. Suppose next that
there is no solution to Ax = b. Then, we can separate the range of A (a cone) from the
affine set {b}. In this case, the dual cone is (rangeA)⊥, which equals the null space of
the adjoint A∗ : Rm → V. Hence, we can find y ∈ Rm for which A∗y = 0 and 〈b, y〉 < 0
by Proposition 1.3.3.

Weak intersection and containment in faces

Suppose that an affine set A intersects a convex cone K but not its relative interior.
(When A ∩ K is the feasible set of a cone program, this situation is sometimes called
weak feasibility [87].) The next corollary of Proposition 1.3.3 asserts existence of a
hyperplane s⊥ that both contains A and exposes a face of K.

Corollary 1.3.2 (Weak intersection). Let A ⊆ V be an affine set and K ⊆ V a convex
cone for which A ∩K is non-empty. The following are equivalent.

1. A ∩ relintK is empty.

2. There exists s ∈ K∗ \ (spanK)⊥ for which the hyperplane s⊥ contains A.

Proof. We will show the second statement is equivalent to the statement statement of
Proposition 1.3.3, which, in turn, is equivalent to emptiness of A ∩ relintK. Clearly
the second statement implies that of Proposition 1.3.3. Now suppose s ∈ K∗ and α

of Proposition 1.3.3 exists. Then, α = 0 given that A ∩ K is non-empty. It follows
s ∈ (A)⊥, implying s ∈ K∗ \ K⊥.

This corollary is the theoretical unpinning of facial reduction algorithms; see, e.g., [102,
Lemma 1], [20, Theorem 7.1], [31, Lemma 12.6], and [138, Lemma 3.2] for related
statements.
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� 1.3.3 Slater’s condition

When the feasible set intersects the relative interior of the cone, certain pathologies
cannot occur. To explain, recall the primal-dual pair of cone programs in the min-max
form:

P : minimize 〈c, x〉
subject to Ax = b,

x ∈ K,

D : maximize 〈b, y〉
subject to s = c−A∗y,

(s, y) ∈ K∗ × Rm.

In general, finite optimal values of the primal and/or dual can be unattained. In
addition, a duality gap can exist, i.e., the primal and dual optimal values can be different.
In these situations, the optimality conditions for the primal-dual pair have no solution.
These situations are ruled out by Slater’s condition.

Definition 1.3.1 (Slater’s condition). We say that Slater’s condition holds for P if
there exists x ∈ relintK satisfying Ax = b. Similarly, we say that Slater’s condition
holds for D if there exists y ∈ Rm satisfying c−A∗y ∈ relintK∗

Proposition 1.3.4. Let θp ∈ R∪{±∞} and θd ∈ R∪{±∞} denote the optimal values
of the primal-dual pair P and D, i.e.,

θp := inf {〈c, x〉 : x ∈ {u ∈ K : Au = b}} , θd = sup {〈b, y〉 : y ∈ Rm, c−A∗y ∈ K∗} .

The following statements are true.

• If Slater’s condition holds for P, then θp = θd and θd is attained when θp is finite.

• If Slater’s condition holds for D, then θp = θd and θp is attained when θd is finite.

Proof. To ease notation, let θ = θp. Let xs ∈ relintK satisfy Axs = b. We only show
the first statement, since D can be converted into a problem of the form P (and vice
versa) without changing optimal values, attainment or satisfiability of Slater’s condition
(Chapter 1.2.3). First, assume no point in the relative interior of K attains the optimal
value θ. Then, 〈c, xs〉 > θ. Further, the affine set {x ∈ V : Ax = b, 〈c, x〉 = θ} is disjoint
from the relative interior of K. By Farkas Lemma (Corollary 1.3.1), there exists (λ, y)
satisfying

A∗y + cλ ∈ K∗

〈b, y〉+ λθ ≤ 0 (1.8)
〈b, y〉+ λθ < 0 or 〈b, y〉+ λ〈c, xs〉 > 0.

If λ = 0, these conditions imply 〈b, y〉 < 0 and A∗y ∈ K∗, which contradicts

0 ≤ 〈xs, A∗y〉 = 〈Axs, y〉 = 〈b, y〉.
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Hence, λ 6= 0. Combining 〈xs, A∗y + cλ〉 = 〈b, y〉+ λ〈c, xs〉 ≥ 0 with (1.8) shows

λ (〈c, xs〉 − θ) ≥ 0.

Using the fact 〈c, xs〉 − θ > 0 combined with λ 6= 0, we conclude λ > 0 and

A∗
y

λ
+ c ∈ K∗,

i.e., − 1
λ̂
y is dual feasible. Weak duality − 1

λ̂
〈b, y〉 ≤ θ and (1.8) imply 1

λ̂
〈b, y〉 = θ.

We now assume a point in the relative interior of K is optimal, i.e., that it attains θ.
To construct a dual feasible point with objective θ we first let L denote the kernel of A.
If x̂ ∈ relintK is optimal, then for any d ∈ L∩spanK there exists α > 0 for which x̂±αd
is feasible, implying 〈c, d〉 = 0 by optimality of x̂. Hence, L ∩ (spanK) ⊆ (span{c})⊥.
But this shows that span{c} ⊆ (spanK)⊥+L⊥. It follows that c+L⊥ contains a point
ŝ ∈ (spanK)⊥. Letting ŝ = c+A∗ŷ for ŷ ∈ Rm, we have that 0 = 〈x̂, ŝ〉 = θ − bT ŷ.

This motivates the following question: can one transform a (feasible) cone program
such that Slater’s condition holds without changing the optimal value? Facial reduction
provides a positive answer.

� 1.3.4 The facial reduction algorithm

For any nonempty, convex cone K ⊆ V and affine set A ⊆ V, the main separation
theorem (Proposition 1.3.3) implies that at least one of the following statements holds:

(a) A ∩ relintK is nonempty.

(b) A hyperplane exists that strictly separates A and K.

(c) A hyperplane s⊥ := {x ∈ V : 〈s, x〉 = 0} exists that contains A and exposes a
proper face of K.

Further, under the assumption K is closed, the face K∩ s⊥ is nonempty. (For instance,
it contains the zero vector.) Under this assumption, one can always replace K with a
face containing A∩K such that statement (a) or statement (b) holds. This replacement
is called facial reduction.

To see this, note that statement (c) is equivalent to feasibility of the following
auxiliary problem:

Find s ∈ K∗ \ (spanK)⊥
subject to s⊥ ⊇ A.
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Hence, if no solution s exists, either statement (a) or (b) holds. On the other hand,
given a solution s, we can replace K with K∩s⊥ and then resolve. If we do this replace-
and-resolve process a sufficient number of times (upper bounded by the dimension
of V), the auxiliary problem must become infeasible, implying that statement (a) or
statement (b) holds as desired. These iterations are performed by the facial reduction
algorithm (Algorithm 1.1), which has the following properties.

Proposition 1.3.5. Let F be the output of the facial reduction algorithm (Algorithm 1.1)
given a closed, convex cone K ⊆ V and nonempty, affine set A ⊆ V as input. Exactly
one of the following statements holds.

• There exists a hyperplane strictly separating F from A.

• A ∩ relintF is non-empty.

Further, A∩K = A∩F . Finally, if A∩K is nonempty, then F is the minimal face of
A ∩K, i.e., it is the intersection of all faces of K containing A ∩K.

Proof. The listed properties follow by the paragraph preceding this proposition. That
A ∩ K = A ∩ F is obvious. Let G denote the minimal face. By definition, F contains
G and G contains A ∩ F . But this means G contains A ∩ relintF , which is nonempty.
Hence, G must equal F by properties of faces (Proposition 1.3.2).

Algorithm 1.1: Facial reduction
Inputs: closed, convex cone K ⊆ V and affine set A ⊆ V
Output: a face F of K containing A ∩K
begin
F ← K
repeat

1. Find hyperplane s⊥ containing A that exposes a face of F , i.e.,

Find s ∈ F∗ \ (spanF)⊥
subject to s⊥ ⊇ A (?)

2. Set F = F ∩ s⊥ if (?) is feasible

until (?) is infeasible
end
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constraint on s ∈ V set of s satisfying constraint
s ∈ F∗ \ F⊥ {s ∈ F∗ : 〈s, x̂〉 > 0} for any x̂ ∈ relintF

s⊥ ⊇ A where A = {x ∈ V : Ax = b}
{
A∗y : y ∈ Rm, bT y = 0

}
s⊥ ⊇ A where A = {x0 +Bz : z ∈ Rn} {s ∈ V : 〈x0, s〉 = 0, B∗s = 0}

Table 1.3: The sets satisfying individual constraints of the facial reduction algorithm
(Algorithm 1.1) auxiliary problem. Lines 2-3 correspond to two possible representations
of the affine set A.

Solving auxiliary problems

The auxiliary problem (?) is actually a cone program in disguise. That is, the feasible
set is a subspace intersected with a convex cone. Table 1.3 makes this clear by giving
the solution set of each individual constraint. As indicated, F∗ \ (spanF)⊥ is the cone
of elements that have nonzero inner product with any fixed point in the relative interior
of F (Proposition 1.3.1). The set of s ∈ V satisfying s⊥ ⊇ A is the subspace (spanA)⊥;
see Table 1.3 for explicit descriptions of (spanA)⊥ for parametric and implicit rep-
resentations of A. When F is a face of the nonnegative orthant, the Lorentz cone,
or the psd cone, linear and semidefinite constraints describe F∗; see Table 1.2(b) and
Example 1.3.1. There are also formulas for F ∩ s⊥ in these cases given by Table 1.2(c).

Singularity degree and iteration bounds

The number of iterations Algorithm 1.1 executes depends on the specific hyperplanes
obtained at each iteration. The minimum number of possible iterations is called the
singularity degree of (A,K), a parameter used in error analysis [130] and convergence
analysis [48] of cone programs with feasible set A ∩ K. Bounds on singularity degree
are given in [86]. If A = {x ∈ V : Ax = b}, then the singularity degree is at most one
if the image of K under A : V → Rm is facially exposed [47]. This image need not be
facially exposed when K is facially exposed, e.g., when K = Sn+. Indeed, when K = Sn+,
the singularity degree can be as large as n− 1; see, e.g., [132, Section 2.6].

� 1.3.5 Benefits

For a linear map A : V → Rm, b ∈ Rm and c ∈ V, consider the primal-dual pair
parametrized by a closed, convex cone C ⊆ V:

P(C) : minimize 〈c, x〉
subject to Ax = b,

x ∈ C

D(C) : maximize 〈b, y〉
subject to s = c−A∗y

(s, y) ∈ C∗ × Rm.
(1.9)
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That is, for another convex cone K ⊆ V, the problems P(K) and D(K) denote (1.9)
with the cones C and C∗ replaced by K and K∗. Finally, let A denote the solutions to
Ax = b.

If we execute the facial reduction algorithm using (A,K) as input, it returns a face
F of K containing A ∩K; hence, P(K) and P(F) have equal optimal values, i.e.,

inf{〈c, x〉 : x ∈ A ∩ K} = inf{〈c, x〉 : x ∈ A ∩ F}.

Further, any solution x of P(F) also solves P(K). We now overview the benefits of
solving P(F) as a means of solving P(K), which include dimension reduction, pathology
removal, and improved conditioning.

Dimension reduction

The obvious benefit of facial reduction is the ability to solve the lower dimensional
problem P(F) instead of P(K). Indeed, if F 6= K, then a proper subspace of span(K)
contains F (Proposition 1.3.2). Further, when K is the psd cone Sn+, the Lorentz
cone Qn+1, or the nonnegative orthant Rn+, any proper face F ⊂ K is isomorphic to
Sd+ (with d < n), the nonnegative real line R+, or the nonnegative orthant Rd+ (with
d < n), respectively. This in turn allows us to solve P(F) by solving a projected
reformulation over the isomorphic cone (Section 1.2.5). The next example illustrates
the facial reduction procedure and this reformulation.

Example 1.3.2 (Dimension reduction). Consider the semidefinite program P(S3
+):

P(S3
+) : minimize TrCX

subject to TrA1X = b1,

TrA2X = b2,

X ∈ S3
+,

where

C :=

1 0 0
0 0 −1
0 −1 0

 , A1 :=

1 0 0
0 1 0
0 0 1

 , A2 :=

0 0 0
0 1 1
0 1 1

 , b :=
[
4
0

]
.

This problem is feasible, but Slater’s condition fails. Indeed, the equation TrA2X = 0
is equivalent to vTXv = 0 for v = (0, 1, 1)T . Hence, we can reformulate this problem
over a lower dimensional face using facial reduction.

By Corollary 1.3.2, a hyperplane Ŝ⊥ exists that contains all solutions of TrAiXi =
bi; further, Ŝ is a nonzero point in S3

+, implying the hyperplane Ŝ⊥ exposes a proper
face of Sn+. Indeed, taking Ŝ = A2 yields a hyperplane with these properties. The face
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F = S3
+ ∩ Ŝ⊥ exposed by Ŝ⊥ satisfies

F = US2
+U

T for U =


1 0
0 1√

2
0 −1√

2 .

 ,
where U ∈ R3×2 was picked to satisfy ŜU = 0. A projected reformulation of P(F) is

P̄(F) : minimize Tr C̄X
subject to Tr Ā1X = 4,

Tr Ā2X = 0,
X ∈ S2

+,

where C̄ = UTCU and Āi = UTAiU , i.e.,

C̄ =
[
1 0
0 1

]
, Ā1 =

[
1 0
0 1

]
, Ā2 =

[
0 0
0 0

]
.

An optimal solution of this reformulation is

X̄ =
[
2 0
0 2

]
, ȳ =

[
1
0

]
, S̄ =

[
0 0
0 0

]
.

The point UX̄UT solves P(F).

Pathology removal

Facial reduction can also remove pathologies (Section 1.2.4) if they exist. To see this,
recall that either the cone program P(F) satisfies Slater’s condition or a hyperplane
exists that strictly separates the affine set A from F (Proposition 1.3.5). This rules out
three sources of pathologies: duality gaps, unattained dual optimal values, and weak
infeasibility of P(F). Indeed, if these pathologies occur for P(K), replacing K with F
removes them.

Example 1.3.3 (Removing weak infeasibility). Consider the primal-dual pair of semidef-
inite programs

P(S2
+) : minimize TrCX

subject to TrA1X = b1,

TrA2X = b2,

X ∈ S2
+,

D(S2
+) : maximize bT y

subject to S = C −
∑2
i=1 yiAi,

(S, y) ∈ S2
+ × R2,



Sec. 1.3. Facial reduction 49

where

C :=
[
0 0
0 0

]
, A1 :=

[
0 1
1 0

]
, A2 :=

[
0 0
0 1

]
, b :=

[
2
0

]
.

As demonstrated earlier in Example 1.2.3, the primal problem P(S2
+) is weakly infeasi-

ble, i.e., it is infeasible but D(S2
+) has no improving ray. We will remove this pathology

using facial reduction.
Taking Ŝ = A2 yields a hyperplane Ŝ⊥ that contains the solutions to TrAiX = bi,

where in addition Ŝ ∈ S2
+. The face F = S2

+ ∩ Ŝ⊥ exposed by Ŝ⊥ satisfies

F =
{
UXUT : X ∈ S1

+

}
for U =

[
1
0

]
.

This yields the primal-dual pair

P(F) : minimize TrCX
subject to TrA1UXU

T = b1,

TrA2UXU
T = b2,

X ∈ S1
+,

D(F) : maximize bT y
subject to S = C −

∑2
i=1 yiAi,

(UTSU, y) ∈ S1
+ × R2,

where P(F) and P(K) have equal optimal values. Further, S = −A1 and y = (1, 0)
form an improving ray for D(F), proving infeasibility of P(F) and hence of P(K).

Example 1.3.4 (Removing duality gaps). Consider the primal-dual pair of semidefinite
programs

P(S3
+) : minimize TrCX

subject to TrAiX = bi ∀i ∈ {1, 2},
X ∈ S3

+

D(S3
+) : maximize bT y

subject to S = C −
∑2
i=1 yiAi,

(S, y) ∈ S3
+ × R2,

where

C :=

1 0 0
0 0 0
0 0 0

 , A1 :=

1 0 0
0 0 1
0 1 0

 , A2 :=

0 0 0
0 1 0
0 0 0

 , b :=
[
1
0

]
.

As shown by Example 1.2.2, the duality gap of this primal-dual pair is one. Both
problems are feasible. Further, X is primal feasible only if TrCX = 1, and (y, S) is
dual feasible only if bT y = 0.

For Ŝ = A2, the hyperplane Ŝ⊥ contains
{
X ∈ S3 : TrXA1 = b1,TrA2X = b2

}
.
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The face F = S3
+ ∩ Ŝ⊥ exposed by Ŝ⊥ satisfies

F = US2
+U

T for U =

1 0
0 0
0 1.

 .
The primal-dual pair reformulated over F and F∗ is

P(F) : minimize TrCX
subject to TrA1UXU

T = b1,

TrA2UXU
T = b2,

X ∈ S2
+,

D(F) : maximize bT y
subject to S = C −

∑2
i=1 yiAi,

(UTSU, y) ∈ S2
+ × R2,

where a primal-dual feasible point (X?, S?, y?) satisfying TrCX? = bT y? is

X? =

1 0 0
0 0 0
0 0 0

 , S? =

0 0 0
0 0 −1
0 −1 0

 , y? =
[
1
0

]
.

Improved conditioning

Facial reduction can also improve accuracy. One reason for this is simple: smaller
problems can lead to more accurate floating point computation. Another reason is less
obvious: an iteration of facial reduction improves the intrinsic conditioning of a cone
program. Specifically, it lowers the singularity degree—improving bounds on forward
error (distance to solutions) obtained from backward error (constraint violation) [130].
Note the latter error is what a solver can easily compute, whereas the former—which
may be hard or impossible to compute—is the actual measure of solution quality. We
illustrate these concepts with an example.

Example 1.3.5 ([130, Example 2]). The following SDP has singularity degree equal
to (n− 1)—the worst case for SDP. It has decision variable X ∈ Sn+ and constraints

[X]1,1 = 1,
[X]2,2 = 0,

[X]k+1,k+1 = [X]1,k ∀k ∈ {2, 3, . . . , n− 1}.
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For n = 4, these constraints are equivalent to TrAiX = bi for b = (1, 0, 0, 0)T and

A1 :=


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , A3 :=


0 −1 0 0
−1 0 0 0
0 0 2 0
0 0 0 0

 ,

A2 :=


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , A4 :=


0 0 −1 0
0 0 0 0
−1 0 0 0
0 0 0 2

 .
Note that the feasible set contains a single point: the rank one matrix e1e

T
1 .

Letting ‖ · ‖fro denote the Frobenius norm yields expressions for the forward and
backward error:

eforward(X) := ‖X − e1e
T
1 ‖fro, ebackward(X) := min (0, λmin(X)) + ‖r(X)‖2,

where r(X) := ‖(b1 − TrA1X, . . . , b4 − TrA4X)‖ and λmin(X) denotes the minimum
eigenvalue of X. For ε = 10−4, the approximate solution X(ε)

X(ε) =


1 −ε −ε 0
−ε 0 0 0
−ε 0 ε 0
0 0 0 ε


has forward error (

√
6 · 10−4) that is roughly four orders of magnitude larger than its

backward error (≈ 10−8). On the other hand, using n− 1 iterations of facial reduction
yields a reformulation

Find λ ≥ 0 subject to λe1e
T
1 = e1e

T
1

whose backward error equals its forward error for λ ≥ 0:

eforward(λ) = |1− λ|, ebackward(λ) = |1− λ|+ min(0, λ).

Hence, after facial reduction, backward error becomes a better indicator of forward
error.

� 1.3.6 Challenges

Cost

The costs of solving auxiliary problems (Section 1.3.4) may overwhelm the benefit of
dimension reduction. Indeed, if the given cone program is an SDP, the first auxiliary
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problem is also an SDP of the same order.
Fortunately, the auxiliary problem can be extremely well structured in practice. For

instance, it may have solutions in a subset of the dual cone that is easy to describe (e.g.,
the subset of diagonal matrices when the cone is Sn+). Exploiting this structure will be
the topic of Chapter 2.

Dual solution recovery

Facial reduction replaces the cone K with a proper subset F ⊂ K and the dual cone
K∗ with a superset F∗ ⊃ K∗—i.e., it relaxes the dual. For this reason, solutions of
the reformulated dual D(F) are not necessarily even feasible points of the original dual
D(K), as the next example illustrates.

Example 1.3.6 (Relaxation of the dual). Recall the primal-dual pair of Example 1.3.2

P(S3
+) : minimize TrCX

subject to TrA1X = b1,

TrA2X = b2,

X ∈ S3
+,

D(S3
+) : maximize bT y

subject to S = C −
∑2
i=1 yiAi,

(S, y) ∈ S3
+ × R2,

with problem data

C :=

1 0 0
0 0 −1
0 −1 0

 , A1 :=

1 0 0
0 1 0
0 0 1

 , A2 :=

0 0 0
0 1 1
0 1 1

 , b :=
[
4
0

]
.

Reformulating over F = {UX̄UT : X̄ ∈ S2
+} and F∗ = {S ∈ S3 : UTSU ∈ S2

+} yields

P(F) : minimize TrCX̄
subject to TrA1UX̄U

T = b1,

TrA2UX̄U
T = b2,

X̄ ∈ S2
+,

D(F) : maximize bT y
subject to S = C −

∑2
i=1 yiAi,

(UTSU, y) ∈ S2
+ × R2,

where

U =


1 0
0 1√

2
0 −1√

2 .

 .
If X̄ = 2I, then UX̄UT solves P(F) and P(K). For all α ∈ R, the point y = (1, α)
solves D(F). However, this y solves D(S3

+) only for α ≤ −1; indeed, it is infeasible
otherwise.

Unfortunately, one cannot ignore this issue and incorporate facial reduction into a
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primal-dual solver. Such solvers must return solutions to a given cone program and its
dual; indeed, the dual may be the problem that is of actual interest to a user. Hence,
these solvers need post-processing methods for dual solution recovery. For this previous
example, recovery means taking a solution (y, α) of D(F) and decreasing α until it is
feasible for D(Sn+). In other words, recovery amounts to a line search on α. We will
formalize this line search idea in Chapter 3 and study when it succeeds and when it
fails. Note recovery will necessarily fail when facial reduction removes the following
pathologies: duality gaps, weak infeasibility, and unattainment of the dual optimal
value.

Sparsity

Constructing maximally-sparse projected reformulations is another challenge. Indeed,
for semidefinite programs, we always have a degree-of-freedom in how we parametrize
the face. For instance, the faces F ⊆ Sn+ and G ⊆ Sn+, given by

F = {UXUT : X ∈ Sd+}, G = {V XV T : X ∈ Sd+},

are equal if U ∈ Rn×d and V ∈ Rn×d have the same range. To give an example, we
reproduce U of Example 1.3.2 and give a dense matrix V with the same range below:

U =


1 0
0 1√

2
0 −1√

2 .

 , V =

 1 1
2 1
−2 −1

 .
If we use V instead of U to construct the projected reformulation of Example 1.3.2, we
obtain data matrices V TAiV and V TCV with twice as many nonzeros as UTAiU and
UTCU . Picking a parameterization of F to minimize nonzeros is a challenge addressed
in Chapter 2.

Sensitivity

If the auxiliary problem is solved numerically, the obtained hyperplane s⊥ may only
contain the affine set A after an epsilon perturbation, i.e., the inclusion

(s+ ε)⊥ ⊇ A

may only hold for some nonzero ε whose magnitude depends on the accuracy to which
s satisfies the constraints of the auxiliary problem. As a consequence, replacing K
with K ∩ s⊥ can change the optimal value of the given cone program. Given that
A has empty intersection with the relative interior of K, the change in optimal value
can also be infinite—meaning replacing K with K ∩ s⊥ can make a feasible problem
infeasible. Example 4.4.2 of Chapter 4 illustrates this unfortunate phenomenon on
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concrete example.

� 1.3.7 Limitations

As we have seen, one benefit of facial reduction is pathology removal. Nevertheless,
facial reduction iterations will occur (i.e, the auxiliary problem will have a solution)
even if no pathology is present (e.g., Example 1.3.2). The basic reason for this is the
following: the facial reduction algorithm terminates when a necessary condition for
pathologies (failure of Slater’s condition) no longer holds, as opposed to a necessary
and sufficient condition.

From the dimension reduction point of view, this is a good thing: facial reduction
applies to a wider family of problems. Nevertheless, it still raises the question: can
one do facial reduction only if the given instance is pathological? This would be useful
if one only wanted to confront the challenges of facial reduction (e.g., the costs of
solving auxiliary problems) for pathological instances, which, without facial reduction,
are perhaps unsolvable. In Chapter 4, we show the answer to this question is yes and
provide an algorithm.

Note also that during its last iteration, the facial reduction algorithm obtains no
information from the auxiliary problem other than an indicator to terminate. Further,
if only one iteration is performed, facial reduction pays the cost of solving an auxiliary
problem but makes no changes to the given instance. The Chapter 4 algorithm does
not have this defect. Indeed, during its last iteration, it not only terminates, but
automatically provides solutions to the reformulation.

� 1.4 Symmetry reduction

Symmetry reduction, like facial reduction, also identifies a subset of the cone K that
contains solutions. This subset is the intersection of K with the range of a special
projection map P : V → V. We state the key properties of this projection in terms of
the following primal-dual pair in decision variables x ∈ V and s ∈ V:

minimize 〈c, x〉
subject to x ∈ x0 + L,

x ∈ K,

minimize 〈x0, s〉
subject to s ∈ c+ L⊥,

s ∈ K∗,

where, as in previous sections, x0 ∈ V and c ∈ V are fixed and L ⊆ V is a linear
subspace with orthogonal complement L⊥ ⊆ V. Given this primal-dual pair, symmetry
reduction finds a projection that satisfies the Constraint Set Invariance Conditions.

Definition 1.4.1. A projection P : V → V satisfies the Constraint Set Invariance
Conditions for (K, x0 + L, c) if
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(a) P · K ⊆ K (or, equivalently, P ∗ · K∗ ⊆ K∗),

(b) P · (x0 + L) ⊆ x0 + L,

(c) P ∗ · (c+ L⊥) ⊆ c+ L⊥,

where P ∗ : V → V is the adjoint of P and P · C := {Px : x ∈ C} for any set C ⊆ V.

The next proposition shows the range of P contains primal solutions (if they exist)
under the Constraint Set Invariance Conditions. By symmetry of these conditions, the
range of P ∗ also contains dual solutions.

Proposition 1.4.1. Suppose a projection P : V → V satisfies the Constraint Set
Invariance Conditions for (K, x0 + L, c). The following statements hold

• If x ∈ (x0 + L) ∩ K, then Px ∈ (x0 + L) ∩ K. Further, 〈c, x〉 = 〈c, Px〉.

• If s ∈ (c+ L⊥) ∩ K∗, then P ∗s ∈ (c+ L⊥) ∩ K∗. Further, 〈x0, s〉 = 〈x0, P
∗s〉.

Proof. The statements have identical proofs. Further, the only part of the first state-
ment not immediate is that 〈c, x〉 = 〈c, Px〉. To see this holds, consider x ∈ (x0 + L).
The conditions (b) and (c) state both x and Px are in x0 + L and both c and P ∗c are
in c+ L⊥; hence, (b) and (c) imply

x− Px ∈ L, c− P ∗c ∈ L⊥, (1.10)

showing x− Px and c− P ∗c are contained in orthogonal subspaces. It follows that

〈c, x〉 = 〈c− P ∗c+ P ∗c, x− Px+ Px〉
= 〈c− P ∗c, Px〉+ 〈P ∗c, x〉 Equation (1.10)
= 〈P ∗c− P ∗P ∗c, x〉+ 〈c, Px〉
= 〈P ∗c− P ∗c, x〉+ 〈c, Px〉 P ∗P ∗ = P ∗

= 〈c, Px〉.

We now explain how symmetry reduction obtains a projection P that satisfies the
Constraint Set Invariance Conditions. The main idea is to find a special group of
automorphisms of the primal and dual feasible sets. Note that groups are mathematical
objects used to formalize notions of symmetry in engineering and physics—hence, the
name symmetry reduction.
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A ∩K

x?

Px?

x

Px

rangeP
c (a) P · K ⊆ K

(b) P · (x0 + L) ⊆ x0 + L,

(c) P · (c+ L⊥) ⊆ c+ L⊥

Figure 1.2: In symmetry reduction, the image of feasible x (resp., optimal x?) is
feasible (resp., optimal) under a special projection map P : V → V. This projection
satisfies the conditions (a)-(c), where A := x0 + L.

� 1.4.1 Groups of linear maps

A group G is a set equipped with a binary operation a · b satisfying the following
properties.

• The set G contains a · b for all a, b ∈ G.

• The associative law holds, i.e., (a · b) · c = a · (b · c) for all a, b, c ∈ G.

• There is an identity, i.e., there exists e ∈ G for which e ·a = a · e = a for all a ∈ G.

• Each a ∈ G has an inverse, i.e., there exists a−1 ∈ G such that a−1 ·a = a ·a−1 = e.

A subgroup H ⊆ G is a subset that is also a group with the same operation a · b. In
other words, H is closed under the group operation, contains an identity, and contains
inverses for all of its elements.

For an inner product space V, the general linear group GL(V) is the set of all invert-
ible linear maps T : V → V equipped with composition as a group operation. Important
subgroups of GL(V) include the orthogonal group O(V) and the automorphism groups
induced by subsets of V.

Automorphism groups

Let X ⊆ V be a subset of V. The automorphism group of X , denoted aut(X ), is the
subgroup

aut(X ) := {T ∈ GL(V) : T · X = X} ,

where T · X denotes the image of X under T , i.e., T · X := {Tx : x ∈ X}. It is easy to
verify aut(X ) is a subgroup: it contains the identity map and it is closed under both
composition and taking inverses.
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The orthogonal group

The orthogonal group O(V) ⊂ GL(V) is the subgroup of maps whose adjoints equal
their inverses, i.e.,

O(V) :=
{
T ∈ GL(V) : T−1 = T ∗

}
.

It is also easy to verify O(V) is a subgroup of GL(V). If T ∈ O(V), then so is the adjoint
map given that (T ∗)−1 = (T−1)∗ = (T ∗)∗. Hence all elements of O(V) have inverses in
O(V). Further, if T1, T2 ∈ O(V), then so is their composition T1T2 given that

(T1T2)−1 = T−1
2 T−1

1 = T ∗2 T
∗
1 = (T1T2)∗.

Finally, the identity map is contained in O(V) since it equals its own inverse and adjoint.
Note that the set of orthogonal matrices, i.e., the set of matrices U satisfying UTU = I,
is the orthogonal group O(Rn) of Rn under the dot product xT y.

� 1.4.2 Reynolds operators and fixed-point subspaces

Let G be a finite subgroup of GL(V). Associated with G is a linear map called the
Reynolds operator RG : V → V and a set called the fixed-point subspace VG :

RG := 1
|G|

∑
T∈G

T, VG := {x ∈ V : Tx = x for all T ∈ G} .

One expects RG and VG to have special structure given their construction. It turns out
that RG is a projection map onto VG , i.e., RG is idempotent and has range equal to VG :

RGRG = RG (idempotent), rangeRG = VG .

Further, if the orthogonal subgroup O(V) contains G, then RG is self-adjoint (R∗G = RG)
and hence equals the orthogonal projection map onto VG . The next lemma restates these
properties with proof. As the proof indicates, they are straightforward consequences of
the group-theoretic identity

G = {UT : T ∈ G} ∀U ∈ G,

which states that the left coset of G with respect to any U ∈ G equals G.

Lemma 1.4.1. Let RG be the Reynolds operator of a finite subgroup G of GL(V).
Then, RG is idempotent (RGRG = RG) and has range equal to the fixed-point subspace
VG. Further, if G ⊆ O(V), then RG is self-adjoint.
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Proof. The map RG is linear. Hence, it is a projection map if RGRG = RG . Indeed,

RGRG = 1
|G|2

∑
U∈G

U
∑
T∈G

T

 = 1
|G|2

∑
U∈G

∑
T∈G

UT

 a= 1
|G|2

|G|∑
T∈G

T

 = RG ,

where the equality a= follows from the coset identity G = {UT : T ∈ G}. To show that
the range of RG equals VG , consider x ∈ VG . Then,

RGx = 1
|G|

∑
T∈G

Tx = 1
|G|

∑
T∈G

x = 1
|G|
|G|x = x,

showing that the range contains VG . Now consider an arbitrary point RGz in the range.
For each U ∈ G and z ∈ V,

URGz =
∑
T∈G

UTz
b=
∑
T∈G

Tz = RGz,

where b= uses the coset identity G = {UT : T ∈ G}. This shows that RGz ∈ VG .
Now suppose that G ⊆ O(V). Clearly R∗G = 1

|G|
∑
T∈G T

∗. Since G is closed under
inverses, inverses are unique, and T ∗ = T−1, we must have R∗G = RG .

Consider a nonempty set X ⊆ V, a subgroup G ⊆ aut(X ) of automorphisms, and
the image RG · X = {RGx : x ∈ X} of X under RG . When does RG · X ⊆ X hold,
i.e., when does RG map X into X ? It turns out convexity of X implies this inclusion.
Consider the following.

Proposition 1.4.2 (Invariance Lemma). Let X ⊆ V be nonempty, convex set and let
G be a finite subgroup of aut(X ). Then, the Reynolds operator RG leaves X invariant,
i.e.,

RG · X ⊆ X .

Further, X ∩ VG is nonempty.

Proof. For all x ∈ X , it holds that RGx = 1
|G|
∑
T∈G Tx is a convex combination of points

in X since T ∈ aut(X ). But X is convex and hence contains any convex combination of
its points. Hence, RGx ∈ X . In addition, VG must intersect X since it equals the range
of RG by Lemma 1.4.1.

The next example shows the proposition fails without the convexity assumption.

Example 1.4.1 (Counterexample for nonconvex sets). Let X denote the unit sphere
and let G denote the subgroup of aut(X ) consisting of the identity map and the reflection
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operator x 7→ −x, i.e., let

X = {x ∈ V : 〈x, x〉 = 1}, G = {x 7→ x, x 7→ −x}.

Then RGx = 1
2(x− x) = 0 for all x ∈ X (and all x ∈ V). Hence, VG = {0} and doesn’t

intersect X . Note, however, that VG does intersect the convex hull of X (the unit ball).

� 1.4.3 Finding groups

As the next proposition shows, a suitable group of automorphisms G ⊆ GL(V) induces
a projection RG : V → V that satisfies the Constraint Set Invariance Conditions.

Proposition 1.4.3. Let G be a finite subgroup of GL(V) with the following properties:

• G ⊆ aut(K)

• G ⊆ aut(x0 + L)

• G ⊆ aut({x ∈ V : 〈c, x〉 ≤ α}) for all α ∈ R.

Then, the Reynolds operator RG : V → V satisfies the Constraint Set Invariance Con-
ditions (Definition 1.4.1).

Proof. That RG ·K ⊆ K and RG ·(x0 +L) ⊆ x0 +L is immediate from Proposition 1.4.2.
We prove the remaining inclusion R∗G · (c+L⊥) ⊆ c+L⊥ at the end of this section; see
Lemmas 1.4.2 and 1.4.3.

Methods that construct groups satisfying these conditions exist for different families
of semidefinite programs; see, e.g., [82, Lemma 2], [23, Theorem 2.1], or [39, Theorem
4]. In the next example, we illustrate construction of a group for the MAXCUT SDP
relaxation of Goemans and Williamson.

Example 1.4.2 (MAXCUT SDP relaxation). Consider an undirected graph G =
([n], E) with node set [n] := {1, . . . , n} and edge set E ⊆

([n]
2
)
. A cut is a parti-

tion of nodes into two disjoint subsets S1 and S2. Finding a cut that maximizes the
number of edges connecting S1 and S2 is the MAXCUT problem. Formally, we want
to find S1 ⊆ [n] and S2 ⊆ [n] that maximizes the number of edges {i, j} ∈ E satisfying
i ∈ S1 and j ∈ S2. This problem is NP-hard. Nevertheless, the size of a maximum cut
is famously upper bounded by the optimal value of the SDP

maximize 1
4 TrLX

subject to X ∈ A ∩ Sn+,
(1.11)

where A := {X ∈ Sn : Xii = 1 for all i ∈ [n]} and L ∈ Sn is the Laplacian matrix
[62, Section 5]. (Recall the Laplacian matrix equals D − A, where D is the diagonal
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matrix with [D]ii equal to the number of edges incident to node i and A is the adjacency
matrix.) Further, if this SDP has a rank one solutionX, thenX = vvT for v ∈ {−1, 1}n,
where the sign pattern of v induces a partition of [n] equal to a maximum cut.

Finding automorphisms We can construct a group of automorphisms directly from sym-
metries of the graphG, i.e., the permutation matrices P that satisfy PLP T = L. Indeed,
if we let U denote this set

U =
{
P a permutation matrix : PLP T = L

}
,

and define the following subgroup of O(Sn)

G =
{
X 7→ PXP T : P ∈ U

}
,

then the following inclusions hold:

G ⊆ aut(Sn+), G ⊆ aut(A), G ⊆ aut({X ∈ V : TrLX ≤ α}) for all α ∈ R. (1.12)

Hence, by Proposition 1.4.3, the Reynolds operator RG satisfies the Constraint Set In-
variance Conditions, implying the fixed-point subspace VG intersects the set of solutions
to the SDP.

For completeness, we verify the inclusions (1.12). That G ⊆ aut(Sn+) follows because
PXP T ∈ Sn+ when X ∈ Sn+. To see that G ⊆ aut(A), first note that A is the set
of symmetric matrices whose diagonal entries all equal one. Hence, A is invariant
under simultaneous permutation of rows and columns; in other words, if X ∈ A then
PXP T ∈ A for any permutation matrix P . Finally, that G ⊆ aut({X ∈ V : TrLX ≤ α}
follows essentially by definition of U : for all P ∈ U ,

TrLPXP T = TrP TLPX = TrLX,

where the first equality uses the cyclic property of trace TrABC = TrCAB and the
second equality uses the fact that P T ∈ U when P ∈ U .

Concrete instance Figure 1.3 gives a concrete example of a graph, a maximum cut, and
the group U ⊂ O(R4). For the group G ⊂ O(S4) induced by U , the following SDP

maximize 1
4 TrLX

subject to X ∈ A ∩ S4
+ ∩ VG ,
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1

2

34

S1 = {1}, S2 = {2, 3, 4}

A =


0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0

 , D =


3 0 0 0
0 1 0 0
0 0 2 0
0 0 0 2

 ,

U =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 .

Figure 1.3: A graph, a maximum cut {S1, S2}, the adjacency matrix A, the degree
matrix D, and the permutation matrices U commuting with the Laplacian L = D−A.

has the same optimal value as the Goemans and Williamson SDP (1.11), where the
fixed-point subspace VG satisfies

VG =




t1 t5 t6 t6
t5 t2 t4 t4
t6 t4 t3 t7
t6 t4 t7 t3

 : t ∈ R7

 .
Section 1.4.4 shows that VG also has a canonical direct-sum decomposition. Using
this decomposition allows one to write Sn+ ∩ VG as a product of smaller cones; see
Example 1.4.3.

Proof of Proposition 1.4.3

We only need to show that the Reynolds operator satisfies R∗G · (c+L⊥) ⊆ c+L⊥. For
this, we first show that R∗Gc = c, which is immediate from the following lemma.

Lemma 1.4.2. Let T : V → V be a linear map with adjoint T ∗ : V → V. For c ∈ V
and α ∈ R, let Ωα = {x : 〈c, x〉 ≤ α}. The following are equivalent

• T ∗c = c

• T · Ωα ⊆ Ωα for all α ∈ R

Proof. That the first statement implies the second is immediate since

〈c, Tx〉 = 〈T ∗c, x〉 = 〈c, x〉.

Suppose the second statement holds. Then, 〈c, y〉 ≥ 〈c, Ty〉 and 〈c,−y〉 ≥ 〈c,−Ty〉 for
all y ∈ V. Hence, 〈c, y〉 = 〈c, Ty〉 for all y ∈ V. The claim follows by applying this to
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the identity

〈c− T ∗c, c− T ∗c〉 = 〈c, c〉+ 〈T ∗c, T ∗c〉 − 2〈c, T ∗c〉.

Indeed, 〈T ∗c, T ∗c〉 = 〈c, TT ∗c〉 = 〈c, T ∗c〉 and 〈c, c〉 = 〈c, T c〉 = 〈T ∗c, c〉. Hence,

〈c− T ∗c, c− T ∗c〉 = 0.

Hence, c = T ∗c.

Next we show that R∗G · L⊥ ⊆ L⊥:

Lemma 1.4.3. Let P : V → V be a projection map and x0 + L an affine set. If
P · (x0 + L) ⊆ x0 + L, then P · L ⊆ L and P ∗ · (L⊥) ⊆ L⊥.

Proof. If P · (x0 + L) ⊆ x0 + L, then x0 + L = Px0 + L. Further, for all xL ∈ L, it
holds that

Px0 + xL − (PPx0 + PxL) ∈ L.

Since PP = P , this shows that xL−PxL ∈ L, implying that PxL ∈ L. Hence, P ·L ⊆ L,
which in turn implies that P ∗ · (L⊥) ⊆ L⊥.

Putting everything together, we conclude that

R∗G · (c+ L⊥) = c+R∗G · L⊥ ⊆ c+ L⊥,

as desired.

� 1.4.4 Structure of fixed-point subspaces

We now study the fixed-point subspace VG ⊆ V in more detail, shifting focus specifically
to semidefinite programming. Going forward, we make the following assumption.

Assumption 1.4.1. V = Sn and, for a group of orthogonal matrices U ⊆ O(Rn),

G = {X 7→ UXUT : U ∈ U}.

This assumption implies existence of an injective linear map Φ for which

Sn+ ∩ VG = Φ · (C1 × · · · × Cr) , (1.13)

where Ci is the cone of Hermitian psd matrices of order ni with real, complex, or quater-
nion entries, and ∑r

i=1 ni ≤ n. This allows one to construct a projected reformulation
over C1 × · · · × Cr if one can find Φ and Ci.
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Example 1.4.3 (Continuation of the MAXCUT example). The fixed-point subspace
VG of Example 1.4.2 satisfies

S4
+ ∩ VG =

{
Q1X1Q

T
1 +Q2X2Q

T
2 : X1 ∈ S3

+, X2 ∈ S1
+

}
,

where

Q1 =


1 0 0
0 1 0
0 0 1
0 0 1

 , Q2 =


0
0
1
−1

 .
This yields a projected reformulation of the Goemans and Williamson SDP:

maximize 1
4 Tr(QT1 LQ1)X1 + 1

4 Tr(QT2 LQ2)X2
subject to Tr(QT1 EiiQ1)X1 + Tr(QT2 EiiQ2)X2 = 1 ∀i ∈ {1, 2, 3, 4},

X1 ∈ S3
+, X2 ∈ S1

+.

One finds Φ and the cones Ci by first finding a canonical direct-sum decomposition
of VG . This decomposition arises from the following observation.

Proposition 1.4.4. Suppose Assumption 1.4.1 holds. Then, VG equals the subspace of
symmetric matrices that commute with all U ∈ U under ordinary matrix multiplication,
i.e.,

VG = {X ∈ Sn : UX = XU ∀U ∈ U} .

Proof. To begin, suppose X commutes with each U . Then,

RGX = 1
|U|

∑
U∈U

UXUT
a= 1
|U|

∑
U∈U

XUUT
b= 1
|U|

∑
U∈U

X = X

where the equality a= uses the assumption UX = XU and b= the fact UUT = I given
that U is an orthogonal matrix. Hence, X is in the range of RG , which equals VG
(Lemma 1.4.1). Next suppose that X ∈ VG , i.e., that

X = UXUT for all U ∈ U .

Then multiplying both sides by UT shows

UTX = UTUXUT = XUT ,

showing that X commutes with UT . Since U ∈ U implies UT ∈ U (given that U is a
group), we conclude that X also commutes with U .
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An invariant subspace of T ⊆ Rn×n is a subspace of Rn that contains its image under U
for all U ∈ T . An invariant subspace is minimal if it is nonzero and properly contains
no nonzero invariant subspace. The next lemma shows the minimal invariant subspaces
of VG ∪ U induce a direct-sum decomposition of VG , owing in part to the commuting
relationship established by Proposition 1.4.4.

Lemma 1.4.4. Let U ⊆ Rn×n be a finite set closed under transposition and let

U ′ = {X ∈ Sn : UX = XU ∀U ∈ U} .

Then, the minimal invariant subspaces Si ⊆ Rn of U∪U ′ form an orthogonal direct-sum
decomposition of Rn, i.e., Rn = ⊕ri=1Si. Further, U ′ = ⊕r

i=1 U ′i, where

U ′i :=
{
X ∈ U ′ : rangeX ⊆ Si

}
.

Proof. Let W ⊆ Rn be an invariant subspace that is not minimal. Then, it contains
an invariant subspace S. We claim the orthogonal complement S⊥ ∩ W of S in W
is invariant. Indeed, for all x ∈ S, y ∈ S⊥ ∩ W and U ∈ U ∪ U ′, it holds that
0 = yTUx = xT (UT y). Hence, UT y ∈ S⊥. Further, UT y ∈ W since W is invariant.
Hence, S⊥ ∩ W is invariant. Taking W = Rn, it follows we can iteratively split Rn

into orthogonal invariant subspaces, terminating when each subspace is minimal. This
yields the orthogonal decomposition ⊕ri=1Si.

We now show S1, . . . ,Sr are the only minimal invariant subspaces. For this, we
first establish that the orthogonal projection matrix E onto an invariant subspace S
commutes with all U ∈ U ∪U ′. Since S⊥ is also invariant (as just established), we have
that EU(I − E) = 0 and (I − E)UE = 0, showing that EU = EUE and UE = EUE;
hence, EU = UE. Note that this also shows E ∈ U ′. Now, let F denote the projection
onto a minimal invariant subspace and let Ei denote the projection matrix onto Si.
Since Ei ∈ U ′, we have that FEi = EiF , showing that FEi is the projection onto the
intersection of rangeF ∩ rangeEi. If F and Ei are distinct, we have by minimality that
rangeF ∩ rangeEi = 0, showing that FEi = 0, which implies rangeF and rangeEi are
orthogonal subspaces. It follows that F = Ej for some j—otherwise, F is orthogonal
to I = ∑r

i=1Ei and hence equals the zero matrix.
We now show the desired decomposition of U ′ holds. To begin, if X ∈ U ′, then

X
a=

r∑
i=1

EiX
r∑
j=1

Ej =
r∑
i=1

r∑
j=1

EiXEj
b=

r∑
i=1

EiXEi,

where the equality a= follows given that ∑r
i=1Ei = I and the equality b= follows given

that EiXEj = EiEjX, where EiEj = 0 if i 6= j. Finally, EiXEi ∈ U ′ since X,Ei ∈ U ′.
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Note that this lemma states we can put VG into block-diagonal form. To be precise,
the inclusion {

X ∈ U ′ : rangeX ⊆ Si
}
⊆ {X ∈ Sn : rangeX ⊆ Si} (1.14)

implies the subspace ⊕ri=1Sni (where ni equals the dimension of Si) contains U ′ up-to
congruence transformation by some (Q1, . . . , Qr) ∈ Rn×n. Specifically, one can pick any
Qi ∈ Rn×ni with range equal to Si. Further, if the inclusion (1.14) holds with equality
for each Si, then

VG ∩ Sn+ =
{

r∑
i=1

QiXiQ
T
i : Xi ∈ Sni+

}
,

i.e., we obtain a decomposition of VG∩Sn+ as an injective transformation of Sn1
+ ×· · ·×S

nr
+ .

Example 1.4.4. We can reinterpret the decomposition of Example 1.4.3 in terms of
invariant subspaces of U . The two minimal invariant subspaces S1 and S2 of U equal
the range of Q1 and Q2, respectively:

U =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 , Q1 =


1 0 0
0 1 0
0 0 1
0 0 1

 , Q2 =


0
0
1
−1

 .
Each direct-summand of VG satisfies VG,i = {X ∈ Sn : rangeX ⊆ Si}.

In general, the inclusion

VG ∩ Sn+ ⊆
{

r∑
i=1

QiXiQ
T
i : Xi ∈ Sni+

}

won’t hold with equality unless we impose additional constraints on the cones Sni+ .
Nevertheless, these constraints are well understood: {QTi XQi : X ∈ VG ∩ Sn+} must be
isomorphic to a cone of psd matrices with real, complex, or quaternion entries. Unfor-
tunately, finding the isomorphism and specific cone is quite technical. We forgo further
explanation here, but devote Chapter 6 to this topic; indeed, this chapter concerns a
more general class of isomorphisms and cones. Authors [89, 42] have also addressed this
topic using the theory of matrix *-algebras, which we review next.

� 1.5 Reductions via *-algebras and completely positive projections

This section continues Section 1.4, giving an alternative way of satisfying the Constraint
Set Invariance Conditions without using group theory. Recall under Assumption 1.4.1
the group G was of the form {X 7→ UXUT : U ∈ U} for some finite group U ⊂ O(Rn) of
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orthogonal matrices. Under this assumption, the Reynolds operator was, by definition, a
sum of congruence transformations RG(X) = 1

|U|
∑
U∈U UXU

T . For an arbitrary finite
subset U ⊂ Rn×n, one calls the map ∑U∈U UXU

T completely positive. This section
reviews techniques that find completely positive projections satisfying the Constraint
Set Invariance Conditions. To do this, we first establish the correspondence between
completely positive projections and associative *-algebras.

Going forward, it is convenient to view X 7→
∑
U∈U UXU

T not as a map on Sn but
a map on Rn×n. We also equip Rn×n with the trace inner product 〈X,Y 〉 := TrXTY

and view it as an associative *-algebra with product given by matrix multiplication and
*-involution given by transposition. Finally, since we have restricted to a vector space
Rn×n of square matrices, we will use Ψ to denote linear maps instead of capital letters
to avoid confusion with matrices.

� 1.5.1 Completely positive projections, commutants, and *-subalgebras

This section proves the following characterization of completely positive projections,
establishing their connection to *-algebras.

Proposition 1.5.1. Let Ψ : Rn×n → Rn×n be an orthogonal projection map. Consider
the following statements.

1. The map Ψ is completely positive, i.e., there exists a finite set U ⊂ Rn×n for which
Ψ(X) = ∑

U∈U U
TXU for all X ∈ Rn×n.

2. The range of Ψ is a commutant, i.e., there exists a finite set U ⊂ Rn×n for which

range Ψ =
{
X ∈ Rn×n : XU = UX, XUT = UTX ∀U ∈ U

}
.

3. The range of Ψ is a *-subalgebra of Rn×n, i.e., it is closed under matrix multipli-
cation and transposition.

Then, (2⇒ 3) and (3⇒ 1). If Φ(I) = I, these statements are equivalent.

The equivalence of statements (2) and (3) (under the assumption Ψ(I) = I) is called the
bicommutant theorem; see, e.g., [7, Theorem 1.2.1 ] for a direct proof. The implication
(3 ⇒ 1), i.e., that the projection onto a *-subalgebra is completely positive is a well
known result for complex *-algebras; see, e.g., [126, Theorems 2.2.6 and 2.2.2] and [143,
Section 6].

To prove this proposition, we first state needed results on completely positive maps.
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Completely-positive maps and Choi matrices

Completely positivity of a map Ψ : Rn×n → Rn×n relates to its Choi matrix CΨ ∈
Rn2×n2 , the block matrix defined via

CΨ :=
n∑

i,j=1
Eij ⊗Ψ(Eij),

where ⊗ denotes the Kronecker product and Eij ∈ Rn×n is the 0/1 matrix nonzero only
at the (i, j)th entry. Note that the (i, j)th block of CΨ is just the evaluation of Ψ at Eij .
The next theorem of Choi states Ψ is completely positive if and only if CΨ is symmetric
and positive semidefinite.

Proposition 1.5.2 (Choi’s Theorem, [33]). Let Ψ : Rn×n → Rn×n be a linear map.
The following statements are equivalent.

1. The Choi matrix CΨ := ∑n
i,j=1Eij ⊗Ψ(Eij) is symmetric and psd.

2. The map Ψ is completely positive, i.e., there exists a finite set U ⊂ Rn×n for which
Ψ(X) = ∑

U∈U UXU
T for all X ∈ Rn×n.

Note that Choi proves this proposition with Rn×n replaced by the set of n×n complex
matrices and the transpose operator replaced by conjugate transposition. A simple
modification of Choi’s argument proves it as stated here; see also [68, p. 415]. Choi’s
proof is also constructive: the matrices U are eigenvectors of CΨ reshaped into n × n
matrices.

To use Choi’s theorem, we need a few facts about the Choi matrices of orthogonal
projections.

Lemma 1.5.1. Let Ψ : Rn×n → Rn×n be an orthogonal projection whose range is a
*-subalgebra, i.e., whose range is closed under matrix multiplication and transposition.
The following statements hold.

• The Choi matrix CΨ := ∑n
i,j=1Eij ⊗Ψ(Eij) is symmetric.

• If F = ∑n
i,j=1Eij ⊗ Fij is the orthogonal projection matrix onto an eigenspace of

CΨ not equal to the kernel, then Ψ(Fij) = Fij.

Proof. The matrix CΨ is symmetric if Ψ(Eij) = Ψ(Eji). To see this holds, let B be an
orthonormal basis for the range. Then, for all X ∈ Rn×n,

(Ψ(X))T =
(∑
B∈B

(TrBTX)B
)T

=
∑
B∈B

(TrBTX)BT =
∑
B∈B

(TrXBT )BT = Ψ(XT ),
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where the last equality follows since {BT : B ∈ B} is also an orthonormal basis since
the range is closed under transposition. Hence, Ψ(Eij) = Ψ(Eji) as desired.

For the next statement, we’ll show the following subspace is closed under X 7→ X2:
n∑

i,j=1
Eij ⊗Ψ(Xij) : Xij ∈ Rn×n

 ∩ Sn.

The statement then follows by Lemma 5.2.1. Suppose that Z = ∑n
i,j=1Eij ⊗ Ψ(Xij).

Then

Z2 =

 n∑
i,j=1

Eij ⊗Ψ(Xij)

 n∑
k,`=1

Ek` ⊗Ψ(Xk`)


=

n∑
i,j=1

n∑
k,`=1

EijEk` ⊗Ψ(Xij)Ψ(Xk`)

=
n∑

i,j=1
Eij ⊗Ψ(Zij),

for some Zij ∈ Rn×n given that EijEk` ∈ spanEmn and Ψ(Xij)Ψ(Xk`) ∈ range Ψ.
Further, if Z is symmetric, then so is Z2.

We are now ready to prove Proposition 1.5.1.

Proof of Proposition 1.5.1

The implication (2 ⇒ 3) is obvious. To show that (3 ⇒ 1), it suffices to show that
the Choi matrix CΨ of Ψ is psd. Towards this, suppose that F = ∑n

i,j=1Eij ⊗ Fij is a
symmetric projection matrix with range equal to an eigenspace of CΨ. Suppose also that
the associated eigenvalue λF is nonzero. By Lemma 1.5.1, it holds that Ψ(Fij) = Fij .
Hence,

λF 〈F, F 〉 = 〈F,CΨ〉 =
n∑

i,j=1
〈Ψ(Fij), Eij〉 =

n∑
i,j=1
〈Fij , Eij〉 = 〈F,

n∑
i,j=1

Eij × Eij〉.

But 〈F,∑n
i,j=1Eij × Eij〉 ≥ 0 since it is the trace inner product between two psd

matrices. Hence, λF 〈F, F 〉 ≥ 0, which implies λF ≥ 0.
We now show (1 ⇒ 2) under the assumption Ψ(I) = I. That the range contains

the commutant is easy to check. For the reverse, we use the argument sketched in [143,
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Section 6]. To begin, for X ∈ Rn×n, define the psd matrix T ∈ Sn as follows:

T := 1
2

(∑
U∈U

(UX −XU)T (UX −XU) + (UTX −XUT )T (UTX −XUT )
)

= XTΨ(I)X −XTΨ(X)−Ψ(XT )X + Ψ(XTX)
= XTX −XTΨ(X)−Ψ(X)TX + Ψ(XTX).

The second line uses the fact that Ψ = ∑
U∈U U

TXU = ∑
U∈U UXU

T since Ψ is self-
adjoint. The third line uses the fact that Ψ(XT ) = Ψ(X)T , as is easily checked. For all
X ∈ range Ψ, it in addition holds that

T = Ψ(XTX)−XTX.

We will show T = 0 for all X ∈ range Ψ, which in turn implies that UX −XU = 0 and
UTX −XUT = 0.

To see that T = 0, note that Ψ, being completely positive, satisfies the Schwartz
inequality:

Ψ(XTX)−Ψ(X)TΨ(X) ∈ Sn+.

Hence, if Ψ(X) = X, then Ψ(XTX) −XTX ∈ Sn+, i.e., T is psd. On the other hand,
since Ψ is idempotent,

Ψ(T ) = Ψ
(
Ψ(XTX)−XTX

)
= Ψ(XTX)−Ψ(XTX) = 0.

This shows that the trace of T vanishes:

TrT = 〈I, T 〉 = 〈Ψ(I), T 〉 = 〈I,Ψ(T )〉 = 0.

Since T is psd, we conclude T = 0.

� 1.5.2 Constraint set invariance via *-algebras

The characterization of completely positive projections in terms of *-subalgebras yields
approaches for satisfying the Constraint Set Invariance Conditions. Such approaches
were pioneered by Schrijver [123]; see also the survey [37]. We overview two approaches.
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Algebras generated by constraint sets

For fixed X0, C ∈ Rn×n and a linear subspace L ⊆ Rn×n, consider the following semidef-
inite program

minimize TrCX
subject to X ∈ X0 + L,

X ∈ Sn+,
(1.15)

where the psd cone Sn+ ⊆ Rn×n is viewed as a subset of Rn×n. Our goal is to find
an orthogonal projection Ψ : Rn×n → Rn×n satisfying the Constraint Set Invariance
Conditions which, for this SDP, are

Ψ · Sn+ ⊆ Sn+, Ψ · (X0 + L) ⊆ X0 + L Ψ · (C + L⊥) ⊆ C + L⊥.

The condition Ψ · Sn+ ⊆ Sn+ holds automatically if the range is a *-subalgebra since,
in this case, Ψ is completely positive. The remaining conditions hold if the range also
contains X0 + L or C + L⊥.

Proposition 1.5.3. The orthogonal projections onto the following subspaces satisfy the
Constraint Set Invariance Conditions for the SDP (1.15):

• Any *-subalgebra containing X0 and L

• Any *-subalgebra containing C and L⊥

Proof. The statements have identical proofs. We only show the first. To begin, the
range contains X0 and L. Hence Ψ · (X0 + L) = X0 + L. Indeed, since Ψ(X0) = X0,
we must have that Ψ · L = L. This implies that Ψ · L⊥ ⊆ L⊥. Further, since

C + L⊥ = CL + L⊥,

where CL denotes the orthogonal projection of C onto L, it follows that

Ψ · (C + L⊥) = CL + Ψ · L⊥ ⊆ C + L⊥.

The claim therefore follows since the projection onto any *-subalgebra is completely
positive (Proposition 1.5.1).

Note if X0 +L denotes the solutions to a set of linear equations TrAiXi = bi, then a *-
subalgebra (indeed, any subspace) contains C and L⊥ if and only if it contains the data
matrices {C,A1, A2, . . . , Am}. This shows generating an algebra from the SDP data
matrices yields a projection that satisfies the Constraint Set Invariance Conditions; see
[37] for more information on this approach.
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Application specific approaches via coherent algebras

One can also identify *-subalgebras using application specific techniques. We illustrate
this for the MAXCUT relaxation by finding a *-subalgebra that is coherent. By defini-
tion coherent *-subalgebras contain the identity matrix, the all-ones-matrix, and have
an orthogonal basis of 0/1 matrices [70]. The following *-subalgebra is coherent:

A :=




t1 t6 t9 t9
t7 t2 t4 t4
t8 t5 t3 t10
t8 t5 t10 t3

 : t ∈ R10

 . (1.16)

To find a coherent *-subalgebra for the MAXCUT relaxation, we need the following
property:

Lemma 1.5.2. Let Ψ : Rn×n → Rn×n be an orthogonal projection onto a coherent
*-subalgebra. Then, the set of diagonal matrices and its orthogonal complement are
invariant subspaces of Ψ.

Example 1.5.1 (*-algebra reductions of MAXCUT). For an undirected graph G with
Laplacian matrix L ∈ Sn, recall the MAXCUT relaxation

maximize 1
4 TrLX

subject to TrEiiX = 1 i ∈ {1, . . . , n},
X ∈ Sn+,

where Eij ∈ Rn×n is the 0/1 matrix with support equal to (i, j). Let Ψ : Rn×n → Rn×n

be the orthogonal projection onto any coherent *-subalgebra containing L. Then, Ψ
satisfies the Constraint Set Invariance Conditions. To see this, it suffices to show that
Ψ leaves the solution set of TrEiiX = 1 invariant. Suppose TrEiiX = 1. Then,
X = I + Y for Yii = 0 and Ψ(X) = I + Ψ(Y ) where [Ψ(Y )]ii = 0 by Lemma 1.5.2.
Hence, TrEiiΨ(X) = 1.

� 1.5.3 Aside: more on coherent algebras

As illustrated, the 0/1 basis of a coherent algebra induces a partition of [n]× [n], where
[n] := {1, . . . , n}. One calls this partition a coherent configuration. The commutant of
a group U ⊂ Rn×n of permutation matrices is always coherent. In this case, one calls
the underlying coherent configuration Schurian. For Schurian coherent configurations,
the partition class of (i, j) ∈ [n] × [n] equals its orbit {(σ(i), σ(j)) : σ ∈ P}, where P
is the set of permutations σ : [n]→ [n] realized by the matrices U . Note that (1.16) is
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the commutant of the following set U :

A =
{
X ∈ Rn×n : UX = XU ∀U ∈ U

}
, U =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 .

Not all coherent algebras are the commutants of permutation groups [70]. As a con-
sequence, coherent *-subalgebra reduction methods can be more powerful than group
theoretic ones. For instance, in the MAXCUT example, the coherent *-subalgebra
generated by the Laplacian can be properly contained in the commutant of its auto-
morphism group. (The Shrikhande graph has this property [125].) Hence, reformulating
over the former *-subalgebra can yield a smaller SDP than reformulating over the latter.
The gap between these *-subalgebras and the implications for symmetry reduction are
discussed in [135, Section 7.2].

� 1.5.4 Wedderburn decomposition

Any *-subalgebra A of Rn×n also has a canonical direct-sum decomposition

A = ⊕ri=1Ai

into simple algebras Ai. This decomposition is called the Wedderburn decomposition.
By the bicommutant theorem (Proposition 1.5.1), any *-subalgebra containing the iden-
tity matrix I has the form

A = {X ∈ Rn×n : XU = UX, U ∈ U}

for some finite set U ⊂ Rn×n closed under transposition. Each direct-summand of Ai

corresponds to a minimal invariant subspace Si of U ∪A. (Invariant subspaces of U ∪A
are called hyper-invariant subspaces of U .) Specifically, Ai is the subset of matrices in
A whose ranges are contained in Si. For this reason, the Wedderburn decomposition
is compatible with the decomposition of fixed-point subspaces ⊕ri=1VG,i reviewed in
Section 1.4.4. The next example illustrates this.

Example 1.5.2. For Example 1.4.4, an algebra A satisfying A ∩ Sn = VG is

A =




t1 t6 t9 t9
t7 t2 t4 t4
t8 t5 t3 t10
t8 t5 t10 t3

 : t ∈ R10

 .
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It has Wedderburn decomposition A1 ⊕A2, where

A1 =




t1 t6 t9 t9
t7 t2 t4 t4
t8 t5 t3 t3
t8 t5 t3 t3

 : t ∈ R9

 , A2 =




0 0 0 0
0 0 0 0
0 0 t −t
0 0 −t t

 : t ∈ R

 . (1.17)

Each direct-summand VG,i given by Example 1.4.4 equals Ai ∩ Sn.

Numerical algorithms can find the Wedderburn decomposition of any *-subalgebra; see
[89, 49]. Versions also exist for decomposing algebras over the complex numbers [42].

� 1.5.5 Benefits, challenges, and facial reduction comparisons

There are common challenges and benefits of symmetry reduction, *-algebra methods,
and facial reduction. Each method enables one to solve smaller problems. Each also has
a common challenge of sparsity preservation; for instance, in symmetry reduction and *-
algebra methods, one preserves sparsity by finding sparse bases for invariant subspaces
(Example 1.4.3). Nevertheless, there are important differences related to pathology
removal, dual solution recovery, and algorithms. To explain, we call any reduction
technique based on the Constraint Set Invariance Conditions a projection-based method.
Projection-based methods include symmetry reduction, *-algebra techniques, and a
generalization of symmetry reduction proposed in later chapters.

Pathology removal and dual solution recovery

Dual solution recovery Like facial reduction, projection-based methods restrict the pri-
mal to a subspace and hence relax the dual. In facial reduction, recovering solutions to
the original dual from an analogous relaxation was nontrivial and, indeed, impossible in
some cases (Section 1.3.6). Remarkably, dual solution recovery is always possible after
using a projection-based method. The fundamental reason is the primal-dual symmetry
of the Constraint Set Invariance Conditions (Proposition 1.4.1). Chapter 5 elaborates
on this more.

No pathology removal The flip side to guaranteed recovery is the inability to remove
pathologies. Specifically, a projection-based method never changes the primal or dual
optimal values nor their attainment. It also doesn’t change existence of improving rays.
As a consequence, these methods cannot remove pathologies.
Example 1.5.3 (Failure to remove duality gaps). Consider the primal-dual pair

P(S3
+) : minimize TrCX

subject to TrAiX = bi,

X ∈ S3
+

D(S3
+) : maximize bT y

subject to S = C −
∑3
i=1 yiAi

(S, y) ∈ S3
+ × R2,
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where b =
[
1 0 0

]T
and

C :=

1 0 0
0 0 0
0 0 0

 , A1 :=

1 0 0
0 0 1
0 1 0

 , A2 :=

0 0 0
0 1 0
0 0 0

 A3 :=

 0 1 −1
1 0 0
−1 0 0


(The primal SDP is from Example 1.3.4 with the additional constraint that TrA3X =
0.) The projection onto the following coordinate subspace S∗ 0 0

0 ∗ ∗
0 ∗ ∗


satisfies the Constraint Set Invariance Conditions. The cone C = S3

+ ∩ S satisfies

C = {X ∈ S3
+ : X12 = X13 = 0}, C∗ = {X +W : X ∈ S3

+,W ∈ S⊥}

and contains both primal and dual solutions. Nevertheless, restricting the primal to C
and relaxing the dual to C∗ does not remove the duality gap:

inf{TrCX : Ai ·X = bi, X ∈ C} = 1, sup{bT y : C −
3∑
i=1

yiAi ∈ C∗} = 0.

The duality gap also persists if one relaxes the primal to C∗ and restricts the dual to C:

inf{TrCX : Ai ·X = bi, X ∈ C∗} = 1, sup{bT y : C −
3∑
i=1

yiAi ∈ C} = 0.

Slater’s condition and singularity degree

While a projection-based method will not remove pathologies, it can, surprisingly, re-
duce the singularity degree (Section 1.3.4) and hence improve accuracy in the same
way as facial reduction (Section 1.3.5). In fact, it can even restore Slater’s condition!
(Note however that restoring Slater’s condition implies the original instance had no
pathology—in other words, Slater’s condition failed in a benign way.)

Example 1.5.4. Recall the SDP of Example 1.3.5, which had decision variable X ∈ Sn+
and constraints

[X]1,1 = 1,
[X]2,2 = 0,

[X]k+1,k+1 = [X]1,k ∀k ∈ {2, 3, . . . , n− 1}.

This SDP fails Slater’s condition and has singularity degree equal to n−1. The orthogo-
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nal projection onto the subspace spanned by e1e
T
1 satisfies the Constraint Set Invariance

Conditions. Reformulating over this subspace yields an SDP that satisfies Slater’s con-
dition

Find λ ≥ 0 subject to λe1e
T
1 = e1e

T
1 .

Note that n−1 iterations of facial reduction are needed to obtain the same reformulation.

Algorithms

Finding minimal reductions In facial reduction, there is a well defined minimal face of
the cone program

minimize 〈c, x〉
subject to x ∈ A ∩ K,

and an algorithm (Algorithm 1.1) for finding it; indeed, for feasible problems, the
minimal face is the unique face of the convex cone K whose relative interior intersects
the affine set A.

In symmetry reduction, there is a subgroup analogous to the minimal face, namely,
the largest subgroup G ⊆ O(V) that satisfies

G ⊆ aut(K), G ⊆ aut(x0 + L), G ⊆ aut(c+ L⊥),

where A = x0 + L. To our knowledge, no algorithm exists for finding G. Nevertheless,
if K is polyhedral, then aut(K) is well understood and algorithms exists for finding
canonical subgroups [26].

For *-algebra methods there is also an analogous object: the range of the minimum
rank completely positive projection satisfying the Constraint Set Invariance Conditions.
Unfortunately, no algorithm exists for finding this group or this projection, at least
to our knowledge. Further, general techniques for approximating these objects—such
as generating *-subalgebras from data (Section 1.5.2)—can fail badly in cases where
application specific methods succeed. The following example illustrates failure of a
general technique on the MAXCUT SDP relaxation. (See Examples 1.4.2 and 1.5.1
for successful application specific methods.) Specifically, it shows the *-subalgebra
generated by the data equals the whole space Rn×n when the graph is connected and
hence provides no reductions, even if the graph is highly symmetric.

Lemma 1.5.3. Let L be the Laplacian of a graph G and consider the MAXCUT relax-
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ation

maximize 1
4 TrLX

subject to TrEiiX = 1 i ∈ {1, . . . , n},
X ∈ Sn+,

where Eij ∈ Rn×n is the zero-one matrix with support equal to (i, j). If G is connected,
then the *-subalgebra of Rn×n generated by E11, E22, . . . , Enn and L equals Rn×n.

Proof. If G is connected, there exists T ∈ span{I, L, L2, . . . , Ln} that is nonzero in each
entry, i.e., tij := [T ]ij 6= 0. Since EjjTEii = tijEij is in the algebra and tij 6= 0, the
algebra contains every standard basis matrix Eij . Hence, it contains Rn×n.

Implementations for symmetric cones The facial reduction algorithm is implementable
for any symmetric cone (see, e.g., [86, Section 5]). Symmetry reduction and *-algebra
methods, in contrast, are tailored to linear and semidefinite programming (e.g.,[18, 37]),
a proper subset of symmetric cone optimization problems. We address this issue in
Chapter 5. To do this, we develop another algebraic reduction technique based on
Euclidean Jordan Algebras, which we review next.

� 1.6 Euclidean Jordan algebras

Chapters 5-7 contain a generalization of symmetry reduction. Specifically, it will show
how find a minimum rank projection satisfying the Constraint Set Invariance conditions
for any symmetric cone K. This rank minimization approach is grounded in Euclidean
Jordan algebra theory, which we now overview. We first define these algebras and then
discuss fundamental topics such as the direct-sum decomposition into simple ideals and
the classification of simple algebras. Note Euclidean Jordan algebras are precisely the
formally-real Jordan algebras [79, Chapter VI, Theorem 12]; some cited references use
this latter terminology (e.g., [67]).

� 1.6.1 Preliminaries

We begin with definitions:

Definition 1.6.1. A real Jordan algebra J is an algebra over R (with product denoted
x ◦ y) satisfying the following axioms:

• x ◦ y = y ◦ x (Commutative law)

• (x ◦ y) ◦ x2 = x ◦ (y ◦ x2), where x2 denotes x ◦ x. (Jordan identity)
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The algebra J is called Euclidean if, in addition, it is equipped with an inner product
〈·, ·〉J satisfying

〈x ◦ y, z〉J = 〈y, x ◦ z〉J ∀x, y, z ∈ J.

A Euclidean Jordan algebra J always has an identity element, which we denote e. (See,
e.g., [79, Chapter III, Theorem 9 and Chapter VI, Corollary 5].) While J is not in
general associative, it is always power-associative, meaning x ◦x ◦ · · · ◦x is independent
of the order of multiplication—hence, xq is well-defined for all integers q > 0. Algebras
are isomorphic if there is an isomorphism between them:

Definition 1.6.2. An isomorphism Φ : JA → JB between two Euclidean Jordan alge-
bras JA and JB is an invertible linear map satisfying

Φ(x ◦ y) = (Φx) ◦ (Φy),

where the multiplication x ◦ y is carried out in JA and (Φx) ◦ (Φy) in JB.

Since Jordan algebras are commutative, the identity 2a ◦ b = (a + b)2 − a2 − b2 holds.
It follows isomorphisms are precisely the linear maps satisfying Φ(x2) = (Φx)2.

� 1.6.2 Decomposition into simple ideals

An ideal I ⊆ J is a subspace closed under multiplication by arbitrary elements of J,
i.e., I is an ideal if I contains {x ◦ y : x ∈ J, y ∈ I}. An algebra J is called simple if
the only ideals are J and {0}—the so-called trivial ideals. The simple algebras are fully
classified up to isomorphism [77]. Further, any algebra has an orthogonal direct-sum
decomposition into simple ideals—ideals that, when viewed as algebras, are simple [79,
Chapter 3, Theorem 11]. Formally:

Proposition 1.6.1 (Jordan, von Neumann, Wigner). Any Euclidean Jordan Algebra
J equals an orthogonal direct-sum J = ⊕m

k=1 Jk of ideals Jk, where each ideal (viewed
as an algebra) is simple and isomorphic to one of the following:

1. The spin-factor algebra R⊕Rm with product (x0, x) ◦ (y0, y) = (x0y0 +xT y, x0y+
y0x).

2. The Hermitian matrices of order n with real, complex, or quaternion entries,
denoted Hn(R), Hn(C), Hn(H), respectively, with product X ◦Y = 1

2(XY +Y X).

3. The Hermitian matrices of order 3 with octonion entries, denoted H3(O), with
product X ◦ Y = 1

2(XY + Y X).

Further, the decomposition J = ⊕m
k=1 Jk is unique up-to permutation of the direct

summands.
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The third algebra on this list is called the exceptional algebra. Note that Hn(R) is just
the vector space Sn of real symmetric matrices.

� 1.6.3 Cones-of-squares

For any Euclidean Jordan algebra J, the set {x◦x : x ∈ J} is called the cone-of-squares
of J. The cone-of-squares is a closed, convex cone; indeed, it is a symmetric cone, i.e.,
it is self-dual and homogeneous (Section 1.1). The cone-of-squares is an irreducible
symmetric cone if and only if J is simple. Conversely, any (irreducible) symmetric cone
is the cone-of-squares of some (simple) algebra J. It follows there are only three types
of irreducible symmetric cones up to invertible linear transformation:

1. The cone-of-squares of the spin-factor algebra, i.e., the Lorentz cone.

2. The cones-of-squares of Hermitian matrices Hn(R), Hn(C), Hn(H) of order n,
i.e., the psd matrices of order n with real, complex, or quaternion entries.

3. The cone-of-squares of the exceptional algebra.

Note also that any subalgebra S of J can be viewed as a Jordan algebra with cone-
of-squares J ∩ S. In other words, J ∩ S is a symmetric cone (viewing S as the ambient
space) when S is a subalgebra.

� 1.6.4 Idempotents, rank, and spectral decomposition

An element of x ∈ J is called idempotent if x◦x = x. An idempotent is called primitive
if it cannot be written as the sum of two idempotents. A Jordan frame is a set of
primitive idempotents that are pairwise orthogonal and sum to the identity. All Jordan
frames have the same cardinality equal to the rank of the algebra, where

rank J = max
{
n : {e, x, x2, · · · , xn} is linearly independent, x ∈ J

}
.

Jordan frames arise from the spectral decomposition of x ∈ J which, for symmetric
matrices, is the usual eigenvalue decomposition.

Proposition 1.6.2 (Spectral decomposition, [51, Theorem III.1.2]). Let J be a Eu-
clidean Jordan algebra. For every element x ∈ J there exists a Jordan frame e1, . . . , ek
and real numbers λ1, . . . , λk (not-necessarily distinct) for which

x =
k∑
i=1

λiei.

The numbers λi (with their multiplicities) are uniquely determined by x.
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The spectral decomposition also provides a formula for metric projection onto the
cone-of-squares:

Proposition 1.6.3 (Projection onto the cone-of-squares). Let J be a Euclidean Jordan
algebra with cone-of-squares K. If x ∈ J has spectral decomposition x = ∑k

i=1 λiei, then

proj
K

(x) =
k∑
i=1

max(λi, 0)ei,

where projK(x) := arg minw∈K〈x− w, x− w〉.

Proof. Let y = projK(x) and z = ∑k
i=1 min(λi, 0)ei. Then, x = z + y where 〈z, y〉 = 0

and (y,−z) ∈ K × K∗ given that K∗ = K. By the Moreau’s Theorem [71, Theorem
3.2.5], the result follows.

Note that when K = Rn+, this projection operation simply sets negative components of
x ∈ Rn to zero. When K = Sn+, this projection operation sets negative eigenvalues to
zero.

� 1.6.5 Special Jordan algebras and representability

Given a real associative algebra A, one obtains a real Jordan algebra (not necessarily
Euclidean) by equipping A with product x◦y = 1

2(xy+yx). This algebra is denoted A+.
A Jordan algebra is called special if it is isomorphic to a subalgebra of A+ for some
A, otherwise it is called exceptional. The only simple exceptional algebra is H3(O).
Further, any subalgebra of Sn is special; indeed, a converse of this statement also holds.

Proposition 1.6.4 (Characterization of special algebras). Let J be a Euclidean Jordan
algebra. The following statements are equivalent.

1. The algebra J is special.

2. No ideal of J is isomorphic to H3(O).

3. The algebra J is isomorphic to a subalgebra of Sm for some m.

The only nonobvious property is that the first statement implies the third. It is
easy to construct these Sm-subalgebras for Hn(C) and Hn(H). For instance, Hn(C) is
isomorphic to the subalgebra S of S2n given by

S =
{[

X S

ST X

]
: X ∈ Sn, S ∈ Rn×n, ST = −S

}
. (1.18)

Further, each spin-factor algebra is isomorphic to a subalgebra of Hn(C) for some n [67,
Section 6.2]; in light of (1.18), it follows each is also isomorphic to a subalgebra of Sm
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for some m. (We also note that any spin-factor algebra is isomorphic to a subalgebra
of A+, where A is a real Clifford algebra.)

As a consequence of this proposition, we can study any special algebra using the
familiar properties of real symmetric matrices. We use this fact to prove theorems in
Chapter 5. However, finding an isomorphic subalgebra of Sm is not always useful for
computation: for spin-factors, the order n of the isomorphic Hn(C)-subalgebra given
by [67, Section 6.2] (and the order m of the Sm-subalgebra induced by (1.18)) grows
exponentially in the dimension of the spin-factor.
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Chapter 2

Partial facial reduction

� 2.1 Introduction

As explained in Chapter 1.3, facial reduction finds a face containing the feasible set by
solving a series of conic feasibility problems. Unfortunately, solving these problems can
be expensive and reformulating over the identified face can destroy problem sparsity.
Further, reformulating may not leave the optimal value truly unchanged if there is
floating-point round-off error. These issues preclude its use in general purpose solvers.
It is also inconsistent with a pre-processing philosophy of Andersen and Andersen, who
argue the best strategy for pre-processing LPs is to find simple simplifications quickly.
In this chapter, we develop a new facial reduction procedure that avoids these issues
and is consistent with this philosophy.

How, then, does one find only ‘simple’ simplification in the context of facial reduc-
tion? One way is to look only for faces exposed by hyperplanes of a particular type.
Consider the SDP

Find y1, y2, y3 ∈ R
subject to

A(y) =

 y1 0 0
0 −y1 y2
0 y2 y2 + y3

 � 0.

Here, the matrix A(y) is psd if and only if it is contained in the face S3
+ ∩ S⊥, where

S3
+ ∩ S⊥ =


 0 0 0

0 0 0
0 0 x

 : x ≥ 0

 , S =

 1 0 0
0 1 0
0 0 0

 .
Further, the hyperplane S⊥ exposing S3

+ ∩ S⊥ is structured: the matrix S is contained
in the set of matrices that are nonnegative and diagonal—a simple inner approxima-
tion of the psd cone. This leads to the main idea of this chapter: a facial reduction
methodology—which we call partial facial reduction—that restricts the search for hy-

83
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perplanes to a user-specified approximation of the psd cone.
It may seem that ad-hoc specification of the approximation will not lead to a pro-

cedure that is particularly useful—if the approximation is not matched to a problem
instance, the procedure will fail to find a proper face containing the feasible set, even if
one exists. Nevertheless, we show natural approximations are effective for a wide class
of examples. We also prove these approximations yield faces that always have sparse
representations, allowing one to construct projected reformulations (Chapter 1.2.5) over
the face without destroying sparsity. Finally, we demonstrate even polyhedral approx-
imations (e.g., nonnegative diagonal matrices) are effective, allowing one to perform
facial reduction in exact arithmetic.

This chapter is organized as follows. In Section 2.2, we modify the basic facial re-
duction algorithm to yield our technique and describe example approximations of the
psd cone in Section 2.3. Section 2.4 finds maximum rank solutions to conic optimization
problems formulated over these approximations (which helps us find faces of minimal
dimension). Section 2.5 shows approximations can be chosen to preserve sparsity. Sec-
tion 2.6 gives simple, illustrative examples. Section 2.7 describes a freely-available
implementation and Section 2.8 shows effectiveness of the method on examples arising
in practice.

� 2.1.1 Contributions

Partial facial reduction Our main contribution is a facial reduction procedure incorpo-
rating a user-specified approximation (Algorithm 2.1). When a polyhedral approxima-
tion is specified, this procedure solves only linear programs and computes nullspaces
of matrices, which can be done in exact arithmetic, if desired. We demonstrate simple
approximations are effective in practice.

Maximum rank solutions Related to finding a face of minimal dimension is finding
a maximum rank matrix in a subspace intersected with a specified approximation.
We show maximum rank matrices can be found by solving a single convex problem
(Theorem 2.4.1). When approximations are polyhedral, this convex problem is a linear
program.

Sparse reformulations We show approximations can also be chosen to preserve sparsity.
Specifically, we prove if approximations are contained in the cone of scaled-diagonally-
dominant [19] matrices, the identified face can always be written as USd+UT , where the
columns of U ∈ Rn×d have disjoint support (Theorem 2.5.1). This guarantees an SDP
can be reformulated over the identified face without increasing the number of nonzero
entries of its data matrices.



Sec. 2.2. Partial facial reduction 85

Software implementation We provide a MATLAB implementation frlib, available at
www.mit.edu/~fperment. If interfaced directly, the code takes as input SDPs in Se-
DuMi format [129]. It can also be interfaced via the parser YALMIP [84] or SOSTOOLS
[112].

� 2.2 Partial facial reduction

We recall the basic idea behind facial reduction (Chapter 1.3.4). Given an inner product
space V, an affine set A ⊆ V and convex cone K ⊆ V, facial reduction finds a chain of
faces K = F0 ⊃ F1 ⊃ · · · ⊃ FN containing A ∩K via the recursion

F0 = K, Fi+1 = Fi ∩ s⊥i ,

where each si solves the following feasibility problem:

Find si ∈ F∗i \ F⊥i
subject to s⊥i ⊇ A,

(2.1)

i.e., each si defines a hyperplane s⊥i containing the affine set A that exposes a proper
face of Fi (and hence of K).

This leads to a trade-off between the cost of finding si (solving the feasibility prob-
lem) and the benefit of finding Fi+1 (obtaining a lower-dimensional face containing
A ∩ K). To manage this trade-off, we propose a simple idea: inner approximate the
dual cone F∗i at each step of the recursion, or, equivalently, outer approximate Fi.
Specifically, we propose selecting Fi,outer that satisfies:

1. Fi,outer ⊇ Fi (which implies F∗i,outer ⊆ F∗i )

2. spanFi,outer = spanFi (i.e., F⊥i,outer = F⊥i )

3. F∗i,outer has low search complexity.

Using the approximation Fi,outer, one can then compute a recursion Fi+1 = Fi ∩ s⊥i ,
where each si solves

Find si ∈ F∗i,outer \ F⊥i,outer ⊆ F∗i \ F⊥i
subject to s⊥i ⊇ A.

(2.2)

a conic optimization problem that by construction is easy to solve, and, by construction,
yields a face Fi+1 containing the feasible set A ∩ K. In other words, this approach
correctly identifies a face at a user-specified cost—the search complexity of F∗i,outer.
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Geometric interpretation

Because we have introduced the approximation Fi,outer, the feasibility problem (2.2)
may not have a solution even if (2.1) does—that is, we may fail to find a proper
face containing A ∩ K even if one exists. We can use Corollary 1.3.2 to interpret this
geometrically. Under the assumption that A ∩ K is nonempty, this corollary implies
feasibility of (2.2) is equivalent to emptiness of A∩ relintFi,outer, whereas feasibility of
(2.1) is equivalent to a weaker condition: emptiness of A∩relintF . Figure 2.1 illustrates
success and failure of these conditions.

� 2.2.1 Partial facial reduction of SDPs

Approximating faces of Sn+
To apply this idea to SDP, we need a way of approximating faces of Sn+. To see how
this can be done, let F denote the face USd+UT of Sn+ defined by fixed U ∈ Rn×d. An
approximation Fouter of F is obtained from an approximation Ŝd+ of Sd+. Moreover,
the search complexity of F∗outer depends on the search complexity of Ŝd+. Consider the
following (whose proof is straightforward and omitted):
Lemma 2.2.1. Let Ŝd+ ⊆ Sd be a convex cone containing Sd+. For U ∈ Rn×d, let Fouter
and F denote the sets U Ŝd+UT and USd+UT , respectively. The following statements are
true.

1. F ⊆ Fouter.

2. spanF = spanFouter

3. F∗outer \ F⊥outer =
{
X ∈ Sn : UTXU ∈ (Ŝd+)∗ \ {0}

}
.

This lemma leads to an SDP partial-facial-reduction procedure, which we state explicitly
in Algorithm 2.1. Each iteration of this procedure relies on an approximation Ŝd+ of the
psd cone Sd+. Example approximations are explored in the next section.

� 2.3 Approximations of Sd+

In this section, we explore an outer approximation C(W) of Sd+ parametrized by a set
W of d×k rectangular matrices. The parametrization is chosen such that the dual cone
C(W)∗ equals the Minkowski sum of faces WiSk+W T

i of Sd+ for Wi ∈ W. It is defined
below:
Lemma 2.3.1. For a set W :=

{
W1,W2, . . . ,W|W|

}
of d×k matrices, let C(W) denote

the following convex cone:

C(W) :=
{
X ∈ Sd : W T

i XWi ∈ Sk+ i = 1, . . . , |W|
}
.
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Figure 2.1: Illustrates when the feasibility problems (2.1) and (2.2) have solutions.
For the affine set A shown, solutions exist for both. However, if we replace A with B,
solutions do not exist for (2.2) since B ∩ relintFi,outer is non-empty. In other words, in
this latter case, facial reduction finds a face whereas partial facial reduction fails.

Algorithm 2.1: Partial facial reduction algorithm. Given affine set A ⊆ Sn, finds
face USd+UT containing A ∩ Sn+.
begin

Initialize: U ← I, d← n
repeat

1. Pick outer-approximation Ŝd+ ⊇ Sd+ and solve

Find S ∈ Sn
subject to S⊥ contains A

UTSU ∈ (Ŝd+)∗ \ {0}.
(?)

2. Find matrix B ∈ Rd×r whose columns are a basis for nullUTSU .

3. Intersect USdUT with S⊥, i.e., set U ← UB and d← d− r.
until (?) is infeasible;

end
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The dual cone C(W)∗ satisfies

C(W)∗ =


|W|∑
i=1

WiXiW
T
i : Xi ∈ Sk+

 , (2.3)

and the following inclusions hold:

C(W)∗ ⊆ Sd+ ⊆ C(W).

Proof. The inclusions are obvious from the definitions of C(W)∗ and C(W) (as is the
fact that C(W) is a convex cone). It remains to show correctness of (2.3). To show this,
let T denote the set on the right-hand side of (2.3). It is easy to check that T ∗ = C(W),
which implies T ∗∗ = C(W)∗. Since T is a convex cone (as is easily checked), T ∗∗
equals the closure of T . The result therefore follows by showing T is closed. To see
this, note that T equals the Minkowski sum of closed cones WiSk+W T

i . For matrices
Zi ∈ WiSk+W T

i , we have that ∑|W|i=1 Zi = 0 only if Zi = 0 for each i. This shows that∑|W|
i=1 Zi = 0 only if Zi is in the lineality space of WiSk+W T

i . Direct application of the
closedness criteria Corollary 9.1.3 of Rockafellar [121] shows T is closed.

Since the modification to the SDP facial reduction algorithm (Algorithm 2.1) will
involve searching over C(W)∗ (as indicated by Lemma 2.2.1), we will investigate C(W)
by studying the dual cone C(W)∗. We first make a few comments regarding the search
complexity of C(W)∗ for different choices of W. Note when k = 1, each Wj in W is
a vector and C(W)∗ is the conic hull of a finite set of rank one matrices. In other
words, C(W)∗ is polyhedral and can be described by linear programming. When k = 2,
the set C(W)∗ is defined by 2 × 2 semidefinite constraints and can hence be described
by second-order cone programming (SOCP). This follows since each Xi ∈ S2

+ can be
expressed using scalars a, b, c constrained as follows:

Xi =
(
a+ b c

c a− b

)
� 0 ⇔ a ≥ 0 and a2 ≥ b2 + c2. (2.4)

Example choices for C(W)∗ are now given. As we will see, well studied approximations
of Sd+ can be expressed as sets of the form C(W)∗.

Examples Example choices for C(W)∗ are given in Table 2.1 along with the cardinality
of the set W that yields each entry. Included are d × d nonnegative diagonal matrices
Dd, diagonally-dominant matrices DDd, scaled diagonally-dominant matrices SDDd as
well as matrices FWd

k with factor-width [19] bounded by k. These sets satisfy

Dd = FWd
1 ⊆ DDd ⊆ SDDd = FWd

2 ⊆ FWd
3 ⊆ · · · ⊆ FWd

d = Sd+,
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C(W) C(W)∗ Search |W|
Xii ≥ 0 Non-negative diagonal (Dd) LP O(d)

Xii ≥ 0, Xjj +Xii ± 2Xij ≥ 0 Diagonally-dominant (DDd) LP O(d2)
2× 2 principal sub-matrices psd Scaled diagonally-dominant (SDDd) SOCP O(d2)
k × k principal sub-matrices psd Factor width-k (FWd

k) SDP O(
(
d
k

)
)

Table 2.1: Example outer approximations of Sd+ and their dual cones, the search
algorithm for C(W)∗, and the cardinality of the set W.

and the sets Dd and DDd are polyhedral. We now describe the approximations in more
detail.

� 2.3.1 Non-negative diagonal matrices (Dd)

A simple choice for C(W)∗ ⊆ Sd+ is the set of nonnegative diagonal matrices:

Dd :=
{
X ∈ Sd : Xii ≥ 0, Xij = 0 ∀i 6= j

}
.

The set Dd contains nonnegative combinations of matrices wiwTi , where wi is a permu-
tation of (1, 0, . . . , 0, 0)T . In other words, the set Dd corresponds to the set C(W)∗ if we
take

W =
{

(1, 0, . . . , 0, 0)T , (0, 1, . . . , 0, 0)T , . . . , (0, 0, . . . , 0, 1)T
}
.

� 2.3.2 Diagonally-dominant matrices (DDd)

Another well studied choice for C(W)∗ is the cone of symmetric diagonally-dominant
matrices with nonnegative diagonal entries [10]:

DDd :=

X ∈ Sd : Xii ≥
∑
j 6=i
|Xij |

 .
This set is polyhedral. The extreme rays of DDd are matrices of the form wiw

T
i , where

wi is any permutation of

(1, 0, 0, . . . , 0)T , (1, 1, 0, . . . , 0)T , or (1,−1, 0, . . . , 0)T .

Taking W equal to the set of all such permutations gives C(W)∗ = DDd. This rep-
resentation makes the inclusion DDd ⊆ Sd+ obvious. We also see that DDd contains
Dd.
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� 2.3.3 Scaled diagonally-dominant matrices (SDDd)

A non-polyhedral generalization of DDd is the set of scaled diagonally-dominant ma-
trices SDDd. This set equals all matrices obtained by pre- and post-multiplying
diagonally-dominant matrices by diagonal matrices with strictly positive diagonal en-
tries:

SDDd :=
{
DTD : D ∈ Dd, Dii > 0, T ∈ DDd

}
.

The set SDDd can be equivalently defined as the set of matrices that equal the sum of
psd matrices nonzero only on a 2× 2 principal sub-matrix (Theorem 9 of [19]). As an
explicit example, we have that SDD3 are all matrices X of the form

X =

 a11 a12 0
a12 a22 0
0 0 0


︸ ︷︷ ︸

X1

+

 b11 0 b13
0 0 0
b13 0 b33


︸ ︷︷ ︸

X2

+

 0 0 0
0 c22 c23
0 c23 c33


︸ ︷︷ ︸

X3

,

where aij , bij , and cij are scalars chosen such that X1, X2 and X3 are psd. In general,
SDDd equals C(W)∗ when W equals the set of d × 2 matrices W for which W TXW

returns a 2× 2 principal sub-matrix of X. For SDD3, we have

SDD3 = C({W1,W2,W3})∗ =
{ 3∑
i=1

WiXiW
T
i : Xi ∈ S2

+

}
,

where

W1 =

 1 0
0 1
0 0

 W2 =

 1 0
0 0
0 1

 W3 =

 0 0
1 0
0 1

 .
Also note from (2.4) that SDDd can be represented using second-order cone constraints.
This latter fact is used in recent work of Ahmadi and Majumdar [1] to define an SOCP-
based method for testing polynomial nonnegativity. (A similar LP-based method is also
presented in [1] that incorporates DDd.)

The kernels of SDD matrices The kernel of a scaled diagonally-dominant matrix has a
structured basis of vectors with disjoint support, where the support of a vector u ∈ Rn

is the set of indices i for which ui 6= 0. This follows because, up-to permutation, a
scaled diagonally-dominant is block-diagonal, where each block is either positive def-
inite, equals the zero matrix, or has co-rank one (i.e., has a one dimensional kernel),
as shown in [30]. In Section 2.5, we use this result to show SDPs can be reformulated
over faces found via SDD approximations without damaging sparsity (which, since
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Dd ⊆ DDd ⊆ SDDd, also holds for diagonally-dominant or diagonal approximations).
The following proposition summarizes relevant results of Chen and Toledo [30]. We
include an elementary—and different—proof for completeness.

Proposition 2.3.1. Suppose X ∈ Sd+ is scaled-diagonally dominant. Then, there is a
permutation matrix P ∈ Rd×d for which

PXP T =


X1 0 · · · 0

0 X2 · · ·
...

...
... . . . 0

0 0 0 XM

 , (2.5)

where, for all m ∈ {1, . . . ,M}, the matrix Xm ∈ Sdm+ is either positive definite, a matrix
of all zeros, or has co-rank one. Moreover, when X has co-rank r, there is a matrix
U ∈ Rd×r whose columns have disjoint support and span the nullspace of X.

Proof. For X ∈ Sd, let GX := ([d], E) denote the graph with node set [d] := {1, . . . , d},
where {i, j} is in the edge set E if and only if Xij 6= 0. Clearly there is a permutation
matrix P that block-diagonalizes X as in (2.5), defined in the obvious way by the
connected-components of GX .

Now suppose P in (2.5) equals this permutation. That Xm has the claimed proper-
ties is immediate when dm ≤ 2. Now suppose dm > 2 and that Xm is nonzero and not
positive definite. Also, define the graph GXm = ([dm], Em), where {i, j} is in the edge
set Em if and only if [Xm]ij 6= 0 and observe GXm is connected (and, indeed, isomorphic
to a connected component of GX defined above.)

We first claim all entries of v ∈ nullXm \ {0} are nonzero. To begin, pick i ∈ [dm]
such that vi is nonzero. For arbitrary t ∈ [dm] \ i, there is a path T ⊆ Em from i to t
for which

Xm = X̄ +
∑
{r,s}∈T

(er, es)Xrs(er, es)T ,

where all entries of Xrs ∈ S2
+ are nonzero and X̄ is positive semidefinite. Picking the

first edge {i, j} ∈ T , we conclude that Xij(ei, ej)T v = Xij(vi, vj)T = 0. For the sake
of contradiction, suppose vj = eTj v = 0. Then, (vi, 0)T is in the kernel of Xij , showing
a diagonal entry of Xij is zero (since vi 6= 0), contradicting the fact all entries of Xij

are nonzero. Hence, vj 6= 0. Repeating this argument using the next edge {j, k} in T
shows vk 6= 0. Repeating for all edges in T shows vt 6= 0. Since t was arbitrary, all
components of v are nonzero.

Now pick another nonzero w ∈ nullXm and consider the consecutive edges {i, j}
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and {j, k} in the path T . Then, for scalars λ and γ,

(ei, ej)Tw = λ(ei, ej)T v, (ej , ek)Tw = γ(ej , ek)T v,

otherwise the nonzero matrices Xij ∈ S2
+ and Xjk ∈ S2

+ have two-dimensional kernels,
and are therefore the zero matrix, a contradiction. But since vj and wj are nonzero, we
also have λ = γ. Since any s, t ∈ [dm] are connected by a path, we conclude w = λv.

Existence of U is immediate, given that the kernel of Xm has a basis of the form
{e1, . . . , edm}, {0}, or {v}.

� 2.3.4 Factor-width-k matrices

A generalization of SDDd (and diagonal matrices Dd) arises from notion of factor-width
[19]. The factor-width of a matrixX is the smallest integer k for whichX can be written
as the sum of psd matrices that are nonzero only on a single k×k principal sub-matrix.

Letting FWd
k denote the set of d × d matrices of factor-width no greater than k,

we have that SDDd = FWd
2 and Dd = FWd

1. To represent FWd
k as a cone of the

form C(W)∗, we set W to be the set of d× k matrices Wj for which W T
j XWj returns a

k × k principal sub-matrix of X. Note that there are
(d
k

)
such matrices, so a complete

parametrization of FWd
k is not always practical using this representation. Also note

FWd
k equals Sd+ when k = d.

� 2.4 Faces of minimal dimension via rank maximization

Each iteration of the partial facial reduction algorithm (Algorithm 2.1) computes a face
F∩S⊥, where F is the current face at the start of the iteration and S is the solution of a
conic feasibility problem. If F = USd+UT , the dimension of F∩S⊥ is determined by the
co-rank of UTSU . Precisely, if UTSU has co-rank r, then F ∩ S⊥ equals V Sd−rV T for
an appropriate V . Hence, one can minimize d − r by replacing the feasibility problem
with

maximize rankUTSU
subject to UTSU ∈ (Ŝd+)∗

S⊥ contains A
(2.6)

where (Ŝd)∗ is the chosen approximation of Sd+. In this section, we show (2.6) can
be solved by a single convex problem when Ŝd is an approximation of the form C(W)
studied in Section 2.3. Precisely, we show:

Theorem 2.4.1. Suppose Ŝd+ = C(W). A solution to the rank maximization problem
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(2.6) is given by any S that for some Tk, S̄k solves

maximize ∑|Wi|
k=1 TrTk

subject to UTSU = ∑|Wi|
k=1 WkS̄kW

T
k , i.e., UTSU ∈ C(Wi)∗

S̄k � Tk ∀k ∈ {1, . . . , |Wi|}
I � Tk � 0 ∀k ∈ {1, . . . , |Wi|}
S⊥ ⊇ A

which will be an immediate corollary of Lemmas 2.4.1-2.4.2, to be stated and proven
next.

To ease notation, we note (2.6) falls into a simple problem class: it is a rank max-
imization problem over the intersection of two convex cones—the dual cone of the
approximation Ŝd+ and the linear subspace {UTSU ∈ Sd : S⊥ ⊇ A}. This observation
motivates the following two lemmas, where we take Ŝd+ to be of form C(W) and replace
the subspace with an arbitrary convex coneM.

Lemma 2.4.1. Let M ⊆ Sd be a convex cone. If X? := ∑|W|
i=1WiX

?
iW

T
i maximizes∑|W|

i=1 rankXi overM∩ C(W)∗, then X? maximizes rankX overM∩ C(W)∗.

Proof. We will argue the kernel of X? is contained in the kernel of any X ∈M∩C(W)∗,
which immediately implies rankX? ≥ rankX.

To begin, we first argue for any X = ∑|W|
i=1WiXiW

T
i ∈ M∩ C(W)∗ that nullX?

i ⊆
nullXi for all i ∈ {1, . . . , |W|}. To see this, first note that for any X ∈M∩ C(W)∗ the
matrix

X? +X =
|W|∑
i=1

Wi(X?
i +Xi)W T

i

is also in M∩ C(W)∗ and satisfies rank(X?
i + Xi) ≥ rankX?

i . Now suppose for some
d ∈ {1, . . . , |W|} that nullX?

d 6⊆ nullXd. This implies that null(X?
d + Xd) = nullX?

d ∩
nullXd ⊂ nullX?

d which in turn implies rank(X?
d +Xd) > rankX?

d . But this contradicts
our assumption that X? maximizes ∑i rankXi. Hence, nullX?

i ⊆ nullXi for all i ∈
{1, . . . , |W|}.

Now suppose an X ∈M∩C(W)∗ exists for which X?w = 0 but Xw 6= 0 for some w.
Since Xw = 0 if and only if XiW

T
i w = 0 for all i, we must have for some d that W T

d w

is in the kernel of X?
d but not in the kernel of Xd. But we have already established that

nullX?
d ⊆ nullXd. Hence, w cannot exist. We therefore have that nullX? ⊆ nullX for

any X ∈M∩ C(W)∗, which completes the proof.

We can use this condition to formulate an SDP whose optimal solutions yield max-
imum rank matrices ofM∩C(W)∗. To maximize ∑|W|i=1 rankXi, we introduce matrices
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Ti constrained such that their traces TrTi lower bound rankXi. We then optimize the
sum of their traces.

Lemma 2.4.2. Let M ⊆ Sd be a convex cone. A matrix X maximizing
∑|W|
i=1 rankXi

overM∩ C(W)∗ is given by any optimal solution (X,Xi, Ti) to the following SDP:

maximize ∑|W|
i=1 TrTi

subject to X ∈M,

X = ∑|W|
i=1WiXiW

T
i i.e. X ∈ C(W)∗

Xi � Ti ∀i ∈ {1, . . . , |W|}
I � Ti � 0 ∀i ∈ {1, . . . , |W|}.

(2.7)

Proof. Let rmax equal the maximum of ∑|W|i=1 rankXi over the set of feasible Xi. We
will show at optimality ∑|W|i=1 rankXi = rmax.

To begin, the constraint I � Ti � 0 implies the eigenvalues of Ti are less than one.
Hence, rank Ti ≥ TrTi. Since Xi � Ti , we also have rankXi ≥ rank Ti. Thus, any
feasible (Xi, Ti) pair satisfies

rmax ≥
|W|∑
i=1

rankXi ≥
|W|∑
i=1

rank Ti ≥
|W|∑
i=1

TrTi. (2.8)

Now note for any feasible (X,Xi) we can pick α > 0 and construct a feasible point
(αX,αXi, T̂i) that satisfies ∑|W|i=1 Tr T̂i = ∑|W|

i=1 rankXi; if Xi has eigen-decomposition∑
j λjuju

T
j for λj > 0, simply take T̂i = ∑

j uju
T
j and α equal to

max
⋃
i

{ 1
λ

: λ is a positive eigenvalue of Xi

}
.

Hence, some feasible point (X̂, X̂i, T̂i) satisfies ∑|W|i=1 Tr T̂i = rmax. Therefore, the opti-
mal (X,Xi, Ti) satisfies

|W|∑
i=1

TrTi ≥ rmax.

Combining this inequality with (2.8) yields that at optimality

|W|∑
i=1

TrTi =
|W|∑
i=1

rankXi = rmax,

which completes the proof.

Combining the previous two lemmas shows solving (2.7) also maximizes rank overM∩
C(W)∗; hence, Theorem 2.4.1 is proven by taking M equal to the linear subspace
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{UTSU ∈ Sd : S⊥ ⊇ A}.

� 2.5 Sparse reformulations

In this section, we show that sparse reformulations can be obtained by using scaled-
diagonally-dominant approximations. To fix ideas, suppose our original SDP is of the
form

minimize TrCX
subject to TrAiX = bi i ∈ {1, . . . ,m},

X ∈ Sn+,

and consider the face F =
{
UX̂UT : X̂ ∈ Sd+

}
defined by a fixed U ∈ Rn×d with d < n.

We can reformulate this SDP over F by replacing X with UX̂UT . Applying the cyclic
property of trace to the equations and objective function

TrAiUX̂UT = TrUTAiUX̂, TrCUX̂UT = TrUTCUX̂,

then yields a projected reformulation (Chapter 1.2.5) over Sd+:

minimize Tr(UTCU)X̂
subject to Tr(UTAiU)X̂ = bi i ∈ {1, . . . ,m},

X̂ ∈ Sd+.

Depending on U , the matrices UTCU and UTAiU , though of order d < n, may be
dense even if C and Ai are sparse. In this section, we show how to guarantee these
matrices are sparse when Ai and C are sparse. We do this by guaranteeing the matrix
U is structured—specifically, that its columns have disjoint support:

Lemma 2.5.1. Suppose the columns of U have disjoint support, i.e., Uij 6= 0 and
Uik 6= 0 implies j = k. Then,

nnz(UTXU) ≤ nnz(X) ∀X ∈ Sn,

where nnz(X) denotes the number of nonzero entries of X.

Proof. Under the disjoint support assumption, each column of XU is a combination of
distinct columns of X; hence, nnz(XU) ≤ nnz(X). Further, each row of UTXU is a
combination of distinct rows of XU . Hence, nnz(UTXU) ≤ nnz(XU).

We now show it is possible to always obtain a face F = USd+UT for which the
columns of U have disjoint support using Algorithm 2.1. The key is to use scaled
diagonally-dominant approximations (SDDd) at each iteration. Formally:
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Theorem 2.5.1. Let F = USd+UT for U in Rn×d, where the columns of U have disjoint
support. Suppose S ∈ {X ∈ Sn : UTXU ∈ SDDd} ⊆ F∗. Then, there exists r ≤ d and
V ∈ Rn×r for which

F ∩ S⊥ = V Sr+V T

where the columns of V have disjoint support.

Proof. We can take V equal to V = UB where B is any matrix whose columns B form
a basis for the kernel of UTSU . By Proposition 2.3.1, we can find a B whose columns
have disjoint support. Since the columns of UB have disjoint support when the columns
of U and B do, the claim follows.

Note this statement also applies to diagonal (Dd) and diagonally-dominant (DDd) ap-
proximations, since both Dd and DDd are subsets of SDDd. Indeed, if we replace
SDDd with Dd, we can even pick the columns of U to be standard basis vectors, im-
plying UTXU is a principal submatrix of X for all X—that is, we construct UTXU
simply by deleting rows and columns from X.

� 2.6 Illustrative Examples

We now consider simple examples that illustrate when approximations are effective. We
also illustrate how they lead to sparse reformulations (Theorem 2.5.1).

� 2.6.1 Example with diagonal approximations (Dd)

Find y ∈ R4

subject to

A(y) =


y1 0 0 0 0
0 −y1 y2 0 0
0 y2 y2 − y3 0 0
0 0 0 y3 0
0 0 0 0 y4

 ∈ S5
+.

where A : R4 → Sn is a linear map and A = {A(y) : y ∈ R4}. Taking U0 equal to
the identity matrix and the initial face equal to F0 = U0S5

+U0, we seek a matrix S0
orthogonal to A for which UT0 S0U0 is nonnegative and diagonal. An S0 satisfying this
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constraint and a basis B for nullUT0 S0U0 is given by:

S0 =


1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 B =


0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

 .

Taking U1 = U0B = B, yields the face F1 = U1S3
+U

T
1 , i.e., the set of psd matrices in

S5
+ with vanishing first and second rows/cols.
Continuing to the next iteration, we seek a matrix S1 orthogonal to A for which

UT1 S1U1 is nonnegative and diagonal. An S1 satisfying this constraint and a basis B
for nullUT1 S1U1 is given by:

S1 =


0 0 0 0 0
0 0 −1

2 0 0
0 −1

2 1 0 0
0 0 0 1 0
0 0 0 0 0

 B =

 0
0
1

 .

Setting U2 = U1B gives the face F2 = U2S1
+U

T
2 , where U2 = (0, 0, 0, 0, 1)T .

Terminating the algorithm, we now formulate a reduced SDP over F2. Letting V
denote a basis for nullUT2 yields:

Find y ∈ R4

subject to UT2 A(y)U2 ∈ S1
+

UT2 A(y)V = 0
V TA(y)V = 0,

which simplifies to

Find y ∈ R4

subject to y4 ≥ 0
y1 = y2 = y3 = 0.

Geometric interpretation Corollary 1.3.2 states that existence of Si ∈ F∗i,outer \ F⊥i,outer
implies A ∩ relintFi,outer is empty. We now verify this fact. Clearly, A is contained in
relintF0,outer only if the inequalities

y1 ≥ 0 − y1 ≥ 0
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are strictly satisfied, which cannot hold. Similarly, A is contained in relintF1,outer only
if y1 = y2 = 0 and the inequalities

y3 ≥ 0 y2 − y3 ≥ 0

are strictly satisfied, which again cannot hold.

� 2.6.2 Example with diagonally-dominant approximations (DDd)

In this next example, we equip Algorithm 2.1 with diagonally-dominant approxima-
tions; i.e. at iteration i, the face Fi := UiSdi+U

T
i is approximated by the set Fi,outer =

UiC(Wi)UTi , where C(Wi)∗ equals DDdi , the set of di× di matrices that are diagonally-
dominant. An exposing vector Si is found in F∗i,outer, the set of matrices X for which
UTi XUi is in DDdi . We apply the algorithm to the SDP

Find y ∈ R3

subject to

A(y) =


1 −y1 0 −y3
−y1 2y2 − 1 y3 0

0 y3 2y1 − 1 −y2
−y3 0 −y2 1

 ∈ S4
+,

where A : R3 → Sn is an affine map and A = {A(y) : y ∈ R3}. Taking U0 equal to the
identity, a matrix S0 orthogonal to A for which UT0 S0U0 is diagonally-dominant and a
basis B for nullUT0 S0U0 is given by

S0 =


1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

 B = 1√
2


1 0
−1 0

0 1
0 −1

 .
Taking U1 = U0B = B yields the face F1 = U1S2

+U
T
1 . (Note the columns of U have

disjoint support, a reflection of Theorem 2.5.1.)
Terminating the algorithm, we can describe A ∩ F1 using S0. Specifically, A ∩

F1 equals the psd matrices of the form A(y) that satisfy A(y)S0 = 0. These latter
constraints hold if and only if y1 = y2 = 1 and y3 = 0, showing A ∩ F1 consists of a
single point A

(
(1, 1, 0)T

)
.

Geometric interpretation As was the case in the previous example, we can interpret
this example geometrically. That is, we can verify emptiness of A ∩ relintFi,outer. At
the first (and only) iteration, if A(y) ∈ A is also in F0,outer, then wTk A(y)wk ≥ 0, where
wkw

T
k is any extreme ray of DD4. Taking w1 = (1, 1, 0, 0)T and w2 = (0, 0, 1, 1)T , we
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Inputs: primal-dual pair,  

approximation type 

   (1) Identify sequence of faces

containing primal (dual) feasible 

set using approximations

(2) Construct reduced 

primal (dual) problem

(3) Solve reduced  

primal-dual pair.

(4) Recover solution to 

 primal (dual). Attempt recovery of 

 dual (primal) solution. 

Pre-processing

Outputs: recovered solutions 

to input primal-dual pair

Post-processing

Figure 2.2: Flow of MATLAB implementation

have that A is contained in relintF0,outer only if the inequalities

wT1 A(y)w1 = 2y2 − 2y1 ≥ 0
wT2 A(y)w2 = 2y1 − 2y2 ≥ 0

are strictly satisfied for some y, which cannot hold.

� 2.7 Implementation

The discussed techniques have been implemented as a suite of MATLAB scripts we dub
frlib, available at at www.mit.edu/~fperment. The basic work flow is depicted in
Figure 2.2. The implemented code takes as input a primal-dual SDP pair and applies
Algorithm 2.1 to either the primal problem or the dual problem. This is an important
feature since either the primal or the dual may model the problem of interest.

� 2.7.1 Input formats

The implementation takes in SeDuMi-formatted inputs A,b,c,K, where A,b,c, define
the subspace constraint and objective function and K specifies the sizes of the semidefi-
nite constraints [129]. Conventionally, the primal problem described by A,b,c,K refers
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to an SDP defined by equations Ai ·X = bi. Similarly, the dual problem described by
A,b,c,K refers to an SDP defined by generators C −∑i yiAi.

� 2.7.2 Reduction of the primal problem

Given A,b,c,K; the following syntax is used to reduce the primal problem, solve the
reduced primal-dual pair, and recover solutions to the original primal-dual pair via our
implementation:

prg = frlibPrg(A,b,c,K);
prgR = prg.ReducePrimal(‘d’);
[x_reduced,y_reduced] = sedumi(prgR.A, prgR.b, prgR.c, prgR.K);
[x,y,dual_recov_success] = prgR.Recover(x_reduced,y_reduced);

The call to prg.ReducePrimal reduces the primal problem using diagonal ( ‘d’ )
approximations by executing a variant of Algorithm 1.1. To execute Algorithm 2.1, it
solves a series of LPs (defined by the diagonal approximation) that can be solved using
a handful of supported solvers. The returned object prgR has member variables

prgR.A, prgR.b, prgR.c, prgR.K,

which describe the reduced primal-dual pair. For a single semidefinite constraint, this
reduced primal-dual pair is given by:

min. C · UX̂UT

subj. to Ai · UX̂UT = bi ∀i ∈ {1, . . . ,m}
X̂ ∈ Sd+

max. bT y

subj. to UT (C −∑m
i=1 yiAi)U ∈ Sd+,

where USd+UT is a face identified by prg.ReducePrimal. The reduced primal and its
dual are solved by calling SeDuMi.

The primal solution x_reduced returned by SeDuMi represents an optimal X̂. The
function prgR.Recover computes from X̂ a solution UX̂UT to the original primal prob-
lem. It then attempts to find a solution to the original dual using a variant of the recov-
ery procedure described in Chapter 3 (Algorithm 3.1). The flag dual_recov_success
indicates success of this recovery procedure.

� 2.7.3 Reduction of the dual problem

The above syntax can be modified to reduce the dual problem described by A,b,c,K.
This is done replacing the relevant line above with:

prgR = prg.ReduceDual(‘d’);

As above, the object prgR contains a description of the primal-dual pair.
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With prgR created in this manner, a call to prgR.Recover (though syntactically
identical) now returns a solution to the original dual and attempts to recover a solution
to the original primal using techniques discussed in Chapter 3 (which don’t always
succeed). In other words, a call of the form

[x,y,prim_recov_success] = prgR.Recover(x_reduced,y_reduced);

returns a solution y to the original dual problem and attempts to recover a solution
x to the original primal problem. The flag prim_recov_success indicates successful
recovery of x.

� 2.7.4 Solution recovery

As suggested by the flags prim_recov_success and dual_recov_success in the pre-
ceding examples, solution recovery is only guaranteed for the problem that is reduced,
i.e. if the primal (resp. dual) is reduced, recovery of the original dual (resp. primal).
Thus, it is important to reduce the primal only if it is the problem of interest, and
similarly for the dual.

� 2.8 Examples

This section gives larger examples that illustrate effectiveness of our method. For each
example, the same type of approximation (e.g. diagonal or diagonally-dominant) is used
at each facial reduction iteration. Many examples are also over products of cones, e.g.
K = Sn1 × Sn2 × · · · × Snk . In these cases, we use the same type of approximation for
each cone Sni . For each example, we report one or more of the following items (1− 4):

1) Complexity parameters and sparsity For each example, we report a list of numbers
describing the size and sparsity of the problem, denoted

n; r; nnz .

Here, n gives the size(s) of the psd cone(s) and r the dimension of the affine subspace
that together define the feasible set. The number nnz is the total number of nonzero
entries of the matrix A and cost vector c used to describe the problem in SeDuMi format.
These results show problem size is often significantly reduced and sparsity enhanced by
our method.

2) DIMACS errors and distance to face We report a tuple (e1, . . . , e6) of DIMACS errors
[93] for the original problem and reduced problem. We also report the distance dface
(in norm induced by the trace inner product) of the solution to the subspace spanned
by the identified face. Specifically, if X ∈ Sn is an optimal solution to the original
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SDP (obtained by direct solution or recovered from a solution to the reduced SDP), we
report

dface = ‖Φ (X)−X‖F ,

where Φ : Sn → Sn is the orthogonal projection map onto the mentioned subspace
and ‖ · ‖F denotes the Frobenius norm. Note if the face equals USd+UT for U with
orthonormal columns, then

Φ(X) = UUTXUUT .

Note dface should always be zero ifX is an exact solution and the face has been identified
in exact arithmetic.

The reported errors show the reduced SDP can be solved just as accurately as the
original in terms of DIMACS error. They also show that by the measure dface, solutions
recovered from the reduced SDP are significantly more accurate. That dface is larger
for the original SDP reflects the fact DIMACS error (a measure of backwards-error)
can be a poor measure of forwards-error when strict feasibility fails. (A phenomena
observed in [130].)

3) Reduction error When one iteration of facial reduction is performed, we report
the minimum eigenvalue of the exposing vector S and a measure of the containment
S⊥ ⊇ A, where A is the affine set of the SDP.

4) Solve times For larger instances, we give solve times before and after reductions
and report the total time tLPs spent solving LPs. These solve times are reported for
an Intel(R) Core(TM) i7-2600K CPU @ 3.40GHz machine with 16 gigabytes of RAM
using the LP solver of MOSEK and the SDP solver SeDuMi called from MATLAB
2014a running Ubuntu. For these instances, solve time is significantly reduced and the
cost of solving LPs is negligible.

� 2.8.1 Lower bounds for optimal multi-period investment

Our first example arises from SDP-based lower bounds of optimal multi-period invest-
ment strategies. The strategies and specific SDP formulations are given in [24]. For
each strategy, an SDP produces a quadratic lower bound on the value function arising
in the dynamic programming solution to the underlying optimization problem. These
bounds are produced using the S-procedure, an SDP-based method for showing empti-
ness of sets defined by quadratic polynomials (see, e.g., [22]). We report reductions
using diagonal (Dd) approximations, DIMACs error, reduction error, and solve time in
Tables 2.2-2.5. Scripts that generate the SDPs are found here (and require the package
CVX [64]):
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www.stanford.edu/~boyd/papers/matlab/port_opt_bound/port_opt_code.tgz

� 2.8.2 Copositivity of quadratic forms

Our next example pertains to SDPs that demonstrate copositivity of certain quadratic
forms. A quadratic form xTJx is copositive if and only if xTJx ≥ 0 for all x in the
nonnegative orthant. Deciding copositivity is NP-hard, but a sufficient condition can
be checked using sum-of-squares techniques and semidefinite programming, as we now
illustrate.

The Horn form An example of a copositive polynomial is the Horn form f(x) := xTJx,
where

J =


1 −1 1 1 −1
−1 1 −1 1 1

1 −1 1 −1 1
1 1 −1 1 −1
−1 1 1 −1 1

 , x =
(
x1 x2 x3 x4 x5

)T
.

This polynomial, originally introduced by A. Horn, appeared previously in [44] [113].
To see how copositivity can be demonstrated using SDP, first note copositivity of f(x) is
equivalent to global nonnegativity of f(z2

1 , z
2
2 , z

2
3 , z

2
4 , z

2
5), where we have substituted each

variable xi with the square of a new indeterminate z2
i . Next, note global nonnegativity

of the latter polynomial can be demonstrated by showing

g(z) =
( 5∑
i=1

z2
i

)
f(z2

1 , z
2
2 , z

2
3 , z

2
4 , z

2
5) (2.9)

is a sum-of-squares, which is equivalent to feasibility of a particular SDP over Sn+ where
n =

(5+2
3
)
, the number of degree-three monomials in 5 variables (see Chapter 3 of [15]

for details on constructing this SDP).

Generalized Horn forms The Horn form f(x) generalizes to a family of copositive forms
in n = 3m+ 2 variables (m ≥ 1):

B(x;m) =
(3m+2∑

i=1
xi

)2

− 2
3m+2∑
i=1

xi

m∑
j=0

xi+3j+1,

where we let the subscript for the indeterminate x wrap cyclically, i.e. xr+n = xr. This
family was studied in [11], and the Horn form corresponds to the case m = 1. As with
the Horn form, we can show copositivity of B(x;m) by showing a polynomial analogous
to (2.9) is a sum-of-squares. We formulate SDPs that demonstrate copositivity of
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Example n r nnz
long_only (91× 100, 30× 100) 59095 853011

unconstrained (121× 100, 30× 100) 62095 874011
sector_neutral (121× 100, 30× 100) 62392 1373000
leverage_limit (151× 100, 30× 100) 68195 915993

(a) Original
Example n r nnz

long_only (61× 100, 30× 100) 56095 832011
unconstrained (61× 100, 30× 100) 56095 840891
sector_neutral (61× 100, 30× 100) 56392 1342880
leverage_limit (61× 100, 30× 100) 59195 873873

(b) Reduced

Table 2.2: Dimension r of subspace and order (n1, . . . , n200) of cone Sn1
+ × · · · × Sn200

+
describing feasible set. The column ‘nnz’ shows number of nonzero entries of SDP data
matrices.

Example e1 e2 e3 e4 e5 e6 dface
long_only 4.3e-08 0 0 4.4e-11 -4.0e-05 -3.9e-05 2.3e-06

unconstrained 7.1e-08 0 0 1.1e-11 -2.5e-06 -1.6e-06 2.1e-05
sector_neutral 4.2e-07 0 0 1.1e-10 -1.4e-08 3.1e-05 1.6e-04
leverage_limit 7.3e-08 0 0 1.0e-11 -1.6e-06 -6.4e-07 1.2e-05

(a) Original
Example e1 e2 e3 e4 e5 e6 dface

long_only 3.7e-08 0 0 1.5e-11 -6.8e-06 -5.8e-06 2.9e-17
unconstrained 4.9e-08 0 0 1.2e-11 -4.9e-07 3.9e-07 3.1e-17
sector_neutral 3.5e-07 0 0 1.0e-10 -3.5e-08 3.0e-05 3.5e-17
leverage_limit 4.8e-08 0 0 9.7e-12 -1.1e-06 -2.9e-07 4.3e-14

(b) Reduced

Table 2.3: DIMACS errors ei and distance dface to linear span of identified face.

Example |C · S| maxi |Ai · S| λmin(S)
long_only 0 0 0

unconstrained 0 0 0
sector_neutral 0 0 0
leverage_limit 0 0 0

Table 2.4: Reduction error. The first two columns measure containment of the SDP’s
affine subspace in the hyperplane S⊥. The last denotes the minimum eigenvalue of the
exposing vector S.

Example Original Reduced tLPs
long_only 651 613 0.33

unconstrained 800 574 0.71
sector_neutral 760 496 0.70
leverage_limit 976 617 1.2

Table 2.5: Solve times (sec) for original and reduced SDPs. The reduced SDP was
formulated by solving LPs over diagonal approximations, i.e., by taking C(W) = Dd.
These LPs took tLPs seconds to solve.
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B(x;m) in this way for each m ∈ {1, . . . , 5}. We report reductions using diagonally-
dominant (DDd) approximations, DIMACs error, reduction error, and solve time in
Tables 2.6-2.9. (Errors and solve time are omitted for m > 3 since the SDPs are too
large to solve.)

� 2.8.3 Lower bounds on completely positive rank

A matrix A ∈ Sn is completely positive (CP) if there exist r nonnegative vectors vi ∈ Rn

for which

A =
r∑
i=1

viv
T
i . (2.10)

The completely positive rank of A, denoted rankcpA, is the smallest r for which A

admits the decomposition (2.10). It follows trivially that

rankA ≤ rankcpA.

In [53], Fawzi and the second author give an SDP formulation that improves this lower
bound for a fixed matrix A. This bound, denoted τ soscp (A) in [53], equals the optimal
value of the following semidefinite program:

minimize t
subject to (

t vectAT
vectA X

)
� 0

Xij,ij ≤ A2
ij ∀i, j ∈ {1, . . . , n}

X � A⊗A
Xij,kl = Xil,jk ∀(1, 1) ≤ (i, j) < (k, l) ≤ (n, n),

where A⊗A denotes the Kronecker product and vectA denotes the n2×1 vector obtained
by stacking the columns of A. Here, the double subscript ij indexes the n2 rows (or
columns) of X and the inequalities on (i, j) hold iff they hold element-wise (see [53] for
further clarification on this notation).

In this example, we formulate SDPs as above for computing τ soscp (Z), τ soscp (Z ⊗ Z),
and τ soscp (Z ⊗ Z ⊗ Z), where Z is the completely positive matrix:

Z =

 4 0 1
0 4 1
1 1 3

 .
Notice that since Z is CP, the Kronecker products Z ⊗Z and Z ⊗Z ⊗Z are CP (using
the fact that A⊗B is CP when A and B are CP [12]). Also notice that since Z contains
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Example n r nnz
m = 1 35 420 1225
m = 2 120 5544 14400
m = 3 286 33033 81796
m = 4 560 129948 313600
m = 5 969 395352 938961

(a) Original

Example n r nnz
m = 1 25 165 1200
m = 2 96 3132 14312
m = 3 242 21879 81554
m = 4 490 494143 313040
m = 5 867 303399 937822

(b) Reduced

Table 2.6: Dimension r of subspace and order n of cone Sn describing feasible set.
The column ‘nnz’ shows number of nonzero entries of SDP data matrices.

Example e1 e2 e3 e4 e5 e6 dface
m = 1 8.63e-10 0 0 9.99e-11 1.99e-10 3.14e-08 8.47e-06
m = 2 9.34e-09 0 0 3.68e-10 8.12e-10 6.05e-07 3.96e-05
m = 3 1.87e-09 0 0 1.01e-10 1.97e-10 4.16e-07 3.83e-05

(a) Original
Example e1 e2 e3 e4 e5 e6 dface
m = 1 7.82e-10 0 0 2.42e-11 7.64e-11 2.04e-08 9.27e-16
m = 2 1.23e-09 0 0 1.59e-10 3.82e-10 5.84e-08 3.26e-16
m = 3 4.00e-10 0 0 7.08e-11 2.25e-10 7.93e-08 7.48e-16

(b) Reduced

Table 2.7: DIMACs errors ei and distance dface to linear span of identified face.

Example |bT y| ‖S −
∑
i yiAi‖F λmin(S)

m = 1 0 3.33e-16 0
m = 2 0 1.67e-16 0
m = 3 0 -1.28e-15 0

Table 2.8: Reduction error. The first two columns measure containment of the SDP’s
affine subspace in the hyperplane S⊥. The last denotes the minimum eigenvalue of
exposing vector S.

Example Original Reduced tLPs
m = 1 .81 .23 .047
m = 2 11 9.2 .58
m = 3 3900 3200 4.3

Table 2.9: Solve times (sec) for original and reduced SDPs. The reduced SDP was
formulated by solving LPs over diagonal approximations, i.e., by taking C(W) = DDd.
These LPs took tLPs seconds to solve.
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zeros, the constraint Xij,ij ≤ Z2
ij implies that X has rows and columns identically zero;

in other words, because Z has elements equal to zero, the SDP for computing τ soscp (Z)
cannot have a strictly feasible solution.

To reduce the formulated SDPs, we first observe that each is actually a cone program
over Rn1

+ × Sn2
+ × Sn3

+ , i.e., each SDP has a mix of linear inequalities and semidefinite
constraints. To find reductions, we first treat the linear equalities as a semidefinite
constraint on a diagonal matrix. We report reductions using diagonal (Dd) approxima-
tions, DIMACs error, reduction error, and solve time in Tables 2.10-2.13. (Solve times
and errors are omitted for Z ⊗ Z ⊗ Z since the SDP is too large to solve.)

� 2.8.4 Lyapunov Analysis of a Hybrid Dynamical System

The next example arises from SDP-based stability analysis of a rimless wheel, a hy-
brid dynamical system and simple model for walking robots studied in [110] by Posa,
Tobenkin, and Tedrake. The SDP includes several coupled semidefinite constraints
that impose Lyapunov-like stability conditions accounting for Coulomb friction and
the contact dynamics of the rimless wheel. We report reductions using diagonally-
dominant (DDd) and diagonal (Dd) approximations, DIMACs error, and solve time in
Tables 2.14-2.16. (Reduction error is omitted since multiple facial reduction iterations
were performed.)

� 2.8.5 Multi-affine polynomials, matroids, and the half-plane property

A multivariate polynomial f(z) : Cn → C has the half-plane property if it is nonzero
when each variable zi has positive real part. A polynomial is multi-affine if each in-
determinate is raised to at most the first power. As proven in [32], if a multi-affine,
homogeneous polynomial with unit coefficients has the half-plane property, it is the
basis generating polynomial of a matroid. In this section, we reduce SDPs that arise
in the study of the converse question: given a matroid, does its basis generating poly-
nomial have the half-plane property? Or more precisely, given a rank-r matroid M

(over the ground-set {1, . . . , n}) with set of bases B(M), does the multi-affine, degree-r
polynomial

fM (z1, . . . , zn) :=
∑

{i1,i2,...,ir}
∈B(M)

zi1zi2 · · · zir (2.11)

have the half-plane property?

The role of polynomial nonnegativity This converse question is related to global non-
negativity of so-called Rayleigh differences of fM (z), which are polynomials over Rn
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Example n r nnz
Z (9, 10, 9) 37 260

Z ⊗ Z (81, 82, 81) 2026 18344
Z ⊗ Z ⊗ Z (729, 730, 729) 142885 1428692

(a) Complexity parameters - original
Example n r nnz

Z (7, 8, 9) 20 187
Z ⊗ Z (49, 50, 81) 464 8336

Z ⊗ Z ⊗ Z (343, 344, 729) 13262 408403
(b) Complexity parameters - reduced

Table 2.10: Dimension r of subspace and order n of cone Rn1
+ × Sn1

+ × Sn2
+ describing

feasible set. The column ‘nnz’ shows number of nonzero entries of SDP data matrices.
Example e1 e2 e3 e4 e5 e6 dface

Z 2.08e-11 0 0 1.09e-10 -1.36e-09 -1.44e-09 1.02e-05
Z ⊗ Z 6.58e-09 0 0 1.72e-10 2.82e-06 2.68e-06 2.42e-03

(a) Original
Example e1 e2 e3 e4 e5 e6 dface

Z 1.27e-11 0 0 7.87e-11 -1.54e-09 -1.59e-09 0
Z ⊗ Z 3.91e-08 0 0 0 8.50e-06 7.56e-06 0

(b) Reduced

Table 2.11: DIMACs errors ei and distance dface to linear span of identified face.

Example |C · S| maxi |Ai · S| λmin(S)
Z 0 0 0

Z ⊗ Z 0 0 0

Table 2.12: Reduction error. The first two columns measure containment of the SDP’s
affine subspace in the hyperplane S⊥. The last denotes the minimum eigenvalue of the
exposing vector S.

Example Original Reduced tLPs
Z .4 .7 .0084

Z ⊗ Z 131 10.5 .016

Table 2.13: Solve times (sec) for original and reduced SDPs. The reduced SDP was
formulated by solving LPs over diagonal approximations, i.e., by taking C(W) = Dd.
These LPs took tLPs seconds to solve.
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Problem n r nnz
Original (6, 108, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11) 4334 16864

Reduced, C(W) = Dd (6, 56, 11, 1, 1, 0, 11, 1, 1, 0, 11, 11) 1138 6661
Reduced, C(W) = DDd (6, 34, 8, 1, 1, 0, 8, 1, 1, 0, 9, 7) 452 4007

Table 2.14: The feasible set is an r-dimensional subspace intersected with the cone
Sn1

+ × Sn2
+ · · · × Sn12

+ .

Problem e1 e2 e3 e4 e5 e6 dface
Original 2.56e-07 0 0 2.48e-10 9.78e-08 1.70e-05 8.99e-02

Red., C(W) = Dd 2.77e-08 0 0 0 1.76e-08 8.29e-06 0
Red., C(W) = DDd 6.65e-08 0 0 0 4.29e-08 1.20e-05 3.82e-15

Table 2.15: DIMACS error bounds ei and distance dface to the linear span of identified
face.

Problem Solve time tLPs
Original 111 –

Reduced, C(W) = Dd 5 .05
Reduced, C(W) = DDd 1.8 0.82

Table 2.16: Solve times (sec) for original and reduced SDPs. The reduced SDP was
formulated by solving LPs over the indicated approximation (C(W) = Dd or C(W) =
DDd) which took tLPs seconds to solve.
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defined for each {i, j} ⊂ {1, . . . , n} as follows:

∆ijfM (x) := ∂fM
∂zi

(x)∂fM
∂zj

(x)− ∂2fM
∂zi∂zj

(x) · fM (x).

A theorem of Brändén [25] states fM (z) has the half-plane property if and only if all
of
(n

2
)
Rayleigh differences are globally nonnegative, i.e., ∆ijfM (x) ≥ 0 for all x ∈ Rn.

An equivalent criterion, stated in terms of global nonnegativity of a single Rayleigh
difference (and so-called contractions and deletions of M), appears in [136].

The role of semidefinite programming Since semidefinite programming can demonstrate
a given polynomial is a sum-of-squares, it is a natural tool for proving a given Rayleigh
difference ∆ijfM (x) is globally nonnegative. In this section, we formulate and then
apply our reduction technique to SDPs that test the sum-of-squares condition for various
∆ijfM (x) and various matroids M . As is standard, the SDPs are formulated using the
set of monomial exponents in 1

2N (∆ijfM ) ∩ Nn, where N (∆ijfM ) denotes the Newton
polytope of ∆ijfM (see Chapter 3 of [15] for details on this formulation).

We report reductions using diagonally-dominant DDd approximations, DIMACs
error, and reduction error in Tables 2.17-2.19. (Solve time is omitted since the original
SDPs are small.) We now elaborate on each matroid in these tables.

Various matroids with the half-plane property

The first set of matroids were studied by Wagner and Wei [136]. Specifically, Wagner
and Wei [136] demonstrate that ∆ijfM (for specific {i, j}) is a sum-of-squares for ma-
troidsM they denote F−4

7 ,W3+,W3+e, P ′7, nP\1, nP\9, and V8. (We refer the reader
to [136] for definitions of these matroids and the explicit polynomials ∆ijfM .) Note
Wagner and Wei demonstrate each sum-of-squares condition via ad-hoc construction,
instead of by solving an SDP.

Notice from Table 2.17 that for matroids W3+, W3 + e, P ′7, nP \ 1 and nP \ 9, the
reduced SDP is described by a zero-dimensional affine subspace. In other words, the
SDP demonstrating the sum-of-squares condition has a feasible set containing a single
point.

Extended Vmos matroid

The other matroid considered was studied by Burton, Vinzant, and Youm in [28].
There, the authors use semidefinite programming to show ∆ijfV10 is a sum-of-squares
for a specific {i, j}, where V10 denotes the extended Vámos matroid defined over the
ground set {1, . . . , 10}. The bases of V10 are all cardinality-four subsets of {1, . . . , 10}
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Matroid {i, j} n r nnz
F−4

7 {1, 2} 8 5 64
W3+ {1, 2} 8 5 64
W3 + e {1, 2} 9 7 81
P ′

7 {1, 2} 8 4 64
nP \ 1 {2, 4} 12 14 144
nP \ 9 {1, 2} 12 14 144
V8 {1, 2} 16 33 256
V10 {3, 4} 52 657 2704

(a) Original

Matroid {i, j} n r nnz
F−4

7 {1, 2} 5 1 25
W3+ {1, 2} 3 0 9
W3 + e {1, 2} 5 0 27
P ′

7 {1, 2} 4 0 16
nP \ 1 {2, 4} 6 0 40
nP \ 9 {1, 2} 5 0 27
V8 {1, 2} 13 17 185
V10 {3, 4} 41 327 2087

(b) Reduced

Table 2.17: Dimension r of subspace and order n of cone Sn+ describing feasible set.
The column ‘nnz’ shows number of nonzero entries of SDP data matrices.

Matroid {i, j} e1 e2 e3 e4 e5 e6 dface
F−4

7 {1, 2} 2.10e-12 0 0 9.32e-13 7.50e-12 2.06e-11 3.25e-12
W3+ {1, 2} 7.57e-11 0 0 3.52e-11 6.47e-11 7.29e-10 4.41e-06
W3 + e {1, 2} 8.14e-09 0 0 1.05e-11 2.21e-11 4.04e-10 1.74e-06
P ′

7 {1, 2} 2.31e-10 0 0 8.55e-10 1.39e-09 2.19e-09 6.54e-06
nP \ 1 {2, 4} 9.04e-10 0 0 1.29e-10 2.40e-10 9.31e-09 4.51e-06
nP \ 9 {1, 2} 2.45e-09 0 0 3.54e-10 7.07e-10 1.87e-08 4.15e-08
V8 {1, 2} 5.29e-11 0 0 8.32e-11 1.78e-10 6.49e-10 4.19e-06
V10 {3, 4} 3.64e-11 0 0 1.40e-09 2.73e-09 9.78e-09 5.37e-06

(a) Original
Matroid {i, j} e1 e2 e3 e4 e5 e6 dface
F−4

7 {1, 2} 4.65e-10 0 0 2.16e-08 6.61e-08 6.86e-08 0
W3+ {1, 2} 1.35e-15 0 0 2.91e-12 5.55e-12 5.55e-12 4.57e-16
W3 + e {1, 2} 8.86e-15 0 0 1.27e-11 2.03e-11 2.03e-11 4.62e-16
P ′

7 {1, 2} 6.91e-16 0 0 1.13e-11 1.62e-11 1.62e-11 4.73e-16
nP \ 1 {2, 4} 5.27e-11 0 0 1.89e-08 3.67e-08 3.75e-08 3.46e-16
nP \ 9 {1, 2} 1.18e-10 0 0 3.18e-08 4.29e-08 4.35e-08 3.44e-16
V8 {1, 2} 1.43e-11 0 0 4.35e-11 7.77e-11 1.97e-10 0
V10 {3, 4} 2.90e-11 0 0 1.11e-09 2.09e-09 3.15e-09 5.15e-17

(b) Reduced

Table 2.18: DIMACs errors ei and distance dface to linear span of identified face.

Matroid {i, j} |bT y| ‖S −
∑
i yiAi‖F λmin(S)

F−4
7 {1, 2} 0 0 0
W3+ {1, 2} 2.22e-16 0 0
W3 + e {1, 2} 0 0 0
P ′

7 {1, 2} 0 0 0
nP \ 1 {2, 4} 6.66e-16 0 0
nP \ 9 {1, 2} 0 0 0
V8 {1, 2} 0 0 0
V10 {3, 4} 1.78e-15 0 0

Table 2.19: Reduction error. The first two columns measure containment of the SDP’s
affine subspace in the hyperplane S⊥. The last denotes the minimum eigenvalue of the
exposing vector S.
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Example

Original
Primal
n; r

Reduced
Primal
n; r

Original
Dual
n; r

Reduced
Dual
n; r

Example1 3; 4 2; 2 3; 2 1; 1
Example2 3; 4 2; 2 3; 2 2; 1
Example3 3; 2 2; 2 3; 4 2; 2
Example4 3; 3 1; 0 3; 3 1; 1
Example5 10; 50 10; 50 10; 5 10; 5
Example6 8; 28 5; 11 8; 8 4; 4
Example7 5; 12 4; 8 5; 3 1; 1
Example9a 100; 4950 1; 0 100; 100 1; 1
Example9b 20; 190 1; 0 20; 20 1; 1

Table 2.20: Complexity parameters for the primal-dual SDP pairs given in [31]. The
feasible set of each SDP is an r-dimensional subspace intersected with the cone Sn+.
To formulate each reduced SDP, a face was identified by solving LPs over diagonally-
dominant approximations (DDd). These LPs took (in total) tLPs seconds to solve.

excluding

{1, 2, 6, 7}, {1, 3, 6, 8}, {1, 4, 6, 9}, {1, 5, 6, 10}, {2, 3, 7, 8}, {3, 4, 8, 9}, and {4, 5, 9, 10}.

From these bases, we construct fV10 via (2.11) and formulate an SDP demonstrating
∆34fV10 is a sum-of-squares (as was done in [28]).

� 2.8.6 Facial Reduction Benchmark Problems

In [31], Cheung, Schurr, and Wolkowicz developed a facial reduction procedure for
identifying faces in a numerically stable manner. They also created a set of benchmark
problems for testing their method. These problem instances are available at the URL
below:

http://www.math.uwaterloo.ca/~hwolkowi/henry/reports/SDPinstances.tar.

Each problem is a primal-dual pair hand-crafted so that both the primal and dual have
no strictly feasible solution. We apply our technique to each primal problem and each
dual problem individually, using diagonally-dominant (DDd) approximations. Results
are shown in Table 2.20. Since some of the examples have duality gaps, we do not show
DIMACs errors nor we do show solve time given the small sizes. We also omit reduction
error since multiple facial reduction iterations were performed.
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Example
n; r

Original
n; r

Reduced
CompactDim2R1 3;4 1;1
CompactDim2R2 (6,3,3,3); 25 (1,0,1,1); 1
CompactDim2R3 (10,6,6,6); 91 (1,0,1,1); 1
CompactDim2R4 (15,10,10,10); 241 (1,0,1,1); 1
CompactDim2R5 (21,15,15,15); 526 (1,0,1,1); 1
CompactDim2R6 (28,21,21,21); 1009 (1,0,1,1); 1
CompactDim2R7 (36,28,28,28); 1765 (1,0,1,1); 1
CompactDim2R8 (45,36,36,36); 2881 (1,0,1,1); 1
CompactDim2R9 (55,45,45,45); 4456 (1,0,1,1); 1
CompactDim2R10 (66,55,55,55); 6601 (1,0,1,1); 1

Table 2.21: Complexity parameters for weakly-infeasible SDPs studied in [137]. The
feasible set of each SDP is an r-dimensional subspace intersected with the cone Sn+. To
formulate each reduced SDP, a face was identified by solving LPs defined by diagonal
approximations (Dd). These LPs took (in total) tLPs seconds to solve.

� 2.8.7 Difficult SDPs arising in polynomial nonnegativity

In [137] and [140], Waki et al. study two sets of SDPs that are difficult to solve. For
one set of SDPs, SeDuMi fails to find certificates of infeasibility [137]. For the other
set, SeDuMi reports an incorrect optimal value [140]. The sets of SDPs are available
at:

https://sites.google.com/site/hayatowaki/Home/difficult-sdp-problems.

It turns out for each primal-dual pair in these sets, the problem defined by equations
Ai · X = bi is not strictly feasible. We apply our technique to both sets of SDPs
using diagonal approximations Dd and arrive at SDPs that are more easily solved.
In particular, certificates of infeasibility are found for the SDPs in [137] and correct
optimal values are found for the SDPs in [140] by solving the reduced SDPs with
SeDuMi. Problem size reductions are shown in Table 2.21 and Table 2.22. We omit
solve time comparisons and DIMACs errors since the reduced problem is a trivial SDP
in each case. We omit reduction error since multiple facial reduction iterations were
performed.

� 2.8.8 DIMACS Controller Design Problems

Our final examples are the controller design problems hinf12 and hinf13 of the DI-
MACS library [104]—which evidently are SDPs in the library with no strictly feasible
solution. Results are shown in Tables 2.23-2.25, where we apply facial reduction to
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Example
n; r

Original
n; r

Reduced
Optimal Value

Reduced
unboundDim1R2 (3,2,2); 8 (1,1,0); 1 1.080478e-13
unboundDim1R3 (4,3,3); 16 (1,1,0); 1 1.080478e-13
unboundDim1R4 (5,4,4); 27 (1,1,0); 1 1.080478e-13
unboundDim1R5 (6,5,5); 41 (1,1,0); 1 1.080478e-13
unboundDim1R6 (7,6,6); 58 (1,1,0); 1 1.080478e-13
unboundDim1R7 (8,7,7); 78 (1,1,0); 1 1.080478e-13
unboundDim1R8 (9,8,8); 101 (1,1,0); 1 1.080478e-13
unboundDim1R9 (10,9,9); 127 (1,1,0); 1 1.080478e-13
unboundDim1R10 (11,11,10); 156 (1,1,0); 1 1.080478e-13

Table 2.22: Complexity parameters for the SDPs in [140]. The feasible set of each
SDP is an r-dimensional subspace intersected with the cone Sn+. To formulate each
reduced SDP, a face was identified by solving LPs defined by diagonal approximations
(Dd). These LPs took (in total) tLPs seconds to solve. For these examples, SeDuMi
incorrectly returns an optimal value of one for the original problem. The optimal value
returned for the reduced problem is very near the correct optimal value of zero.

the primal problem of both SDPs (using DDd for hinf12 and SDDd for hinf13). As
observed in [93], these problem instances are extremely difficult for SDP solvers. For
purposes of comparison, we therefore report DIMACS errors for both SeDuMi and
SDPT3 [131]. Solution times are omitted given the small sizes of these SDPs.

� 2.9 Conclusion

We presented a general technique for facial reduction that utilizes approximations of the
positive semidefinite cone. The technique is effective on examples arising in practice
and for simple approximation is a practical pre-processing routine for SDP solvers.
An implementation has been made available. Through the chosen approximation, one
controls the cost of facial reduction and the sparsity of the obtained reformulations.
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Matroid n r nnz
hinf12 (6, 6, 12) 77 990
hinf13 (7, 9, 14) 121 2559

(a) Original

Problem n r nnz
hinf12 (6, 2, 6) 23 583
hinf13 (1, 9, 7) 45 1465

(b) Reduced

Table 2.23: Dimension r of subspace and order n of cone Sn+ describing feasible set.
The column ‘nnz’ shows number of nonzero entries of SDP data matrices. For hinf12,
we used DDd. For hinf13, we used SDDd.
Problem e1 e2 e3 e4 e5 e6 dface

hinf12/sedumi 5.04e-09 0 0 0 -1.55e-02 2.23e-01 1.17e-08
hinf13/sedumi 6.21e-05 0 0 2.63e-06 -3.68e-03 2.30e-02 1.00e+00†
hinf12/sdpt3 1.67e-11 0 1.72e-05 0 -1.72e-06 2.36e-05 3.81e-12
hinf13/sdpt3 9.97e-06 0 5.73e-07 0 -2.35e-04 1.94e-04 1.43e-02

(a) Original
Problem e1 e2 e3 e4 e5 e6 dface

hinf12/sedumi 4.99e-09 0 0 0 -5.62e-02 2.82e-01 0
hinf13/sedumi 6.39e-05 0 0 1.51e-06 -2.76e-04 1.93e-03 0
hinf12/sdpt3 1.58e-11 0 3.18e-06 0 -2.06e-06 3.33e-05 0
hinf13/sdpt3 3.84e-05 0 7.09e-08 0 -6.61e-04 1.07e-05 0

(b) Reduced

Table 2.24: DIMACs errors ei and distance dface to linear span of identified face.
Normalized by solution norm, the outlier, marked †, equals 2.53e− 04.

Example |bT y| ‖S −
∑
i yiAi‖F λmin(S)

hinf12 0 0 0
hinf13 0 8.31e-10 0

Table 2.25: Reduction error. The first two columns measure containment of the SDP’s
affine subspace in the hyperplane S⊥. The last denotes the minimum eigenvalue of the
exposing vector S.
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Chapter 3

Dual solution recovery

In this chapter we give and study a simple post-processing algorithm for dual solution
recovery. Dual solution recovery is critical for primal-dual solvers since they are often
agnostic to which problem—primal or dual—is of actual interest. It is necessary because
facial reduction relaxes the dual problem (Section 1.3.6). Note that simple recovery is
not always possible. Indeed, dual solutions may not even exist for the original problem.
Hence, we give conditions characterizing success of our procedure.

� 3.1 Approach

To begin, consider the following primal-dual pair

P(K) : maximize 〈b, y〉
subject to s = c−Ay,

(s, y) ∈ K × Rm,

D(K) : minimize 〈c, x〉
subject to A∗x = b,

x ∈ K∗,
(3.1)

where V is an inner product space, K ⊆ V is a closed, convex cone, K∗ is the dual cone,
A : V → Rm is a linear map and c ∈ V. Here, we use a convention opposite to that
of Chapter 4 by designating the primal problem as the maximization problem. We use
this convention to enable easier comparison with results in the literature.

Applying the facial reduction algorithm to P(K) yields a face F of K that con-
tains the image of Rm under the affine map A(y) := c − Ay. This in turns yields a
reformulation over F and its dual cone F∗ :

P(F) : maximize 〈b, y〉
subject to s = c−Ay,

(s, y) ∈ F × Rm,

D(F) : minimize 〈c, x〉
subject to A∗x = b,

x ∈ F∗.

Since the feasible sets of P(K) and P(F) are equal, any solution of P(F) solves P(K).
On the other hand, a solution to D(F) is not necessarily even a feasible point of D(K)
since K∗ ⊆ F∗. While recovering a solution to D(K) from a solution to D(F) may seem

117
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hopeless, the facial reduction algorithm (Algorithm 1.1) finds faces

K = F0 ⊃ F1 ⊃ · · · ⊃ FN = F

and si ∈ F∗i \ (spanF)⊥i orthogonal to A(y) for all y, where Fi+1 = Fi ∩ s⊥i , that may
be useful. This leads to the following problem statement:

Problem 3.1.1 (Recovery of dual solutions). Given a solution x to D(F) and si sat-
isfying

〈c, si〉 = 0
A∗si = 0
si ∈ F∗i \ (spanF)⊥i

Fi+1 := Fi ∩ s⊥i (which implies F∗i+1 = F∗i + span si)
F0 := K, F := FN ,

find a solution to D(K).

To solve this problem, we generalize a recovery procedure described in [103] for
well-behaved SDPs. (See the discussion following [103, Theorem 5].) First, we observe
that each si is a feasible direction for D(F) that does not increase the dual objective
〈c, x〉. We also observe that F∗i+1 = F∗i + span si (since K, and hence Fi, is closed).
This implies if F∗i + span si is closed, then one can, for any x ∈ F∗i+1, find an α such
that x+ αsi ∈ F∗i . We conclude if F∗i + span si is closed for each i, then a sequence of
line searches, given explicitly by Algorithm 3.1, constructs a solution to D(K).

Algorithm 3.1: Recovery of dual solutions
Input: A solution x ∈ F∗ to D(F) and s0, . . . , sN−1
Output: A solution x to D(K) or flag indicating failure.
for i← N − 1 down to 0 do

1. Using a line search, find α s.t. x+ αsi ∈ F∗i .

2. If no α exists, return FAIL. Else, set x← x+ αsi.

end

The following properties of this algorithm are immediate:

Lemma 3.1.1. Algorithm 3.1 has the following properties:

1. Sufficient condition for recovery. Algorithm 3.1 succeeds if F∗i + span si is closed
for all i.
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2. Necessary condition for recovery. Suppose P(F) and D(F) have equal optimal
values. Then, Algorithm 3.1 succeeds only if P(K) and D(K) have equal optimal
values.

When K is polyhedral, the above sufficient condition always holds. On the other hand,
it rarely holds for SDP: for S ∈ Sn+, the set Sn+ + spanS is closed only if S is zero or
positive definite. (To show this, one can use essentially the same argument that proves
Lemma 2.2 of [115]. This lemma shows that for a face F of Sn+, the set Sn+ + linF is
closed only if F = {0} or F = Sn+.) Hence, better sufficient conditions for SDP are
needed.

In the next section, we give a necessary and sufficient condition (Condition 3.2.1)
for SDP assuming N = 1, i.e., assuming one iteration of facial reduction was performed.
This condition is on the specific solution of D(F) used to initialize Algorithm 3.1. We
also give a sufficient condition valid for arbitrary initialization points (Condition 3.4.1).

Remark 3.1.1. Closedness of K∗+span s for s ∈ K∗ appears in other contexts. Borwein
and Wolkowicz use this condition to simplify their generalized optimality conditions for
convex programs (see Remark 6.2 of [20]). Tunçel and Wolkowicz use failure of a related
condition, namely closedness of K∗+ linF for a face F of K∗, to construct primal-dual
pairs with infinite duality gaps.

� 3.2 A necessary and sufficient condition for dual solution recovery

In this section, we give a necessary and sufficient condition (Condition 3.2.1) for solution
recovery assuming K = Sn+ and one iteration of facial reduction. In this case, the primal-
dual pair is

PSDP (Sn+) : maximize bT y

subject to C −
∑m
i=1 yiAi ∈ Sn+,

DSDP (Sn+) : minimize TrCX
subject to TrAiX = bi ∀i ∈ {1, . . . ,m},

X ∈ Sn+,
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and its reformulation over F := Sn+ ∩ S⊥ and F∗ = Sn+ + spanS is

PSDP (F) : maximize bT y

subject to A(y) = C −
∑m
i=1 yiAi,

UTA(y)U ∈ Sd+,
UTA(y)V = 0,
V TA(y)V = 0,

DSDP (F) : minimize TrCX
subject to TrAiX = bi ∀i ∈ {1, . . . ,m},

X = (U, V )
(

W Z

ZT R

)
(U, V )T ,

W ∈ Sd+, R ∈ Sn−d, Z ∈ Rd×(n−d),

where (U, V ) is an invertible matrix satisfying S = V V T and rangeU = nullS. Note
to reformulate the primal-dual pair, we have used the facts

Sn+ ∩ S⊥ =
{
X ∈ Sn+ : XS = 0

}
=
{
X ∈ Sn+ : XV = 0

}
=
{
X ∈ Sn+ : (U, V )TXV = 0

}
.

Algorithm 3.1 constructs a solution to DSDP (Sn+) from a solution X to DSDP (F) if
and only if X is in Sn+ + spanS. The following shows this is equivalent to the condition
that nullW ⊆ nullZT . We give a direct proof of this fact, but note it also follows
(essentially) by combining [103, Lemma 3] with [101, Lemma 3.2.1].

Lemma 3.2.1. Given a face F = Sn+ ∩ S⊥, let (U, V ) ∈ Rn×n be an invertible matrix
satisfying rangeV = rangeS. A matrix X in F∗ = Sn+ + spanS, i.e., a matrix X of
the form

X = (U, V )
(

W Z

ZT R

)
(U, V )T for some W ∈ Sd+, R ∈ Sn−d, Z ∈ Rd×n−d, (3.2)

is in Sn+ + spanS if and only if nullW ⊆ nullZT .

Proof. For the “only if” direction, suppose X is in Sn+ + spanS, i.e. for an α ∈ R
suppose

X + αV V T = (U, V )
(

W Z

ZT R+ αI

)
(U, V )T ∈ Sn+.

Here, membership in Sn+ holds only if ZT (I −WW †) = 0, where (I −WW †) is the
orthogonal projector onto nullW (see, e.g. A.5 of [21]). But this implies that nullW ⊆
nullZT , as desired.

To see the converse direction, suppose X is such that Z and W satisfy nullW ⊆
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nullZT . The result follows by finding α for which X + αS � 0. To do this, we show
existence of α1 and α2 for which

X − V RV T + α1S ∈ Sn+ and V RV T + α2S ∈ Sn+.

Adding these two matrices then shows that X + (α1 + α2)S ∈ Sn+.
Existence of α2 is obvious given that

V RV T + α2S = V (R+ α2I)V T .

To show existence of α1, we note that

X − V RV T + α1S = (U, V )
(

W Z

ZT α1I

)
(U, V )T .

By a Schur complement, the above is psd if and only if

W − 1
α1
ZZT ∈ Sd+.

But since nullW ⊆ nullZT , the matrix ZZT is contained in the face

G =
{
T ∈ Sd+ : rangeT ⊆ rangeW

}
.

Since W is in the relative interior of G, there exists α1 > 0 for which W − 1
α1
ZZT ∈

G ⊆ Sd+ (Proposition 1.3.1).

The above characterization of Sn+ + spanS yields a necessary and sufficient condition
for success of Algorithm 3.1 assuming one iteration of facial reduction (N = 1):

Condition 3.2.1. The solution X to DSDP (F) satisfies nullW ⊆ nullZT .

The following example illustrates success and failure of Condition 3.2.1.

Example 3.2.1. Consider the following primal-dual pair:

max. y3 + 2y2
subj. to

A(y) =

 y1 y2 0
y2 −y3 y2
0 y2 y3

 ∈ S3
+

min. 0
subj. to x33 − x22 = −1,

x12 + x21 + x23 + x32 = −2,
x11 = 0,
X ∈ S3

+

and let S = V V T , with V = (e2, e3). Clearly S is orthogonal to A(y) for all y and
exposes a face F := Sn+ ∩ S⊥ equal to US1

+U
T for U = e1 = (1, 0, 0)T . Rewriting the
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primal-dual pair over F and F∗ gives:

max. y3 + 2y2
subj. to

V TA(y)V = 0,
UTA(y)V = 0,
UTA(y)U ≥ 0,

A(y) =

 y1 y2 0
y2 −y3 y2
0 y2 y3



min. 0
subj. to x33 − x22 = −1,

x12 + x21 + x23 + x32 = −2,
x11 = 0,
X ∈ S3, UTXU = x11 ≥ 0.

A solution of the dual problem satisfying Condition 3.2.1 is

X =

 0 0 0
0 0 −1
0 −1 −1

 .
To see that the condition holds, note Z = (x12, x13) = (0, 0) and W = x11 = 0.
Hence, nullZT contains (indeed, equals) nullW . We therefore see that solution recovery
succeeds, i.e. for (say) α = 2:

X + αS =

 0 0 0
0 α −1
0 −1 α− 1

 ∈ S3
+.

On the other hand, the following solution fails Condition 3.2.1:

X =

 0 −1 0
−1 0 0
0 0 −1

 . (3.3)

Here, Z = (−1, 0) and W = 0. Hence, nullZT = {0} does not contain nullW = R and
recovery must fail. In other words, there is no α for which

X + αS =

 0 −1 0
−1 α 0
0 0 α− 1

 ∈ S3
+,

which is easily seen.

� 3.3 Strong duality is not sufficient for dual recovery

Recall that zero duality gap between the original primal-dual pair P(K) and D(K)
is a necessary condition for successful recovery when P(F) and D(F) have no gap
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(Lemma 3.1.1). Example 3.2.1 shows this is not a sufficient condition: both primal-
dual pairs have no gap.

Corollary 3.3.1. The dual solution recovery procedure of Algorithm 3.1 can fail even
if both the original primal-dual pair P(K) and D(K) and the primal-dual pair P(F)
and D(F) have zero duality gap.

� 3.4 Ensuring successful dual recovery

Condition 3.2.1 lets one determine if recovery is possible by a simple null space compu-
tation. Unfortunately, this check must be done after solving the dual problem DSDP (F)
as it depends on the obtained solution. In this section, we give a simple sufficient con-
dition that is checkable prior to solving DSDP (F). If this condition holds, one can
modify PSDP (F) and DSDP (F) to guarantee successful recovery, independent of the
solution found for DSDP (F).

The idea is simple: when can one assume Z = 0 and hence ensure Condition 3.2.1
holds without changing the dual optimal value? By [103, Theorem 5], this assumption
can be made if PSDP (F) satisfies Slater’s condition and PSDP (Sn+) is well-behaved—
where PSDP (Sn+) is well-behaved if, for all cost vectors b, the optimal values of PSDP (Sn+)
and DSDP (Sn+) are equal and DSDP (Sn+) attains it optimal value when it is finite. It
turns out we can assume Z = 0 under a related but purely linear-algebraic condition
inspired by a characterization of well-behaved SDPs [103, Theorem 3]. The condition
and statement follow.

Condition 3.4.1. The equations of PSDP (F) have the following property:{
y ∈ Rm : V TA(y)V = 0

}
=
{
y ∈ Rm : V TA(y)V = 0, V TA(y)U = 0

}
,

that is, V TA(y)V = 0 implies V TA(y)U = 0.

Proposition 3.4.1. Suppose Condition 3.4.1 holds. If DSDP (F) has an optimal solu-
tion, then it has an optimal solution with Z = 0.

Proof. Let X be an optimal solution to DSDP (F), which, for some W ∈ Sd+, Z ∈
Rd×(n−d), and R ∈ Sn−d satisfies

X = (U, V )
(

W Z

ZT R

)
(U, V )T . (3.4)

We will construct a new solution X̂ by setting Z to zero and replacing R with R + R̂

for a particular R̂.
Towards this, we first show existence of X implies the set

{
y ∈ Rm : V TA(y)V = 0

}
is non-empty. If it were empty, then, by Farkas lemma, there exists R̃ satisfying
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Tr R̃(V TAiV ) = 0 and Tr R̃(V TCV ) < 0, which implies

X̃ = X + (U, V )
(

0 0
0 R̃

)
(U, V )T

is a feasible point of DSDP (F) with strictly better cost, contradicting optimality of X.
Hence, there exists y0 ∈

{
y ∈ Rm : V TA(y)V = 0

}
.

Now, consider the linear maps L1 : Rm → Sn−d and L2 : Rm → Rd×(n−d)

L1(y) =
m∑
i=1

yi(V TAiV ), L2(y) =
m∑
i=1

yi(UTAiV ),

where Rd×(n−d) and Sn−d are equipped with trace inner-product. With these defini-
tions, L1(y) = V TCV if and only if V TA(y)V = 0 and L2(y) = UTCV if and only
if V TA(y)U = 0. Further, X of form (3.4) satisfies the equations TrAiX = bi for
DSDP (F) if and only if

L∗1(R) + 2L∗2(Z) = b−
(
Tr(UTA1U)W, . . . ,Tr(UTAmU)W

)T
.

Now suppose Condition 3.4.1 holds. Given existence of y0, it follows that nullL1 ⊆
nullL2—otherwise, we could construct solutions to L1(y) = V TCV that do not solve
L2(y) = UTCV , a contradiction of Condition 3.4.1. But nullL1 ⊆ nullL2 holds if and
only if rangeL∗1 ⊇ rangeL∗2. Hence, we can find a R̂ satisfying

sL∗1(R̂) = 2L∗2(Z), (3.5)

which implies the matrix

X̂ = (U, V )
(
W 0
0 R+ R̂

)
(U, V )T

satisfies TrAiX̂ = bi. Since W ∈ Sd+, it follows X̂ is feasible for DSDP (F).
We now show TrCX = TrCX̂, proving X̂ is also optimal. For this, it suffices

to show TrCV R̂V T = 2 TrCUZV T . Since L1(y0) = V TCV and, by Condition 3.4.1,
L2(y0) = UTCV , we conclude

〈L∗1(R̂), y0〉 = 〈R̂, L1(y0)〉 = 〈R̂, V TCV 〉 = TrV TCV R̂,

〈L∗2(Z), y0〉 = 〈Z,L2(y0)〉 = 〈Z,UTCV 〉 = TrV TCUZ,

which, by (3.5), shows TrCV R̂V T = 2 TrCUZV T , as desired.

We conclude one can fix Z to zero in DSDP (F) and omit the equations V TA(y)U = 0
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from PSDP (F) under Condition 3.4.1. This leads to a modified primal-dual pair:

maximize bT y

subject to A(y) = C −
∑m
i=1 yiAi,

UTA(y)U ∈ Sd+,
V TA(y)V = 0,

minimize TrCX
subject to TrAiX = bi ∀i ∈ {1, . . . ,m},

X = (U, V )
(
W 0
0 R

)
(U, V )T ,

W ∈ Sd+, R ∈ Sn−d,

where any solution of the modified primal solves PSDP (Sn+) and any solution of the
modified dual satisfies Condition 3.2.1 (by construction).

Comparison with well-behavedness We now illustrate differences between Condition 3.4.1
and well-behavedness of PSDP (Sn+). Suppose one constructs PSDP (F) after a single
iteration of facial reduction. From [103, Theorem 3], it follows Condition 3.4.1 and well-
behavedness of PSDP (Sn+) are equivalent if PSDP (F) satisfies Slater’s condition. The
following examples show this equivalence can fail if Slater’s condition does not hold.

Example 3.4.1 (A well-behaved SDP and failure of Condition 3.4.1). Consider the
following SDP:

maximize bT y

subject to

A(y) =


y1 0 y2 0
0 −y1 0 0
y2 0 y2 0
0 0 0 −y2

 ∈ S4
+.

For any b, the optimal value is zero. Further, for any b, a nonnegative diagonal matrix
X satisfying b1 = x22 − x11 and b2 = x44 − x33 is dual optimal. Hence, the SDP is
well-behaved.

The matrix S = e1e1 + e2e
T
2 is orthogonal to A(y) for all y. Hence, we can take

F = S4
+ ∩ S⊥ and formulate PSDP (F) as follows

maximize bT y

subject to

UTA(y)U =
(
y2 0
0 −y2

)
∈ S2

+, V TA(y)U =
(
y2 0
0 0

)
= 02×2,

V TA(y)V =
(
y1 0
0 −y1

)
= 02×2,

where V = (e1, e2), U = (e3, e4). Clearly UTA(y)U cannot be positive definite, hence
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PSDP (F) fails Slater’s condition. In addition, Condition 3.4.1 fails, i.e.,{
y ∈ Rm : V TA(y)V = 0

}
6=
{
y ∈ Rm : V TA(y)V = 0, V TA(y)U = 0

}
.

Note one avoids this failure by taking S = I, which is also orthogonal to A(y) for all y.

Example 3.4.2 (An SDP not well-behaved and success of Condition 3.4.1). The fol-
lowing SDP, based on [103, Example 1], has an unattained dual optimal value when
b = (1, 0, 0)T and is hence not well-behaved:

maximize bT y

subject to

A(y) =


1 −y1 0 0
−y1 y3 0 0

0 0 y2 y3
0 0 y3 −y2

 ∈ S4
+.

For the rank two matrix S = e3e3 + e4e
T
4 , we have that PSDP (F) takes the form:

maximize bT y

subject to

UTA(y)U =
(

1 −y1
−y1 y3

)
∈ S2

+, V TA(y)U =
(

0 0
0 0

)
= 02×2,

V TA(y)V =
(
y2 y3
y3 −y2

)
= 02×2,

where V = (e3, e4) and U = (e1, e2). Since y3 = 0 if y is feasible, Slater’s condition
fails. Condition 3.4.1, on the other hand, holds given that V TA(y)U = 0 imposes no
constraints on y. This is despite the fact the SDP is not well-behaved.

� 3.5 Recovering solutions to an extended dual

We close by discussing recovery for an alternative dual program intimately related to
facial reduction—an extended dual [102, 114, 115]. Solutions to the extended dual
simultaneously identify a chain of faces F1, . . . ,FN (where N = n − 1) and a solution
X ∈ F∗N to DSDP (FN ). The description of faces relies on the following.

Lemma 3.5.1. The following statements are true:

1. For any face F of Sn+, F∗ = Sn+ + (spanF)⊥.

2. If F = Sn+ ∩ S⊥ for S ∈ Sn+, then

(spanF)⊥ =
{
W +W T :

(
S W

W T αI

)
∈ S2n

+ for some α ∈ R
}
.
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3. Let F0 := Sn+ and consider the chain of faces defined by matrices Si

Fi+1 := Fi ∩ S⊥i ,

where Si is in F∗i , i.e. Si = S̄i+Vi for S̄i ∈ Sn+ and Vi ∈ (spanF)⊥i . The following
relationship holds:

Fi+1 = Sn+ ∩ (
i∑

j=0
S̄j)⊥.

Proof. The first statement holds because Sn+ is a nice cone [102]. The other
statements are shown by Proposition 1 and Theorem 3 of [102].

The variables and constraints of the extended dual arise directly from this lemma. It
is given below as an optimization problem over X, X̄,WN , Si, S̄i,Wi, αi:

minimize TrCX
subject to TrAjX = bj

TrCSi = 0, TrAjSi = 0 (S⊥i contains A(y) for all y)
X = X̄ +WN +W T

N (X ∈ F∗N )
Si = S̄i +Wi +W T

i (Si ∈ F∗i )( ∑i
j=0 S̄j Wi+1
W T
i+1 αiI

)
∈ S2n

+

S̄i ∈ Sn+, X̄ ∈ Sn+,W0 = 0,

where i ranges from 0 to N − 1 and j ranges from 1 to m (indexing m linear equations
TrAjX = bj).

Recovering a solution Suppose Fi = UiSdi+U
T
i for i = 0, . . . , N is a sequence of faces

identified by facial reduction suitably padded so that the length of the sequence is N ,
i.e., F0, . . . ,FM = Sn+ for someM < N . Let Si ∈ F∗i be the exposing vector of Fi+1 and
let X be a solution to DSDP (F). One can construct a feasible point of the extended
dual by decomposing Si (and similarly X) into the form Si = S̄i+Wi+W T

i , for S̄i ∈ Sn+
and Wi + W T

i ∈ (spanFi)⊥. Supposing Ui has orthonormal columns, this is done by
taking

S̄i = UiU
T
i SiUiU

T
i , Wi = 1

2(S − S̄i) ∀i ∈ {0, . . . , N − 1},
X̄ = UNU

T
NXUNU

T
N , WN = 1

2(X − X̄).

One can then pick each αi (individually) to satisfy the corresponding semidefinite con-
straint.
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� 3.6 Conclusion

We gave a post-processing procedure for dual solution recovery that applies generally
to cone programs preprocessed using facial reduction. This recovery procedure always
succeeds when the cone is polyhedral, but may fail otherwise, illustrating an interesting
difference between linear programming and optimization over nonpolyhedral cones. We
gave sufficient conditions for successful recovery and explored the connection with well-
behaved SDPs—a subset of SDPs for which recovery is always possible.



Chapter 4

Self-dual embeddings and facial

reduction

Recall that a cone program is pathological if none of the following three objects exist: a
solution to the optimality conditions, a feasible point paired with an improving ray, or a
strictly separating hyperplane, i.e., a dual improving ray. By applying facial reduction
to a cone program and/or its dual, we can guarantee the resulting cone program is
not pathological. There is no algorithm, however, that does facial reduction only if a
given program is pathological. Such an algorithm would be useful if one only wanted
to pay the costs of facial reduction for pathological instances which, without facial
reduction, are perhaps unsolvable. This chapter provides such an algorithm. Indeed,
this algorithm actually solves arbitrary instances of cone programs, performing facial
reduction if and only if an instance is pathological before returning the optimal value
and a point attaining it if one exists.

Note that the facial reduction algorithms [20, 102, 138] are based on failure of
Slater’s condition. Failure of Slater’s condition is necessary for pathologies but not
sufficient. Hence, our algorithm is based on a different object: the self-dual embedding,
an auxiliary cone program constructed from a given instance. When the instance isn’t
pathological, solutions of the embedding provide solutions of the optimality conditions
or improving rays. When the instance is pathological, we will show solutions to the
embedding provide the needed hyperplanes for facial reduction. Note that the self-
dual embedding is the basis of widely used solvers [128, 94]. Indeed, implementing
our algorithm involves only minimal code changes to these solvers that only modify
execution for pathological instances. Nevertheless, numerical experiments will show
such implementations still face the significant numerical challenges encountered by other
facial reduction algorithms. Hence, the contributions of this chapter are, at this point,
mostly theoretical. We now overview the self-dual embedding and explain contributions
of this chapter in more detail. First we fix the form of the cone program of interest.

129
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Problem of interest In this chapter, the cone program of interest has decision variable
x ∈ V and its dual has decision variables s ∈ V and y ∈ Rm:

minimize 〈c, x〉
subject to Ax = b,

x ∈ K,

maximize 〈b, y〉
subject to c−A∗y = s,

s ∈ K∗, y ∈ Rm.
(4.1)

As in previous chapters, V is a finite-dimensional inner product space identified with
its dual space V∗, the map A : V → Rm is linear with adjoint A∗ : Rm → V, the points
b ∈ Rm and c ∈ V are fixed, and the cone K ⊆ V is closed and convex with dual cone
K∗ := {s ∈ V : 〈s, x〉 ≥ 0 ∀x ∈ K}.

Recall from Chapter 1.2.1 that the optimality conditions of (4.1) are

Ax = b, x ∈ K, s = c−AT y, s ∈ K∗, 〈c, x〉 = bT y,

where we’ve used the fact that 〈c, x〉 = bT y is, for feasible points, equivalent to the
complementary slackness condition 〈s, x〉 = 0. Given this equivalence, we will call
(x, s, y) ∈ V × V × Rm a complementary solution if it solves the optimality conditions.
Similarly, a primal improving ray x ∈ V and dual improving ray (s, y) ∈ V × Rm are
points satisfying

Ax = 0, x ∈ K, 〈c, x〉 < 0 s = −A∗y, s ∈ K∗, bT y > 0.

Also recall from Chapter 1.2.1 that the hyperplane {x ∈ V : 〈s, x〉 = 0} strictly separates
K from the solutions to Ax = b if (s, y) is a dual improving ray. Hence, dual improving
rays certify primal infeasibility. Similar remarks apply to primal improving rays and
dual infeasibility.

Self-dual embeddings The self-dual embedding, also called the self-dual homogeneous
model, is a cone program whose constraints simultaneously describe improving rays and
complementary solutions [63, 87, 40, 97, 111]. It includes two extra variables τ ∈ R+
and κ ∈ R+ and takes the following form

Ax− bτ = 0,
−A∗y − s+ cτ = 0,

〈b, y〉 − 〈c, x〉 − κ = 0,
(x, s, y, τ, κ) ∈ K ×K∗ × Rm × R+ × R+.

(4.2)

Any solution (x, s, y, τ, κ) of the embedding satisfies the complementarity condition
τκ = 0; hence, any solution falls into one of three categories. If τ > 0, then 1

τ (x, s, y)
solves the optimality conditions of (4.1), i.e., 1

τ (x, s, y) is a complementary solution. If
κ > 0, then x and/or (s, y) are improving rays for the primal and/or dual. If, on the
other hand, τ = κ = 0, then the solution (x, s, y, τ, κ) reveals nothing about the primal
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or dual optimal value—either could be finite or unbounded from above or below.1
Further, τ = κ = 0 holds for all solutions if and only if complementary solutions
and improving rays do not exist, i.e., if and only if the cone program of interest is
pathological.

Theoretical contributions In this chapter, we reexamine the solution set of the embed-
ding in the pathological case. To summarize our results, we first note that the solution
set of the embedding (4.2) is a convex cone. For pathological instances, we show points
in the relative interior of this cone identify faces of K and/or K∗ containing the primal
and/or dual feasible set, which is precisely the information needed for facial reduction.
This allows one to reformulate the embedding (4.2) over a face and resolve, repeating
until a complementary solution or an improving ray is obtained. This ultimately leads
to an algorithm that finds the optimal value and a point attaining it (if one exists) for
any cone programming instance.

This algorithm, of course, needs to find relative interior solutions of the embed-
ding (4.2). As we show, such solutions are obtained from relative interior solutions of
the extended-embedding [145], a strictly feasible cone program with a strictly feasible
dual. Note that if K is a symmetric cone, the central path of the extended embedding
converges to the relative interior of its solution set [66, 116]. Further, reformulating
(4.2) over a face of K or K∗ requires only basic linear algebra (see, e.g., Chapter 1.3.1).
Hence, implementations of our algorithms are conceptually simple for symmetric cones,
involving only linear algebra and repeated calls to an interior point method.

Numerical experiments Though the aforementioned implementations are conceptually
simple, they nevertheless face significant practical barriers. Numerical experiments will
be given to illustrate the following three issues. First, interior-point methods only ap-
proximate the limit point of the central path; hence, in practice, only approximate
solutions of the embedding are obtained. Second, facial reduction with these approxi-
mate solutions can change the optimal value by an arbitrary amount, e.g., by changing
a feasible problem to an infeasible problem. Note that this second issue is rooted in
the fact at least one problem—primal or dual—is ill-posed in the sense of Renegar
[118] when τ = κ = 0 for all solutions;2 that is, at least one problem has optimal
value infinitely sensitive to perturbations of A, b and c. Third, strict complementarity
can fail badly, which can cause poor convergence of interior-point algorithms. Indeed,
the extended-embedding never has a strictly complementary solution when τ = κ = 0

1Though the solution reveals nothing, the asymptotic behavior of central-path-following techniques
gives information in certain cases. See Luo et al. [87] and de Klerk et al. [41].

2In this case, no complementary solution or improving ray exists. At least one problem—primal or
dual—is thus feasible and fails Slater’s condition or infeasible and fails to have a dual improving ray.
In other words, at least one problem is weakly feasible or weakly infeasible in the sense of [88] and hence
ill-posed in the sense of Renegar [118].
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Case Interpretation
τ > 0, κ = 0 Complementary solution
τ = 0, κ > 0 Improving ray(s)
τ = 0, κ = 0 Hyperplane(s) for facial reduction

Table 4.1: Interpretation of a relative interior solution to the self-dual embedding (4.2)
in terms of the conic optimization problem (4.1). A main observation of this paper,
given by Corollary 4.2.1, is summarized by the last row.

holds for all solutions, since, by definition, strict complementarity requires τκ = 0 and
τ + κ > 0. We emphasize that these issues currently preclude a practical implementa-
tion of the mentioned algorithms. Nevertheless, experiments indicate “good” solutions
to the embedding can be obtained for many pathological instances, which may have
practical value; indeed, in Section 4.4.4, we use approximate solutions to explain the
poor performance [93] of primal-dual solvers on a DIMACS library instance [104] by
offering numerical evidence the dual optimal value is unattained.

Outline This chapter is organized as follows. Section 4.1 establishes additional notation
and definitions. Section 4.2 studies the solution set of the embedding and the extended-
embedding. Section 4.3 gives a theoretical algorithm for solving arbitrary instances of
a given cone program. Section 4.4 gives numerical experiments, highlighting barriers to
practical implementation.

� 4.1 Notation and definitions

To enable succinct and precise statements, we need additional definitions. First, we let
P(C) and D(C) denote the following primal-dual pair parametrized by a closed, convex
cone C ⊆ V:

P(C) : minimize 〈c, x〉
subject to Ax = b,

x ∈ C,

D(C) : maximize 〈b, y〉
subject to s = c−A∗y,

(s, y) ∈ C∗ × Rm.
(4.3)

Here, (A, b, c) is the problem data of (4.1); indeed, with this notation, P(K) and D(K)
denote (4.1). We also parametrized the solution set of the self-dual embedding by C.

Definition 4.1.1. For a nonempty, closed, convex cone C ⊆ V, and the problem data
A : V → Rm, b ∈ Rm and c ∈ V of (4.1), define H(C) as the convex cone of solutions
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(x, s, y, τ, κ) to the system

Ax− bτ = 0,
−A∗y − s+ cτ = 0,

〈b, y〉 − 〈c, x〉 − κ = 0,
(x, s, y, τ, κ) ∈ C × C∗ × Rm × R+ × R+.

(4.4)

Note that if C = K, then H(C) equals the solution set of the self-dual embedding (4.2).
Finally, we name the hyperplanes of facial reduction facial reduction certificates.

Definition 4.1.2. For a nonempty, closed, convex cone C ⊆ V, and the problem data
A : V → Rm, b ∈ Rm and c ∈ V of (4.1), define facial reduction certificates as follows:

• Call s ∈ C∗ a facial reduction certificate for P(C) if the hyperplane s⊥ contains
the affine set {x ∈ V : Ax = b} and C ∩ s⊥ ⊆ C holds strictly.

• Call x ∈ C a facial reduction certificate for D(C) if the hyperplane x⊥ contains
the affine set {c−A∗y : y ∈ Rm} and C∗ ∩ x⊥ ⊆ C∗ holds strictly.

We also define a notion of optimality for certificates.

Definition 4.1.3. Let C ⊆ V be a nonempty, closed, convex cone. Let Zp ⊆ V denote
the set of facial reduction certificates for P(C) and Zd ⊆ V the set of facial reduction
certificates for D(C).

• s ∈ Zp is an optimal facial reduction certificate for P(C) if C ∩ s⊥ satisfies

C ∩ s⊥ ⊆ C ∩ ŝ⊥ for all ŝ ∈ Zp.

• x ∈ Zd is an optimal facial reduction certificate for D(C) if C∗ ∩ x⊥ satisfies

C∗ ∩ x⊥ ⊆ C∗ ∩ x̂⊥ for all x̂ ∈ Zd.

Note that the sum of two facial reduction certificates is a certificate. Further, the sum
of a maximal set of linearly independent certificates is optimal given the identities

C ∩ (s1 + s2)⊥ = C ∩ s⊥1 ∩ s⊥2 , C∗ ∩ (x1 + x2)⊥ = C∗ ∩ x⊥1 ∩ x⊥2 ,

which hold for any s1, s2 ∈ C∗ and x1, x2 ∈ C.

� 4.2 Solutions to self-dual embeddings

In this section, we study the solution set of the self-dual embedding H(C). Not every
point in H(C) provides information about the primal-dual pair P(C) and D(C); indeed,
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H(C) contains the zero vector. We therefore focus on two subsets of H(C) whose points
all provide information. We classify the points in these subsets based on τ and κ,
leveraging the fact that τκ = 0; that is, for (x, s, y, τ, κ) ∈ H(C),

0 ≤ 〈x, s〉 = 〈x, cτ −A∗y〉 = τ(〈c, x〉 − 〈b, y〉) = −τκ ≤ 0. (4.5)

In other words, for each subset, we consider the three cases τ > 0, κ > 0 and τ = κ = 0,
providing novel insight into this latter case.

The first subset of interest is the relative interior of H(C). Our main result (Theo-
rem 4.2.1) implies the results of Table 4.1; specifically, it shows that points in the relative
interior yield complementary solutions when τ > 0, improving rays when κ > 0, and
optimal facial reduction certificates when τ = κ = 0. Specialized to SDP, this expands
the analysis of [41, 40].

We next consider the subsetM∩H(C) whereM is a distinguished type of hyperplane
introduced in Ye et al. [145] and studied in Freund [56]. As with the relative interior,
points in this subset yield complementary solutions when τ > 0 and improving rays
when κ > 0. When τ = κ = 0, we obtain either an improving ray or a facial reduction
certificate; in other words, we obtain a certificate that Slater’s condition has failed.

Finally, we show how to find points in both subsets by solving the extended-
embedding of Ye et al. [145]—a strictly feasible conic problem with strictly feasible
dual.

� 4.2.1 The relative interior

The following theorem classifies (x, s, y, τ, κ) ∈ relint H(C) by the values of τ and κ.
A corollary follows restating key statements in terms of complementary solutions, im-
proving rays, and facial reduction certificates for the primal-dual pair given by P(C)
and D(C). The key observation for the case of τ = κ = 0 is the following: if
(x, s, y, 0, 0) ∈ H(C), then, by inspection, so is at least one of the points (0, s, y, 0, 〈b, y〉)
or (x, 0, 0, 0,−〈c, x〉). This will imply 〈c, x〉 = 〈b, y〉 = 0 when τ = κ = 0 holds for
points in the relative interior.
Theorem 4.2.1. Let C ⊆ V be a nonempty, closed, convex cone with (x, s, y, τ, κ) ∈
relint H(C). Then, the complementarity condition τκ = 0 holds. The following state-
ments also hold.

1. If τ > 0, then 1
τ (Ax) = b, 1

τ (A∗y + s) = c, and 〈b, y〉 = 〈c, x〉.

2. If κ > 0, then Ax = 0, A∗y + s = 0, and 〈b, y〉 > 〈c, x〉.

3. If τ = κ = 0, then τ̂ = κ̂ = 0 and 〈c, x̂〉 = 〈b, ŷ〉 = 0 for all (x̂, ŝ, ŷ, τ̂ , κ̂) ∈ H(C).
Further, letting Fp := C ∩ s⊥, Fd := C∗ ∩ x⊥, Ap := {x ∈ V : Ax = b} and
Ad := {c−A∗y : y ∈ Rm},
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(a) the hyperplane s⊥ contains Ap;

(b) the hyperplane x⊥ contains Ad;

(c) the face Fp is proper if and only if Ap ∩ relint C is empty;

(d) the face Fd is proper if and only if Ad ∩ relint C∗ is empty;

(e) at least one of the faces Fp or Fd is proper;

(f) the inclusion Fp ⊆ C ∩ ŝ⊥ holds for all ŝ ∈ C∗ satisfying Ap ⊆ ŝ⊥;

(g) the inclusion Fd ⊆ C∗ ∩ x̂⊥ holds for all x̂ ∈ C satisfying Ad ⊆ x̂⊥.

Proof. We only prove the third statement, noting that the first two are well known and
follow easily from the complementarity condition τκ = 0 implied by (4.5). To begin,
let w := (x, s, y, τ, κ) ∈ relint H(C) and assume τ = κ = 0. Now pick arbitrary ŵ :=
(x̂, ŝ, ŷ, τ̂ , κ̂) ∈ H(C). First note that τ̂ = κ̂ = 0; otherwise, we’d have w − αŵ 6∈ H(C)
for every α > 0, contradicting the fact w ∈ relint H(C). Since κ̂ = 0, it follows that
〈c, x̂〉−〈b, ŷ〉 = 0, i.e., that 〈c, x̂〉 = 〈b, ŷ〉. We will now tighten this to 〈c, x̂〉 = 〈b, ŷ〉 = 0.
To begin, let θ̂ := 〈c, x̂〉 = 〈b, ŷ〉. By inspection, at least one point—(0, ŝ, ŷ, 0, θ̂) or
(x̂, 0, 0, 0,−θ̂)—is in H(C). But as just argued, the κ-coordinate of any point in H(C)
must be zero. We conclude θ̂ = 0; hence 〈c, x̂〉 = 〈b, ŷ〉 = 0, as desired. We now use this
to show statements (3a)-(3b).

To see (3a)-(3b), first note that 〈x̂, s〉 = −〈x̂, A∗y〉 = −〈b, y〉 = 0 for all solutions x̂
of Ax = b. Hence, the solution set {x ∈ V : Ax = b} is contained in the hyperplane
s⊥. Likewise, 〈x, ŝ〉 = 〈c, x〉 = 0 for all ŝ ∈ {c − A∗y : y ∈ Rm}; hence, x⊥ contains
{c−A∗y : y ∈ Rm}.

We now show (3d). One direction is trivial; if Ad is contained in a proper face
of C∗, then Ad ∩ relint C∗ must be empty. For the converse direction, suppose that
Ad ∩ relint C∗ is empty. The separating hyperplane theorem [121, Theorem 11.3] states
that a hyperplane exists properly separating these sets. Using [121, Theorem 11.7], we
can additionally assume this hyperplane passes through the origin since C∗ is a cone.
In other words, there exists x̂ ∈ C∗∗ = C satisfying

〈x̂, c−A∗y〉 ≤ 0 for all y ∈ Rm,
〈x̂, z〉 6= 0 for some z ∈ {c−A∗y : y ∈ Rm} ∪ C∗.

It follows that 〈c, x̂〉 ≤ 〈A∗y, x̂〉 for arbitrary y ∈ Rm, which implies Ax̂ = 0 and 〈c, x̂〉 ≤
0. But 〈c, x̂〉 = 0, otherwise x̂ is an improving ray for P(C), and (x̂, 0, 0, 0,−〈c, x̂〉) ∈
H(C) with κ > 0. Hence, the hyperplane x̂⊥ contains {c − A∗y : y ∈ Rm} implying
〈x̂, z〉 6= 0 for some z ∈ C∗ given proper separation of the sets. That is, x̂ exposes a
proper face of C∗. We now use x̂ to show that x exposes a proper face of C∗ as claimed.
Clearly, ŵ := (x̂, 0, 0, 0, 0) ∈ H(C). Since w is in the relative interior of H(C), it holds
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that w ± αŵ ∈ H(C) and x ± αx̂ ∈ C for some α > 0. Hence, for any u ∈ C∗, the
inequality 〈u, x ± αx̂〉 ≥ 0 holds, which in turn implies 〈u, x̂〉 = 0 when 〈u, x〉 = 0. In
other words, C∗ ∩ x⊥ is contained in a proper face, i.e.,

C∗ ∩ x⊥ ⊆ C∗ ∩ x̂⊥, (4.6)

and is hence proper.
Applying the argument of the previous paragraph to the set Ap∩relint C shows (3c).
Statement (3e) follows if at least one of the sets—{x ∈ V : Ax = b} ∩ relint C or

{c − A∗y : y ∈ Rm} ∩ relint C∗—is empty. Suppose this is not the case. Then, Slater’s
condition is satisfied for both P(C) and D(C) showing the existence of an optimal
primal-dual solution with zero duality gap [13, Section 7.2.2]. Hence, there exists a
point in H(C) with τ > 0, contradicting the assumption that (x, s, y, τ, κ) is in the
relative interior of H(C).

The same argument that shows the containment (4.6) shows (3f) and (3g).

The following corollary arises simply from definitions. Variants of the first two state-
ments (and their converses) are well known for semidefinite optimization [41, Theorem
5.3.2]. Note that taking C = K yields Table 4.1.

Corollary 4.2.1. Let C ⊆ V be a nonempty, closed, convex cone with (x, s, y, τ, κ) ∈
relint H(C). The following statements hold for the primal-dual pair P(C) and D(C).

1. If τ > 0, then 1
τ (x, s, y) is a complementary solution for P(C) and D(C).

2. If κ > 0, then x is an improving ray for P(C) and/or (s, y) is an improving ray
for D(C).

3. If τ = κ = 0, then x and/or s are facial reduction certificates.

Moreover, converses of the first two statements hold: if P(C) and D(C) have a com-
plementary solution, then τ > 0; if P(C) and/or D(C) have an improving ray, then
κ > 0.

We now strengthen the third statement of Corollary 4.2.1, showing that facial reduction
certificates are obtained for both problems if they both fail Slater’s condition. We
then illustrate the second statement does not have an analogous strengthening; that is,
improving rays are not necessarily obtained for both problems even if they exist.

Facial reduction certificates for the primal and dual. The third statement of Corol-
lary 4.2.1 does not guarantee that s and x are both facial reduction certificates when
such certificates exist for both primal and dual problems. Statements (3c)-(3d) of The-
orem 4.2.1 provide this guarantee. Moreover, statements (3f)-(3g) imply that these
certificates are optimal. Formally:
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Corollary 4.2.2. Let C ⊆ V be a nonempty, closed, convex cone with (x, s, y, τ, κ) ∈
relint H(C). If τ = κ = 0, the following statements hold.

• The set {x ∈ V : Ax = b} ∩ relint C is empty if and only if s is a facial reduction
certificate for P(C).

• The set {c−A∗y : y ∈ Rm}∩relint C∗ is empty if and only if x is a facial reduction
certificate for D(C).

Moreover, if x (resp., s) is a facial reduction certificate, then x (resp. s) is optimal in
the sense of Definition 4.1.3.

This can be compared to Corollary 1.3.2 (the basis of the facial reduction algorithm
[102]), which asserted that, for feasible problems, existence of facial reduction certifi-
cates is equivalent to failure of Slater’s condition. Also note that the optimality of
certificates is ensured by the restriction to relint H(C); note that [130, Procedure 1] and
[138, Algorithm 4.1] find optimal certificates using similar restrictions.

The next example illustrates the first two statements of Corollary 4.2.2. Here, the
primal-dual pair has finite but non-zero duality gap. This implies τ = κ = 0 for all
points in relint H(C) and that Slater’s condition fails for both the primal and dual.

Example 4.2.1 (Example with positive duality gap [4].). Let Qn :=
{
x1 ≥

√∑n
i=2 x

2
i

}
denote the Lorentz cone. The following primal-dual pair has a duality gap of one:

minimize x3
subject to x1 + x2 + x4 + x5 = 0

−x3 + x4 = 1
x ∈ Q3 ×Q2

maximize y2

subject to
( 0

0
1
0
0

)
−

 y1
y1
−y2
y1+y2
y1

 = s

s ∈ Q3 ×Q2.

Indeed, if x ∈ Q3 × Q2, then x1 + x2 ≥ 0 and x4 + x5 ≥ 0; if, in addition, x1 + x2 +
x4 + x5 = 0, then x1 + x2 = 0, implying x3 = 0 if (x1, x2, x3) ∈ Q3. On the other hand,
dual feasible points satisfy s1 = s2, which in turn implies s3 = 0, i.e., y2 = −1. Since
both problems are feasible, the duality gap is 0− (−1) = 1.

Since there is a duality gap of one, any point in relint H(Q3×Q2) satisfies τ = κ = 0,
e.g.,

x̂ = (1,−1, 0, 0, 0)T , ŝ = (1, 1, 0, 1, 1)T , ŷ = (−1, 0)T , τ̂ = κ̂ = 0.

We see that ŝ and x̂ are facial reduction certificates for the primal and dual, as predicted
by Corollary 4.2.2.

Improving rays for the primal and dual. Statement 2 of Corollary 4.2.1 does not guar-
antee s and x are both improving rays when such rays exists for both primal and dual
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problems. Unfortunately, this statement cannot be strengthened—in the κ > 0 case,
there are instances for which relative interior points do not yield improving rays for
both problems, even if these rays exist. This is a known shortcoming of the self-dual
embedding that occurs even in the linear programming case (see, e.g., [145]). The
following example illustrates this shortcoming.

Example 4.2.2. Consider the following primal-dual pair of linear programs

minimize −x1
subject to x1 − x2 = 0,

−(x1 − x2) = 1,
x ∈ R2

+,

maximize y2

subject to
(−1

0
)
−
(

y1−y2
−(y1−y2)

)
= s,

s ∈ R2
+,

where both the primal and dual problem are infeasible. Indeed, the point (x̂, ŝ, ŷ, τ̂ , κ̂) ∈
relint H(R2

+) yields an improving ray x̂ for the primal and an improving ray ŷ for the
dual, where

x̂ = (1, 1)T , ŝ = (0, 0)T , ŷ = (1, 1)T , τ̂ = 0, κ̂ = 2.

Nevertheless, the entire family of points

x̃ = (r, r)T , s̃ = (0, 0)T , ỹ = (t, t)T , τ̃ = 0, κ̃ = r + t, for r > −t ≥ 0

are also in the relative interior of solutions to the self-dual embedding, and only give
improving rays for the primal problem.

Note that this example illustrates one cannot in general decide infeasibility of the primal
and dual from a single point in relint H(C) with κ > 0. We will revisit this issue in
Section 4.3.3, as it complicates a presented solution algorithm for finding optimal values.

� 4.2.2 The intersection with distinguished hyperplanes

The next subset of H(C) of interest is its intersection with a distinguished type of
hyperplane. Such a hyperplane M is defined by µ > 0 and a fixed point (x̂, ŝ, τ̂ , κ̂) ∈
relint(C × C∗ × R+ × R+) via

M := {(x, s, y, τ, κ) : 〈ŝ, x〉+ 〈x̂, s〉+ τ̂κ+ κ̂τ = µ}.

For a particular µ, membership inM is an implicit constraint of the extended-embedding
of [145]. Also, as shown in [56], it can be interpreted as a norm constraint on (x, s, τ, κ) ∈
C ×C∗×R+×R+ when C is a proper cone, i.e., a cone that is full-dimensional, pointed,
convex, and closed.

As we now show, from (x, s, y, τ, κ) ∈ H(C) ∩ M , one always obtains one of the
following objects: a complementary solution or a certificate that the primal or dual has
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failed Slater’s condition. As with relint H(C), complementary solutions are obtained
when τ > 0 and improving rays are obtained when κ > 0. The case of τ = κ = 0,
however, is now more delicate: we either obtain a facial reduction certificate or an
improving ray. Facial reduction certificates are also not necessarily optimal nor are
they necessarily obtained for both primal and dual if both fail Slater’s condition.

Theorem 4.2.2. Let C ⊆ V be a nonempty closed, convex cone. For a scalar µ > 0
and point (x̂, ŝ, τ̂ , κ̂) in the relative interior of C×C∗×R+×R+ consider the hyperplane

M := {(x, s, y, τ, κ) : 〈ŝ, x〉+ 〈x̂, s〉+ τ̂κ+ κ̂τ = µ}.

For (x, s, y, τ, κ) ∈M ∩H(C), the complementarity condition τκ = 0 holds. The follow-
ing statements also hold.

1. If τ > 0, then 1
τ (x, s, y) is a complementary solution of P(C) and D(C).

2. If κ > 0, then x is an improving ray for P(C) and/or (s, y) is an improving ray
for D(C).

3. If τ = κ = 0, at least one of the following statements is true:

(a) x is an improving ray for P(C);
(b) (s, y) is an improving ray for D(C);
(c) x is a facial reduction certificate for D(C), i.e., C∗ ∩ x⊥ ⊆ C∗ holds strictly

and the hyperplane x⊥ contains Ad := {c−A∗y : y ∈ Rm};

(d) s is a facial reduction certificate for P(C), i.e., C ∩ s⊥ ⊆ C holds strictly and
the hyperplane s⊥ contains Ap := {x ∈ V : Ax = b}.

Proof. The first two statements are trivial from the complementarity condition τκ = 0.
For the third statement, we note from κ = 0 that 〈b, y〉 = 〈c, x〉 and consider the three
cases 〈b, y〉 = 〈c, x〉 > 0, 〈b, y〉 = 〈c, x〉 < 0 and 〈c, x〉 = 〈b, y〉 = 0. In the first case, it is
trivial to check that (s, y) is an improving ray and in the second that x is an improving
ray. In the third case, where 〈c, x〉 = 〈b, y〉 = 0, it follows x⊥ and s⊥ contain Ad and
Ap, respectively; see the proof for statements (3a)-(3b) of Theorem 4.2.1. In addition,
at least one exposes a proper face since τ = κ = 0 implies 〈ŝ, x〉+ 〈x̂, s〉 = µ > 0; that
is, the face exposed by x⊥ doesn’t contain ŝ if 〈ŝ, x〉 > 0 and the face exposed by s⊥
does not contain x̂ if 〈x̂, s〉 > 0.

We conclude with descriptions of relint(M ∩H(C)). We will use this description in
the next section to find points in relint H(C).
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Theorem 4.2.3. Let C ⊆ V be a nonempty closed, convex cone. For a scalar µ > 0
and point (x̂, ŝ, τ̂ , κ̂) in the relative interior of C×C∗×R+×R+ consider the hyperplane

M := {(x, s, y, τ, κ) : 〈ŝ, x〉+ 〈x̂, s〉+ τ̂κ+ κ̂τ = µ}.

The following statements hold.

1. relint
(
M ∩H(C)

)
= M ∩ relint H(C)

2. The conic hull of (M ∩ relint H(C)) equals relint H(C).

Proof. We first show the second statement. The inclusion ⊆ is trivial: since M ∩
relint

(
H(C)

)
is a subset of relint H(C), its conic hull is contained in relint H(C) since

relint H(C) is a cone. For the reverse, let (x, s, y, τ, κ) ∈ relint H(C). By Corollary 4.2.1,
τ > 0, κ > 0, s /∈ C⊥, or x /∈ (C∗)⊥. Hence, the sum 〈x̂, s〉 + 〈x, ŝ〉 + τ̂κ + τ κ̂ equals
some positive number, say, α. It follows that λ(x, s, y, τ, κ) ∈ M ∩ relint H(C) for the
strictly positive number λ = µ

α by the fact relint H(C) is a cone.
The second statement implies that M ∩ relint H(C) is nonempty; hence, the first

statement follows from Corollary 6.5.1 of [121].

Remark 4.2.1. Note the special structure of M is crucial to statements (3c) and
(3d) of Theorem 4.2.2. If, for instance, we replaced M with an arbitrary hyperplane,
the inclusions C ∩ s⊥ ⊆ C and C∗ ∩ x⊥ ⊆ C∗ wouldn’t necessarily hold strictly. It is
also crucial to Theorem 4.2.3: an arbitrary hyperplane doesn’t necessarily intersect the
relative interior of H(C).

� 4.2.3 Finding solutions via extended-embeddings

We now discuss how to find points in the two analyzed subsets, relint H(C) and M ∩
H(C), considered in Section 4.2.1 and 4.2.2. Recall that M is a hyperplane of the
distinguished type defined by a fixed point (x̂, ŝ, τ̂ , κ̂) ∈ relint(C × C∗ × R+ × R+)
and fixed µ > 0. Our analysis is based on the following hyperplane M ′ for which
µ = 〈x̂, ŝ〉+ τ̂ κ̂:

M ′ := {(x, s, y, τ, κ) : 〈ŝ, x〉+ 〈x̂, s〉+ τ̂κ+ κ̂τ = 〈x̂, ŝ〉+ τ̂ κ̂}. (4.7)

As shown in Ye et al. [145], points in M ′ ∩ H(C) are obtained from solutions to an
extended-embedding. Hence, points in M ∩H(C) for arbitrary µ > 0 are obtained by
rescaling these solutions. We will review this result and then build on it, showing points
in relint H(C) are obtained from relative interior solutions to the extended-embedding
(which is not obvious).
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Picking ŷ ∈ Rm and letting α = 〈ŝ, x̂〉 + τ̂ κ̂, the extended-embedding takes the
following form

minimize αθ

subject to Ax− bτ = rpθ,

−A∗y − s+ cτ = rdθ,

〈b, y〉 − 〈c, x〉 − κ = rgθ,

〈rp, y〉+ 〈rd, x〉+ rgτ = −α,

(4.8)

where (x, s, y, τ, κ, θ) ∈ C × C∗ ×Rm ×R+ ×R+ ×R is the decision variable and rp, rd,
and rg are additional parameters defined by (x̂, ŝ, ŷ, τ̂ , κ̂) via

rp = Ax̂− bτ̂ , rd = −A∗ŷ − ŝ+ cτ̂ , rg = 〈b, ŷ〉 − 〈c, x̂〉 − κ̂.

As shown in [145], the point (x̂, ŝ, ŷ, τ̂ , κ̂, 1) is strictly feasible; further, the optimal value
is zero and it is attained, implying θ = 0 at optimality. Note this latter property is
easy to see from duality. To be precise, the dual problem is to maximize −αθ̄ over dual
variables (x̄, s̄, ȳ, τ̄ , κ̄, θ̄) satisfying identical constraints. Hence, an optimal solution,
which exists by strict feasibility of (4.8), can be viewed as a dual optimal solution. In
conclusion, αθ = −αθ for an optimal solution since there is no duality gap (again by
strict feasibility). This shows that θ = 0 at optimality since α > 0.

Note that if θ = 0, then the first three constraints of (4.8) reduce to the defining
equations of H(C); i.e., a point (x, s, y, τ, κ, θ) with θ = 0 satisfies these constraints
if and only if (x, s, y, τ, κ) ∈ H(C). For points in H(C), the remaining constraint is
equivalent to membership in M ′:

−α = 〈rp, y〉+ 〈rd, x〉+ rgτ

= 〈Ax̂− bτ̂ , y〉+ 〈−A∗ŷ − ŝ+ cτ̂ , x〉+ (〈b, ŷ〉 − 〈c, x̂〉 − κ̂)τ
= 〈−x̂,−A∗y + cτ〉 − 〈ŝ, x〉 − 〈ŷ, Ax− bτ〉 − τ̂(〈b, y〉 − 〈c, x〉)− κ̂τ
= −〈x̂, s〉 − 〈ŝ, x〉 − τ̂κ− κ̂τ.

It follows a feasible point (x, s, y, τ, κ, θ) is optimal if and only if θ = 0 and (x, s, y, τ, κ) ∈
M ′∩H(C)—a result originally due to [145]. We restate this as the first statement of the
following theorem. The second statement—which to our knowledge is new—describes
the relative interior of the optimal solution set of (4.8) in terms of relint H(C).

Theorem 4.2.4. Let Ω×{0} ⊆ C × C∗×Rm×R+×R+×R denote the set of optimal
solutions of (4.8) and M ′ the hyperplane (4.7). The following statements hold:

1. Ω = M ′ ∩H(C).

2. relint Ω = M ′ ∩ relint H(C); further, the conic hull of relint Ω equals relint H(C).
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Proof. The first statement is from [145]. The second is from statement 1 and 2 of
Theorem 4.2.3.

In conclusion, we obtain points inM ′∩H(C) and relint H(C) from points in Ω×{0} and
relint Ω × {0}, respectively. We also note when C is a symmetric cone (and the range
of A equals Rm), the central path of the extended-embedding exists and converges to a
point in relint Ω× {0} by strict feasibility and results of [66, 116]. Hence, for the cases
of semidefinite, linear, and second-order cone optimization, we can approximate points
in relint Ω × {0}—and therefore points in relint H(C)—using interior-point methods.
We will investigate convergence behavior, focusing on cases where τ = κ = 0 for all
(x, s, y, τ, κ) ∈ H(C) in Section 4.4. We next develop a solution algorithm assuming
oracle access to H(C).

� 4.3 An algorithm based on self-dual embeddings and facial reduction

As we have shown, we always obtain complementary solutions, improving rays, or facial
reduction certificates from two subsets of H(C): the relative interior of H(C) and, for a
distinguished type of hyperplaneM , the setM ∩H(C). We’ve also seen facial reduction
certificates are obtained from relint H(C) precisely when they are needed, i.e., when
complementary solutions or improving rays do not exist (Corollary 4.2.1). These facts
suggest an iterative procedure that finds a point in relint H(C), regularizes the primal
or dual if necessary (i.e., performs a facial reduction iteration), and repeats until an
improving ray or complementary solution is obtained. In this section we develop such
a procedure.

To design a useful procedure, one must make an upfront decision: should regulariza-
tion leave the primal or the dual optimal value unchanged? (Recall from Section 1.3.6
we cannot guarantee that both are unchanged.) In this section, we choose the former,
stating an algorithm that finds a cone C such that P(C) and P(K) have equal optimal
values and a point (x, s, y, τ, κ) ∈ relint H(C) satisfying τ > 0 or κ > 0. This procedure
appears in Algorithm 4.1. We then interpret (x, s, y, τ, κ) in terms of P(K), showing
that an optimal solution is obtained when τ > 0 and that a certificate of infeasibility is
obtained when κ > 0 and 〈b, y〉 > 0. In the remaining case where, κ > 0 and 〈b, y〉 ≤ 0,
the primal problem P(K) is either unbounded or infeasible. A trivial extension (given
in Section 4.3.3) resolves this ambiguity.

� 4.3.1 Basic properties

As indicated, Algorithm 4.1 solves a sequence of self-dual embeddings, terminating when
τ > 0 or κ > 0. If τ = κ = 0, primal regularization is performed if s /∈ C⊥ and dual
regularization is performed otherwise. Note that when τ = κ = 0, the condition s /∈ C⊥
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Algorithm 4.1: Given K, returns (x, s, y, τ, κ) ∈ relint H(C) satisfying τ > 0 or
κ > 0 where P(C) and P(K) have equal optimal values.
C ← K
repeat

Find (x, s, y, τ, κ) in the relative interior of H(C)
if τ > 0 or κ > 0 then

return (x, s, y, τ, κ)
else

if s /∈ C⊥ then
Regularize primal: C ← C ∩ s⊥

else
Regularize dual: C ← (C∗ ∩ x⊥)∗

end
end

until algorithm returns;

holds if and only if P(C) fails Slater’s condition—a consequence of Theorem 4.2.1 (3c).
Hence, if necessary, this algorithm performs primal regularization until P(C) satisfies
Slater’s condition, then switches to dual regularization, never switching back. Precise
statements of this property and others follow.

Theorem 4.3.1. Let Ap := {x ∈ V : Ax = b} and let θp ∈ R ∪ {±∞} denote the
optimal value of P(K), i.e.,

θp := inf {〈c, x〉 : x ∈ Ap ∩ K} .

Algorithm 4.1 has the following basic properties.

1. Algorithm 4.1 terminates in finitely-many iterations. Further, it terminates af-
ter one iteration, with C = K, if and only if a complementary solution, primal
improving ray or dual improving exists for the primal-dual pair P(K) and D(K).

2. At each iteration, the optimal values of the primal problem P(K) and the regular-
ized problem P(C) are equal, i.e.,

θp = inf {〈c, x〉 : x ∈ Ap ∩ C} .

3. Suppose the dual regularization step C ← (C∗ ∩ x⊥)∗ executes, and let C′ and C′′

denote C just before and after execution. The following statements hold.

(a) The primal problems P(C′) and P(C′′) satisfy Slater’s condition, that is,
Ap ∩ relint C′ and Ap ∩ relint C′′ are both nonempty. Further, Ap ∩ relint C′ ⊆
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Ap ∩ relint C′′.
(b) The primal regularization step C ← C ∩ s⊥ is not executed at any following

iteration.

4. The dual regularization step C ← (C∗ ∩ x⊥)∗ executes if and only if one of the
following statements hold.

(a) The optimal value of P(K) is finite and unattained;

(b) The optimal value of P(K) is unbounded below (θp = −∞) and the set of
improving rays {x ∈ K : Ax = 0, 〈c, x〉 < 0} is empty.

5. At termination, Ap ∩K ⊆ Ap ∩C, with strict inclusion only if (4a) or (4b) holds.

Proof. In the arguments below, we call C ← C ∩ s⊥ the primal regularization step and
C ← (C∗ ∩ x⊥)∗ the dual regularization step. When one of these steps executes, we let
C′ and C′′ denote the cone C before and after execution, respectively.

Statement 4. We will show that P(C′) satisfies (4a) or (4b) when a dual regulariza-
tion step executes. Using this, we then show that P(K) also satisfies (4a) or (4b). We
use the following facts from Theorem 4.2.1: when the dual regularization step executes,
all points in H(C′) satisfy τ = κ = 0; and, when the dual regularization step executes,
no facial reduction certificate exists for P(C′) (since s ∈ C′⊥).

To begin, we first show that P(C′) is feasible, and hence has finite optimal value or
is unbounded below. Suppose that P(C′) is infeasible. If {x ∈ V : Ax = b} is empty,
then there exists ŷ for which 〈b, ŷ〉 = 1 and A∗ŷ = 0. Hence (0, 0, ŷ, 0, 〈b, ŷ〉) is a point
in H(C′) with κ > 0, which is a contradiction. On the other hand, if {x ∈ V : Ax = b}
is nonempty, there exists a hyperplane properly seperating Ap := {x ∈ V : Ax = b}
from the relative interior of C′. That is, there exists ŝ ∈ C′∗ for which

〈ŝ, x〉 ≤ 0 ∀x ∈ x0 + nullA,
〈ŝ, z〉 6= 0 for some z ∈ (x0 + nullA) ∪ C′,

where x0 ∈ Ap and Ap = x0 + nullA. This implies that ŝ ∈ (nullA)⊥ = rangeA∗.
Hence, ŝ = −A∗ŷ for some ŷ, where, evidently, 〈ŝ, x〉 = −〈b, ŷ〉 ≤ 0 for all x ∈ Ap. If
〈b, ŷ〉 = 0, then 〈ŝ, z〉 6= 0 for some z ∈ C′ by proper separation of the sets. Hence, ŝ
is a facial reduction certificate which, as mentioned above, cannot exist. On the other
hand, if 〈b, ŷ〉 > 0, then (0,−A∗ŷ, ŷ, 0, 〈b, ŷ〉) is a point in H(C′) with κ > 0, which is
a contradiction. Hence, P(C′) must be feasible and either has a finite optimal value or
an optimal value that is unbounded below.

We have established that P(C′) is feasible and that no facial reduction certificate
for P(C′) exists. Hence, by Corollary 1.3.2, P(C′) is strictly feasible. Now suppose that
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P(C′) has a finite optimal value. Then, by Slater’s condition, the dual D(C′) of P(C′)
has an equal optimal value that is attained. Hence, if P(C′) attains its optimal value,
P(C′) has a complementary solution (x, s, y) where (x, s, y, 1, 0) is a point in H(C′)
with τ > 0; a contradiction. Suppose next that the optimal value equals −∞. If an
improving ray x̂ray exists, then (x̂ray, 0, 0, 0,−〈c, x̂〉ray) is a point in H(C′) with κ > 0,
a contradiction. Hence, P(C′) satisfies (4a) or (4b).

We now show P(K) also satisfies (4a) or (4b). Consider the first time the dual
regularization step executes. Since the feasible sets of P(C′) and P(K) are equal, it
trivially follows that P(K) satisfies (4a) if P(C′) does. If P(C′) satisfies (4b), then P(K)
is clearly unbounded. Suppose then that P(K) has an improving ray xray. Then, for
any feasible point x0 and facial reduction certificate s used by the primal regularization
step,

0 = 〈s, x0 + xray〉 = 〈s, x〉ray.

Hence, xray ∈ C′ and is therefore an improving ray for P(C′), a contradiction.
For the converse direction, we will argue τ = κ = 0 holds at each iteration unless

the dual regularization step executes. Since the primal regularization step can execute
only finitely many times (since K is finite-dimensional), the converse direction therefore
follows. To begin, suppose the optimal value of P(K) is finite and unattained, i.e.,
suppose (4a) holds. Then τ = κ = 0 for all (x, s, y, τ, κ) ∈ relint H(K); otherwise, either
an improving ray would exist, contradicting finiteness, or a complementary solution
would exist, contradicting unattainment. Since the feasible sets of P(C′) and P(K) are
equal unless the dual regularization step executes, repeating this argument shows that
τ = κ = 0 unless the dual regularization step executes. A similar argument shows the
claim assuming (4b).

Statement 3a. Strict feasibility of P(C′) was established in the proof of statement
4. This implies that P(C′′) is strictly feasible as shown by

Ap ∩ relint C′ ⊆ Ap ∩ relint(C′ + span x) = Ap ∩ relint(C′∗ ∩ x⊥)∗ = Ap ∩ relint C′′.

Statement 3b. By (3a), if dual regularization is performed, then P(C′) satisfies
Slater’s condition, and continues to satisfy Slater’s condition at each ensuing itera-
tion. Hence, a facial reduction certificate s cannot exist at any ensuing iteration by
Corollary 1.3.2.

Statement 1. Since K is finite dimensional, it trivially follows, using (3b), that both
regularization steps can execute only finitely many times. Hence, the algorithm must
terminate. Corollary 4.2.1 implies termination in one iteration when complementary
solutions or improving rays exist for P(K) and D(K).

Statement 2. The optimal values of P(C′) and P(C′′) are equal when the primal
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regularization step executes. Similarly, the optimal values of D(C′) and D(C′′) are
equal when the dual regularization step executes. Moreover, (3a) and Slater’s condition
imply the optimal values of P(C′) and D(C′) are equal when the dual regularization
step executes. Combining these facts with (3b) shows that the optimal value of P(K)
equals the optimal value of P(C) at every iteration.

Statement 5. When the primal regularization step executes, P(C′) and P(C′′) have
equal feasible sets since s is a facial reduction certificate for P(C′). When the dual
regularization step executes, the feasible set Ap∩C′ of P(C′) and the feasible set Ap∩C′′
of P(C′′) satisfy

Ap ∩ C′ ⊆ Ap ∩ C′ + span x = Ap ∩ (C′∗ ∩ x⊥)∗ = Ap ∩ C′′.

Combining these facts with (3b) shows that Ap∩K ⊆ Ap∩C. Since dual regularization
is performed if and only if (4a) or (4b) hold, the claim follows.

An illustration of the basic steps is given next on an infeasible problem with no
improving ray.

Example 4.3.1 (Weak infeasibility). Consider the following primal-dual pair, where
Q2+k
r = {(r, x) ∈ R2

+ × Rk : 2r1r2 ≥ xTx} denotes a rotated Lorentz cone:

minimize 0
subject to x1 = 0,

x3 = 1,
x4 = 1,
x ∈ Q3

r × R+

maximize y2 + y3

subject to
( 0

0
0
0

)
−
( y1

0
y2
y3

)
= s

s ∈ Q3
r × R+.

(4.9)

Let K = Q3
r × R+. The primal problem is infeasible, but the dual problem has no

improving ray.
The first iteration. At the first iteration, Algorithm 4.1 finds a point in relint H(K)

satisfying τ = κ = 0, e.g., (x̂, ŝ, ŷ, τ̂ , κ̂), where

x̂ = (0, 1, 0, 0), ŝ = (1, 0, 0, 0), ŷ = (−1, 0, 0), τ̂ = κ̂ = 0.

Since ŝ /∈ K⊥, Algorithm 4.1 regularizes the primal problem, reformulating it over
K ∩ ŝ⊥ = {0} × R+ × {0} × R+. This yields a new primal-dual pair P(K ∩ ŝ⊥) and
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D(K ∩ ŝ⊥) :

minimize 0
subject to x1 = 0,

x3 = 1,
x4 = 1,
x ∈ {0} × R+ × {0} × R+,

maximize y2 + y3

subject to
( 0

0
0
0

)
−
( y1

0
y2
y3

)
= s,

s ∈ R× R+ × R× R+.

The second iteration. At the next iteration, Algorithm 4.1 finds a point in relint H(K∩
ŝ⊥) satisfying κ > 0, e.g., (x̃, s̃, ỹ, τ̃ , κ̃), where

x̃ = (0, 0, 0, 0), s̃ = (0, 0,−1, 0), ỹ = (0, 1, 0), τ̃ = 0, κ̃ = 1.

Since κ > 0, the algorithm terminates. Note that (s̃, ỹ) is an improving ray for D(K∩ŝ⊥)
showing infeasibility of P(K ∩ ŝ⊥) and hence of P(K) by Theorem 4.3.1, statement 5.

Theorem 4.3.1 states an iteration of dual regularization will be performed by Algo-
rithm 4.1 if and only if the primal optimal value is finite but unattained or the primal
problem is unbounded but has no improving ray. The next example illustrates this
latter scenario.

Example 4.3.2 (An unbounded problem with no improving ray). Consider the follow-
ing primal-dual pair also over a rotated Lorentz cone:

minimize x3
subject to x1 = 1

x ∈ Q3
r

maximize y

subject to
( 0

0
1

)
−
( y

0
0

)
= s

s ∈ Q3
r .

(4.10)

The primal is unbounded but has no improving ray: if x and x + d are feasible, then
d1 = 0; further, if d ∈ Q3

r, then d3 = 0.
The first iteration. Algorithm 4.1 finds a point in relint H(Q3

r) satisfying τ = κ = 0,
e.g., (x̂, ŝ, ŷ, τ̂ , κ̂), where

x̂ = (0, 1, 0), ŝ = (0, 0, 0), ŷ = 0, τ̂ = κ̂ = 0.

Since ŝ ∈ (Q3
r)⊥ = {0}3, the dual problem is regularized by replacing Q3

r with Q3
r ∩ x̂⊥:

minimize x3
subject to x1 = 1

x ∈ R+ × R2

maximize y

subject to
( 0

0
1

)
−
( y

0
0

)
= s

s ∈ R+ × {0}2.
(4.11)

The second iteration. A point in H(R+ × R2) with κ > 0 is obtained, yielding a
primal improving ray. Since P(R+×R2) is also feasible, we conclude it and P(Q3

r) are
unbounded.
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� 4.3.2 Interpretation of outputs

Algorithm 4.1 returns a point (x, s, y, τ, κ) ∈ relint H(C) satisfying τ > 0 or κ > 0,
where the optimal value of the primal problem P(C) equals the optimal value of P(K),
the problem of interest. By Corollary 4.2.1, we obtain a complementary solution or an
improving ray for P(C) and D(C) from the output. How, then, does one interpret this
output in terms of P(K)? We answer this with the following corollary of Theorem 4.3.1.

Corollary 4.3.1. The following statements hold about the output (x, s, y, τ, κ) of Al-
gorithm 4.1, where Ap := {x ∈ V : Ax = b} and θp ∈ R ∪ {±∞} denotes the optimal
value of P(K), i.e.,

θp = inf{〈c, x〉 : x ∈ Ap ∩ K}.

1. τ > 0 holds if and only if θp is finite. Further, θp is finite and attained if and only
if τ > 0 and Algorithm 4.1 does not execute dual regularization steps.

2. κ > 0 holds if and only if P(K) is infeasible (θp =∞) or unbounded (θp = −∞).

3. If τ > 0, then θp = 1
τ 〈c, x〉 = 1

τ 〈b, y〉. If θp is attained, then 1
τ x is a solution of

P(K).

4. If κ > 0 and 〈b, y〉 > 0, then P(K) is infeasible (θp =∞).

Note that from this corollary, we can only conclude the optimal value of P(K) is not
finite when κ > 0 and 〈b, y〉 ≤ 0; that is, in this situation, P(K) could be infeasible or it
could be unbounded. Though it is tempting to assume that 〈b, y〉 > 0 whenever P(K)
is infeasible, i.e., that (s, y) is a dual improving ray, Example 4.2.2 of Section 4.2.1
illustrated this is not necessarily the case. Hence, more must be done to distinguish
unboundedness from infeasibility.

� 4.3.3 A complete algorithm

As just indicated, one cannot determine the optimal value of P(K) from the output
(x, s, y, τ, κ) of Algorithm 4.1 if κ > 0 and the dual objective satisfies 〈b, y〉 ≤ 0; that
is, P(K) could be unbounded or it could be infeasible. Fortunately, there is a simple
remedy: reexecuting Algorithm 4.1 after setting the cost vector of P(K) to zero. That
is, one can set c = 0 to obtain the following primal-dual pair:

minimize 0
subject to Ax = b,

x ∈ K,

maximize 〈b, y〉
subject to 0−A∗y = s,

s ∈ K∗, y ∈ Rm,
(4.12)
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and then reexecute Algorithm 4.1. The returned solution (x̂, ŝ, ŷ, τ̂ , κ̂) satisfies κ̂ > 0 if
and only if the primal problem of (4.12) is infeasible or unbounded (Corollary 4.3.1).
However, as this problem cannot be unbounded (since c = 0), it follows κ̂ > 0 if and
only if K contains no solution to Ax = b—i.e., if and only if the original problem P(K)
is infeasible. On the other hand, if κ̂ = 0, then P(K) must have been unbounded.

Putting everything together, we get a complete algorithm for solving P(K):

Algorithm 4.2: Find optimal value of P(K) and a point attaining it if one exists.
Execute Algorithm 4.1 and let (x, s, y, τ, κ) denote the output
if τ > 0 or (κ > 0 and 〈b, y〉 > 0) then

return optimal value θp and point attaining θp (if one exists) using
Corollary 4.3.1.

else
Re-execute Algorithm 4.1 with c = 0 and let (x̂, ŝ, ŷ, τ̂ , κ̂) denote the output.

return
{
∞ if κ̂ > 0 and τ̂ = 0; P(K) is infeasible.
−∞ if κ̂ = 0 and τ̂ > 0; P(K) is unbounded.

end

To conclude, we illustrate the execution of Algorithm 4.2 with a simple example.

Example 4.3.3. Consider the following primal-dual pair, where Q2+k
r = {(r, x) ∈

R2
+ × Rk | 2r1r2 ≥ xTx} denotes a rotated Lorentz cone:

minimize −x2
subject to x1 = 0,

x3 = 1,
x4 = 1,
x ∈ Q3

r × R+,

maximize y2 + y3

subject to
( 0
−1
0
0

)
−
( y1

0
y2
y3

)
= s,

s ∈ Q3
r × R+.

(4.13)

Here, the primal and dual problems are both infeasible, but no dual improving ray exists.
Indeed, all dual rays satisfy s2 = 0 and y3 ≤ 0; since, in addition, s2 = 0 implies y2 = 0,
we conclude that y2 +y3 > 0 cannot hold. On the other hand, x = (0, 1, 0, 0) is a primal
improving ray.

We now illustrate the execution of Algorithm 4.2. Since a primal improving ray
exists and no dual improving ray exists, Algorithm 4.1 executes one iteration and returns
(x, s, y, τ, κ) satisfying κ > 0 and 〈b, y〉 = 0. Since 〈b, y〉 = 0, the feasibility problem is
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constructed:

minimize 0
subject to x1 = 0,

x3 = 1,
x4 = 1,
x ∈ Q3

r × R+,

maximize y2 + y3

subject to
( 0

0
0
0

)
−
( y1

0
y2
y3

)
= s,

s ∈ Q3
r × R+,

which matches the primal-dual pair of Example 4.3.1. Algorithm 4.1 reexecutes on this
primal-dual pair (performing the steps illustrated in Example 4.3.1) and returns a point
satisfying κ > 0. Since κ > 0, Algorithm 4.2 reports the primal of (4.13) is infeasible.

� 4.4 Numerical experiments

We conclude with numerical experiments. To be precise, we evaluate tracking of the
central path (of the extended-embedding) to its limit point, which yields an element of
relint H(K) by Theorem 4.2.4 and results of [66, 116]. We then verify the classification of
(x, s, y, τ, κ) ∈ relint H(K) given by Corollary 4.2.2: if τ = κ = 0 and the primal (resp.,
dual) fails Slater’s condition, then s (resp. x) is a facial reduction certificate; we’ll also
confirm there certificates are optimal on a subset of examples. On the negative side,
we show regularizing without significantly changing optimal values (a key step of an
Algorithm 4.1 implementation) can be difficult. We also illustrate tracking the central
path of the extended-embedding is hard for SDPs described in Waki et al. [140]; we
attribute this to high singularity degree and significant failure of strict complementarity.
Finally, an approximate certificate is used to (informally) argue an instance of the
DIMACS library [104] has an unattained optimal value. This illustrates approximate
facial reduction certificates can provide useful insight, even if they cannot be used
reliably for regularization.

To perform experiments, we have made trivial modifications to the interface of
SeDuMi [129], which already tracks the central path of the extended-embedding (though
without maintaining the slack variable s). We modify the interface to return a tuple
(x, y, τ, κ); the point (x, cτ − A∗y, y, τ, κ) then lies in relint H(K) to within tolerances
achieved by SeDuMi. Each test case considered is an SDP, i.e., K equals Sn+, the cone
of psd matrices of order n. Finally, in the reported results, ‖ · ‖ denotes the Frobenius
norm when the argument is a matrix and the 2-norm otherwise; λmin(·) denotes the
smallest eigenvalue of its argument.

� 4.4.1 Approximate facial reduction certificates

Weak infeasibility library The first test cases are SDPs taken from the URL documented
in [83]. For each instance, c is strictly feasible for the dual and the primal is weakly
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infeasible (i.e., infeasible but with no dual improving ray). It follows τ = κ = 0 for
(x, s, y, τ, κ) ∈ relint H(K). Further, Corollary 4.2.2 implies that s is a facial reduction
certificate and that x = 0. The tables below confirm that these implications hold.

set of instances τ κ λmin(s) |〈b, y〉| ‖s‖ ‖x‖
weak_clean_10_10 4.8e-9 2.0e-8 7.3e-11 3.0e-7 5.6 1.9e-7
weak_messy_10_10 7.5e-8 6.7e-8 7.2e-10 1.1e-6 7.6 8.6e-7
weak_clean_20_10 1.3e-9 1.6e-8 1.9e-11 2.6e-7 5.3 1.7e-7
weak_messy_20_10 7.0e-8 4.0e-7 7.9e-10 4.5e-6 8.8 3.6e-6

(a) means
set of instances τ κ λmin(s) |〈b, y〉| ‖s‖ ‖x‖

weak_clean_10_10 4.4e-9 2.0e-8 9.1e-11 2.5e-7 3.7 1.6e-7
weak_messy_10_10 8.0e-8 7.0e-8 7.6e-10 1.3e-6 4.6 1.1e-6
weak_clean_20_10 1.8e-9 1.8e-8 3.1e-11 2.8e-7 4.9 1.9e-7
weak_messy_20_10 8.4e-8 4.5e-7 8.8e-10 3.7e-6 4.8 3.0e-6

(b) standard deviations

Note that in these tables, we report the mean and standard deviation taken over each
set of instances, which each contain 100 SDPs.

Finite but non-zero duality gaps Using Algorithm 12.3 of [31], we generated instances
with duality gap equal to 100. The other inputs to this algorithm are the number of
equations m, the order of the matrices n, the rank r1 of an optimal facial reduction
certificate for the dual problem, and an additional parameter p specifying structure of
the constraint matrices. If (x, s, y, τ, κ) ∈ relint H(K), then τ = κ = 0 necessarily holds
given the duality gap. Further, by Corollary 4.2.2, both x and s are optimal facial
reduction certificates, since both primal and dual problems fail Slater’s condition. The
results below show that (approximate) facial reduction certificates are indeed found:

(n,m, p, r1) τ κ λmin(s) |〈b, y〉| ‖s‖ λmin(x) |〈c, x〉| ‖Ax‖ ‖x‖
(10, 10, 5, 5) 1.2e-6 2.3e-6 −8.1e-14 4.4e-6 5.8e2 −8.6e-14 2.2e-6 3.4e-4 1.7e3
(20, 20, 10, 5) 1.2e-6 1.3e-6 −2.6e-14 2.0e-6 7.8e2 −2.2e-13 6.9e-7 4.6e-4 1.3e3
(40, 40, 10, 5) 5.9e-7 5.2e-8 −4.0e-15 1.0e-7 6.3e1 −1.1e-13 4.9e-8 3.5e-4 8.0e2
(40, 40, 10, 10) 8.9e-7 3.1e-7 −7.4e-15 5.0e-7 3.0e2 −9.0e-14 1.9e-7 6.5e-4 1.0e3

Estimating rank as the number of eigenvalues larger than 1e-4 yields the following table,
indicating s and x are (approximate) optimal certificates, i.e., rank s = n− r1 − 1 and
rank x = r1:
Also note that strict complementarity fails modestly for these instances: rank s +
rank x = n − 1. Section 4.4.3 will illustrate large numerical error on instances fail-
ing this condition more severely.
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(n,m, p, r1) rank s rank x
(10, 10, 5, 5) 4 5
(20, 20, 10, 5) 14 5
(40, 40, 10, 5) 34 5
(40, 40, 10, 10) 29 10

� 4.4.2 Regularization using approximate certificates

Given an approximate point (x, s, y, τ, κ) ∈ relint H(K), an implementation of Algo-
rithm 4.1 must decide if τ > 0, κ > 0 or τ = κ = 0 for an actual point in relint H(K).
For the case of SDP (K = Sn+), it also must estimate the kernel of an actual facial
reduction certificate; indeed, for s ∈ K, the face K ∩ s⊥ equals the set of psd matrices
with range contained in the kernel of s by [10].

Example 4.4.1 below shows that the computed optimal value can be sensitive to
errors in these estimates. In this example, we estimate that τ and κ are actually zero if
they are less than a threshold Tτ,κ and estimate that eigenvalues of s are actually zero
if they are less than a threshold Tλ. Results for different thresholds Tτ,κ and Tλ follow:

thresholds computed optimal value
Tτ,κ = 5e-5 3.148e-1

Tτ,κ = 5e-9, Tλ = 5e-4 1.0000 (agrees with actual value)
Tτ,κ = 5e-9, Tλ = 5e-6 ∞ (i.e., regularized problem is infeasible)

The mentioned example used to generate this table is now given.

Example 4.4.1. We consider an SDP with optimal value 1 and a finite nonzero duality
gap, given by

minimize 〈c, x〉
subject to 〈a1, x〉 = 1,

〈a2, x〉 = 0,
x ∈ S3

+,

(4.14)

where the data matrices c, a1 and a2 are defined in terms of an orthogonal matrix
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q ∈ R3×3 via:

q :=

 7/11 6/11 6/11
6/11 −9/11 2/11
−6/11 −2/11 9/11

 c := q

1 0 0
0 0 0
0 0 0

 qT ,

a1 := q

1 0 0
0 0 1
0 1 0

 qT , a2 := q

0 0 0
0 1 0
0 0 0

 qT .
The solver SeDuMi finds an approximate point in relint H(S3

+) given by τ = 7.945e-5,
κ = 1.028e-5,

s =

 1.995 −2.993 −6.652e-1
−2.993 4.490 9.977e-1

−6.652e-1 9.977e-1 2.217e-1

 , x =

 1.518 5.060e-1 2.277
5.060e-1 1.687e-1 7.590e-1
2.277 7.590e-1 3.416

 .
Picking a threshold Tτ,κ = 5e-5, we estimate τ > 0 and κ = 0 and the optimal value

1
τ
〈c, x〉 = 3.148e-1,

which significantly differs from the actual optimal value of (4.14).
On the other hand, taking Tτ,κ = 5e-9, we estimate τ = κ = 0 and interpret s and x

as facial reduction certificates. To regularize, we compute an eigenvalue decomposition∑3
i=1 λiviv

T
i of s:

λ =

 4.416e-5
−1.857e-10

6.707

 , v1 =

 6.364e-1
5.455e-1

−5.455e-1

 , v2 =

5.455e-1
1.818e-1
8.182e-1

 , v3 =

−5.455e-1
8.182e-1
1.818e-1

 .
We then estimate a basis for the kernel of s by interpreting eigenvalues below a threshold
Tλ as zero. For Tλ = 5e-4, an estimated basis is u = (v1, v2), leading to the regularized
SDP

minimize 〈c, uxuT 〉
subject to 〈a1, uxu

T 〉 = 1,
〈a2, uxu

T 〉 = 0,
x ∈ S2

+.

Solving with SeDuMi, we compute an optimal value of 1.0000, which agrees with the
actual optimal value of (4.14). On the other hand, taking Tλ = 5e-6 yields u = (v2)
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and the SDP

minimize 〈c, uxuT 〉
subject to 〈a1, uxu

T 〉 = 1,
〈a2, uxu

T 〉 = 0,
x ∈ S1

+.

Solving with SeDuMi, we obtain a dual improving ray; hence, we incorrectly conclude
that (4.14) is infeasible.

� 4.4.3 Error, singularity degree and strict complementarity

For the instances of Section 4.4.1, we were able to obtain ‘good’ approximations of
facial reduction certificates. The next set of instances, taken from [140], illustrate this
is not always the case. For the reported instances, the dual optimal value is finite but
unattained. Hence, τ = κ = 0 holds for all points in H(Sn+). As reported in Table 4.4,
significant error in τ is observed on several instances:

Instance τ κ kp n rank x rank s
unboundDim1R2 1.2e-5 6.0e-9 3 7 0 2
unboundDim1R3 4.5e-7 3.4e-9 5 10 0 2
unboundDim1R4 4.3e-7 4.5e-9 7 13 0 2
unboundDim1R5 1.1† 1.8e-9 9 16 0 2
unboundDim1R6 9.8e-1† 2.5e-9 11 19 0 2
unboundDim1R7 7.9e-1† 5.2e-9 13 22 0 2
unboundDim1R8 7.2e-1† 3.6e-9 15 25 0 2
unboundDim1R9 6.9e-1† 3.6e-9 17 28 0 2
unboundDim1R10 6.6e-1† 9.2e-10 19 31 0 2

Table 4.4: kp denotes the singularity degree of the primal, n the order of the
semidefinite constraint, and rank x and rank s are actual values for any (x, s, y, τ, κ) ∈
relint H(Sn+). Large error is marked †.

We offer two explanations for this error based on this table. The first is the singularity
degree kp (see Section 1.3.4) of the primal problem (reported in [138]) is high. Note
when singularity degree is high, distance to feasibility (forward error) can be large even
when residuals (backwards errors) are small [130]. The other (related) explanation is the
extent to which strict complementarity fails, that is, the extent to which rank x+rank s
is less than n. For (x, s, y, τ, κ) ∈ relint H(Sn+), we see rank x+ rank s = 2 < n for each
instance. Indeed, x is the zero matrix by Corollary 4.2.2 and strict feasibility of the
dual problem [140, Section 2] and the matrix s has rank two by [138, Section 5.2].

We remark that singularity degree can be high and strict complementarity can fail
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even if P(Sn+) and D(Sn+) have complementary solutions or improving rays. In other
words, the suspected causes of error can also occur when τ > 0 or κ > 0 holds in the
relative interior of H(Sn+).

� 4.4.4 Difficult instances from the DIMACS library

Mittelmann [93] makes the following remark about two instances of the DIMACS SDP
library [104]:

In the case of the hinf12 and hinf13 instances the results obtained by the various
codes are so different, that we cannot be sure whether these problems have in fact
ever been solved.

We will compile evidence the dual optimal value of hinf12 is finite and unattained, ex-
plaining the difficulty of solving this instance. To make a more convincing argument, we
obtain approximate points in relint H(K) using both the self-dual solver of SDPT3v4.0
[131] and SeDuMi. Properties of these points are summarized below:

Instance (solver) τ κ λmin(s) |〈b, y〉| ‖s‖ ‖x‖
hinf12 (SeDuMi) 1.5e-6 2.9e-8 4.1e-9 −1.5e-7 5.5e2 1.2e-6
hinf12 (SDPT3) 4.4e-11 1.4e-15 2.0e-15 −2.0e-15 2.5e1 3.6e-11

These approximate points suggest the following: by Corollary 4.2.1, no complementary
solution or improving ray exists (since τ ≈ 0 and κ ≈ 0); by Corollary 4.2.2, the primal
fails Slater’s condition (since ‖s‖ 6= 0); by Corollary 4.2.2, the dual satisfies Slater’s
condition (since ‖x‖ ≈ 0). Hence, these approximate points suggest either the primal is
weakly infeasible or the dual optimal value is finite and unattained. But one can verify
that e6e

T
6 ∈ S24

+ is primal feasible (where ei is a standard basis vector of R24). Hence,
we suspect that the dual optimal value is finite and unattained.

� 4.5 Conclusion

We have unified the facial reduction algorithm of Borwein and Wolkowicz with the
self-dual embedding of Goldman and Tucker, bringing together both techniques to, in
principle, solve arbitrary conic optimization problems. Implementing a suggested algo-
rithm involves only conceptually simple modifications to solvers that track the central
path of extended-embeddings (such as SeDuMi [129]), and these modifications only af-
fect solver execution when both complementary solutions and improving rays do not
exist. Nevertheless, numerical experiments illustrate significant practical barriers: in
practice, one obtains only approximate facial reduction certificates; optimal values can
be infinitely sensitive to inexact regularization; and tracking the central path can be
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difficult due to loss of strict complementarity. Further work is needed to better under-
stand these barriers. We also used approximate facial reduction certificates to make an
informed conjecture about an SDP instance from [104]. Clarifying the usefulness of such
certificates is another topic for future research; we note that approximate certificates
are used in [31] with backwards stability guarantees.



Part II

Jordan reduction

157





Chapter 5

Minimal subspaces in Jordan

reduction

We propose a new reduction method for cone programs formulated over the cone-of-
squares of a Euclidean Jordan algebra that generalizes symmetry reduction and *-
algebra techniques (Section 1.4). Recall in symmetry reduction, one uses group theory
to construct an orthogonal projection map that satisfies the Constraint Set Invariance
Conditions (Definition 1.4.1). These conditions imply the range of the projection con-
tains solutions (if they exist). Further, in the case of semidefinite programming (SDP),
the range of the projection intersected with the psd cone Sn+ is isomorphic to a symmet-
ric cone. For SDP, *-algebra techniques also find projections with the same properties
(Section 1.5).

Both symmetry reduction and *-algebra techniques lack algorithms for finding op-
timal projections (Section 1.5.5). This chapter resolves this issue. Specifically, we show
how to find the minimum rank projection satisfying the Constraint Set Invariance Con-
ditions. We also consider a variant that restricts to projections whose ranges contain
units for Jordan multiplication. Under this unitality condition, we show the range of the
minimum rank projection satisfying the Constraint Set Invariance Conditions is always
a subalgebra. This in turn implies its intersection with the cone-of-squares is isomorphic
to a symmetric cone of lower complexity. (Chapter 6 gives techniques for finding the
isomorphism.) Finally, we show that minimizing rank optimizes the decomposition of
the range into simple algebras.

Symmetry reduction (Chapter 1.4), applied to semidefinite programs, imposes the
Constraint Set Invariance Conditions and, if the underlying group is a subgroup of
the orthogonal group, the unitality condition (Chapter 1.4.4). The same is true of
*-algebra techniques (Chapter 1.5). In addition, the former requires the projection
equal the Reynolds operator of some group and the latter requires complete positivity
of the projection. Neither of these additional conditions are implied by Constraint Set
Invariance or unitality; hence, our framework is strictly more general. We, therefore,
give this framework a name—Jordan reduction—which reflects the connection with

159
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Euclidean Jordan Algebras.
We organize this chapter as follows. Section 5.1 reviews preliminaries. Section 5.2

characterizes projections satisfying the Constraint Set Invariance Conditions and the
unitality condition. Section 5.3 shows how to minimize rank subject to these conditions.
Finally, under the unitality condition, Section 5.4 shows minimizing rank optimizes
the direct-sum decomposition of the range into simple algebras. (Chapter 7 presents
computational results comparing techniques of this chapter to techniques developed
there.)

� 5.1 Preliminaries

� 5.1.1 Constraint Set Invariance

We consider a primal-dual pair of optimization problems formulated over a symmetric
cone, or, equivalently, the cone-of-squares K ⊆ J of a Euclidean Jordan algebra J. We
let x ◦ y denote the product of this algebra and let 〈·, ·〉 denote an associative inner
product, i.e., an inner product satisfying 〈x ◦ y, z〉 = 〈y, x ◦ z〉 for all x, y, z ∈ J. The
specific primal-dual pair of interest has the following form:

minimize 〈c, x〉
subject to x ∈ x0 + L,

x ∈ K,

minimize 〈x0, s〉
subject to s ∈ c+ L⊥,

s ∈ K,
(5.1)

where x ∈ J and s ∈ J are the primal and dual decision variables, points c ∈ J and
x0 ∈ J are fixed, L ⊆ J is a linear subspace with orthogonal complement L⊥ ⊆ J, and
x0 + L and c+ L⊥ are affine sets.

Our goal is to find a subspace S ⊆ J that contains solutions to both problems (if
they exist). For this, we search over orthogonal projections that satisfy the Constraint
Set Invariance Conditions (Definition 1.4.1) which we reproduce below:

Definition 5.1.1 (Constraint Set Invariance Conditions). Let PS : J→ J be an orthog-
onal projection with range equal to S. Then, PS satisfies the Constraint Set Invariance
Conditions for the primal-dual pair (5.1) if

(a) PS · K ⊆ K, i.e., PS is a positive map,

(b) PS · (x0 + L) ⊆ x0 + L,

(c) PS · (c+ L⊥) ⊆ c+ L⊥,

where PS · C := {PSx : x ∈ C} for any subset C ⊆ J.

Under these conditions, intersecting the primal and the dual feasible sets with S does
not change the primal and dual optimal values (Proposition 1.4.1). Hence, one can
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replace the cone K with K ∩ S and the affine sets x0 + L and c+ L⊥ with

(x0 + L) ∩ S = PSx0 + L ∩ S and (c+ L⊥) ∩ S = PSc+ L⊥ ∩ S, (5.2)

where (b)-(c) imply the equations (5.2). It turns out this replacement yields a primal-
dual pair viewing S as the ambient space. The next proposition—which is elementary
to prove—states this formally.

Proposition 5.1.1. Suppose PS : J → J satisfies the Constraint Set Invariance Con-
ditions (Definition 5.1.1). Then, treating the subspace S ⊆ J as the ambient space, the
pair of optimization problems

minimize 〈PSc, x〉
subject to x ∈ PSx0 + L ∩ S,

x ∈ K ∩ S,

minimize 〈PSx0, s〉
subject to s ∈ PSc+ L⊥ ∩ S,

s ∈ K ∩ S,
(5.3)

is a primal-dual pair, i.e.,

(K ∩ S)∗ ∩ S = K ∩ S,
(L ∩ S)⊥ ∩ S = L⊥ ∩ S.

Moreover,

1. Primal (resp. dual) feasible points, improving rays, and optimal solutions are
primal (resp. dual) feasible points, improving rays, and optimal solutions of (5.1);

2. The primal (resp. dual) is feasible if and only the primal (resp. dual) of (5.1) is
feasible;

3. The primal (resp. dual) optimal value equals the primal (resp. dual) optimal value
of (5.1).

Note variants of this proposition have appeared (e.g., [45, Proposition 2] or [37, Theo-
rem 2]). We point out the most significant difference: the assumptions made elsewhere
lack the primal-dual symmetry of the Constraint Set Invariance Conditions (Defini-
tion 5.1.1). For instance, [45] breaks this symmetry by assuming S contains c. The
next example illustrates the primal-dual pair (5.1) and its restriction (5.3).
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Example 5.1.1. Consider the following primal-dual pair of semidefinite programs:

min. x1 + x2
subj. to 

x1 1 x3 x4
1 x2 x4 −x3
x3 x4 1 x5
x4 −x3 x5 0

 ∈ S4
+

max. −(s5 + 2s1)
subj. to 

1 s1 s2 s3
s1 1 −s3 s2
s2 −s3 s5 0
s3 s2 0 s6

 ∈ S4
+

If S is the subspace spanned by the set {E21+E12}∪{Eii}3i=1, then PS : S4 → S4 satisfies
the Constraint Set Invariance Conditions (Definition 5.1.1). Hence, one obtains primal
and dual optimal solutions by solving the following restrictions to S:

minimize x1 + x2
subject to 

x1 1 0 0
1 x2 0 0
0 0 1 0
0 0 0 0

 ∈ S4
+,

maximize −(s5 + 2s1)
subject to 

1 s1 0 0
s1 1 0 0
0 0 s5 0
0 0 0 0

 ∈ S4
+,

which are primal-dual pairs viewing S as the ambient space.

� 5.1.2 Projected reformulations

When S is admissible and unital, we will see that K ∩ S is isomorphic to a symmetric
cone C. In other words, there will exist an injective linear map Φ and a symmetric cone
C satisfying

K ∩ S = Φ · C,

where Φ · C := {Φz : z ∈ C}. We can therefore construct a projected reformulation
(Section 1.2.5) of the restricted primal-dual pair (5.3) over C. This projected refor-
mulation has additional structure given that PS : J → J satisfies the Constraint Set
Invariance Conditions (Definition 5.1.1). Specifically, one does not need to solve linear
equations to reconstruct solutions to the original dual; one only needs to evaluate the
map Φ(Φ∗Φ)−1.

Proposition 5.1.2 (Projected reformulations). Suppose PS : J→ J satisfies the Con-
straint Set Invariance Conditions (Definition 5.1.1). Let W be an inner product space
and Φ :W → J an injective linear map with adjoint Φ∗ : J→W. Finally, suppose the
range of Φ equals S and that Φ · C = K∩S for a self-dual cone C ⊆ W. Then, if x̂ and
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ŝ solve the primal-dual pair

minimize 〈Φ∗c, x̂〉
subject to x̂ ∈ (Φ∗Φ)−1Φ∗ · (x0 + L),

x̂ ∈ C,

minimize 〈(Φ∗Φ)−1Φ∗x0, ŝ〉
subject to ŝ ∈ Φ∗ · (c+ L⊥),

ŝ ∈ C,
(5.4)

Φx̂ and Φ(Φ∗Φ)−1ŝ solve the pair (5.3)—and hence the pair (5.1).

Proof. Under the assumption Φ · C = K ∩ S, a projected reformulation (Section 1.2.5)
of (5.3) is

minimize 〈Φ∗c, x̂〉
subject to x̂ ∈ t0 + Φ−1(L),

x̂ ∈ C,

minimize 〈t0, ŝ〉
subject to ŝ ∈ Φ∗c+ Φ∗ · L⊥,

ŝ ∈ C,

where t0 is any point in the preimage Φ−1(x0 + L). As discussed in Section 1.2.5, the
primal and dual optimal values of this projected reformulation are the same as those
of (5.3). Further, Φ and Φ(Φ∗Φ)−1 map the primal and dual feasible sets onto those of
(5.3) without changing the objective value. The claim follows by showing this projected
reformulation is the same as (5.4).

To begin, (Φ∗Φ)−1Φ∗x0 is in the preimage, since Φ(Φ∗Φ)−1Φ∗ equals PS and PSx0 ∈
(x0+L) by the Constraint Set Invariance Conditions. We are done if (Φ∗Φ)−1Φ∗·L is the
preimage Φ−1(L). Under the Constraint Set Invariance Conditions, Φ(Φ∗Φ)−1Φ∗·L ⊆ L
by Lemma 1.4.3; hence, (Φ∗Φ)−1Φ∗ ·L is in the preimage. On the other hand, if Φz ∈ L,
then

Φ(Φ∗Φ)−1Φ∗Φz = Φz.

But Φ is injective. Hence, (Φ∗Φ)−1Φ∗Φz = z, showing that z ∈ (Φ∗Φ)−1Φ∗ · L.

� 5.2 Admissible subspaces

If an orthogonal projection satisfies the Constraint Set Invariance Conditions (Defini-
tion 5.1.1), we say it is admissible.

Definition 5.2.1. A subspace S is admissible if its orthogonal projection PS : J → J
satisfies the Constraint Set Invariance Conditions (Definition 5.1.1).

Note that finding an admissible subspace of minimum dimension is equivalent to min-
imizing rank subject to the Constraint Set Invariance Conditions. We also consider
subspaces that are unital.
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Definition 5.2.2. A subspace S is unital if it contains a unit under Jordan multipli-
cation, i.e., if there exists ê ∈ S for which

x ◦ ê = x

for all x ∈ S.

Note that ê is not necessarily the unit of the algebra J. It is, however, always idem-
potent, i.e., ê ◦ ê = ê. The next lemma shows admissible subspaces are not necessarily
unital.

Example 5.2.1 (A nonunital admissible subspace). Let x0 be any point in the cone-
of-squares K with two distinct nonzero eigenvalues. Let c = 0 and L = {0}. Then the
subspace spanned by x0 is admissible but not unital.

Proof. The orthogonal projection onto the span of x0 is

z 7→ 1
〈x0, x0〉

〈x0, z〉x0.

Since x0 ∈ K, it holds that 〈x0, z〉 ≥ 0 for all z ∈ K since K is self-dual. Hence,
the projection is a positive map. The affine sets {x0} and c + L⊥ (which equals J)
are obviously invariant under this projection. Hence, the subspace spanned by x0 is
admissible. It is not unital since it contains no idempotent.

We now characterize admissible subspaces and the subsets that are unital. Notably,
the unital subset consists only of subalgebras. The stated results immediately lead
to algorithms for finding subspaces of minimum dimension. We give these algorithms
in the next section. The following theorem gives our characterizations. (We prove it
quoting results which we state and prove later.)

Theorem 5.2.1 (Main Result). Let L, x0 and c be the problem data of the primal-dual
pair P and D. Let PL : J→ J denote the orthogonal projection map onto the subspace
L, and let cL = PLc and x0,L⊥ = x0 − PLx0. Finally, let projK(x) denote the metric
projection of x onto the cone-of-squares K, i.e.,

proj
K

(x) := arg min
w∈K

〈x− w, x− w〉.

The following statements hold.
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1. A subspace S ⊆ J is admissible if and only if

S 3 cL, x0,L⊥ ,

S ⊇ {PLx : x ∈ S} ,

S ⊇
{

proj
K

(x) : x ∈ S
}
.

2. A unital subspace S ⊆ J is admissible if

S 3 cL, x0,L⊥ ,

S ⊇ {PLx : x ∈ S} ,
S ⊇ {x2 : x ∈ S}.

The converse holds if J is special.

Proof. The first statement is an immediate consequence of Theorem 5.2.2 and The-
orem 5.2.4. The second is an immediate consequence of Theorem 5.2.3 and Theo-
rem 5.2.4. We prove these theorems at the end of this section.

For the interested reader, the remainder of this section states and proves the quoted
theorems used to characterize admissible subspaces (Theorem 5.2.1).

� 5.2.1 Positive projections

General subspaces

For any closed, convex cone, the condition P · K ⊆ K has a characterization in terms of
metric projection onto onto K. Consider the following, which appears as [96, Corollary
1]; see also [95]). We offer an elementary proof based on the Moreau decomposition.

Theorem 5.2.2. Let P : V → V be an orthogonal projection and K ⊆ V a closed,
convex cone. The following are equivalent.

• P · K ⊆ K.

• The range of P is closed under metric projection onto K, i.e., it is invariant under
the map

x 7→ arg min
w∈K

〈x− w, x− w〉,

Proof. We first show the range is closed under metric projection if P ·K ⊆ K. To begin,
let z = arg minw∈K〈x − w, x − w〉 for x ∈ rangeP . By the Moreau decomposition,
x = z + t, where −t ∈ K∗ and 〈t, z〉 = 0. Hence,

〈x, x〉 = 〈z, z〉+ 〈t, t〉
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Since Px = x, we also have that 〈x, Px〉 = 〈x, x〉, which implies

〈z, z〉+ 〈t, t〉 = 〈(z + t), P (z + t)〉 = 〈z, Pz〉+ 〈z, P t〉+ 〈t, Pz〉+ 〈t, P t〉
= 〈z, Pz〉+ 2〈t, Pz〉+ 〈t, P t〉
= 〈Pz, Pz〉+ 2〈t, Pz〉+ 〈Pt, P t〉

This shows that 2〈t, Pz〉 = 〈z, z〉+ 〈t, t〉−〈Pz, Pz〉−〈Pt, P t〉 ≥ 0, where the inequality
follows because P is a contraction. But since Pz ∈ K and t ∈ −K∗, we also have that
2〈t, Pz〉 ≤ 0. We conclude 〈t, Pz〉 = 0

Evidently x = Pz+Pt for Pz ∈ K and P (−t) ∈ K∗ where Pz and Pt are orthogonal.
By uniqueness of the Moreau decomposition, it follows Pz = z and Pt = t. Hence, the
range of P is closed under metric projection.

Now suppose the range is closed under metric projection. For x ∈ K, let Px have
Moreau decomposition Px = z + t, i.e., z ∈ K, −t ∈ K∗ and 〈t, z〉 = 0. The point z is
the metric projection of Px onto K. Hence, Pz = z, which implies Pt = t. Since x ∈ K,

0 ≤ 〈−t, x〉 = 〈−Pt, x〉 = 〈−t, Px〉 = 〈−t, z + t〉 = −〈t, t〉,

showing that t = 0. Hence, Px = z and, therefore, Px ∈ K.

Recall for cones-of-squares, metric projection operation is easily computed from the
spectral decomposition (Proposition 1.6.3).

Unital subspaces

The projection onto a unital subspace is always positive if the range is invariant under
squaring, or, equivalently, if the range is a subalgebra. The converse holds if J is special.
This section proves these facts. Analogous results for complex Jordan algebras are in
[126] [127]; indeed, we will use an identical argument to show the converse direction.
See also [96].

We first need the following two lemmas. The first characterizes subalgebras in terms
of the spectral decomposition.

Lemma 5.2.1. Let J be a Euclidean Jordan algebra, and write the spectral decomposi-
tion of nonzero x ∈ J as

x =
∑
f∈Fx

λff,

where Fx ⊂ J is a set of pairwise orthogonal idempotents and each λf ∈ R denotes a
distinct nonzero eigenvalue. For a subspace S ⊆ J, the following are equivalent.

1. S contains the set Fx for all nonzero x ∈ S.
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2. S is a subalgebra, i.e., S ⊇ {x2 : x ∈ S}.

Proof. That statement one implies two is immediate given that x2 = ∑
f∈Fx λ

2
ff . Con-

versely, let λ denote an eigenvalue of x of maximum magnitude. Then, if statement
two holds, the idempotent f̂ = limn→∞(|λ|−1x)2n is contained in S. Replacing x with
x−λf̂ and iterating yields a set of idempotents whose span contains Fx; moreover, this
set is contained in S.

Remark 5.2.1. Note that if we had assumed S contained the identity e of J, the
nontrivial direction of this lemma reduces to the fact the subspace spanned by

{e, x, x2, . . . , xq}

for sufficiently large q contains each idempotent in Fx and an additional idempotent
e− (∑f∈Fx f), where e is the identity of J; see, e.g., [3, Section 11.4.1] for a proof.

The next lemma concerns the special case of J = Sn. It shows if the projection onto
a unital subspace is positive, then the subspace is a subalgebra. The proof uses the
aforementioned argument from [126, Theorem 2.2.2].

Lemma 5.2.2. Let PS : Sn → Sn be the orthogonal projection onto a unital subspace
S ⊆ Sn. If PS is positive, i.e., PS · Sn+ ⊆ Sn+, then S is a subalgebra, i.e., S ⊇ {X2 :
X ∈ S}.

Proof. Since S is unital, there exists a matrixQ ∈ Rn×r (where r ≤ n) with orthonormal
columns and a subspace Ŝ ⊆ Sr for which QQT is the unit of S and

S =
{
QXQT : X ∈ Ŝ

}
.

Note that if Ŝ contains X and X2, then S contains QXQT and (QXQT )2 given that

(QXQT )2 = QXQTQXQT = QX2QT .

Further, if the projection PS is positive, so is PŜ : Sr → Sr given that for all X ∈ Sr+

PS(QXQT ) = QPŜ(X)QT .

Hence, the result follows by showing Ŝ is invariant under squaring. We show this
applying the argument from [126, Theorem 2.2.2] and using the fact Ŝ contains the
identity matrix of order r. Dropping the subscript Ŝ from PŜ , we first note since P
is positive and P (I) = I, it satisfies the Kadison inequality, which states P (X2) −
P (X)P (X) ∈ Sr+ for all X ∈ Sr (e.g., Theorem 2.3.4 of [14]). Hence, for X in the range
of P

P (X2)−X2 ∈ Sr+.
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Letting Z = P (X2)−X2 and taking the trace shows TrZ = 0:

TrZ = 〈I, Z〉 = 〈P (I), Z〉 = 〈I, P (Z)〉 = Tr
(
P 2(X2)−P (X2)

)
= Tr

(
P (X2)−P (X2)

)
.

Since Z ∈ Sr+, it has zero trace only if Z = 0. Hence, P (X2) = X2, showing that X2 is
in the range of P .

We can now state and prove the desired result. The following (in part) generalizes the
previous lemma from Sn to any special algebra by using the fact any such algebra is
isomorphic to a subalgebra of Sn (Proposition 1.6.4).

Theorem 5.2.3. Let J be a Euclidean Jordan algebra. Let PS : J→ J be the orthogonal
projection onto a unital subspace S ⊆ J. Finally, let K denote the cone-of-squares of
J, and consider the following statements.

1. The projection PS is positive, i.e., PS · K ⊆ K

2. The subspace S is a subalgebra, i.e., S ⊇ {x2 : x ∈ S}.

Then, the implication (2⇒ 1) holds. If J is special, these statements are equivalent.

Proof. To prove (2 ⇒ 1), consider x ∈ K and suppose PSx is nonzero. Further, write
the spectral decomposition of PSx as

PSx =
∑
f∈Ex

λff

where Ex ⊂ J is a set of idempotents and each λf is unique and nonzero. If (2) holds,
then Lemma 5.2.1 implies PSf = f for all f ∈ Ex. Hence, for each f ∈ Ex,

0 ≤ 〈f, x〉 = 〈PSf, x〉 = 〈f, PSx〉 = λf 〈f, f〉,

which shows the eigenvalues of PSx are nonnegative, i.e., that PSx ∈ K. The unitality
condition holds because S is a subalgebra; hence, since it can be viewed as a Euclidean
Jordan Algebra, it must have a unit (Chapter 1.6.1).

To prove (1⇒ 2), we note that since J is special, there exists a subalgebra J ⊆ Sq

and a unital subspace Ŝ ⊆ J for which

Φ · J = Sq ∩ J , Φ · S = Ŝ,

where Φ : J → Sq is an injective homomorphism (Proposition 1.6.4). We claim if Ŝ is
invariant under squaring, so is S. Indeed, if

Φ(x2) = Φ(x) ◦ Φ(x) ∈ Ŝ,
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then x2 ∈ S by injectivity. The claim follows by Lemma 5.2.2 if we can show that PŜ
is positive. First note that

PŜ = PŜPJ = ΦPSΦ+PJ ,

where Φ+ : Sq → J denotes the pseudo inverse of Φ. Hence, PJ is positive since it is
the projection onto a subalgebra; specifically, it is positive by the same argument used
to show (2 ⇒ 1). Further, ΦPSΦ+ restricted to the range of PJ is positive: Φ+ maps
squares to squares since Φ is an injective homomorphism; PS is positive by assumption;
Φ maps squares to squares since it is a homomorphism.

We cannot rule out that statements 1 and 2 are equivalent without the special
assumption. In fact, we conjecture this is true.

Conjecture 5.2.1. For any Euclidean Jordan algebra, the orthogonal projection onto
a unital subspace is positive if and only if the subspace is a subalgebra.

We briefly mention why the proof for special algebras fails to prove this conjecture.
Specifically, Lemma 5.2.2 relies on Kadison’s inequality P (X2) − P (X)P (X) ∈ Sn+ for
positive maps P : Sn → Sn satisfying P (I) = I. It is unclear if this inequality generalizes
to the exceptional algebra.

� 5.2.2 Invariant affine subspaces of projections

The Constraint Set Invariance Conditions (Definition 5.1.1) require that the affine sets
x0+L and c+L⊥ contain their images under the orthogonal projection map PS : J→ J.
We now characterize these containments in terms of the range S. The first of two lemmas
yielding this characterization follows:

Lemma 5.2.3. For affine sets x0 + L and c + L⊥, let x0,L⊥ ∈ J and cL ∈ J denote
the projections of x0 ∈ J and c ∈ J onto the subspaces L⊥ and L, respectively. Let
PS : J→ J denote the orthogonal projection onto a subspace S of J. Then,

1. PS · (x0 + L) ⊆ x0 + L if and only if PSx0,L⊥ = x0,L⊥ and PS · L ⊆ L.

2. PS · (c+ L⊥) ⊆ c+ L⊥ if and only if PScL = cL and PS · (L⊥) ⊆ L⊥.

Proof. We show only the first statement, noting the second has identical proof. To
begin, first note PS—being an orthogonal projection—is a contraction with respect the
norm

√
〈x, x〉; further, x0,L⊥ is the unique minimizer of this norm over x0 + L. Hence,

if PS · (x0 + L) ⊆ x0 + L, then PSx0,L⊥ = x0,L⊥ ; in addition, since x0 + L = x0,L⊥ + L

x0,L⊥ + PS · (L) = PS · (x0,L⊥ + L) ⊆ x0,L⊥ + L,
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which implies PS · (L) ⊆ L. The converse direction follows from the fact that x0 +L =
x0,L⊥ + L.

We now characterize invariance of L and L⊥ under PS . It turns out for an orthogonal
projection PS (or more generally, a self-adjoint linear map), the conditions PS · L ⊆ L
and PS · (L⊥) ⊆ L⊥ are equivalent. Indeed, for projections, even more is true: L is an
invariant subspace of PS if and only if S is an invariant subspace of PL. We capture
these remarks in the following lemma, which follows from, e.g., Proposition 3.8 of [52].

Lemma 5.2.4. Let PL : J→ J and PS : J→ J denote the orthogonal projections onto
subspaces L and S of J. The following four1 statements are equivalent.

• L is an invariant subspace of PS

• L⊥ is an invariant subspace of PS

• S is an invariant subspace of PL

• S⊥ is an invariant subspace of PL

Combining this with the previous lemma gives the desired conditions on S:

Theorem 5.2.4. For affine sets x0 + L and c + L⊥, let x0,L⊥ ∈ J and cL ∈ J denote
the projections of x0 ∈ J and c ∈ J onto the subspaces L⊥ and L, respectively. The
following are equivalent.

• x0 + L and c+ L⊥ are invariant under the orthogonal projection PS : J→ J.

• The subspace S contains cL and x0,L⊥ and is invariant under the orthogonal pro-
jection PL : J→ J, i.e., S contains x0,L⊥ , cL and PL · S.

In summary, x0 +L and c+L⊥ are invariant under PS precisely when S is an invariant
subspace of PL that contains the distinguished points cL and x0,L⊥ . Note these points
minimize the norm

√
〈x, x〉 over the affine sets x0 + L and c + L⊥. If, for instance,

x0 + L is the solution set of linear equations Ax = b, then x0,L⊥ equals A∗(AA∗)−1b,
the minimum norm solution of Ax = b.

� 5.3 Algorithms

By Theorem 5.2.1, arbitrary intersections of admissible subspaces are admissible. For
special algebras, the same is true for unital admissible subspaces. This motivates the
following definition.

1Note a fifth equivalent statement, which we will not use, is that the projections PS and PL commute.
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Definition 5.3.1. The minimal admissible subspace Smin is the intersection of all
admissible subspaces:

Smin :=
⋂
{S ⊆ J : S is admissible},

The minimal admissible-unital subspace Smin,unit is the intersection of all admissible
subspaces that are unital:

Smin,unit :=
⋂
{S ⊆ J : S is admissible and unital},

Algorithms for finding the minimal admissible subspace Smin and the minimal admissible-
unital subspace Smin,unit are essentially immediate from the characterization of admis-
sibility (Theorem 5.2.1). An algorithm for finding Smin follows.

Theorem 5.3.1. The minimal subspace Smin is the output of the following algorithm:
S ← span{cL, x0,L⊥}
repeat
S ← S + PL(S)
S ← S + span{projK(x) : x ∈ S}

until converged.
Proof. By induction and Theorem 5.2.1, S ⊆ Smin at each iteration. If the algorithm
terminates, then S is admissible (Theorem 5.2.1). Hence, the reverse inclusion holds
S ⊇ Smin by definition of Smin. Finally, the algorithm must terminate because it
computes an ascending chain of subspaces and the dimension of J is finite.

The same basic algorithm finds Smin,unit when J is special.

Theorem 5.3.2. Suppose J is special. Then the minimal admissible-unital subspace
Smin,unit is the output of the following algorithm:

S ← span{cL, x0,L⊥}
repeat
S ← S + PL(S)
S ← S + span{x2 : x ∈ S}

until converged.
Correctness of this algorithm follows from the same argument that proves Theorem 5.3.1.
Note that we need the special assumption to prove that S ⊆ Smin,unit holds at each
iteration. A positive answer to Conjecture 5.2.1 implies this inclusion without this as-
sumption. Also note if J is not special, then the returned subspace is still provably
admissible and unital (Theorem 5.2.1); we only lack a minimality proof.

Remark 5.3.1. The Theorem 5.2.1 actually finds the minimal admissible subspace for
any cone program, i.e., its correctness does not use the fact K is a cone-of-squares. This
fact is used to evaluate projK(x), as we review in the next section.
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� 5.3.1 Spectral interpretation

Both algorithms perform a nonlinear operation to a subspace at each iteration. It
turns out both these operations are implementable using the spectral decomposition
(Section 1.6.4). As the next lemma indicates, these operations apply either the squaring
or absolute value function to eigenvalues.

Lemma 5.3.1. For a Euclidean Jordan algebra J, consider the following subspaces

Sproj := S + span
{

proj
K

(x) : x ∈ S
}
, Sx2 := S + span{x2 : x ∈ S}.

For x ∈ J, let
∑
f∈Ex λff denote the spectral decomposition of x ∈ J and define

S|λ| := S + span

 ∑
f∈Ex

|λf |f : x ∈ S

 , Sλ2 := S + span

 ∑
f∈Ex

λ2
ff : x ∈ S

 .
Then, Sproj = S|λ| and Sx2 = Sλ2.

Proof. To see Sproj = S|λ| , note that the subspace spanned by x and projK(x) is spanned
by x+ and x− = x− x+, where

x+ =
∑

f :λf≥0
λff, x− =

∑
f :λf<0

λff,

given that projK(x) = x+; see Section 1.6.4. It is therefore spanned by x and x+ − x−,
where x+ − x− = ∑

f∈Ex |λf |f .
That Sx2 = Sλ2 also follows from properties of the spectral decomposition, specifi-

cally the identity

(
∑
f∈Ex

λff)2 =
∑
f∈Ex

λ2
ff.

This holds given that distinct g, h ∈ Ex are pairwise orthogonal idempotents, i.e.,
g ◦ h = 0.

The subspaces that satisfy S = Sx2 are precisely the subalgebras of J. On the other
hand, the structure of subspaces that satisfy S = S|λ| is not fully understood. We
therefore pose the following open question.

Problem 5.3.1. A subspace S ⊆ J satisfies S = S|λ| if S is a subalgebra2 or if S equals
the span of a square x2. Are these the only cases?

2That S = S|λ| holds for subalgebras (S = Sx2) follows from the inclusions Sx2 ⊇ S|λ| ⊇ S, a
consequence of Lemma 5.2.1.
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� 5.3.2 Lattice interpretation

By Theorem 5.2.1, arbitrary intersections of admissible subspaces are admissible. The
whole space J is also admissible. Hence, admissible subspaces are the fixed points of a
closure operator—an idempotent, extensive, and increasing operator into the subspace
lattice of J. When J is special, similar statements apply to admissible subspaces that
are unital. Hence, one can interpret the Theorem 5.3.1 and Theorem 5.3.2 algorithms
as evaluation of a closure operator at the subspace spanned by cL and x0,L⊥ .

� 5.4 Optimal decompositions

Suppose J is special. The characterization of unital, admissible subspaces (Theo-
rem 5.2.1) indicates that these subspaces are subalgebras of J. As a consequence, each
subspace S has an orthogonal direct sum decomposition into simple ideals S = ⊕si=1Si
(Chapter 1.6.2). Further, each ideal has a complexity measure called rank (which equals
the number of distinct eigenvalues of a generic element; see Chapter 1.6.4).

In this section we prove this decomposition is optimal in a precise sense for Smin,unit.
Our statement is in terms of the rank vector of an algebra W = ⊕wi=1Wi

rW := (rankW1, rankW2, . . . , rankWw),

whereWi are the simple ideals. Specifically, we show the rank vector of Smin,unit and the
rank vector of any other admissible, unital subspace satisfies a family of majorization
inequalities. These inequalities, among other things, imply that Smin,unit minimizes the
maximum rank and the sum-of-ranks. The precise definition of majorization and the
statement of our result follow.

Definition 5.4.1. The vector x ∈ Zm weakly majorizes y ∈ Zn if

min {l,m}∑
i=1

[x↓]i ≥
min {l,n}∑
i=1

[y↓]i ∀l ∈ {1, . . . ,max {m,n}},

where x↓ and y↓ denote x and y with entries sorted in descending order.

Theorem 5.4.1 (Main result). Let J be Euclidean Jordan algebra that is special. LetW
be any admissible, unital subspace. Finally, let the minimal admissible-unital subspace
Smin,unit and W have the following decompositions into simple ideals:

Smin,unit = ⊕si=1Si, W = ⊕wk=1Wk.

Then, rW := (rankW1, . . . , rankWw) weakly majorizes rS := (rankS1, . . . , rankSs).

Proof. By definition, Smin,unit is the intersection of all admissible, unital subspaces.
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Hence, W ⊇ Smin,unit. The result then follows from Theorem 5.4.2 (to be stated and
proven shortly)

Proving this theorem exploits the following fact: Smin,unit is a subalgebra of all other
unital, admissible subspaces. We therefore study the rank vectors of subalgebras. We
first give examples that illustrate the majorization inequalities.

� 5.4.1 Majorization examples

The following subalgebras—each parametrized by a set of variables {ti}qi=1—satisfy
Ui ⊇ Ui+1 and the vector of ranks rUi weakly majorizes rUi+1 :

U1 :=


t1 t2 0 0 0
t2 t3 0 0 0
0 0 t4 t5 t6
0 0 t5 t7 t8
0 0 t6 t8 t9


rU1 = (2, 3)

U2 :=


t1 t2 0 0 0
t2 t3 0 0 0
0 0 t4 t5 0
0 0 t5 t7 0
0 0 0 0 t9


rU2 = (2, 2, 1)

U3 :=


t1 t2 0 0 0
t2 t3 0 0 0
0 0 t1 t2 0
0 0 t2 t3 0
0 0 0 0 t4


rU3 = (2, 1)

U4 :=


t1 0 0 0 0
0 t1 0 0 0
0 0 t1 0 0
0 0 0 t1 0
0 0 0 0 t2


rU4 = (1, 1)

Also of note are the subalgebras U3 and U4; despite having three nonzero blocks, U3 is
isomorphic to a product of two simple algebras since its second two-by-two block is a
copy of the first; similar remarks apply to U4.

� 5.4.2 Rank vectors of subalgebras

We now establish basic properties about the rank vectors of subalgebras. For this, we
need the following technical results.

Lemma 5.4.1. Let J be a Euclidean Jordan algebra and let V ⊆ J be a subalgebra that is
simple (viewed as an algebra). Let J = ⊕wk=1Jk denote the orthogonal direct-sum decom-
position of J into simple ideals. Finally, let Φk : J→ J denote the orthogonal projection
onto Jk. The following statements hold for all k ∈ [w], where w := {1, . . . , w}:



Sec. 5.4. Optimal decompositions 175

1. If e ∈ J is idempotent, then Φke is idempotent.

2. If e, f ∈ J are idempotent and 〈e, f〉 = 0, then 〈Φke,Φkf〉 = 0.

3. Suppose e, f ∈ V are idempotent and nonzero. If Φke 6= 0, then Φkf 6= 0.

Proof. Since Jk is a simple ideal, the projection map Φk from J onto Jk is a Jordan
homomorphism by [67, Lemma 2.5.6]; hence, Φke◦Φke = Φke

2 = Φke, showing the first
statement.

For the second statement, recall J = ⊕wk=1Jk is an orthogonal direct-sum decompo-
sition of J. We conclude

e =
w∑
k=1

Φke, f =
w∑
k=1

Φke.

Since 〈Φie,Φjf〉 ≥ 0 and

〈e, f〉 =
w∑
i=1

w∑
j=1
〈Φie,Φjf〉,

〈Φie,Φjf〉 = 0 if 〈e, f〉 = 0.
For the third statement, view V as a simple algebra and let e = ∑q

i=1 ei and f =∑r
j=1 fj denote the decompositions of e and f into primitive idempotents of V. Then,

there exists t ∈ V (depending on i and j) such that ei = 2t ◦ (t ◦ fj) − t2 ◦ fj [51,
Corollary IV.2.4]. Since Φk is a homomorphism,

Φkei = Φk(2t ◦ (t ◦ fj)− t2 ◦ fj)
= Φk(2t) ◦ (Φkt ◦ Φkfj)− Φkt

2 ◦ Φkfj

showing Φkfj 6= 0 if Φkei 6= 0. Since

Φke =
q∑
i=1

Φkei, Φkf =
r∑
j=1

Φkfj ,

and Φkei and Φkfj are idempotent and hence in the cone-of-squares, it follows Φkf 6= 0
if Φke 6= 0.

Theorem 5.4.2. Let S = ⊕si=1Si and W = ⊕wk=1Wk be Jordan subalgebras of J, where
Si and Wk are simple ideals of S and W (viewed as algebras), respectively. Suppose
S ⊆ W. The following statements hold:
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1. For each k ∈ [w], let Ik := {i ∈ [s] : Si 6⊆ (Wk)⊥}. Then, for all k ∈ [w],

rankWk ≥
∑
i∈Ik

rankSi.

2. The vector rW weakly majorizes rS , where

rW := (rankW1, . . . , rankWw), rS := (rankS1, . . . , rankSs).

Proof. First note Si contains a set Ei := {eij}
rankSi
j=1 of pairwise-orthogonal idempotents

(i.e., a Jordan frame). Further, if i ∈ Ik, then Φk(e) 6= 0 for a nonzero idempotent e
in Si. We conclude all elements of {Φk(e) : e ∈ ∪i∈IkEi} are nonzero (Lemma 5.4.1-3);
moreover, they are idempotent (Lemma 5.4.1-1) and pairwise orthogonal (Lemma 5.4.1-
2). It follows Wk contains at least ∑i∈Ik rankSi nonzero idempotents that are pairwise
orthogonal. Hence, rankWk ≥

∑
i∈Ik rankSi.

For the second statement, we note the first implies the following: for each l ∈
max{s, w}, there is a subset T ⊆ [w] with |T | ≤ min {l, w} for which

∑
k∈T

rankWk ≥
∑
k∈T

∑
i∈Ik

rankSi ≥
min {l,s}∑
i=1

[r↓S ]i.

Specifically, letting π be a permutation of [s] satisfying [r↓S ]i = [rS ]π(i), we can pick T
such that π(i) ∈ Ik for some k ∈ T for all i ∈ {1, . . . ,min {l, s}}. It follows by definition
of rW that ∑min {l,w}

i=1 [r↓W ]i ≥
∑
k∈T rankWk; hence, the claim follows.

� 5.5 Conclusion

We proposed a new reduction method that finds the minimum rank orthogonal pro-
jection satisfying the Constraint Set Invariance Conditions for symmetric cone opti-
mization problems, i.e., optimization problems formulated over the cone-of-squares of
a Euclidean Jordan algebra. When an additional condition of unitality is imposed, we
showed that the range of the projection is a Jordan subalgebra. Finally, we showed that
minimizing rank of the projection also optimizes the direct-sum decomposition of this
subalgebra into simple ideals.



Chapter 6

Constructing isomorphisms between

Euclidean Jordan algebras

In Chapter 5, we found a subalgebra S ⊆ J containing solutions to a given cone program
formulated over the cone-of-squares K of a Euclidean Jordan algebra J. This enables
one to select an algebra Ĵ isomorphic to S (represented in a computationally convenient
basis) whose cone-of-squares C satisfies

K ∩ S = {Φz : z ∈ C}

for some Jordan isomorphism Φ : Ĵ→ S, i.e., for some invertible linear map Φ satisfying

Φ(x2) = (Φx)2 ∀x ∈ Ĵ.

In this chapter, we show how to find Φ. Combined with techniques from Chapter 5,
this allows one to construct a projected reformulation of a given cone program (Chap-
ter 1.2.5) by first finding S and then Φ.

Specifically, this chapter addresses the following fundamental topic: given bases for
two isomorphic algebras, algorithmically construct an explicit isomorphism. (Note test-
ing isomorphism between Euclidean Jordan algebras is easily done with linear algebra;
see, e.g., Section 6.1.3.) The structure of isomorphisms arises from basic Jordan algebra
theory and early work of Jacobson [73]. To elaborate, an isomorphism is a direct-sum of
maps between simple algebras, since any Euclidean Jordan algebra equals a direct-sum
of its simple ideals. In turn, isomorphisms between simple algebras are isometries whose
form depends on the algebras’ common rank. For algebras of rank two or less, they are
simply isometries that map the identity to the identity—a basic result we will show with
elementary arguments. For algebras of rank three or more, they arise from the composi-
tion of two types of isometries, which we show building on results of Jacobson [73]. An
isometry of the first type is constructed from the multiplication operators of so-called
Jordan matrix units [91]. An isometry of the second type is an isomorphism between
coordinate algebras—Euclidean Hurwitz algebras that arise by equipping a subspace of

177
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each Jordan algebra with a new product (e.g., Chapter V of [51]). Note coordinate
algebras and Jordan matrix units were introduced by Jacobson [73, 75] to prove his
coordinization theorem. Indeed, we directly generalize an isomorphism constructed in
this proof, removing a particular matrix algebra assumption.

After establishing the structure of Jordan isomorphisms, we’ll give an explicit al-
gorithm whose implementation requires only a basis for each algebra. Subroutines
include a novel algorithm for finding Jordan matrix units and a subroutine for finding
coordinate-algebra isomorphisms. This latter subroutine, essentially due to Jacobson
[74, Section 3], iteratively constructs an isomorphism via the Cayley-Dickson construc-
tion. It makes no reference to the isomorphism class of the coordinate algebra (which
is either the real numbers, the complex numbers, the quaternions, or the octonions),
leading to simpler implementations.

From an applications point of view, our algorithm serves the same purpose as the
*-algebra methods [89, 42] used for block diagonalizing semidefinite programs within
the framework of symmetry reduction. These algorithms are insufficient for finding Φ
in general. On the other hand, the algorithm we present can be seen as an alternative
to these methods with a few appealing properties. One, we make no assumption on
the algebras other than the availability of a basis, whereas these algorithms assume
canonical matrix representations for one of the algebras. Further, unlike [89], no ‘case’
statements are employed for the isomorphism class; as mentioned above, we treat every
class in a unified way using the Cayley-Dickson construction. Finally, we show how to
find sparse isomorphisms assuming the availability of diagonal idempotents when J is
a matrix algebra.

The chapter is organized as follows. Section 6.1 gives preliminaries. Section 6.2
states the complete algorithm, and the next three sections fill in missing details: Sec-
tion 6.3 shows how to decompose an algebra into simple ideals and Sections 6.4-6.5 show
how to construct isomorphisms between simple algebras. Section 6.6 addresses sparsity.
Section 6.7 gives conclusions. Technical lemmas appear in an appendix (Section 6.8).

� 6.1 Preliminaries

As in Section 1.6, J denotes a Euclidean Jordan algebra with product x ◦ y and inner
product 〈x, y〉J satisfying

〈z ◦ x, y〉J = 〈x, z ◦ y〉J

for all x, y, z ∈ J. Materials needed by this chapter from Section 1.6 include the
decomposition into simple ideals and the classification of simple algebras, which include
Hn(R), Hn(C), and Hn(H), i.e., the Hermitian matrices of order n with real, complex
or quaternion entries; the spin-factor algebra; and the exceptional algebra H3(O), where
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O denotes the octonions. We also need material not yet discussed. Specifically, we need
the Peirce decomposition and the isomorphism test that it affords, which we overview
next.

� 6.1.1 Peirce decomposition

Recall an element x ∈ J is idempotent if x ◦ x = x. A set of pairwise orthogonal
idempotents induces a canonical decomposition of J called the Peirce decomposition.

Lemma 6.1.1 (Peirce Decomposition and Multiplication Rules). [67, 2.6.5] Let J
denote a Euclidean Jordan algebra with identity e. Let {ei}ni=1 be a set of pairwise
orthogonal idempotents satisfying

∑n
i=1 ei = e. For all (i, j) ∈ [n] × [n], define the

Peirce space Jij via

Jij :=
{
x ∈ J : ei ◦ x = 1

2x, ej ◦ x = 1
2x
}

if i 6= j, Jii := {x ∈ J : ei ◦ x = x} .

Then, Jij = Jji. Further, J equals an orthogonal direct-sum
⊕

1≤i≤j≤n Jij. Finally, the
following Peirce Multiplication Rules hold:

• Jij ◦ Jkl = {0} if {i, j} ∩ {k, l} = ∅,

• Jij ◦ Jjk ⊆ Jik if i, j, k are all distinct,

• Jij ◦ Jij ⊆ Jii + Jjj,

• Jii ◦ Jij ⊆ Jij,

where Jij ◦ Jkl := {x ◦ y : x ∈ Jij , y ∈ Jkl}.

As the following example illustrates, the Peirce decomposition is analogous to a
partition of a matrix into diagonal and off-diagonal blocks. Indeed, we will refer to Jij
as an off-diagonal Peirce space when i 6= j.

Example 6.1.1. Let J denote H3(R), the Jordan algebra of real symmetric matrices of
order three with product x ◦ y = 1

2(xy + yx). Orthogonal idempotents {e1, e2} summing
to e and the induced Peirce spaces are

e1 =

1 0 0
0 0 0
0 0 0

 , e2 =

0 0 0
0 1 0
0 0 1

 J11 =

∗ 0 0
0 0 0
0 0 0

J22 =

0 0 0
0 ∗ ∗
0 ∗ ∗

J12 =

0 ∗ ∗
∗ 0 0
∗ 0 0

 ,
where Jij is the subspace of matrices with indicated sparsity pattern.
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The Peirce decomposition also allows one to break multiplication into pieces. Writ-
ing ∑ij xij to mean ∑n

i=1
∑n
j=i xij , we have by bilinearity of ◦ that

x ◦ y =

∑
ij

xij

 ◦ (∑
kl

ykl

)
=
∑
ij

∑
kl

xij ◦ ykl,

where xij denotes the ij-component of x with respect to the direct-sum decomposition⊕
1≤j≤i≤n Jij . This will be convenient for constructing isomorphisms, since we can

consider the products xij ◦ ykl between Peirce components separately and make use
of the Peirce Multiplication Rules (Lemma 6.1.1). Finally, the Peirce component xij
satisfies

xij =

2ei ◦ (ei ◦ x)− ei ◦ x, i = j

2ei ◦ (x ◦ ej) + 2(ei ◦ x) ◦ ej i 6= j.

Note the maps yielding the Peirce components have names in the literature. Specifically,
xii equals the quadratic representation of ei evaluated at x. Similarly, xij is proportional
to the Jordan-triple-product of x with the set of orthogonal idempotents {ei, ej}.

� 6.1.2 Peirce decompositions from Jordan frames

Recall a Jordan frame is a set of pairwise orthogonal idempotents that are each prim-
itive, meaning each cannot be written as the sum of two distinct idempotents (Sec-
tion 1.6). The Peirce decomposition induced by a Jordan frame has additional proper-
ties.

Lemma 6.1.2. Let J be a Euclidean Jordan algebra and let {Jij}ni,j=1 denote the set of
Peirce spaces induced by a Jordan frame {ei}ni=1. For all distinct i, j ∈ [n], the following
statements hold.

(a) [67, 2.9.4]. The subspace Jii is one-dimensional, specifically, Jii = {λei : λ ∈ R}.

(b) [51, Corollary IV.2.6]. If J is simple, there is an constant dJ for which dim Jij =
dJ for all i 6= j. The constant dJ does not depend on {i, j} or the Jordan frame.

The following example illustrates Lemma 6.1.2.

Example 6.1.2. Let J = H3(R), the Jordan algebra of real symmetric matrices of order
three with product x◦y = 1

2(xy+yx). A Jordan frame {e1, e2, e3} and the induced Peirce
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dim Jij Iso. class
1 Hn(R)
2 Hn(C)
4 Hn(H)
8 H3(O)

algebra
R real numbers
C complex numbers
H quaternions
O octonions

Table 6.1: Isomorphism class as function of off-diagonal (i 6= j) Peirce-space dimension
for simple algebras of rank n ≥ 3. Rank-one and rank-two algebras are isomorphic to
the real numbers and the spin-factors, respectively. Hermitian matrices of order n with
entries from T are denoted Hn(T).

spaces are

e1 =

1 0 0
0 0 0
0 0 0

 e2 =

0 0 0
0 1 0
0 0 0



e3 =

0 0 0
0 0 0
0 0 1



J11 =

∗ 0 0
0 0 0
0 0 0

J22 =

0 0 0
0 ∗ 0
0 0 0

J33 =

0 0 0
0 0 0
0 0 ∗



J12 =

0 ∗ 0
∗ 0 0
0 0 0

J13 =

0 0 ∗
0 0 0
∗ 0 0

J23 =

0 0 0
0 0 ∗
0 ∗ 0


where Jij is the subspace of matrices with indicated sparsity pattern. Note each Jii has
dimension one and all Jij have the same dimension, consistent with Lemma 6.1.2.

� 6.1.3 Isomorphic simple algebras

Recall the rank of a simple algebra equals the cardinality of a Jordan frame. For simple
algebras, rank and the dimension of off-diagonal Peirce spaces yield an isomorphism
test ([51, p.97]):

Proposition 6.1.1. Let JA and JB be simple Euclidean Jordan algebras with ranks at
least two. Let JAij ⊂ JA be any off-diagonal Peirce space induced by a Jordan frame,
and similarly define JBkl ⊂ JB. Then, JA and JB are isomorphic if and only if they
have the same rank and dim JAij = dim JBkl.

Note that rank and off-diagonal Peirce space dimension also indicate isomorphism class
(Table 6.1).

� 6.2 Algorithm

A complete procedure for constructing an isomorphism appears in Algorithm 6.1.
The remainder of this chapter explains the steps, which are readily implemented using
linear algebra. In particular, one obtains a Jordan frame from the spectral decomposi-
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Algorithm 6.1: Finds isomorphism between Euclidean Jordan Algebras
Input: two isomorphic algebras JA and JB
Output: an isomorphism Φ : JA → JB
begin

for each K ∈ {A,B} do
Find Jordan frame for JK and its simple partition (Definition 6.3.1)
Get simple ideals {JKi }mi=1 of JK from simple partition (Theorem 6.3.1)

end
Find a matching

{
(JAi ,JBσ(i))

}m
i=1

of isomorphic ideals using Proposition 6.1.1.
For each pair (JAi ,JBσ(i)), find isomorphism Φi : JAi → JBσ(i)
return Φ = ⊕m

i=1 Φi

end

tion of a regular element, where a random (e.g., uniform) combination of basis elements
is regular. The simple partition of a Jordan frame is induced by an equivalence relation
defined by the nonzero Peirce spaces (Section 6.3). A matching of isomorphic ideals is
just a matching in a bipartite graph G with node sets {JAi }mi=1 and {JBj }mj=1, where JAi
and JBj are adjacent if and only if they are isomorphic; i.e., if and only if they have the
same rank and off-diagonal Peirce-space dimension (Proposition 6.1.1, Section 6.1.3).
Finally, isomorphisms between simple algebras are isometries induced by special or-
thogonal bases (Section 6.4) found (in part) by subroutines from Section 6.5. We now
fill in missing details, beginning with identification of simple ideals.

� 6.3 Decomposition into simple ideals

Any Euclidean Jordan algebra J equals an orthogonal direct-sum of its simple ideals
(Proposition 1.6.1). If J were an associative algebra, we could find these ideals using
methods from [50, 72, 89, 42]. It turns out a Jordan analogue of [89] holds. It involves
finding a partition of any Jordan frame and then constructing a new set of idempotents
by summing over each partition class. The nonzero Peirce spaces associated with this
new set are precisely the simple ideals.

The mentioned partition of a Jordan frame {ei}ni=1 is defined by the nonzero Peirce
spaces it induces. Formally, write ei ∼ ej if and only if Jij 6= {0}. The relation ∼ is
is an equivalence relation [67, 2.9.4iv and 2.9.5]. It follows the equivalence classes of ∼
form a partition of {ei}ni=1:

Definition 6.3.1. The simple partition of a Jordan frame {ei}ni=1 is the set of equiv-
alence classes P1, . . . , Pm induced by the equivalence relation ∼.

From the simple partition, we can directly construct the decomposition into simple
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ideals:

Theorem 6.3.1. Let {ei}ni=1 be a Jordan frame of J with simple partition P1, . . . , Pm.
For each Pk, define the new idempotent vk = ∑

ei∈Pk ei and the Peirce space

Jk = {x ∈ J : vk ◦ x = x}.

Then, Jk is ideal of J and the orthogonal direct-sum decomposition holds:

J =
m⊕
k=1

Jk.

Further, viewed as an algebra, Jk is simple with identity element vk and Jordan frame
Pk.

Proof. Let ⊕1≤i≤j≤nJij denote the Peirce decomposition induced by the Jordan frame.
That J = ⊕mk=1Jk is immediate, since it equals ⊕1≤i≤j≤nJij with all trivial subspaces
removed from the summation by definition of the simple partition.

That Jk is an ideal follows by applying the Peirce Multiplication Rules (Lemma 6.1.1)
to the Peirce decomposition induced by {vk}mk=1; it also follows from the combination of
[67, 2.5.7], [67, 2.9.4,iv] and [67, 2.9.5]. To show Jk is simple, first note that Jij 6= {0}
if ei, ej ∈ Pk by definition of Pk. We will show this leads to a contradiction if Jk is not
simple. To begin, if Jk is not simple, then Jk = V1 ⊕ V2 for nontrivial ideals V1 and
V2 of Jk. Further |Pk| > 1, otherwise Jk is spanned by a single idempotent and has no
nontrivial ideal. We claim there exists ei, ej ∈ Pk satisfying ei ∈ V1 and ej ∈ V2. To
see this, note e` ∈ V1 or e` ∈ V2 for each ` ∈ Pk, otherwise e` = e`,1 + e`,2 for nonzero
idempotents e`,i ∈ Vi, contradicting the assumption e` is primitive. Further, vk cannot
be contained in V1 or V2 since (by definition) it is the identity of Jk; hence, there exists
ei ∈ V1 and ej ∈ V2 as claimed. Picking arbitrary x ∈ Jij , we have from the definition
of Jij that

ei ◦ x = 1
2x, ej ◦ x = 1

2x

and, since Vi are ideals, that 1
2x ∈ V1 ∩ V2. But since V1 ∩ V2 = {0} and since x was

arbitrary, we conclude Jij = {0}, a contradiction. Hence, Jk must be simple. That
vk is the identity is (as mentioned) by definition. That Pk is a Jordan frame is again
immediate: its elements sum to vk and are primitive and pairwise-orthogonal.

As noted in the proof, that Jk is an ideal follows immediately from results of [67,
Chapter 2]; hence, the contribution of Theorem 6.3.1 is that these ideals are simple.
We also note that each idempotent vk is central—that is, a ◦ (vk ◦ b) = (a ◦ vk) ◦ b for
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all a, b ∈ J. (See [67, 2.9.5] and [67, 2.9.4,iv].) Finding idempotents that are central (in
a related sense) is the basis of decomposition methods [50, 42] for associative algebras.

� 6.4 Isomorphisms between simple algebras

As mentioned, an isomorphism between two Jordan algebras equals a direct-sum of
isomorphisms between ideals that, when viewed as algebras, are simple. Hence, this
section will focus on the construction of isomorphisms between simple algebras. We let
‖x‖J denote the norm induced by 〈x, x〉J with a carefully chosen rescaling:

Definition 6.4.1. For a rank n simple algebra J with identity e, define the norm

‖x‖J :=
√
〈x, x〉J
2
n〈e, e〉J

.

The scaling 2
n〈e, e〉J ensures that x2 is idempotent if x has unit norm and x ∈ Jij for

i 6= j. (Note if J = Sn, then ‖·‖J is just the Frobenius norm rescaled such that Eij+Eji
has unit norm when i 6= j.) This and other properties of ‖ · ‖J follow:

Lemma 6.4.1 (Properties of ‖ · ‖J). Let J be a rank n simple algebra and let {Jij}ni,j=1
be the Peirce spaces induced by a Jordan frame {ei}ni=1. Then,

(a) For all x ∈ Jij with i 6= j, the identity x2 = ‖x‖2J(ei + ej) holds;

(b) For all x ∈ Jii, the identity x2 = 2(‖x‖2J)ei holds;

(c) For x, y ∈ J,

〈x, y〉J
1
n〈e, e〉J

= ‖x+ y‖2J − ‖x‖2J − ‖y‖2J.

Proof. Statement (a) is [51, Proposition IV.1.4], statement (b) follows from the fact ei
spans Jii and has norm ‖ei‖ = 1√

2 , and statement (c) is immediate from definitions.

We will find isomorphisms between algebras JA and JB are always isometries with
respect to ‖ · ‖JA and ‖ · ‖JB , which is essentially immediate from (a)-(b). Note state-
ment (c) indicates isometries preserve orthogonality; hence, they are mappings between
appropriately-scaled orthogonal bases.

We break the description of isomorphisms into three sections. The first concerns
simple algebras with rank two and the next simple algebras with rank at least three.
The third gives simplifications.
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� 6.4.1 Rank two algebras

As just noted, isomorphisms will necessarily be isometries. In the rank two case, this
is almost sufficient. Indeed, any isometry that also maps a Jordan frame of JA to a
Jordan frame of JB is an isomorphism:

Theorem 6.4.1 (Isomorphisms for rank two). Suppose JA and JB are simple algebras
of rank two. Let {eA1 , eA2 } ⊂ JA and {eB1 , eB2 } ⊂ JB be Jordan frames, and let Φ : JA →
JB be an invertible linear map with the following properties:

• ΦeA1 = eB1 and ΦeA2 = eB2 .

• Φ is an isometry with respect to the norms ‖ · ‖JA and ‖ · ‖JB , i.e.,

‖Φx‖JB = ‖x‖JA ∀x ∈ JA.

Then, Φ(JAij) = JBij for all i, j ∈ {1, 2}. Further, Φ is a Jordan isomorphism.

Proof. That Φ(JAii) = JBii follows since JAii and JBii are one dimensional (Lemma 6.1.2-
(a)). Further, if Φ is an isometry, it preserves orthogonality by Lemma 6.4.1-(c). Hence,
Φ(JA12) ⊆ (JB11)⊥ ∩ (JB22)⊥ = JB12. Finally, since Φ is invertible, Φ(JA12) = JB12, otherwise
Φ is not surjective.

To show that Φ is an isomorphism, we verify Φ(x ◦ x) = Φ(x) ◦ Φ(x) by checking
the products between each Peirce component of x.

Case xii ◦ xii Since the Peirce space JAii is spanned by eAi (Lemma 6.1.2-(a)), there
exists λ ∈ R for which xii = λeAi . Hence,

Φ(λeAi ◦ λeAi ) = λ2Φ(eAi ◦ eAi ) = λ2ΦeAi = λ2eBi = λ2eBi ◦ eBi = Φ(λeAi ) ◦ Φ(λeAi ).

Case xii ◦ x12 We let xii = λeAi and use the fact ei ◦ zij = 1
2z by definition of Jij :

λΦ(eAi ◦ x12) = λΦ(1
2x12) = λ

1
2Φ(x12) = λeB1 ◦ Φ(x12) = λΦ(eAi ) ◦ Φ(x12).

Case x12 ◦ x12 We use Lemma 6.4.1-(a) to express x12 ◦ x12 in terms of ‖ · ‖J and the
assumption Φ is an isometry mapping eAi to eBi :

Φ(x12 ◦ x12) = ‖x‖2JAΦ(eA1 + eA2 ) Lemma 6.4.1-(a)
= ‖x‖2JA(eB1 + eB2 ) ΦeAi = eBi

= ‖Φx‖2JB (eB1 + eB2 ) Φ is an isometry
= (Φx12) ◦ (Φx12) Lemma 6.4.1-(a).
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Note since an inner product induces ‖ · ‖JA and ‖ · ‖JB , constructing an isometry is
trivial: one simply maps a suitably-scaled orthogonal basis of JA (containing a Jordan
frame) onto an orthogonal basis of JB (containing a Jordan frame). The following
example illustrates this construction.

Example 6.4.1. Let JA denote the rank two Jordan algebra spanned by the symmetric
matrices

eA1 =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , eA2 =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 , tA1 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , tA2 =


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

 ,
with product x ◦ y = 1

2(xy + yx). (Note JA can be viewed as a proper subalgebra of
H4(R).) Let JB denote the spin-factor algebra R⊕ R3 spanned by

eB1 =
[

1
2

1
2 0 0

]T
, eB2 =

[
1
2 −1

2 0 0
]T
, tB1 =

[
0 0 1 0

]T
, tB2 =

[
0 0 0 1

]T
with product (x0⊕x)◦(y0⊕y) := (x0y0+xT y)⊕(x0y+y0x). The linear map Φ : JA → JB

satisfying

ΦeAi = eBi , ΦtAi = tBi i ∈ {1, 2}

maps the primitive idempotent eAi to eBi and is an isometry with respect to the norms

‖x‖2JA = 1
4 Trx2, ‖x‖2JB = xTx.

Hence, Φ is a Jordan isomorphism.

� 6.4.2 Rank n ≥ 3 algebras

Like the rank-two case, an isomorphism Φ between algebras with rank larger than two
will still be an isometry that maps one Jordan frame to another. Unfortunately, Φ
must satisfy additional conditions arising from the fact there are distinct off-diagonal
Peirce spaces (i.e., Jij and Jkl for which {i, j} 6= {k, l}). Nevertheless, Φ still has
straightforward structure that builds upon [76]. Specifically, the mapping between JAij
and JBij will equal the composition of isometries

WB
ij TW

A
ij ,

where T is an isomorphism between coordinate algebras and W
A/B
ij maps the Peirce

space JA/Bij onto the coordinate algebra of JA/B (and vice versa). Both W
A/B
ij and

the coordinate algebra are defined by Jordan matrix units, structured samples of each
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Peirce space defined next.

Jordan matrix units

A set of Jordan matrix units is a Jordan frame combined with elements of each off-
diagonal Peirce space that are both normalized and have consistent ‘orientation.’ For-
mally:

Definition 6.4.2. [91, Chapter 6] Let {ei}ni=1 be a Jordan frame for a simple algebra
J. Let {Jij}ni,j=1 be the set of Peirce spaces induced by {ei}ni=1. Then, {uij ∈ Jij}ni,j=1
is a set of Jordan matrix units for {Jij}ni,j=1 if for all distinct i, j, k ∈ [n]

• uii = ei, uij = uji

• uij ◦ uij = uii + ujj (normalization constraint)

• uij ◦ ujk = 1
2uik (orientation constraint)

The condition uij ◦ uij = uii + ujj holds if and only if ‖uij‖J = 1. The orientation
condition uij ◦ ujk = 1

2uik, however, is more complicated and is not satisfied simply
by sampling each Peirce space and normalizing. Nevertheless, matrix units always
exist [51, Lemma V.3.3] and, indeed, are not unique. The following example illustrates
non-uniqueness.

Example 6.4.2. Let J = H3(C), the Jordan algebra of complex Hermitian matrices of
order three with product x ◦ y = 1

2(xy + yx). The Jordan frame {e1, e2, e3} given by

e1 =

1 0 0
0 0 0
0 0 0

 , e2 =

0 0 0
0 1 0
0 0 0

 , e3 =

0 0 0
0 0 0
0 0 1


is completed to a set of Jordan matrix units by

u12 =

 0 a 0
a∗ 0 0
0 0 0

 , u13 =

 0 0 b

0 0 0
b∗ 0 0

 , u23 =

0 0 0
0 0 a∗b

0 b∗a 0


for any complex numbers a and b satisfying a∗a = b∗b = 1.

Note this example freely sets u12 and u13 (via a and b) and generates u23—taking
u23 = 2u12◦u13. Section 6.5.1 generalizes this construction to arbitrary simple algebras.
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Coordinate algebras

Matrix units {uij}ni,j=1 equip any off-diagonal Peirce space Jij with identity uij and
product

(x, y)→ 8(uik ◦ x) ◦ (ujk ◦ y),

where k is any element of [n] not equal to i or j. All choices of k define the same
product [51, Proposition V.3.4]. Further, off-diagonal Peirce spaces are isomorphic
algebras under this product. (The 23 = 8 factor appears because the Jordan product ◦
is applied three times.)

For our purposes, we only need to equip one Peirce space with a product, which we
can choose arbitrarily. Following McCrimmon [91], we equip J12 and refer to it as the
coordinate algebra. We also need a set of structured maps Wij : J → J from Jacobson
[73] induced by matrix units; see also [51, Chapter V]. We name these maps ij-Peirce
space transformations for reasons that will become clear (Lemma 6.4.2).

Definition 6.4.3. Let U = {uij ∈ Jij}ni,j=1 be Jordan matrix units for the set of Peirce
spaces {Jij}ni,j=1.

• [91, Chapter 6]. The coordinate algebra J̃12 induced by U is the Peirce space J12
equipped with product

x× y := 8(u13 ◦ x) ◦ (u23 ◦ y)

and identity u12.

• For i 6= j, the ij-Peirce-space-transformation Wij : J → J induced by U is the
map given by

Wij :=



x 7→ x {i, j} = {1, 2}
x 7→ 2u2k ◦ x {i, j} = {1, k}, k ≥ 3
x 7→ 2u1k ◦ x {i, j} = {2, k}, k ≥ 3
x 7→ 4u1i ◦ (u2j ◦ x) {i, j} ∩ {1, 2} = ∅.

The norm ‖ · ‖J is multiplicative with respect to coordinate-algebra multiplication,
i.e., ‖x × y‖J = ‖x‖J‖y‖J; see, e.g., [51, Proposition V.3.4]. This property implies
coordinate-algebra isomorphisms are isometries (e.g., Lemma 6.8.3). The ij-Peirce-
space-transformation is also an isometry with extremely special structure:

Lemma 6.4.2 (Peirce space transformations). For {i, j} 6= {1, 2}, let Wij : J →
J denote the ij-Peirce-space-transformation induced by a set of Jordan matrix units
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{uij}ni,j=1. Then,

Wij(J12) = Jij , Wij(Jij) = J12. (6.1)

Further, the restriction of Wij to J12⊕Jij is self-adjoint, isometric, and an involution,
i.e., for any x, y ∈ J12 ⊕ Jij,

• 〈Wijx, y〉 = 〈x,Wijy〉;

• ‖Wijx‖J = ‖x‖J;

• WijWijx = x.

Finally, uij = Wiju12 and u12 = Wijuij.

Proof. We first show the self-adjoint property. That Wij is self-adjoint when Wij =
2u2j ◦ x or Wij = 2u1j ◦ x is immediate since, by definition, multiplication is a self-
adjoint operation in a Euclidean Jordan algebra (Definition 1.6.1). When Wij equals
x 7→ 4u1i ◦ (u2j ◦ x), it is the composition of self-adjoint maps that, by Lemma 6.8.1,
commute on J12 ⊕ Jij . Hence, it is self-adjoint.

We next show the involution property. Consider the case i = 1 and j > 3 and let
x = x12 + x1j . Then,

W1jW1jx = 2u2j ◦ (2u2j ◦ x) 1= 2(u2j ◦ u2j) ◦ x
2= 2(u22 + ujj) ◦ x

3= x.

Here, the equality 1= follows from Lemma 6.8.1, the equality 2= from the definition of
matrix units (Definition 6.4.2) and the equality 3= from the Peirce Multiplication Rules
(Lemma 6.1.1). The case where Wij equals x 7→ 2u1j ◦ x has identical proof. For the
remaining case, consider distinct p, q, r, s ∈ [n]. For xrs ∈ Jrs, set zpq = upr ◦ (uqs ◦ xrs)
and note by the associativity identity (Lemma 6.8.1)

16upr ◦ (uqs ◦ zpq) = 16uqs ◦ (upr ◦ zpq). (6.2)

Setting wrq = uqs ◦ xrs ∈ Jrq, we have zpq = upr ◦ wrq and

upr ◦ zpq = upr ◦ (upr ◦ wrq) = 1
2(upr ◦ upr) ◦ wrq = 1

2(urr + upp) ◦ wrq = 1
4wrq.

Which shows

16uqs ◦ (upr ◦ zpq) = 4uqs ◦ wrq = 4uqs ◦ (uqs ◦ xrs) = 2(uqs ◦ uqs) ◦ xrs = xrs.

Taking (p, q, r, s) = (i, j, 1, 2) shows that WijWijx = x for all x ∈ J12. Taking
(p, q, r, s) = (1, 2, i, j) shows that WijWijx = x for all x ∈ Jij .
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The isometry property holds by combining the self-adjoint and involution property.
Specifically, since

〈Wijx,Wijx〉J = 〈WijWijx, x〉J = 〈x, x〉J,

we must have that ‖x‖J = ‖Wijx‖J given that ‖z‖2J = k〈z, z〉J for a constant indepen-
dent of z. (See Definition 6.4.1.)

Finally, that uij = Wiju12 and u12 = Wijuij holds by the definitions of Wij and
Jordan matrix units. For the relations (6.1), note the inclusion ⊆ holds by the Peirce
Multiplication rules; equality holds since Wij is an involution on J12⊕ Jij and is hence
surjective.

One can also express Jordan multiplication between elements of distinct off-diagonal
Peirce spaces using coordinate algebra multiplication. Formally:

Lemma 6.4.3. Let Wij : J → J and Wjk : J → J be the ij- and jk-Peirce-space-
transformations induced by a set of Jordan matrix units U . Then, for all x, y ∈ J and
distinct i, j, k ∈ [n],

xij ◦ yjk = Wik (Wijxij ×Wjkyjk)

Proof. We verify this directly:

xij ◦ yjk = (WijWijxij) ◦ (WjkWjkyjk)
= Wik (Wijxij ×Wjkyjk) .

Here, the first line uses the fact Wjk and Wik are involutions (Lemma 6.4.2) and the
second is a direct application of [73, Lemma 6].

Combining results leads to an isomorphism Φ between Jordan algebras with rank at
least three:

Theorem 6.4.2 (Isomorphisms for rank n ≥ 3). Suppose JA and JB are simple algebras
of rank n ≥ 3 with Jordan frames {eAi }ni=1 and {eBi }ni=1. For K ∈ {A,B}, let

• UK be Jordan matrix units for the Peirce spaces {JKij }ni,j=1 induced by {eKi }ni=1;

• J̃K12 and WK
ij be the coordinate algebra and ij-Peirce-space-transformation induced

by UK ;

• T : J̃A12 → J̃B12 denote an isomorphism between the coordinate algebras J̃A12 and
J̃B12, i.e.,

T (x× y) = (Tx)× (Ty).
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Then, the unique linear map Φ : JA → JB satisfying

• ΦeAi = eBi for all i ∈ [n],

• Φx = WB
ij TW

A
ij for all x ∈ JAij with i 6= j,

is an isomorphism between JA and JB.

Proof. We verify Φ(x2) = (Φx)2 by considering products between Peirce components
seperately. For this, we let i, j, k, l denote distinct integers.

Cases xij ◦ xkl, xii ◦ xkl. Under the assumption on i, j, k, l, we have that both Φ(xij ◦
xkl) and Φ(xij ◦ xkl) equal Φ(0) by the Peirce Multiplication Rules (Lemma 6.1.1).
Further, Φ maps JAij , JAii , and JAkl into JBij , JBii , and JBkl, respectively. Hence, the Peirce
Multiplication Rules (Lemma 6.1.1) also show

Φ(xij) ◦ (Φxkl) = 0, Φ(xii) ◦ (Φxkl) = 0.

We conclude Φ(xij) ◦ (Φxkl) = Φ(xij ◦ xkl) and Φ(xii) ◦ (Φxkl) = Φ(xii ◦ xkl) as desired.

Cases xii ◦ xii, xii ◦ xij , xij ◦ xij . We apply Theorem 6.4.1 to show the map Φ̃ :=
Φii + Φjj + Φij is a Jordan isomorphism between the subalgebras JAii + JAij + JAjj and
JBii + JBij + JBjj . By construction, Φ̃ is an invertible transformation mapping eAi to eBi
and eAj to eBj . Further, by Lemmas 6.4.2 and 6.8.3 it is an isometry. Hence, it satisfies
the hypothesis of Theorem 6.4.1 and is a Jordan isomorphism.

Case xij ◦ xjk. The prove the remaining case, we use the multiplication identity given
by Lemma 6.4.3 and the fact WK

ml is an involution (Lemma 6.4.2); the line marked (?)
uses the assumption T is an isomorphism:

Φik(xij ◦ xjk) = WB
ikTW

A
ik(xij ◦ xjk)

= WB
ikTW

A
ikW

A
ik

(
WA
ij xij ×WA

jkxjk
)

(Lemma 6.4.3)

= WB
ikT

(
WA
ij xij ×WA

jkxjk
)

(Lemma 6.4.2)

= WB
ik

(
(TWA

ij xij)× (TWA
jkxjk)

)
(?)

= WB
ik

(
(WB

ijW
B
ij TW

A
ij xij)× (WB

jkW
B
jkTW

A
jkxjk)

)
(Lemma 6.4.2)

=
(
WB
ij TW

A
ij xij

)
◦
(
WB
jkTW

A
jkxjk)

)
(Lemma 6.4.3)

= (Φxij) ◦ (Φxjk)

The isomorphism of Theorem 6.4.2 strongly relates to one used to prove Jacobson’s
coordinization theorem [76, Theorem 9.1]; see also [75] and [91, Chapter 6]. Specifically,
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Jacobson constructs an isomorphism between a rank-three algebra JA and an algebra
of matrices with elements in J̃12. His construction involves the maps WA

ij . One can
also use coordinate-algebra isomorphisms and WA

ij to prove the Jordan-von Neumann-
Wigner classification of simple algebras (Proposition 1.6.1); see, e.g., [51, Chapter V]
for such a proof.

� 6.4.3 Simplifications

Rank two algebras The description of isomorphisms between rank-two algebras (Theo-
rem 6.4.1), though crucial for proving Theorem 6.4.2, is actually more complicated than
necessary. The following simplification removes explicit reference to Jordan frames, us-
ing instead the identity elements of JA and JB:

Corollary 6.4.1. Let JA and JB be rank two algebras with identities eA and eB. Let
Φ : JA → JB be an invertible map that is both an isometry and satisfies ΦeA = eB.
Then, Φ is a Jordan isomorphism.

Proof. By Theorem 6.4.1, the claim follows if we can construct a Jordan frame for
which ΦeAi = eBi . Towards this, let vA be any element orthogonal to eA with ‖vA‖JA =
‖eA‖JA . Define vB = ΦvA. Since Φ is an isometry, vB and eB are orthogonal and
‖vB‖JB = ‖eB‖JB . Further, Φ(eA ± vA) = eB ± vB. We now show

{
1
2(eA ± vA)

}
and{

1
2(eB ± vB)

}
are Jordan frames.

To begin, 1
2(eA ± vA) are clearly pairwise orthogonal. We need to show they are

also idempotent. Towards this, note
1
2(eA + vA) ◦ 1

2(eA + vA) = 1
4(eA + 2vA + vA ◦ vA).

Idempotency follows if vA ◦ vA = eA. In any Peirce decomposition, vA11 = −vA22 since
vA is orthogonal to eA. Hence, vA ◦ vA = λeA by the Peirce Multiplication Rules and
Lemma 6.4.1-(a). But

〈eA, eA〉JA = 〈vA, vA〉JA = 〈vA ◦ vA, eA〉JA = 〈λeA, eA〉JA ,

showing λ = 1 as desired. That 1
2(eA−vA) is idempotent has identical proof. It follows

1
2(eA±vA) is a Jordan frame; that 1

2(eB±vB) is a Jordan frame follows from an identical
argument.

Note this corollary generalizes a widely-used transformation between the algebra
H2(R) of real symmetric matrices and the spin-factor algebra R×R2. Specifically, the
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map Φ satisfying

Φ
([
a+ b c

c a− b

])
= (a, b, c)T

maps the identity matrix to (1, 0, 0)T and is an isometry; hence, it is a Jordan isomor-
phism. As a consequence, Φ maps S2

+ onto the Lorentz cone Q3, a fact we exploited in
Chapter 2.

One-dimensional coordinate algebras Recall isomorphisms between rank n ≥ 3 algebras
involve the composition of maps WijTWij , where T was an isomorphism between coor-
dinate algebras J̃A/B12 (Theorem 6.4.2). This composition simplifies when the coordinate
algebras are one-dimensional. Indeed, we can restate Theorem 6.4.2 using only matrix
units:

Corollary 6.4.2. Let JA and JB denote rank n, simple algebras. Let {uAij}ni,j=1 ⊂
JA and {uBij}ni,j=1 ⊂ JB denote Jordan matrix units. Finally, suppose the coordinate
algebras J̃A12 and J̃B12 induced by these units are one-dimensional. Then, the linear map
Φ : JA → JB satisfying

ΦuAij = uBij

is uniquely defined and invertible. Further, it is a Jordan isomorphism.

Proof. Under this assumption, every Peirce space JA/Bij is spanned by u
A/B
ij , giving

uniqueness. Letting T denote uA12 7→ uB12 (extended via linearity) gives a coordinate-
algebra isomorphism. By Lemma 6.4.2, WA

ij u
A
ij = uA12 and WB

ij u
B
12 = uBij . Hence,

uBij = WB
ij TW

A
ij u

A
ij , showing Φ is a Jordan isomorphism (Theorem 6.4.2).

Recall J̃A/B12 is one-dimensional precisely when JA/B is isomorphic to Hn(R), the Jordan
algebra of real symmetric matrices of order n. Such algebras arise frequently in the
preprocessing of a semidefinite optimization problems; see, e.g., [108, Section 6].

� 6.5 Subroutines

Isomorphism between simple algebras of rank n ≥ 3 require a set of matrix units and
a coordinate-algebra isomorphism. We now give subroutines that find these objects.
These routines assume Peirce decompositions of each ideal (induced by a Jordan frame),
which can be obtained from the simple partition (Theorem 6.3.1).

� 6.5.1 Finding Jordan matrix units

Suppose J is a simple Euclidean Jordan algebra. Recall Jordan matrix units (Defini-
tion 6.4.2) for J consist of a Jordan frame {uii}ni=1 and uij from each off-diagonal Peirce
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space Jij satisfying

u2
ij = uii + ujj ∀i 6= j (normalization), uij ◦ ujk = 1

2uik (orientation).

We will give a procedure for generating uij satisfying these conditions. The input will
be x ∈ J with structured off-diagonal Peirce-support:

Definition 6.5.1 (Off-diagonal Peirce-support). Let {Jij}ni,j=1 be the Peirce spaces
induced by a Jordan frame of a simple algebra J. The off-diagonal Peirce-support of
x ∈ J is the undirected graph G = ([n], E) for which {i, j} ∈ E iff xij (the ij-th Peirce
component of x) is nonzero (recalling xij = xji).

Suppose x ∈ J has off-diagonal Peirce-support G equal to a tree—i.e., a connected
graph with no cycles. Each pair of nodes is uniquely connected by a path. If one labels
each edge in G by its corresponding sample 1

‖xij‖J
xij , each path in G induces a product

of samples. The following shows the set of such products equals a set of matrix units.

Theorem 6.5.1 (Tree-induced matrix units). Let {ei}ni=1 be a Jordan frame for a rank
n simple algebra J. Let {Jij}ni,j=1 be the set of Peirce spaces induced by {ei}ni=1. Suppose
the off-diagonal Peirce-support of x ∈ J equals a tree G = ([n], E). For each node i ∈ [n]
and edge {i, j} ∈ E, define

uii := ei, uij := xij
‖xij‖J

, uji := uij .

For each edge {i, j} ∈ E define the linear maps Uij : J→ J and Uji : J→ J via

Uijx = 2uij ◦ x, Ujix = 2uji ◦ x.

Finally, if {i, j} /∈ E, let p1, p2, . . . , pm ∈ [n] × [n] denote the unique path from i to j
and define

uij := UpmUpm−1 · · ·Up2up1 , uji := Up1Up2 · · ·Upm−1upm . (6.3)

Then, uij ∈ Jij. Further, {uij}ni,j=1 is a set of Jordan matrix units, i.e., for all distinct
i, j, k ∈ [n]:

1. uii = ei

2. uij = uji

3. uij ◦ ujk = 1
2uik

4. uij ◦ uij = uii + ujj
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Proof. That uij ∈ Jij follows by the Peirce Multiplication Rules (Lemma 6.1.1). To
show the uij form a set of matrix units, we verify Statements 1-4. Statement 1 is
immediate from definition of uii. For Statement 2, we note uij = uji holds by definition
if {i, j} is an edge. Otherwise, letting p1, . . . , pm denote the unique path from i to j
and using the definition (6.3) shows

UpmUpm−1 · · ·Up2up1︸ ︷︷ ︸
uij

a= Lup1
Up2 · · ·Upm−12upm

b= Up1Up2 · · ·Upm−1upm︸ ︷︷ ︸
uji

,

where Lup1
denotes x 7→ up1 ◦ x. Here, the equality a= follows from Lemma 6.8.2 and b=

by replacing 2upm and Lup1
with upm and Up1 .

For Statement 3, suppose both {i, j} and {j, k} are non-edges and let p1, . . . , pm
and q1, . . . , q` denote the unique paths from i to j and from j to k, respectively. Using
(6.3), we have

ujk ◦ uij = (Uq`Uq`−1 · · ·Uq2uq1) ◦ (UpmUpm−1 · · ·Up2up1).

We can now iteratively pull out each Uqr (for r = `, ` − 1, · · · , 1) term by using the
identity (x ◦ y) ◦ z = x ◦ (y ◦ z) with x = Uqr and z = UpmUpm−1 · · ·Up2up1 :

uij ◦ ujk = (Uq`Uq`−1Uq`−2 · · ·Uq2uq1) ◦ (UpmUpm−1 · · ·Up2up1)
= Uq`

(
(Uq`−1Uq`−2 · · ·Uq2uq1) ◦ (UpmUpm−1 · · ·Up2up1)

)
= Uq`Uq`−1

(
(Uq`−2 · · ·Uq2uq1) ◦ (UpmUpm−1 · · ·Up2up1)

)
...

= Uq`Uq`−1Uq`−2 · · ·Uq2

(
uq1 ◦ (UpmUpm−1 · · ·Up2up1)

)
= Uq`Uq`−1Uq`−2 · · ·Uq2

1
2Uq1UpmUpm−1 · · ·Up2up1

= 1
2uik,

where the last line uses (6.3) and the fact p1, . . . , pm, q1, . . . , q` is the unique path from
i to k. The case where only {i, j} is an edge has essentially identical proof. Finally,
if both {i, j} and {j, k} are edges, then {i, k} is a non-edge—otherwise the tree has a
cycle. Hence, applying (6.3) to the path (i, j), (j, k) shows uik = Ujkuij = 2ujk ◦ uij .

We only need to prove Statement 4 if {i, j} is a non-edge since it otherwise holds
by assumption. Let p1, p2 . . . , pm denote the path from i to j. For 1 ≤ ` ≤ m, define
z` ∈ Jk`i via

z` :=

up1 ` = 1,
Up`Up`−1 · · ·Up2up1 2 ≤ ` ≤ m.
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Using induction, we will show z2
` = uk`k`+uii, noting the base case holds by assumption.

To ease notation let (r, s) equal p`+1 (which implies k` = r and k`+1 = s). Since
z`+1 ∈ Jsi and since z`+1 = 2urs ◦ z`,

(2urs ◦ z`)2 = λ(uii + uss)

for some λ. We will show λ = 1 to prove Statement 4. Since uii and uss are orthogonal,

λ〈uii, uii〉 = 〈λ(uii + uss), uii〉
= 〈(2urs ◦ z`)2, uii〉
= 〈2urs ◦ z`, (2urs ◦ z`) ◦ uii〉
= 〈2urs ◦ z`, urs ◦ z`〉
= 〈z`, (2urs ◦ (urs ◦ z`))〉
= 〈z`, (urs ◦ urs) ◦ z`〉
= 〈z`, (urr + uss) ◦ z`〉

= 1
2〈z`, z`〉.

But under the inductive hypothesis that z2
` = uii + urr, it follows that

〈z`, z`〉 = 〈z2
` , e〉 = 〈uii + urr, e〉 = 〈uii, e〉+ 〈urr, e〉 = 〈uii, uii〉+ 〈urr, urr〉 = 2〈uii, uii〉,

where the last equality follows given that primitive idempotents have the same norm
by Lemma 6.4.1-(b). Hence, λ〈uii, uii〉 = 〈uii, uii〉, showing λ = 1 as desired.

Theorem 6.5.1 suggests an obvious procedure for constructing matrix units that
involves enumerating all paths in tree. It turns out we can state an alternative procedure
(Algorithm 6.2) that avoids enumeration of these paths. It arises from the following
observation:

Lemma 6.5.1. Let U ⊂ J be a set of Jordan matrix units and let coneU := {λu : u ∈
U, λ ≥ 0} denote the cone generated by U . If x, y ∈ coneU , then x ◦ y ∈ coneU .

Proof. Suppose x, y ∈ coneU . Then, by definition, x = ∑
u∈U λuu and y = ∑

u∈U βuu

for some λu ≥ 0 and βu ≥ 0. Hence,

x ◦ y =
∑
u∈U

∑
w∈U

λuβwu ◦ w.

From the definition of matrix units, u ◦ w ∈ coneU if u,w ∈ U . Hence, x ◦ y ∈
coneU .
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To see the algorithmic implications of Lemma 6.5.1, consider x ∈ J with xii ≥ 0
and off-diagonal Peirce-support equal to a tree G. Then, x ∈ coneU for the set of
matrix units U of Theorem 6.5.1. By Lemma 6.5.1, the Peirce components of y =
x + x2 + x3 + · · · + xm are also in the cone generated by U for all m. Further, if m
is sufficient large, each Peirce component is nonzero (since G is a tree). It follows we
can recover the full set of matrix units by normalizing the Peirce components of y.
Example 6.5.1 illustrates this procedure and Algorithm 6.2 states it formally. Note we
never need to take m larger than n by the Peirce Multiplication Rules.

Example 6.5.1. Let J = H4(R), the Jordan algebra of symmetric matrices of order
four with product x ◦ y = 1

2(xy + yx). For the Peirce decomposition induced by the
Jordan frame {ei}4i=1, given by

e1 =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , e2 =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , e3 =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 , e4 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 ,
the following matrix x ∈ J has off-diagonal Peirce-support equal to a tree:

x =


0 0 0 1
0 0 1 −1
0 1 0 0
1 −1 0 0

 .
Letting y = x+ x2 + x3 and u ∈ J satisfy uij = uij

1
‖yij‖J

and uii = 1√
2

yii
‖yii‖J

gives

y =


1 −1 −1 3
−1 2 3 −4
−1 3 1 −1
3 −4 −1 2

 , u =


1 −1 −1 1
−1 1 1 −1
−1 1 1 −1
1 −1 −1 1

 .
The Peirce components of u form a set of Jordan matrix units; the diagonal components
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Algorithm 6.2: Finds matrix units for Peirce decomposition J = ⊕
1≤i≤j≤n Jij

Input: x ∈ J with xii ≥ 0 and off-diagonal Peirce-support equal to a tree.
Output: A set of Jordan matrix units U = {uij ∈ Jij}ni,j=1 with x ∈ coneU .
begin

y ← 0, x̂← x
repeat

y ← y + x̂
x̂← x̂ ◦ x

until all yij 6= 0;
for each (i, j) ∈ [n]× [n] do

if i = j, rescale so uii is idempotent: uii ← 1√
2

yii
‖yii‖J

if i 6= j, rescale so u2
ij is idempotent: uij ← yij

‖yij‖J

end
return {uij ∈ Jij}ni,j=1

end

satisfy uii = ei and the (distinct) off-diagonal components (recall uij = uji) are

u12 =


0 −1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

 , u13 =


0 0 −1 0
0 0 0 0
−1 0 0 0
0 0 0 0

 , u14 =


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

 ,

u24 =


0 0 0 0
0 0 0 −1
0 0 0 0
0 −1 0 0

 , u34 =


0 0 0 0
0 0 0 0
0 0 0 −1
0 0 −1 0

 , u23 =


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 .

� 6.5.2 Constructing coordinate-algebra isomorphisms

Recall the Jordan isomorphism of Theorem 6.4.2 is defined in part by a coordinate-
algebra isomorphism T . It turns out we can iteratively construct T using an idea of
Jacobson [74, Section 3]. This idea exploits the fact coordinate algebras are Euclidean
Hurwitz algebras:

Definition 6.5.2 (e.g., Chapter V of [51]). An algebra E over R (with product denoted
×) is a Euclidean Hurwitz algebra if there exists an identity u and an inner product
〈·, ·〉E for which the norm ‖x‖E :=

√
〈x, x〉E is multiplicative, i.e.,

‖x× y‖E = ‖x‖E‖y‖E ∀x, y ∈ E.
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Lemma 6.5.2 (e.g., Proposition V.3.4 of [51]). Let J be a simple, Euclidean Jordan
algebra of rank n ≥ 3 and let J̃12 be the coordinate algebra induced by a set of Jordan
matrix units. Then, J̃12 is a Euclidean Hurwitz algebra. Specifically,

‖x× y‖J = ‖x‖J‖y‖J

for the norm ‖x‖J of Definition 6.4.1.

We exploit a key property of Euclidean Hurwitz algebras: they admit construction of
an ascending chain of subalgebras via the Cayley-Dickson construction. Specifically, one
can iteratively extend any proper subalgebra (containing the identity) to a subalgebra
of twice the dimension:

Lemma 6.5.3 (Proposition V.1.4 of [51]). Let E be a Euclidean Hurwitz algebra with
identity u. Let S ( E be a proper subalgebra containing u, and let S⊥ := {x ∈ E :
〈x, y〉E = 0 ∀y ∈ S} denote its orthogonal complement. For j ∈ S⊥ with unit norm
(i.e., ‖j‖E = 1), define the subspace S× j := {x× j : x ∈ S}. The following statements
hold:

(a) The orthogonal complement S⊥ contains S× j; hence, S⊕ (S× j) is a direct-sum
of subspaces.

(b) The subspace S ⊕ (S × j) is a subalgebra of E, i.e., if x, y ∈ S ⊕ (S × j), then
x× y ∈ S ⊕ (S × j).

(c) For all w, x, y, z ∈ S, the following holds

(w + x× j)× (y + z × j) = (w × y − z∗ × x) + (x× y∗ + z × w)× j.

where t∗ := 2〈t, u〉Eu− t.

As sketched in Jacobson [74, Section 3], an isomorphism between proper subalgebras
can also be extended via this construction. Iterating this procedure yields an isomor-
phism between the full algebras. For completeness, we state these iterations explicitly
(Algorithm 6.3). Correctness relies on the following theorem:

Theorem 6.5.2 (Isomorphism Extensions). Let EA and EB be Euclidean Hurtwitz
Algebras and let SA ⊆ EA and SB ⊆ EB be proper subalgebras containing the identity
elements of EA and EB, respectively. Let T : SA → SB be an isomorphism between SA

and SB, i.e., an invertible linear map satisfying

T (x× y) = T (x)× T (y) ∀x, y ∈ SA.
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Finally, for jA ∈ (SA)⊥ and jB ∈ (SB)⊥ of unit norm, define U : (SA×jA)→ (SB×jB)
via

U(x× jA) := (Tx)× jB ∀x ∈ SA.

Then, the extension T⊕U is an isomorphism between SA⊕(SA×jA) and SB⊕(SB×jB).

Proof. Let T̃ = T⊕U and consider p = w+x×jA and q = y+z×jA for w, x, y, z ∈ SA.
Applying the identity Lemma 6.5.3-(c) to p× q, using the definition of T̃ , and using

the fact T is an isomorphism gives:

T̃ (p× q) = T̃
(
(w × y)− z∗ × x+ (x× y∗ + z × w)× jA

)
= T (w × y − z∗ × x) + (T (x× y∗ + z × w))× jB

= (Tw × Ty)− (Tz∗ × Tx) + (Tx× Ty∗ + Tz × Tw)× jB (6.4)

By definition of T̃ and Lemma 6.5.3-(c),

T̃ p× T̃ q =
(
Tw + (Tx)× jB

)
×
(
Ty + (Tz)× jB

)
= Tw × Ty − (Tz)∗ × Tx+ (Tx× (Ty)∗ + Tz × Tw)× jB (6.5)

Since T is an isomorphism, (Tx)∗ = Tx∗; see [74, Section 3]. Hence, the expressions
(6.4) and (6.5) are equal, showing T̃ (p× q) = T̃ p× T̃ q as desired.

Note up to isomorphism, the only Euclidean Hurwitz algebras are the real numbers,
the complex numbers, the quaternions and the octonions. The number of ‘while’ loop
iterations of Algorithm 6.3 identifies the isomorphism class. Specifically, zero iterations
occur if EA and EB are isomorphic to the real numbers, one iteration occurs if they
are isomorphic to the complex numbers, two iterations if the quaternions, and three
iterations if the octonions.

� 6.6 Computational considerations and numerical examples

We next discuss ways of optimizing presented algorithms for computational efficiency.
(Chapter 7 gives numerical examples.) To begin, when JA and JB are matrix algebras—
i.e., subalgebras of Hn(T) where T denotes the real numbers, complexes, quaternions
or octonions—the following optimizations are possible:

• Efficient storage of idempotents via factorization;

• Finding Peirce components via congruence transformation;

• Refining non-primitive idempotents by computing in a lower-rank algebra;
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Algorithm 6.3: Finds isomorphism between Euclidean Hurwitz algebras (e.g.,
coordinate algebras)
Inputs: Isomorphic algebras EA and EB with identities uA and uB.
Output: An isomorphism T : EA → EB between EA and EB.
begin

Set SA = span{uA}, SB = span{uB}
Set T : SA → SB to the linear map satisfying TuA = uB.
while SA 6= EA do

1. Pick unit vectors jA ∈ (SA)⊥ and jB ∈ (SB)⊥

2. Define the map U : (SA × jA)→ (SB × jB) via

U(x× jA) = (Tx)× jB ∀x ∈ SA

3. Update SA, SB and extend map T via

SA ← SA ⊕ (SA × jA),
SB ← SB ⊕ (SB × jB),

T ← T ⊕ U

end
end
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• Finding sparse isomorphisms using diagonal idempotents.

We overview each of these ideas and note they are straightforward observations from
known results. Indeed, refining idempotents in associative algebras is proposed in [49,
Section 3.2]. Sparse isomorphisms arise by exploiting sparsity of Peirce decompositions
induced by diagonal idempotents; analogous Peirce spaces of matrix *-algebras (called
cells) are studied extensively in [142]. For simplicity, we focus only on algebras of real
symmetric matrices (i.e., subalgebras of Hn(R)), which are also the most practically-
relevant.

Factorized idempotents Any idempotent ei of Hn(R) is simply a projection matrix.
Hence, it has a factorization ei = qiq

T
i for qi ∈ Rn×ri with orthonormal columns. If

{ei}mi=1 is a Jordan frame (of a subalgebra), the corresponding set of factors {qi}mi=1 are
pairwise orthogonal—i.e., qTi qj = 0ri×rj for i 6= j. It follows we can store a Jordan frame
by storing the matrix q = (q1, q2, . . . , qm) ∈ Rn×p (where p ≤ n) and the block-partition
of its columns, i.e., the partition P1, . . . Pm of [p] for which j ∈ Pi if the jth column of q
is a column of qi. This allows one to store a general Jordan frame using no more than
n2 numbers as opposed to mn2.

Peirce components via congruence transformation The matrix q and its column parti-
tion P1, . . . , Pm also admit compact formulas for Peirce components. Letting ? denote
Hadamard (i.e., entrywise) multiplication, we have

xij = q
(
J ij ? (qTxq)

)
qT ,

where J ij is the 0/1 symmetric matrix induced by the partition classes of i and j:

[J ij ]uv =

1 (u, v) ∈ (Pi × Pj) ∪ (Pj × Pi).
0 otherwise.

This allows identification of all Peirce components by a single congruence transfor-
mation qTxq and application of different (non-overlapping) sparsity masks J ij . The
(equivalent) formula for off-diagonal Peirce components (Section 6.1)—given by xij =
2ei ◦ (x ◦ ej) + 2(ei ◦x) ◦ ej—suggests an arguably more complicated procedure unlikely
to benefit (as much) from highly-optimized matrix-multiplication libraries.

Refining idempotents Finding a Jordan frame is crucial for all computation described
in this paper. Often non-primitive idempotents are easily available (e.g., from a basis
element or from the spectral decomposition of a generator for J.) How, then, can these
idempotents be refined into sums of primitive idempotents to yield a Jordan frame?

First observe we can refine a non-primitive idempotent ei by working in the subal-
gebra Jii = {x ∈ J : x ◦ ei = x}—an observation made for associative algebras in [49,



Sec. 6.6. Computational considerations and numerical examples 203

Section 3.2]. Indeed, if {fj}rj=1 is a Jordan frame for Jii, then ei = ∑r
j=1 fj , yielding a

refinement. Next note if ei = qiq
T
i for qi ∈ Rn×ri , then Jii is isomorphic to

Ĵii :=
{
qTi xqi : x ∈ J

}
,

a subalgebra of Hri(R) with (ri ≤ n). This allows one to find a Jordan frame F for
Ĵii doing computation with smaller matrices. One can then construct a Jordan frame
{qixqTi : x ∈ F} for Jii—yielding the desired refinement of ei.

Diagonal idempotents and sparsity Suppose a subalgebra of Hn(R) contains a set of
idempotents that are diagonal matrices. Such diagonal idempotents induce sparse
Peirce spaces (e.g., Example 6.1.1), which enables construction of sparse Jordan frames,
sparse matrix units and, ultimately, sparse isomorphisms. The next example illustrates
this tremendous utility. We then discuss when diagonal idempotents arise.

Example 6.6.1 (Diagonal idempotents). The algebra J of symmetric matrices

J =




t1 t5 t6 t6
t5 t2 t4 t4
t6 t4 t3 t7
t6 t4 t7 t3

 : t ∈ R7


contains a set of diagonal idempotents {e1, e2, ê3} summing to the identity e:

e1 =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 e2 =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 ê3 =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 .
The set of idempotents {e1, e2, ê3} induces sparse Peirce spaces (partially-listed):

J12 =


0 t5 0 0
t5 0 0 0
0 0 0 0
0 0 0 0

 ,J23 =


0 0 0 0
0 0 t4 t4
0 t4 0 0
0 t4 0 0

 ,J13 =


0 0 t6 t6
0 0 0 0
t6 0 0 0
t6 0 0 0

 ,J33 =


0 0 0 0
0 0 0 0
0 0 t3 t7
0 0 t7 t3

 .
The following primitive idempotents e3, e4 ∈ J33 refine ê3

e3 = 1
2


0 0 0 0
0 0 0 0
0 0 1 1
0 0 1 1

 , e4 = 1
2


0 0 0 0
0 0 0 0
0 0 1 −1
0 0 −1 1

 ,
yielding a sparse Jordan frame {e1, e2, e3, e4}. The sets {e1, e2, e3} and {e4} form the
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simple partition of this frame. Hence, {e1, e2, e3} is a Jordan frame for a simple ideal.
It is completed to a set of sparse matrix units by

u12 =


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , u23 = 1√
2


0 0 0 0
0 0 1 1
0 1 0 0
0 1 0 0

 , u13 = 1√
2


0 0 1 1
0 0 0 0
1 0 0 0
1 0 0 0

 .
Each ideal of J is isomorphic to an algebra of real symmetric matrices. We can con-
struct an isomorphism Φ : H3(R) ⊕ R → J by mapping matrix units to matrix units
(Corollary 6.4.2):

Φ


a d e

d b f

e f c

⊕ g
 = (ae1 + be2 + ce3 + du12 + eu13 + fu23) + ge4, (6.6)

which upon substitution gives

Φ


a d e

d b f

e f c

⊕ g
 =


a d e√

2
e√
2

d b f√
2

f√
2

e√
2

f√
2

c+g
2

c−g
2

e√
2

f√
2

c−g
2

c+g
2

 .

Clearly a matrix representation of Φ in the bases (a, b, c, d, e, f, g)T and (t1, . . . , t7)T is
sparse.

Note sparsity of the isomorphism Φ is not guaranteed simply by existence of diagonal
idempotents—one must recognize and use these idempotents explicitly. We illustrate
this by constructing a different isomorphism using a Jordan frame not obtained from
the diagonal idempotents:

Example 6.6.1 (Continued). Consider the matrix q = (q1, q2, q3) and ẽi ∈ J and
ũij ∈ J defined via

q = 1
11


6 7 6
2 6 −9
9√
2
−6√

2
−6√

2
9√
2
−6√

2
−6√

2

 ẽi = qiq
T
i , ũij = qiq

T
j + qjq

T
i .

One can confirm {ẽi}3i=1 ∪ {e4} is a Jordan frame for J and that ũij completes {ẽi}3i=1
to a set of matrix units. Replacing {ei}3i=1 with {ẽi}3i=1 and uij with ũij in (6.6) yields
a different isomorphism Φ̃ that is not sparse. For example, x := (0, 0, 0, d, 0, 0, 0)T and
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y := (0, 0, 0, 0, f, 0, 0)T map to dense matrices ũ12 and ũ23:

Φ̃x = d

121


84 50 27√

2
27√

2
50 24 42√

2
42√

2
27√

2
42√

2 −54 −54
27√

2
42√

2 −54 −54

 Φ̃y = f

121


84 −27 −50√

2
−50√

2
−27 −108 42√

2
42√

2
−50√

2
42√

2 12 12
−50√

2
42√

2 12 12

 .

Indeed, each parameter of (a, b, c, d, e, f) maps to a fully dense matrix.

While diagonal idempotents may seem rare, they actually occur quite naturally. In-
deed, any coherent algebra [142, 69] (ubiquitous in the symmetry reduction of semidef-
inite optimization problems) has a set of diagonal idempotents (so-called fibers of an
underlying coherent configuration). These idempotents are orthogonal and sum to the
identity; hence, they induce a partition of [n]. Frequently, these partitions are naturally
interpreted as the orbit partition of a particular group action. Chapter 7 will introduce
a wider class of subspaces with diagonal idempotents.

� 6.7 Conclusion

We showed how to construct isomorphisms between Euclidean Jordan algebras and gave
explicit algorithms for this task. Via the Cayley-Dickson construction, we avoid explicit
reference to the isomorphism classes of the simple ideals, leading to a succinct algorithm
with no case statements (cf. [89]). Degrees-of-freedom available in this construction
were also illustrated, which include choices of Jordan frame, Jordan matrix units, and
coordinate-algebra isomorphism. We discussed optimizations for computational effi-
ciency; notably, we illustrated that diagonal idempotents lead to sparse Jordan frames
and ultimately sparse isomorphisms.

� 6.8 Appendix

� 6.8.1 Peirce associativity

Off-diagonal Peirce spaces satisfy the following associativity identities:

Lemma 6.8.1 (Lemma 1 of [73]). Consider a Peirce decomposition
⊕

1≤i≤j≤n Jij and
let i, j, k, l be distinct. Then,

• xij ◦ (yjk ◦ zkl) = (xij ◦ yjk) ◦ zkl

• (xij ◦ yjk) ◦ yjk = 1
2xij ◦ (yjk ◦ yjk)

We make two observations about the first identity. First, the indices (i, j), (j, k), (k, l)
form a path of length three in the complete graph with n nodes. Two, this identity is
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equivalent to the multiplication operators of xij and zkl commuting on the subspace
spanned by yjk. A generalization to longer paths stated in terms of commuting multi-
plication operators follows:

Lemma 6.8.2. Suppose the list p1, . . . , pm ∈ [n] × [n] of ordered pairs forms a simple
path in the complete graph on n nodes. Fix a Peirce decomposition

⊕
1≤i≤j≤n Jij. For

all xi ∈ Jpi, the following relationship holds

LxmLxm−1 · · ·Lx2x1 = Lx1Lx2 · · ·Lxm−1xm,

where Lxi : J→ J denotes the multiplication operator t 7→ xi ◦ t.

Proof. If m > n, let Lxm:n = LxmLxm−1Lxm−2 · · ·Lxn , if m < n, let

Lxm:n = LxmLxm+1Lxm+2 · · ·Lxn ,

and if m = n let Lxm:n = Lxm . With this notation, we want to show for m ≥ 3 that

Lxm:2x1 = Lx1:m−1xm.

We proceed by induction, noting the base case (m = 3) holds by the Lemma 6.8.1
identity (x1 ◦ x2) ◦ x3 = x1 ◦ (x2 ◦ x3). For m > 3, we have

Lxm:2x1 = xm ◦ (xm−1 ◦ (Lx(m−2):2x1))
= (Lx(m−2):2x1) ◦ (xm−1 ◦ xm) (6.7)
= (Lx1:m−3xm−2) ◦ (xm−1 ◦ xm) (6.8)

where line (6.7) uses Lemma 6.8.1 and line (6.8) uses the inductive hypothesis. Ifm = 4,
line (6.8) equals (x1 ◦ x2) ◦ (x3 ◦ x4) which, by Lemma 6.8.1, equals x1 ◦ (x2 ◦ (x3 ◦ x4))
showing the desired result. For m > 4, we can apply Lemma 6.8.1 iteratively. For
clarity, assume m > 6. Then, continuing from (6.8), these iterative applications take
the form:

= Lx1((Lx2:m−3xm−2) ◦ Lxm−1xm)
= Lx1:2((Lx3:m−3xm−2) ◦ Lxm−1xm))

...
= Lx1:m−4((Lxm−3xm−2) ◦ Lxm−1xm)
= Lx1:m−3(xm−2 ◦ Lxm−1xm)
= Lx1:m−2Lxm−1xm

= Lx1:m−1xm
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� 6.8.2 Coordinate-algebra isomorphisms

To prove Theorem 6.4.2, we used the fact coordinate-algebra isomorphisms are isome-
tries. This is a special case of the following (stated without proof in Jacobson [74,
Section 3]):

Lemma 6.8.3. Let T : EA → EB be an isomorphism between Euclidean Hurwitz
algebras EA and EB. Then, T is an isometry with respect to ‖ · ‖EA and ‖ · ‖EB .

Proof. Let u denote the identity of EA and suppose x = λu. Then ‖x‖EA = |λ|.
Further, since T is an isomorphism, Tu is the identity of EB, implying ‖Tu‖EB = 1.
This gives

‖Tx‖EB = T |λu‖EB = λ‖Tu‖EB = |λ|

showing ‖x‖EA = ‖Tx‖EB when x is in the span of u. Now suppose x ∈ (span{u})⊥.
Then, by [74, Section 3],

x× x = (−‖x‖2EA)u, Tx× Tx = (−‖Tx‖2EB )Tu.

Hence, if T (x× x) = Tx× Tx, it must hold that

‖x‖2EA = ‖Tx‖2EB .
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Chapter 7

Combinatorial variations and

computational results

In Chapter 5, we gave algorithms for finding a subspace that provably intersects the
solution set of a cone program formulated over the cone-of-squares of a Euclidean Jordan
algebra (i.e., a symmetric cone). In this chapter, we modify one of these procedures to
address issues of sparsity and efficiency. Specifically, we develop a variant that trades-
off the dimension of the identified subspace with the storage complexity of a basis.
These variants restrict to subspaces that have certain combinatorial descriptions. Like
in Chapter 5, the identified subspace will be a subalgebra of the Euclidean Jordan
algebra. Further, it will frequently contain diagonal idempotents, enabling construction
of a sparse isomorphism (Chapter 6.6) and, ultimately, a sparse projected reformulation
(Chapter 1.2.5) of the cone program. We also include computational results comparing
these combinatorial variations to the original algorithm of Chapter 5.

� 7.1 Preliminaries

To enable combinatorial descriptions of subspaces, this chapter restricts to Sn, the
Euclidean Jordan algebra of n × n symmetric matrices equipped with Jordan product
X ◦ Y := 1

2(XY + Y X) and inner product 〈X,Y 〉 := TrXY . In other words, this
chapter restricts to semidefinite programs (SDPs). Recall any special Jordan algebra
is isomorphic to a subalgebra of Sn for some n (Proposition 1.6.4). Hence, by finding
isomorphisms, one can execute the presented algorithms on cone programs formulated
over special algebras.1

1This approach comes with two caveats. First, execution depends on the isomorphism (which is not
unique). Second, the order n of the isomorphic subalgebra may be large; see Section 1.6.5.)

209
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The SDP of interest has decision variable X ∈ Sn and takes the following form

minimize TrCX
subject to X ∈ X0 + L,

X ∈ Sn+,

where C ∈ Sn and X0 ∈ Sn are fixed and L ⊆ Sn is a linear subspace. As shown
in Chapter 5, any admissible subspace S intersects the set of solutions, where admis-
sible means the orthogonal projection onto S satisfies the Constraint Set Invariance
Conditions (Definition 1.4.1). As also shown, any admissible subspace that is unital
(meaning it contains a unit element for Jordan multiplication) is a subalgebra. Given
these appealing properties, we presented an algorithm for finding the minimal-unital
subspace

Sopt =
⋂
{S ⊆ Sn : S is admissible and unital},

which is also admissible and unital since intersection preserves these properties.2
This chapter considers combinatorial analogues of Sopt induced by three families

of subspaces: the coordinate subspaces, the partition subspaces, and the 0/1 subspaces
(defined shortly). Each family is also closed under intersection. Hence, each leads to a
refinement of Sopt:

Scoord :=
⋂
{S ⊆ Sn : S is admissible, unital, and a coordinate subspace},

Spart :=
⋂
{S ⊆ Sn : S is admissible, unital, and a partition subspace},

S0/1 :=
⋂
{S ⊆ Sn : S is admissible, unital, and a 0/1 subspace}.

Figure 7.1 summarizes the basic properties of these subspaces.

� 7.1.1 Combinatorial families of subspaces

A coordinate, partition, or 0/1 subspace has an orthogonal basis B ⊂ {0, 1}n×n of
0/1 matrices. Equivalently, it is the span of 0/1 matrices that have pairwise disjoint
support, where, letting [n] := {1, . . . , n}, the support of X ∈ Sn is the following subset
of [n]× [n]:

supp(X) := {(i, j) ∈ [n]× [n] : Xij 6= 0} .
2Note that Sopt was denoted Smin,unit in Chapter 5 To ease notation, we use the shorter subscript

Sopt, meaning ‘optimal.’



Sec. 7.1. Preliminaries 211

The coordinate subspaces, partition subspaces, and 0/1 subspaces are differentiated by
the structure of B.

Coordinate subspaces

Suppose B ⊆ {0, 1}n×n is a set of pairwise orthogonal 0/1 matrices. Then the span of
B is a coordinate subspace if each B ∈ B is a standard basis matrix of Sn. That is, each
B ∈ B is in the span of Eij + Eji for some (i, j) ∈ [n] × [n], where Eij ∈ Rn×n is the
0/1 matrix with support equal to (i, j). Example coordinate subspaces of S3 are

S1 =

 a b 0
b c d

0 d e

 , S2 =

 a 0 0
0 b 0
0 0 c

 , S3 =

 a b 0
b c 0
0 0 0

 .
Coordinate subspaces are closed under intersection. Indeed, a basis for the intersec-
tion is just the intersection of bases, i.e., if coordinate subspaces S1 and S2 have 0/1
orthogonal bases B1 and B2, then a basis for S1 ∩ S2 is just B1 ∩ B2.

Finally, coordinate subspaces are in one-to-one correspondence with symmetric rela-
tions, i.e., subsets R of [n]×[n] satisfying (i, j) ∈ R if and only if (j, i) ∈ R. Specifically,
the support of∑B∈B B is a symmetric relation. Conversely, given a symmetric relation,
the span of {Eij + Eji : (i, j) ∈ R} is a coordinate subspace.

Partition subspaces

Suppose B ⊆ {0, 1}n×n is a set of pairwise orthogonal 0/1 matrices. The span of B is
a partition subspace if ∑B∈B B is the matrix of all ones. Since the matrices in B have
disjoint support, the supports of B ∈ B form a partition of [n]× [n]—hence, the name
partition subspace. Example partition subspaces of S3 are given by

S1 =

 a a b

a a c

b c d

 , S2 =

 a b b

b c b

b b d

 , S3 =

 a a b

a a b

b b c

 .
Like coordinate subspaces, partition subspaces are closed under intersection. For in-
stance, in the above examples, S1 ∩ S2 = S3. Generally, if partition subspaces S1 and
S2 induce partitions P1 and P2 of [n] × [n], then their intersection induces the join
P1
∨
P2, the finest partition refined by both P1 and P2.

While partition subspaces seem quite special, they arise naturally in symmetry
reduction of semidefinite programs. For example, the subset of Sn that commutes with
a group of permutation matrices is a partition subspace defined by an orbit partition
of [n]× [n]; see, e.g., [37]. The intersection of any coherent algebra with the symmetric
matrices is also a partition subspace (Section 1.5.3).
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Sn

Spart Scoord

S0/1

Sopt

subspace sparse basis sparse isomorphism data type of basis
Sopt no no dense matrices
Spart yes w/ diag. idemps. partition
Scoord yes always relation
S0/1 yes w/ diag. idemps. partition of relation

Figure 7.1: Hasse diagram of set inclusions, sparsity properties, and a data type
(mathematical object) used to represent the basis. Sparse isomorphism means a sparse
linear map exists between the subspace (when it is a subalgebra) and a particular
representation of an isomorphic algebra; see Section 7.3.2.

Zero-one subspaces

Suppose B ⊆ {0, 1}n×n is a set 0/1 matrices. Then, the span of B is a 0/1 subspace
simply when the matrices in B are pairwise orthogonal. Hence, the family of 0/1
subspaces contains coordinate subspaces, partition subspaces and subspaces that fall
into neither family:

S1 =

 a b 0
b c 0
0 0 0

 , S2 =

 a a c

a a c

c c d

 , S3 =

 a a 0
a a 0
0 0 0

 .
These subspaces are also closed under intersection. For instance, in the above examples,
S3 = S1∩S2. Note that any 0/1 subspace induces a partition of a relation. Specifically,
the support of each B ∈ B together form a partition of ∪B∈B supp(B). Finally, note
that 0/1 subspaces are precisely the subspaces closed under entrywise (i.e., Schur)
multiplication.

� 7.2 Algorithms

We now give algorithms for finding the minimal partition, coordinate, and 0/1 sub-
spaces. These algorithms are modifications of a Chapter 5 algorithm that finds Sopt,
the minimal unital subspace. We reproduce this algorithm below:
Here, PL : Sn → Sn denotes the orthogonal projection on the subspace L ⊆ Sn, and
CL ∈ Sn and X0,L⊥ ∈ Sn denote the points PL(C) and X0 − PL(X0), respectively.

Images as polynomial matrices Modifications of Algorithm 7.1 will find a coordinate,
partition, or 0/1 subspace that contains the image of a subspace under the mapX 7→ X2

or the map PL : Sn → Sn. As we will see, this is conveniently done if we represent the
image of a subspace under each map as a polynomial matrix, an idea inspired by [142].
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Algorithm 7.1:
S ← span{CL, X0,L⊥}
repeat
S ← S + PL(S)
S ← S + span{X2 : X ∈ S}

until converged.

Given a basis B for a subspace S, we construct this polynomial matrix as follows:

fX2(tB;B) :=
(∑
B∈B

tBB

)2

fL(tB;B) :=
∑
B∈B

tBPL(B),

where tB is a vector of scalar indeterminates indexed by B. Note the set of point
evaluations of fX2(tB;B) equals {X2 : X ∈ S}, i.e.,

{X2 : X ∈ S} = {fX2(tB;B)|tB=t∗ : t∗ ∈ R|B|},

and similarly for fL(tB;B) and PL(S). The following example illustrates this notation.

Example 7.2.1. For B = {U, V,W}, where

U =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , V =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

 , W =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 ,
we have fX2(tB;B) := (tUU + tV V + tWW )2. Expanding then shows

fX2(tB;B) =


tU

2 + tW
2 0 tU tW tU tV

0 tU
2 + tW

2 tU tV tU tW
tU tW tU tV tU

2 + tV
2 0

tU tV tU tW 0 tU
2 + tV

2

 .
To ease notation going forward, we will simply write fX2(B) to mean fX2(tB;B), and
similarly for fL(B).

� 7.2.1 The minimal partition subspace

We now modify Algorithm 7.1 to find the partition subspace Spart. For this we must
first introduce new notation. Given a partition P of [n]× [n], we let BP := {BP }P∈P ,
where BP ∈ Rn×n denotes the zero-one valued characteristic matrix of the subset P ,
i.e., for P ∈ P, we have (BP )ij = 1 if (i, j) ∈ P and (BP )ij = 0 otherwise. For a matrix
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T ∈ Sn, we let part(T ) denote the partition of [n] × [n] induced by the unique entries
of T , i.e., (i, j) and (k, l) are in the same class of part(T ) if and only if Tij = Tkl. We
similarly define part (f(BP)) by its unique polynomial entries for f ∈ {fL, fX2}. We
illustrate this latter notation below:

Example 7.2.1 (continued). For B defined previously, the polynomial matrix fX2(B)
is given by

fX2(B) =


tU

2 + tW
2 0 tU tW tU tV

0 tU
2 + tW

2 tU tV tU tW
tU tW tU tV tU

2 + tV
2 0

tU tV tU tW 0 tU
2 + tV

2

 . (7.1)

The partition part (fX2(B)) has five classes induced by the unique polynomial entries of
fX2(B). The characteristic matrices of these classes and the corresponding polynomials
are:


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0




0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1


tU

2 + tW
2 0 tU tW tU tV tU

2 + tV
2.

We can now state an algorithm.

Theorem 7.2.1. For partitions P1 and P2 of [n]× [n], let P1
∧
P2 denote the coarsest

partition of [n]× [n] that refines both P1 and P2. Let P be the partition returned by
P ← part(CL)∧ part(X0,L⊥)
repeat
P ← P

∧ part (fL(BP))
P ← P

∧ part (fX2(BP))
until converged.

The minimal partition subspace Spart equals the span of the characteristic matrices BP .

Correctness of this algorithm follows from a simple induction argument and the following
easily checkable fact: the partition subspace spanned by BP contains X ∈ Sn if and
only if P refines part(X).

� 7.2.2 The minimal coordinate subspace

We now show how to find Scoord, the minimal coordinate subspace. We can find Scoord
using the same basic approach that finds the minimal partition subspace Spart. Instead
of iteratively refining a partition, we will now iteratively grow a relation.
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To state an algorithm, we need more notation. Specifically, for a symmetric relation
R ⊆ [n]× [n], we let BR denote the 0/1 basis for the span of {Eij+Eji : (i, j) ∈ R}. We
also define the support of a polynomial matrix X to be the subset of (i, j) ∈ [n] × [n]
for which Xij is not the zero polynomial. The following example illustrates this latter
notation for the polynomial matrix f(BR).

Example 7.2.1 (continued). For B defined previously, the polynomial matrix fX2(B)
is given by

fX2(B) =


tU

2 + tW
2 0 tU tW tU tV

0 tU
2 + tW

2 tU tV tU tW
tU tW tU tV tU

2 + tV
2 0

tU tV tU tW 0 tU
2 + tV

2

 .
For n = 4, the support supp (fX2(B)) is the complement of {(1, 2), (2, 1), (3, 4), (4, 3)} ⊆
[n]× [n].

An algorithm for finding Scoord now follows.

Theorem 7.2.2. Let R be the relation returned by

R ← supp (CL) ∪ supp
(
X0,L⊥

)
repeat
R ← R∪ supp (fL(BR))
R ← R∪ supp (fX2(BR))

until converged.

The optimal coordinate subspace Scoord equals the span of BR.

Correctness of this algorithm follows from a simple induction argument and the following
easily checkable fact: the coordinate subspace spanned by BR contains X ∈ Sn if and
only if the relation R contains the support of X.

� 7.2.3 The minimal 0/1 subspace

A procedure for finding S0/1 combines features of the algorithms presented in the pre-
vious two sections. It iteratively grows a relation R representing the indices (i, j) for
which Xij is not identically zero for all X ∈ S0/1. It also maintains a partition P of R
whose characteristic matrices (at termination) are the 0/1 basis for S0/1. The proce-
dure and statement of its correctness follow, where partR(T ) denotes the partition of
R ⊆ [n]× [n] induced by the unique entries of a matrix T with support contained in R.

Theorem 7.2.3. Let R and P be the relation and partition of R returned by
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Initialize R to supp(CL)⋃ supp(X0,L⊥)
Initialize P to partR(CL)∧ partR(X0,L⊥)
repeat

for f ∈ {fL, fX2} do
Replace R with R∪ supp (f(BP))
Add class R \ (∪P∈PP ) to P
Replace P with refinement P

∧ partR (f(BP))
end

until converged.

The minimal 0/1 subspace S0/1 equals the span of the characteristic matrices BP .

As indicated, this algorithm alternates between growing the relation R, adding a single
class R \ (∪P∈PP ) to P (such that it partitions R), and refining P.

� 7.2.4 Randomization via sampling

Note that each algorithm need not explicitly construct symbolic representations of fL(B)
and fX2(B); instead, one can evaluate these matrices at a generic point by evaluating
the maps X 7→ X2 and PL : Sn → Sn at a random combination of basis elements in B.
Consider, for instance, a point evaluation of fX2(BP) at t∗ ∈ R|BP |, i.e., consider

fX2(BP)|t=t∗ :=

 ∑
B∈BP

t∗BB

2

.

Clearly the support of fX2(BP) and fX2(BP)|t=t∗ are the same except for t∗ in a measure-
zero subset of R|BP |. Similarly, fX2(BP) and fX2(BP)|t=t∗ induce the same partition of
[n]× [n] , i.e.,

part (fX2(BP)) = part
(
fX2(BP)|t=t∗

)
,

except for t∗ also in a measure-zero subset. The following illustrates this latter fact.

Example 7.2.1 (continued). For B defined previously, the point evaluation fX2(B)|t=t∗B
at t∗B = (2, 3, 4) is

fX2(B)|t=t∗B = (2U + 3V + 4W )2 =


20 0 8 6
0 20 6 8
8 6 13 0
6 8 0 13

 .
We see this point evaluation induces the same partition as the polynomial matrix fX2(B)
given by (7.1). In other words, the partitions part (fX2(BP)) and part

(
fX2(B)|t=t∗B

)
are

the same.
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� 7.3 Combinatorial subalgebras

We study the subalgebras of Sn that are partition or coordinate subspaces in more
detail. We first characterize these subalgebras. We then discuss existence of sparse
isomorphisms onto these algebras.

� 7.3.1 Characterizations

Coordinate subalgebras and transitive relations

Coordinate subalgebras—i.e., coordinate subspaces that are subalgebras—are in one-to-
one correspondence with symmetric relations that are transitive. Consider the following.

Lemma 7.3.1. Let R ⊆ [n]× [n] be a symmetric relation. The following are equivalent.

• The relation R is transitive.

• The coordinate subspace SR spanned by {Eij + Eji : (i, j) ∈ R} is a subalgebra of
Sn, i.e., S ⊇ {X2 : X ∈ S}.

Proof. Transitivity easily follows from the Peirce Multiplication Rules (Lemma 6.1.1).
For the converse, note that R partitions {i : (i, i) ∈ R} into equivalence classes, where
(i, j) ∈ R iff i ≡ j. This implies S is block-diagonal up to simultaneous permutation of
rows and columns; specifically, up to permutation, it equals(

⊕di=1Sdi
)
⊕ 0n−r,

where r is the cardinality of {i : (i, i) ∈ R} and di is the cardinality of the ith equivalence
class. From this decomposition, invariance under X 7→ X2 is obvious.

This allows one to replace a step of the Theorem 7.2.2 algorithm with computation
of a transitive closure:

R ← supp (CL) ∪ supp
(
X0,L⊥

)
repeat
R ← R∪ supp (fL(BR))
R ← The transitive closure of R

until converged.

One can find the transitive closure from scratch in n3 time (e.g., [55]). Algorithms also
exist for maintaining a transitive closure (e.g., [78]) as elements are added to R.

Partition subalgebras and coherent configurations

Partition subalgebras—i.e., partition subspaces that are subalgebras— do not have a
clean characterization (at least that we are aware of). They do, however, relate to well
studied partitions called coherent configurations.
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Definition 7.3.1 (e.g., [29]). A partition P of [n] × [n] is a coherent configuration if
its characteristic matrices BP satisfy

• XT ∈ BP for all X ∈ BP ;

• XY ∈ spanBP for all X,Y ∈ BP ;

• I ∈ spanBP .

Note that the characteristic matrices of a coherent configuration form a basis for
a *-subalgebra of Rn×n containing the identity matrix I. Based on this, we define a
Jordan configuration as a partition of [n] × [n] whose characteristic matrices form a
basis for a Jordan subalgebra of Sn containing I:

Definition 7.3.2. A partition P of [n]×[n] is a Jordan configuration if its characteristic
matrices BP satisfy

• X = XT for all X ∈ BP ;

• XY + Y X ∈ spanBP for all X,Y ∈ BP ;

• I ∈ spanBP .

The following ‘characterization’ is then obtained as a restatement of definitions.

Proposition 7.3.1. Let SP be a partition subspace that contains the identity matrix I.
The following statements are equivalent.

• The subspace SP is a subalgebra, i.e., it is invariant under X 7→ X2.

• The partition P is a Jordan configuration.

Note that if BC is the set of characteristic matrices of a coherent configuration C, then{
B +BT : B ∈ BC

}
is the set of characteristic matrices of a Jordan configuration. It is an open question
if all Jordan configurations arise this way. Cameron posed this question for Jordan
schemes [29]—the Jordan configurations whose characteristic matrices include I.

Given a partition P of [n] × [n], an algorithm of Weisfeiler [142] finds the coarsest
coherent configuration refining P; see also [8]. An algorithm for finding the analogous
Jordan configuration (assuming P has symmetric characteristic matrices) is easily stated
using the notation of Section 7.2.1:

P ← P
∧ part I

repeat
P ← P

∧ part fX2(BP)
until converged.
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Recall that fX2(BP) is the polynomial matrix (∑B∈BP tBB)2 in the set {tB}B∈BP of
commuting indeterminates whose unique entries induce the partition part (fX2(BP)).
By replacing {tB}B∈BP with non-commuting indeterminates, i.e., by treating tAtB 6=
tBtA in construction of part

(
(∑B∈BP tBB)2

)
, this algorithm reduces to that of [142].

� 7.3.2 Sparse isomorphisms

Coordinate subalgebras

As just shown, the coordinate subspace SR is a subalgebra if and only if the symmetric
relation R is transitive. As a consequence, decomposing a coordinate subalgebra into
minimal ideals is trivial: one simply finds the disjoint subsets of [n] := {1, . . . , n}
induced by R. These subsets are the equivalence classes of R when it is also reflexive
(and hence an equivalence relation).

Example 7.3.1. Examples of coordinate subalgebras SR and the corresponding subsets
of [n] are 

∗ 0 ∗ 0
0 ∗ 0 ∗
∗ 0 ∗ 0
0 ∗ 0 ∗

 ,

{1, 3}, {2, 4}


∗ ∗ 0 0
∗ ∗ 0 0
0 0 ∗ 0
0 0 0 0

 ,

{1, 2}, {3}


∗ 0 0 ∗
0 ∗ ∗ 0
0 ∗ ∗ 0
∗ 0 0 ∗

 .

{1, 4}, {2, 3}

Here, ∗ marks the (i, j)th entry when (i, j) ∈ R. In the first and third examples, R is
an equivalence relation and hence induces a partition of [n].

If d1, . . . , dr are the cardinalities of these subsets, then SR is isomorphic to the direct-
sum ⊕ri=1Sdi . Further, we can express the isomorphism using a permutation matrix.
Specifically, letting q = ∑r

i=1 di and 0n−q equal the (n − q) × (n − q) zero matrix, we
have that

SR = Φ ·
((
⊕ri=1Sdi

)
⊕ 0n−q

)
where the isomorphism Φ satisfies

Φ(X) = PXP T ∀X ∈
(
⊕ri=1Sdi

)
⊕ 0n−q

for some permutation matrix P ∈ Rn×n. Note that constructing a projected refor-
mulation with this isomorphism never destroys sparsity. For instance, a projected
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reformulation of

minimize TrCX
subject to TrAiX = bi ∀i ∈ [m]

X ∈ Sn+

takes the following form

minimize 〈Φ∗(C), Z〉
subject to 〈Φ∗(Ai), Z〉 = bi ∀i ∈ [m],

Z ∈ Sd1
+ × · · · × Sdr+ × 0n−r,

where Φ∗(W ) simply permutes the rows and columns ofW ∈ Sn and sets certain entries
to zero.

Partition subalgebras

As discussed in Section 6.6, isomorphic matrix algebras with diagonal idempotents
admit sparse isomorphisms. The fundamental reason is the Peirce components EiXEj+
EjXEi (Section 6.1.1) of any X in these algebras are sparse when the idempotents Ei
and Ej are diagonal. Hence if such idempotents exist, sparse Peirce components map
to sparse Peirce components under some (easily constructed) isomorphism.

A partition subalgebra almost always has diagonal idempotents. (The only excep-
tion is the algebra spanned by the all-ones-matrix.) Further, these idempotents sum to
I when the algebra contains I. The following example illustrates this:

S =


a b c

b a c

c c d

 : (a, b, c, d) ∈ R4

 , E1 =

1 0 0
0 1 0
0 0 0

 , E2 =

0 0 0
0 0 0
0 0 1

 .
Note that any X in this algebra has sparse Peirce components

X11 =

a b 0
b a 0
0 0 0

 , X12 =

0 0 c

0 0 c

c c 0

 , X22 =

0 0 0
0 0 0
0 0 d

 .
Specifically, the Peirce componentXij is nonzero only on the submatrices induced by the
support of Ei and Ej . Given this block sparsity, some authors call partition subalgebras
cellular [142].
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� 7.4 Combinatorial invariant subspaces

� 7.4.1 Partition subspaces and equitable partitions

The partition subspaces invariant under an orthogonal projection PL : Sn → Sn corre-
spond to the equitable partitions of PL. Before defining these objects, we first consider
the equitable partitions of a symmetric matrix A ∈ Sm, which are the partitions of [m]
that induce sub-matrices with constant row and column sums [60]. For instance, the
following partitions are equitable:

a b c c b

b a c c b

c c d d d

c c d d d

b b d d e


{1, 2}, {3, 4}, {5}


a b c c b

b a c c b

c c d d d

c c d d d

b b d d e


{1, 2}, {3}, {4}, {5}


a b c c b

b a c c b

c c d d d

c c d d d

b b d d e


{1}, {2}, {3, 4}, {5}.

Observe if a partition is equitable for A, then the subspace spanned by its characteristic
vectors is invariant under A. (Lemma 9.3.2 of [60] proves this for adjacency matrices.)
Indeed, for the partition {1, 2}, {3, 4}, {5}, the characteristic vector (1, 1, 0, 0, 0)T of
{1, 2} satisfies

a b c c b

b a c c b

c c d d d

c c d d d

b b d d e




1
1
0
0
0

 = (a+ b)


1
1
0
0
0

+ 2c


0
0
1
1
0

+ 2b


0
0
0
0
1

 .

Hence, it is in the span of the characteristic vectors of {1, 2} and {3, 4} and {5}.
To generalize equitable partitions to linear maps on Sn, we make the following

observation: if a partition of [m] is equitable for A ∈ Sm, then all pairs of characteristic
vectors x, y ∈ {0, 1}m satisfy

y ? (Ax) ∈ span y,

where ? denotes the element-wise product. This suggests the following definition.

Definition 7.4.1. Let P be a partition of [n] × [n] with symmetric characteristic ma-
trices BP ⊂ Sn. Let Ψ : Sn → Sn be a self-adjoint linear map. Then, P is a matrix
equitable partition of Ψ if for all X,Y ∈ BP ,

Ψ(X) ? Y ∈ spanY,
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where Ψ(X) ? Y denotes the Schur (i.e., entrywise) product.

The following is then essentially immediate:

Lemma 7.4.1. Let P be a partition of [n]× [n] with symmetric characteristic matrices
BP ⊂ Sn. Let Ψ : Sn → Sn be a self-adjoint linear map. The following are equivalent:

• The span of BP is an invariant subspace of Ψ.

• P is a matrix equitable partition of Ψ.

Proof. Suppose the first statement holds. Then, for all X ∈ BP , it holds that Ψ(X) ∈
spanBP . Hence, for all Y ∈ BP , it holds that Y ? Ψ(X) ∈ {0, Y } since matrices in
BP have disjoint support. For the other direction, assume Ψ(X) ? Y ∈ spanY for all
X,Y ∈ BP . Then, clearly, ∑

Y ∈BP

Ψ(X) ? Y ∈ spanBP .

Since P partitions [n] × [n], the sum ∑
Y ∈BP Y equals the all-ones-matrix. Hence,

Ψ(X) ∈ spanBP . The claim then follows by linearity of Ψ.

Note equitable partitions and matrix equitable partitions form a lattice, reflecting the
lattice structure of invariant subspaces. As a subset of the partition lattice, equitable
partitions are also closed under join (Lemma 5.3 of [92]), reflecting the fact invariant
subspaces are closed under intersection.

� 7.4.2 Coordinate subspaces and connected components

The invariant coordinate subspaces of PL—or any linear map— depend only on the
sparsity of a particular matrix representation. For self-adjoint maps, this dependence is
naturally expressed using the connected components of a graph. To establish intuition,
suppose that the span of {e1, . . . , em} ⊆ Rn is an invariant subspace of a matrix T ∈
Rn×n. Then, necessarily

T =
(
T11 T21
0 T22

)
,

where T11 ∈ Rm×m, T21 ∈ Rm×n−m and T22 ∈ R(n−m)×(n−m). Further, if T is symmet-
ric, then T21 = 0, which shows the span of {em+1, . . . , en} is also an invariant subspace.
Treating T as an adjacency matrix of a graph, it follows the connected components—and
unions of connected components (since the sum of invariant subspaces is invariant)—
define the invariant coordinate subspaces. The following formalizes this statement for
linear maps on Sn.
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Lemma 7.4.2. Consider an orthogonal basis B ⊂ Sn for Sn and a self-adjoint linear
map Ψ : Sn → Sn. Let G = (B, E) denote the undirected graph for which {A,B} ∈ E if
and only if

〈A,Ψ(B)〉 = 〈Ψ(A), B〉 6= 0,

and let {(Bk, Ek)}pi=1 denote its connected components. Finally, let T ⊆ B. Then the
subspace spanned by {B}B∈T is invariant under Ψ if and only if T = ⋃

k∈S Bk for some
S ⊆ {1, 2, . . . , p}.

Proof. If T = ⋃
k∈S Bk, then {A,B} /∈ E for all A ∈ T andB /∈ T ; hence, 〈Ψ(A), B〉 = 0,

which shows Ψ(A) is in the orthogonal complement of span{B}B∈B\T ; in other words,
Ψ(A) is in span{B}B∈T . Hence, span{B}B∈T is an invariant subspace.

Conversely, if span{B}B∈T is invariant subspace, then 〈Ψ(A), B〉 = 0 for all A ∈ T
and B /∈ T . We conclude no edge connects T with its complement. Hence, for each
connected component, Bk ⊆ T or Bk ⊆ B\T . Taking S = {k ∈ [p] : Bk ⊆ T }, it follows
T = ∪k∈SBk.

To describe the invariant coordinate subspaces of the projection PL, we can apply
Lemma 7.4.2 to the orthogonal basis {Eij + Eji : (i, j) ∈ [n] × [n]}. Constructing the
graph G then identifies subsets of this basis (and corresponding subsets of [n] × [n])
that span invariant coordinate subspaces.

� 7.5 Examples

We now find admissible subspaces for several example SDPs, exploring trade-offs in
dimension, complexity of the cone constraint, and sparsity. To simplify presentation,
we will use a common format for original instances and reduced instances. We now
overview these formats and their complexity parameters.

Format of original SDPs Each primal-dual pair is originally expressed in either SeDuMi
[129] or SDPA [58] format and may have a mix of free and conic variables, where the
cones are either orthants or cones of psd matrices.3 From these formats, we eliminate
free variables, reformatting the primal problem as

minimize 〈C,X〉
subject to 〈Ai, X〉 = bi ∀i ∈ [m]

X ∈ Sn1
+ × · · · × Snr+ ,

(7.2)

3These formats also allow for Lorentz cones. None of the examples presented, however, use this type
of cone.
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where C,Ai ∈ Sn1 ×· · ·×Snr are fixed, and 〈·, ·〉 denotes the inner product obtained by
equipping each product term Sni with the trace inner product. Note once free variables
are eliminated, reformatting amounts to relabeling linear inequalities as semidefinite
constraints of order one.

We will in some cases report the number of nonzero (nnz) entries in a description of
(7.2); this equals the number of nonzero floating-point numbers needed to store C and
{Ai}mi=1. We also report a tuple of ranks for (7.2), which is simply the tuple (n1, . . . , nr).

Formats of projected reformulations For each SDP, we construct a projected reformula-
tion (Chapter 1.2.5) over K ∩ S by finding a Jordan isomorphism Φ : J→ S satisfying

S ∩ K = Φ(K1 × · · · × Kq)

for irreducible symmetric cones Ki and a Jordan algebra J. The projected reformulation
takes the following form

minimize 〈Φ∗(C), X̂〉
subject to 〈Φ∗(Ai), X̂〉 = bi ∀i ∈ T ⊆ [m]

X̂ ∈ K1 × · · · × Kq,
(7.3)

where T indexes a maximal linearly-independent subset of equations. The isomorphism
is found using techniques from Chapter 6.

We will in some cases report the number of nonzero (nnz) entries in a description of
(7.3); this equals the number of nonzero floating-point numbers needed to store Φ∗(C)
and {Φ∗(Ai)}i∈T . We also report a tuple (r1, . . . , rq) of ranks for (7.3). Here, each cone
Ki is the cone-of-squares of a simple algebra; the reported tuple consists of the ranks
of these simple algebras.

Remark 7.5.1. For most examples, K1×· · ·×Kq is a product of psd cones Sr1
+×· · ·×S

rq
+

and the tuple (r1, . . . , rq) indicates their orders—in other words, all minimal ideals of
S are isomorphic to algebras of real symmetric matrices. Given this, one can also
find the isomorphism Φ using techniques from [89]. The only exception is discussed in
Section 7.5.1. We also note S2 is isomorphic to a spin-factor algebra—hence, S2

+ is
isomorphic to a Lorentz cone.

Reference subspaces and inclusions For convenience, we will let Sfull := Sn1 × · · · × Snr
denote the full ambient space of the original instance (7.2). As discussed in [37], an
SDP can be restricted to the *-algebra generated by its data matrices. To compare
with this restriction, we let

Sdata := Cdata ∩ (Sn1 × · · · × Snr),
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where Cdata is the *-algebra generated by the problem data C and {Ai}mi=1 (using matrix
multiplication as a product and transposition as the *-involution). Recall that

Sopt ⊆ S0/1 ⊆ Scoord ⊆ Sfull.

As examples indicate, different inclusions can hold strictly for different examples. We
also have

Sopt ⊆ Sdata ⊆ Sfull.

As examples show, it often holds that Sdata = Sfull even when Sopt is (much) smaller
than Sfull.

� 7.5.1 Libraries of problem instances

The first set of SDPs are selected from three publicly-available sources: the parser
SOSTOOLS [100], the DIMACS library [104] and a library of structured SDP instances
from [38]. Table 7.1 reports the dimensions of the subspaces Sopt, S0/1, Scoord, Sdata
and Sfull. Note the inclusions Sopt ⊆ S0/1 ⊆ Scoord ⊆ Sfull hold as expected, and,
as Table 7.1 indicates, different ones hold strictly for different instances. For a large
fraction of instances, Sfull equals Sdata, implying generating a *-subalgebra from the
problem data [37] does not provide reductions for these instances.

Remark 7.5.2. We note the libraries [104, 38] have additional instances on which our
method was not effective (Sopt = Sfull); we do not report results for these instances.
The library [38] also has other instances with group symmetry that were too large or too
poorly conditioned for a simple MATLAB implementation of our algorithm. We omit
these instances.

The Lovasz number of Hamming graphs

We give special attention to the Table 7.2 instances denoted

hamming_q_x, hamming_q_x_y,

that were taken from [104]. The optimal values of these SDPs equal the Lovász number
of a particular graph. For a graph G with vertices {1, . . . , n} and edge set E, the Lovász
number is the optimal value of

maximize Tr 11TX

subject to TrX = 1
Tr(Eij + Eji)X = 0 ∀(i, j) ∈ E,

(7.4)
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instance Sopt S0/1 Scoord Sdata Sfull References
sosdemo2 25 25 28 103 103

Instances
from
[100]

sosdemo4 11 11 85 630 630
sosdemo5 226 816 816 816 816
sosdemo6 49 49 327 462 462
sosdemo7 40 40 68 68 68
sosdemo9 26 26 26 78 78
sosdemo10 78 78 78 254 254

hamming_7_5_6 5 5 8256 8256 8256

Instances
from [104]

hamming_8_3_4 5 5 32896 32896 32896
hamming_9_5_6 6 6 131328 131328 131328
hamming_9_8 6 6 131328 131328 131328
hamming_10_2 7 7 524800 524800 524800

copo14 73 73 1834 1834 1834
copo23 188 188 8119 8119 8119
copos68 1576 1576 209644 209644 209644

ThetaPrimeER23_red 86 762 777 101 1712

Instances
from [38]

ThetaPrimeER29_red 104 1125 1143 122 2486
ThetaPrimeER31_red 110 1262 1281 129 2776

crossing_K_7n 113 577 3138 113 3138
crossing_K_8n 479 18577 72630 479 72630
kissing_3_5_5 811 811 3796 3796 3796
kissing_4_7_7 3723 3723 19760 19760 19760

Table 7.1: Dimensions of admissible subspaces Sopt, S0/1 and Scoord compared with
dimensions of the ambient space Sfull and Sdata—the (symmetric part) of the *-algebra
generated by C and {Ai}mi=1.

instance Sopt S0/1 Scoord Orig.
ThetaPrimeER23_red (3, 212×, 144×) (27, 25, 5, 144×) (27, 25, 5, 159×) (57, 159×)
ThetaPrimeER29_red (3, 215×, 153×) (33, 31, 5, 153×) (33, 31, 5, 171×) (69, 171×)
ThetaPrimeER31_red (3, 216×, 156×) (35, 33, 5, 156×) (35, 33, 5, 175×) (73, 175×)

Table 7.2: Tuple of ranks for select examples satisfying the strict inclusions Sopt ⊂
S0/1 ⊂ Scoord. Here, st× means s repeated t times, i.e., 32× := (3, 3).
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where 11T ∈ Sn is the all-ones-matrix and Eij is a standard basis matrix of Rn×n. The
graphs for these instances are closely-related to Hamming graphs, which, for parameters
q and d, have 2q vertices labeled uniquely by q-bit Boolean vectors. For these graphs,
vertices are adjacent iff their labels have Hamming distance at least d. The graphs of
hamming_q_x and hamming_q_x_y are Hamming graphs with certain edges removed;
precisely, vertices are adjacent iff the Hamming distance of their labels equals x or
equals x or y.

When G is a Hamming graph, it is well known the SDP (7.4) can be converted
into a linear program using the theory of association schemes [123]. Here, we find
similar simplifications for the instances of [104]; precisely, Sn+ ∩ Sopt is isomorphic to a
nonnegative orthant of order equal to the dimension of Sopt, i.e.,

Sn+ ∩ Sopt = Φ(RdimSopt
+ )

for a Jordan isomorphism Φ.
Note the other automated approach—generating a ∗-algebra from the cost matrix

11T and constraint matrices I, {Eij + Eji}(i,j)∈E fails completely for these instances;
that is, Sdata (the symmetric part of this ∗-algebra) equals Sn.

Decompositions and majorization

In Table 7.2 we report the tuple of ranks for the subspaces Sopt, S0/1 and Scoord for
select examples. Specifically, we select examples satisfying the strict inclusions:

Sopt ⊂ S0/1 ⊂ Scoord.

Given these strict inclusions, Theorem 5.4.1 implies the ranks of S0/1 and Scoord weakly
majorize those of Sopt in the sense of Definition 5.4.1. Similarly, it implies the ranks
of Scoord weakly majorize those of S0/1. This is confirmed in Table 7.2. The first
row, for instance, reports the following tuples r1 ∈ Zl1 and r2 ∈ Zl2 for Sopt and S0/1,
respectively:

r1 := (3, 2, 2, . . . , 2︸ ︷︷ ︸
12×

, 1, 1, . . . , 1︸ ︷︷ ︸
44×

) r2 := (27, 25, 5, 1, 1, . . . , 1︸ ︷︷ ︸
44×

).

It easily follows r2 weakly majorizes r1, i.e., for all positive integers q ∈ Z,
min{q,l2}∑
i=1

[r2]i ≥
min{q,l1}∑
i=1

[r1]i.

This illustrates the major result of Chapter 5: Sopt is not only optimal with respect to
dimension but also its decomposition.
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An algebra with a complex direct-summand

The example sosdemo5 is an SDP that bounds a quantity from robust control theory—
the structured singular value µ(M,∆) [99]:

µ(M,∆) := 1
inf{‖∆‖ : ∆ ∈∆,det(I −M∆) = 0} . (7.5)

Here,M is a complex matrix and ∆ is a set of complex matrices. Though the parameters
of µ(M,∆) are complex, one can formulate an SDP with real data matrices to bound
µ(M,∆). This is done in sosdemo5 for particular M and ∆. Nevertheless, upon de-
composing Sopt into a direct-sum of minimal ideals, we find one of the direct-summands
is isomorphic to an algebra of complex Hermitian matrices. Precisely, Sopt = ⊕11

i=1Si for
minimal ideals Si. Letting r := (rankS1, . . . , rankS11) and d := (dimS1, . . . ,dimS11),
we have

r = (1, 1, 1, 1, 4, 4∗, 4, 6, 10, 10, 10)
d = (1, 1, 1, 1, 10, 16∗, 10, 21, 55, 55, 55).

Note with the exception of the entries marked ∗, the relation di =
(ri+1

2
)
holds, showing

Si is isomorphic to the algebra of real symmetric matrices of order ri. The exception
satisfies di = r2

i , showing the corresponding ideal Si is isomorphic to the algebra of
complex Hermitian matrices of order ri. We remark this is the only example considered
where the direct-summands are not all isomorphic to Sn for some n.

� 7.5.2 Comparison with LP method of Grohe, Kersting, Mladenov, and
Selman

In [65], Grohe et al. describe a reduction method for linear programming (LP) and show
it outperforms a symmetry reduction method of [17] on a collection of LPs; indeed,
they show their method theoretically subsumes [17]. The linear programs used for
comparison are relaxations of integer programs studied in [90]. By treating each linear
inequality as a semidefinite constraint of order one, we applied our method to the same
LP relaxations. Of the 57 relaxations, we find the same reductions on 56. For the
remaining instance (cov1054sb), we significantly outperform [65]. For space reasons,
Table 7.3 reports results for just a small subset of these LP relaxations. To match [65],
we give the number of dual variables and inequality constraints. In terms of SDP (7.2)
and the SDP (7.3), the number of dual variables and constraints equals the number of
linear equations and the sum of the ranks, respectively.

That the method of [65] and ours exhibits similar performance is not surprising. The
method of [65] is based on equitable partitions, which, as we discussed in Section 7.4.1,
define invariant subspaces of linear maps. This and the empirical evidence of Table 7.3
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Constraints Variables
Orig. CR Sopt Orig. CR Sopt

cov1053 252 1 1 679 5 5
cov1054 252 1 1 889 6 6

cov1054sb 252 252 1 898 898 6
cov1075 120 1 1 877 7 7
cov1076 120 1 1 835 7 7
cov1174 330 1 1 1221 6 6
cov954 126 1 1 507 6 6

Table 7.3: Dual variables and constraints of original LP, the LP formulated via the
color refinement (CR) method of [65], and the LP formulated via restriction to Sopt.
Columns labeled (CR) use numbers reported in [65].

suggest a projection satisfying the conditions of Constraint Set Invariance and Unitality
(Definition 1.4.1) is implicitly constructed in the method of [65]; the instance cov1054sb
shows this projection isn’t always minimum rank.

� 7.5.3 Completely-positive rank, the subspace S0/1, and decomposition
trade-offs

Our next example illustrates restrictions to S0/1, the optimal subspace with an or-
thogonal basis of 0/1 matrices. The considered SDP family yields lower-bounds of
completely-positive rank, or cp-rank for short. The cp-rank of W ∈ Sn+ measures the
size of the smallest nonnegative factorization of W . Precisely, it is the smallest r for
which V ∈ Rn×r+ exists satisfying W = V V T . Note cp-rank need not be finite—that
is, a nonnegative factorization of W need not exist for any r. As shown in [53], the
cp-rank of W ∈ Sn is lower bounded by the optimal value of the following SDP:

minimize t
subject to (

t vectW T

vectW X

)
� 0

Xij,ij ≤W 2
ij ∀i, j ∈ {1, . . . , n}

X �W ⊗W
Xij,kl = Xil,jk ∀(1, 1) ≤ (i, j) < (k, l) ≤ (n, n).

Here, W ⊗ W denotes the Kronecker product and vectW denotes the n2 × 1 vector
obtained by stacking the columns of W . The double subscript ij indexes the n2 rows
(or columns) of X and the inequalities on (i, j) hold iff they hold element-wise (see [53]
for further clarification on this notation).

In this example, we solve three instances of this SDP takingW equal to the matrices
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Z, Z ⊗ Z, and Z ⊗ Z ⊗ Z, where

Z =

 4 0 1
0 4 1
1 1 3

 .
Table 7.4 reports computational savings obtained by restricting to S0/1. (In Chapter 2,
we applied facial reduction techniques to the same set of SDPs.)

Alternative reformulation For these examples, we compare (7.3) against the following
alternative reformulation:

minimize 〈PS0/1(C), X〉
subject to 〈PS0/1(Ai), X〉 = bi ∀i ∈ T ⊆ [m]

X ∈ Sn1
+ × · · · × Snr+ ,

(7.6)

where T ⊆ [m] indexes a maximal subset of linearly-independent equations. The dual
of (7.6) is

maximize ∑
i∈T yibi

subject to PS0/1(C)−∑i∈T PS0/1(Ai) ∈ Sn1
+ × · · · × Snr+ .

We can interpret this dual SDP as the dual of (7.2) restricted to the subspace S0/1,
recalling by Proposition 5.1.1 that S0/1 contains both primal and dual solutions.

Table 7.4 shows solving (7.6) achieves computational savings and, indeed, can be
preferred to solving (7.3). As indicated, for the largest instance, we cannot even find
the Jordan isomorphism needed to construct (7.3) due to memory constraints. The
formulation (7.6) also preserves sparsity.

� 7.5.4 Sparse isomorphisms

Finally, we illustrate how coordinate and 0/1 subspaces can lead to sparse reformula-
tions (as discussed in Section 7.3.2).

Coordinate subspaces

We find the minimal coordinate subspace Scoord for instances taken from

http : //www.aem.umn.edu/˜AerospaceControl/,

which build upon the parser SOSOPT [124]. Table 7.5 shows that sparsity is always
preserved. Though these examples are of small size, they illustrate Scoord is a proper
subspace of Sfull for surprisingly many examples.

Remark 7.5.3. Note many of these scripts construct several SDPs; reported results
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SDP ranks num eq nnz tpre tsolve
Orig. (7.2) (10, 9, 19×) 37 172 – 1.05

Reform. (7.3) (5, 4, 24×, 16×) 14 798 0.30 0.37
Reform. (7.6) (10, 9, 19×) 14 172 0.018 0.16

(a) Instance: Z
SDP ranks num eq nnz tpre tsolve

Orig. (7.2) (82, 81, 181×) 2026 13204 – 39.17
Reform. (7.3) (12, 11, 104×, 64×, 48×, 22×, 111×) 167 157303 8.9 2.1
Reform. (7.6) (82, 81, 181×) 167 13204 .11 4.35

(b) Instance: Z ⊗ Z
SDP ranks num eq nnz tpre tsolve

Orig. (7.2) (730, 729, 1729×) 142885 1063612 Out of memory
Reform. (7.3) Out of memory Out of memory
Reform. (7.6) (730, 729, 1729×) 1883 1063612 7.1 2008

(c) Instance: Z ⊗ Z ⊗ Z

Table 7.4: The first row corresponds to the original SDP (7.2) and the others refor-
mulations over S0/1. Here, tpre is time spent (in seconds) finding S0/1 and constructing
the reformulation. Solve time tsolve is also in seconds.

are for the first SDP constructed.

Zero-one subspaces

Finally, we compare sparsity of Φ(Ai) for two isomorphisms Φrand and Φsparse induced
by two types of Jordan frames for S0/1. The original SDP instances are from earlier
examples of this section and Chapter 2. The map Φrand arises from the Jordan frame in-
duced by the spectral decomposition of a randomly sampled element. The map Φsparse

arises from a sparse Jordan frame obtained by refining diagonal idempotents (Chap-
ter 6.6). Results appear in Table 7.6, along with the section that describes the original
SDP instance. (See also Example 6.6.1 for the same comparison on an illustrative
example.) As indicated using diagonal idempotents dramatically increases sparsity.

� 7.6 Conclusion

We proposed combinatorial variations of the Jordan reduction methodology introduced
in Chapter 5. These variations restrict to subspaces whose bases have low storage
complexity and exact combinatorial descriptions (immune to floating-point round-off
error)—allowing one to preserve sparsity, accurately store a basis, and trade-off prepro-
cessing effort with the size of the obtained reductions. We also illustrated how these
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Orig. Scoord
ranks nnz ranks nnz

Chesi(1|4)_IterationWithVlin (9, 5) 181 (6, 32×, 2) 97
Chesi3_GlobalStability (14, 5) 341 (8, 6, 3, 2) 193
Chesi(5|6) _Bootstrap (19, 9) 928 (13, 62×, 3) 520

Chesi(5|6) _IterationWithVlin (19, 9) 928 (13, 62×, 3) 520
Coutinho3_IterationWithVlin (9, 5) 181 (6, 32×, 2) 97

HachichoTibken_Bootstrap (19, 9) 685 (12, 7, 6, 3) 373
HachichoTibken_IterationWithVlin (19, 9) 685 (12, 7, 6, 3) 373

Hahn_IterationWithVlin (9, 5) 156 (6, 32×, 2) 84
KuChen_IterationWithVlin (19, 9) 928 (13, 62×, 3) 520

Parrilo1_GlobalStabilityWithVec (3, 2) 20 (2, 13×) 14
Parrilo2_GlobalStabilityWithMat (3, 2) 16 (2, 13×) 10

Pendubot_IterationWithVlin (14, 4) 372 (10, 42×) 292
VDP_IterationWithVball (5, 4) 82 (32×, 2, 1) 55
VDP_IterationWithVlin (9, 5) 181 (6, 32×, 2) 97

VDP_LinearizedLyap (9, 5) 156 (6, 32×, 2) 84
VDP_MultiplierExample (5, 2) 37 (3, 2, 12×) 23

VannelliVidyasagar2_Bootstrap (19, 9) 928 (13, 62×, 3) 520
VannelliVidyasagar2_IterationWithVlin (19, 9) 928 (13, 62×, 3) 520

VincentGrantham_IterationWithVlin (9, 5) 181 (6, 32×, 2) 97
WTBenchmark_IterationWithVlin (19, 9) 685 (13, 62×, 3) 385

Table 7.5: Ranks and number of nonzero (nnz) entries in problem description of orig-
inal instance and its restriction (7.3) to Scoord. The notation rs× indicates r repeated
s times. The table illustrates Scoord has a sparse decomposition—that is the restriction
(7.3) is also sparse.

Instance nnz A nnz AΦrand nnz AΦsparse Section
vamos_5_34 2704 199300 4235 2.8.5

copos_1 1225 3144 123 2.8.2
copos_2 14400 66363 492 2.8.2
copos_3 81796 OOM 1436 2.8.2
copos_4 313600 OOM 2842 2.8.2
cprank_2 13204 1914038 77879 7.5.3

Table 7.6: Number of nonzero entries (nnz) for indicated maps. OOM indicates
construction of map failed due to an out-of-memory error. Descriptions of original SDP
instances are given in the indicated section.
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bases lead to sparse isomorphisms.
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Applications to polynomial
optimization
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Chapter 8

Reduction of sum-of-squares

programs

A multivariate polynomial f is a sum-of-squares (sos) if

f =
∑
f∈S

f2

for some set of polynomials S. The sum-of-squares polynomials in n variables of degree
at most 2d form a finite-dimensional convex cone, denoted Σn,2d. Further, Σn,2d is a
linear transformation of the psd cone of order

(n+d
d

)
. Hence, one can solve cone pro-

grams formulated over Σn,2d—so-called sum-of-squares programs—using semidefinite
programming (SDP). For this reason sum-of-squares programs are powerful tools for
problems involving polynomial nonnegativity [15, Chapter 3].

This chapter studies partial facial reduction (Chapter 2) and combinatorial Jordan
reduction (Chapter 7) of sum-of-squares programs by exploiting their connection with
SDP. For partial facial reduction, we show that diagonal approximations of the psd
cone induce approximations of Σ∗n,2d based on polynomial sparsity (i.e., nonzero coeffi-
cients). For Jordan reduction, we characterize admissible coordinate subspaces in terms
of polynomial sparsity. These characterizations show existing techniques [85, 35] for sim-
plifying sum-of-squares programs implicitly find such subspaces. These subspaces are
not necessarily minimal, and, using these techniques, take exponential time to identify.
In constrast, our algorithm from Chapter 7.2.2 finds the minimal coordinate subspace
in polynomial time; it also simplifies for the sum-of-squares programs considered.

We organize this chapter as follows. Section 8.1 reviews the basics of polynomial
vector spaces. Section 8.2 overviews sum-of-squares polynomials and their connections
to semidefinite programming. Sections 8.3 and 8.4 study partial facial reduction and
Jordan reduction of sum-of-squares programs, respectively.

237
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� 8.1 Preliminaries

Vector spaces of polynomials Let R[x] denote the ring of polynomials with real co-
efficients and indeterminates x1, . . . , xn. Any finite subset M of Nn induces a finite-
dimensional vector space R[x]M of polynomials contained in R[x]. Letting xα denote
the monomial xα1

1 xα2
2 · · ·xαnn , this vector space takes the form

R[x]M :=
{∑
α∈M

cαx
α : cα ∈ R

}
. (8.1)

A natural inner product for R[x]M is just the dot product between coefficient vectors:

〈f, g〉 :=
∑
α∈M

cαdα,

where f = ∑
α∈M cαx

α and g = ∑
α∈M dαx

α. We equip R[x]M with this inner product
and also identify the dual space R[x]∗M with R[x]M .

Newton polytopes, support, and nonnegativity The support of f = ∑
α∈M cαx

α, denoted
supp(f), is the set of exponents with nonzero coefficients, i.e.,

supp(f) = {α ∈M : cα 6= 0} .

The Newton polytope of f , denoted new(f) ⊆ Rn, is the convex hull of its support
(Figure 8.1(a)).

The Newton polytope induces necessary conditions for polynomial nonnegativity.
Consider the following theorem of Reznick.

Proposition 8.1.1 ([119, Section 3]). Suppose f ∈ R[x]M is nonnegative and that
f = ∑

α∈M cαx
α. If α is a vertex of the Newton polytope new(f), then cα ≥ 0.

The inequalities associated with vertices are illustrated in Figure 8.1(b) for a specific
polynomial. If f is univariate, i.e., f(x) = c0 +c1x+ · · ·+cdxd, these inequalities simply
state the leading term cd and constant term c0 of f are nonnegative. Also note that [120,
Theorem 3.6] generalizes this proposition from vertices and nonnegative coefficients to
arbitrary faces F and nonnegative F-restrictions of f—polynomials obtained by setting
each coefficient cα to zero if α /∈ F .

� 8.2 Sums-of-squares polynomials

We are interested in nonnegative polynomials that are sums-of-squares. We focus on a
subset ΣM of these polynomials induced by a given M ⊆ Nn which, as we will shortly
see, is a linear transformation of the psd cone of order |M |. This subset ΣM and
corresponding linear transformation AM are defined as follows.
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(0, 0) (6, 0)

(4, 2)(2, 2)

(3, 1)

(a) Newton polytope of f(x)

c00 ≥ 0, c22 ≥ 0,

c42 ≥ 0, c60 ≥ 0.

(b) Valid ineqs. if f(x) ≥ 0 for all x

Figure 8.1: f(x) = c00 + c31x
3
1x2 + c22x

2
1x

2
2 + c42x

4
1x

2
2 + c60x

6
1

Definition 8.2.1. For a finite set M ⊆ Nn, let ΣM ⊆ R[x]M+M denote the polynomials
that are sums-of-squares of finitely many f ∈ R[x]M , i.e., let

ΣM :=

∑
f∈S

f2 : S ⊂ R[x]M , |S| is finite

 .
Further, let AM : S|M | → R[x]M+M denote the unique linear map whose adjoint A∗M :
R[x]M+M → S|M | satisfies

[A∗Mxγ ]α,β =

1 if α+ β = γ,

0 otherwise,
∀γ ∈M +M,

where the rows and columns of A∗Mxγ are indexed by M .

That ΣM equals the image of a psd cone under AM is a special case of a result of
Nesterov. This result also yields a description of the dual cone Σ∗M . Formally:

Proposition 8.2.1 (Special case of Theorem 17.1 of [98]). For a finite subset M of
Nn, the cone ΣM and linear map AM : S|M | → R[x]M+M (Definition 8.2.1) satisfy

• ΣM = AM · S|M |+ , where AM · S|M |+ :=
{
AM (X) : X ∈ S|M |+

}
;

• Σ∗M =
{
y ∈ R[x]M+M : A∗My ∈ S|M |+

}
.

Further, ΣM is closed and convex.

As a practical consequence, one can check membership in ΣM by solving a semidefinite
program. Specifically, ΣM contains the polynomial f ∈ R[x]M+M if and only if there
exists a symmetric matrix Q ∈ S|M | that solves

Find Q ∈ S|M |+
subject to AM (Q) = f.

(SOS-SDP)
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To see that existence of a solution implies that f ∈ ΣM , note that Q ∈ S|M | satisfies
AM (Q) = f if and only if

f =
∑
α∈M

∑
β∈M

Qαβx
αxβ

by definition of the map AM : S|M | → R[x]M+M . In addition, any Q ∈ S|M |+ has a
factorization Q = LTL. Hence, if Q solves (SOS-SDP), then

f =
∑
α∈M

∑
β∈M

[LTL]αβxαxβ = (LxM )TLxM ,

where xM is a vector of monomials indexed by M ; specifically, [xM ]α = xα. This shows
that f equals the sum of the squared entries of LxM , a polynomial vector. Conversely,
if f = ∑p

i=1 f
2
i for fi = ∑

α∈M ciαx
α and ci ∈ R|M |, then the matrix

Q =
p∑
i=1

ci(ci)T

solves (SOS-SDP).

Remark 8.2.1. The set M ⊆ Nn in (SOS-SDP) is usually picked from the polynomial
f with the following guarantee: if f is a sum-of-squares (of polynomials in any set),
then f ∈ ΣM ; see, e.g., [119, Theorem 1], [15, Chapter 3] and [80]. See also [16,
Section 6] for further study of Σconv(M)∩Nn and its relationship with the nonnegative
polynomials with support contained in conv(2M).

� 8.3 Partial facial reduction

Given a cone program with feasible set A ∩ K, the facial reduction algorithm (Algo-
rithm 1.1) finds a hyperplane containing the affine set A that exposes a face of the
cone K. To find a hyperplane, the algorithm solves an auxiliary cone program over
K∗, which can be expensive to solve. To reduce the cost of solving this auxiliary prob-
lem, we proposed replacing K∗ with a computationally efficient inner approximation—a
methodology we called partial facial reduction (Chapter 2).

In this section, we apply partial facial reduction to (SOS-SDP). For this SDP, the
affine set A is the solution set of AM (Q) = f for some given set of monomial exponents
M and polynomial f ∈ R[x]M+M . Further, K is the psd cone S|M |+ , which is self dual,
i.e., S|M |+ = (S|M |+ )∗. Specifically, we study when the auxiliary problem of (SOS-SDP),
given by

Find (S, y) ∈ S|M |+ × R[x]M+M
subject to S = A∗My, 〈f, y〉 = 0,

(SOS-SDP-AUX)
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has a nonzero solution (S, y) in D|M | ×R[x]M+M , where D|M | denotes the nonnegative
diagonal matrices of order |M |. (Note that D|M | inner approximates S|M |+ , i.e., D|M | ⊂
S|M |+ .) Results of this type first appeared in [139].

� 8.3.1 Nonnegativity of coefficients

Suppose ∑α∈M+M cαx
α is nonnegative. Then, cα ≥ 0 for all vertices α of conv(M) by

Proposition 8.1.1. Hence, the vertices of conv(M) induce a polyhedral approximation
of Σ∗M . It turns out, and its not hard to show, that this polyhedral approximation is
contained in the polyhedral approximation induced by diagonal matrices D|M |. To be
precise, let P∗M,new and Σ∗M,D denote these two approximations, i.e.,

P∗M,new :=

 ∑
γ∈ext(M+M)

λγx
γ : λγ ≥ 0

 , Σ∗M,D :=
{
y ∈ Σ∗M : A∗My ∈ D|M |

}
.

The following establishes the mentioned containment P∗M,new ⊆ Σ∗M,D.

Lemma 8.3.1. Let γ be an extreme point of conv(M + M). Then A∗Mx
γ ∈ D|M |.

Hence, P∗M,new ⊆ Σ∗M,D.

Proof. We only need to show that A∗Mxγ is diagonal if γ is an extreme point of conv(M+
M). By definition, supp(A∗Mxγ) = {(α, β) ∈M ×M : α+ β = γ}. Suppose γ is an
extreme point and A∗Mx

γ is not diagonal. Then by definition of AM , there exists
α 6= β for which α + β = γ, implying that 1

2γ = 1
2(α + β). Since 1

2 conv(M + M)
contains α, β and 1

2γ, this shows that 1
2γ is not an extreme point of 1

2 conv(M + M),
a contradiction.

It turns out that the inclusion P∗M,new ⊆ Σ∗M,D can be strict. To explain, we define
the set M+ ⊆M as follows.

Definition 8.3.1. For a subset M of Nn, let M+ be the subset of points that cannot
be written as the midpoint of distinct points in M , i.e.,

M+ := M \
{
α+ β

2 : α, β ∈M,α 6= β

}
.

As shown next, 2M+ is precisely the set of exponents γ for which A∗Mxγ is contained
in D|M |. Hence, 2M+ contains the extreme points of conv(M +M).

Lemma 8.3.2. A∗Mxγ ∈ D|M | if and only if γ = 2ζ for ζ ∈M+.

Proof. Consider ζ ∈ M+ and suppose that (α, β) ∈ suppA∗Mx2ζ . Then ζ = 1
2(α + β);

hence, α = β by definition of M+. Conversely, if A∗Mxγ ∈ D|M |, then α+β = γ implies
that α = β. Hence, γ = 2α. Suppose that α /∈ M+. Then, α = µ+λ

2 for µ 6= λ. But
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(a) (b)

Figure 8.2: Convex hulls of (M + M) for two choices of M . The set 2M+ is
marked with rectangles. The inclusion 2M+ ⊆ 2M is not strict in Figure 8.2(a),
where M = {(0, 0), (1, 0), (2, 0), (1, 1), (1, 2), (2, 1)}. It is strict in Figure 8.2(b), where
M = {(0, 0), (1, 1), (1, 2), (2, 1)}.

µ + λ = 2α = γ. Hence, (µ, λ) ∈ suppA∗Mxγ , contradicting the assumption A∗Mx
γ is

diagonal.

The inclusion P∗M,new ⊆ Σ∗M,D is strict whenever 2M+ is a strict superset of the
extreme points of conv(M + M). Further, when 2M+ is a strict superset, Σ∗M,D has
more extreme rays than P∗M,new and hence strictly contains it. As an example, this
containment is strict when

M = {(0, 0), (1, 1), (1, 2), (2, 1)}.

For this choice of M , we have that M = M+. Hence, 2M+ contains (2, 2), which is not
an extreme point of conv(M +M). This is illustrated by Figure 8.2(b).

� 8.3.2 Inequalities violated by nonnegative polynomials

For y ∈ P∗M,new, it holds that 〈f, y〉 ≥ 0 for all nonnegative polynomials f ∈ R[x]M+M
(Proposition 8.1.1). The same is not necessarily true for y ∈ Σ∗M,D: an inequality
〈f, y〉 ≥ 0 induced by some y ∈ Σ∗M,D may be violated by some nonnegative polynomial
f ∈ R[x]M+M , as illustrated by Figure 8.3.

To see this, note for M = {(0, 0), (1, 1), (1, 2), (2, 1)} that (1, 1) ∈ M+; hence,
x2

1x
2
2 ∈ Σ∗M,D by Lemma 8.3.2. However, the nonnegative polynomial g ∈ R[x]M+M

given by

g = x4
1x

2
2 + x2

1x
4
2 − 3x2

1x
2
2 + 1

(the so-called Motzkin polynomial) satisfies 〈g, x2
1x

2
2〉 = −3. Note that this implies

g /∈ ΣM—i.e., that g is not a sum of squares of polynomials with support contained by
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(0, 0)

(4, 2)

(2, 4)

(2, 2)

(a) conv(M +M)

c00 ≥ 0, c24 ≥ 0,
c42 ≥ 0,

(b) Valid ineqs. if f(x) ≥ 0

c00 ≥ 0, c24 ≥ 0,
c42 ≥ 0, c22 ≥ 0,

(c) Valid ineqs. if f(x) ∈ ΣM

Figure 8.3: f(x) =
∑
α∈M+M cαx

α, where 2M+ ⊆ 2M is marked with rectangles.
Here, M is the same as in Figure 8.2(b).

this particular M . In fact, it is well known that g /∈ ΣM for any choice of M .

� 8.4 Jordan reduction

Recall the main idea in Jordan reduction: finding a subspace S that is admissible. For
(SOS-SDP), this means the orthogonal projection PS : S|M | → S|M | onto S satisfies the
conditions

PS · S|M |+ ⊆ S|M |+ , PS · A ⊆ A,

which together imply that S contains solutions to (SOS-SDP) when they exist. In this
section, we characterize admissible coordinate subspaces (Chapter 7) for (SOS-SDP) in
terms of the exponents M and the polynomial f . For this, we let SR ⊆ S|M | denote the
coordinate subspace of matrices with supports contained in R ⊆M ×M , i.e.,

SR := span {Eαβ + Eβα : (β, α) ∈ R} ,

where Eαβ ∈ R|M |×|M | is the 0/1 matrix with support equal to (α, β). We will show
that SR is admissible only if R is a relation of the following type.

Definition 8.4.1. Let M be a finite subset of Nn. For T ⊆M +M , define the relation
RT ⊆M ×M as follows

RT = {(α, β) ∈M ×M : α+ β ∈ T } .

Equivalently, let RT := {supp(A∗Mxγ) : γ ∈ T }.

Our main result is the following characterization.
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Theorem 8.4.1 (Main result). The subspace SR is admissible for (SOS-SDP) if and
only if there is a subset T of M +M such that R = RT , where T satisfies the following
properties:

• RT is transitive

• T contains the support of f .

The next example illustrates this theorem for a fixed M and different polynomials f .

Example 8.4.1. Consider M = {(0, 0), (1, 1), (1, 2), (2, 1)} and let

f =
∑

(α,β)∈(M+M)
cαβx

α
1x

β
2 .

The matrix A∗M (f) and two polynomials in R[x]M+M are given by:

A∗M (f) =


c00 c11 c12 c21
c11 c22 c23 c32
c12 c23 c24 c33
c21 c32 c33 c42

 , g = 1 + x2
1x

2
2 + x2

1x
4
2 + x4

1x
2
2

h = 1 + x3
1x

2
2 + x4

1x
2
2 + x3

1x
3
2 + x4

1x
2
2

A subset T ⊆M +M and the coordinate subspace SRT it induces are

T =


(0, 0), (2, 2), (2, 3),
(3, 2), (2, 4), (3, 3)

(4, 2)

 , SRT =


∗ 0 0 0
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

 .
The subspace is admissible if f = g or f = h. It is minimal if f = h. Another subset
T ⊆M +M and induced coordinate subspace SRT is

T =
{

(0, 0), (2, 2),
(2, 4), (4, 2)

}
, SRT =


∗ 0 0 0
0 ∗ 0 0
0 0 ∗ ∗
0 0 ∗ ∗

 .
This subspace is admissible and minimal if f = g. It is not admissible for f = h since
T doesn’t contain the support of h.

Theorem 8.4.1 yields a procedure (Algorithm 8.1) for finding the minimal coordinate
subspace SRT . Note this algorithm is expressed solely in terms of the polynomial f .
It also performs at most |M + M | iterations, each with complexity polynomial in the
cardinality of M . In the remainder of this section, we prove Theorem 8.4.1. We then
interpret other techniques for simplifying (SOS-SDP) as less powerful and less efficient
versions of Algorithm 8.1.
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Algorithm 8.1: Finds minimal admissible coord. subspace SRT for (SOS-SDP)
Inputs: a polynomial f ∈ R[x]M+M .
Output: relation RT inducing the minimal coord. subspace SRT of (SOS-SDP)
Initialize T to supp(f)
repeat
T ← {α+ β : (α, β) ∈ the transitive closure of RT }

until converged

� 8.4.1 Proof of Theorem 8.4.1

From Chapter 5, the subspace SR is admissible if and only if

• SR is invariant under X 7→ X2.

• SR contains A∗M (AMA∗M )−1f

• SR is an invariant subspace of A∗M (AMA∗M )−1AM .

Note in Chapter 7, we saw that the first condition holds if and only if R is transitive.
In this section we prove the following theorem by additionally characterizing the second
and third conditions using special sparsity properties of the linear map AM .

The proof uses sparsity properties of A∗M which, by definition, satisfies

supp(A∗Mxγ) = {(α, β) ∈M ×M : β + α = γ}.

This shows that A∗M maps polynomials with disjoint (resp., equal) support to matrices
with disjoint (resp., equal) support. We first use these properties to show the following.

Lemma 8.4.1. For all g, f ∈ RM+M [x], the following statements hold.

1. The polynomials f and g have disjoint support if and only if the matrices A∗Mg
and A∗Mf have disjoint support.

2. The polynomials f and g have equal support if and only if the matrices A∗Mg and
A∗Mf have equal support.

3. If AMX 6= 0 and supp(X) ⊆ supp(A∗Mxα), then supp(AMX) = supp(xα).

4. supp(AMA∗Mf) = supp(f) for all f .

Proof. The first two statements are immediate from the definition of A∗M . For the third,
we need to show AMX and xα have equal support. For this, we note that for all β 6= α,

〈xβ, AMX〉 = 〈A∗Mxβ, X〉 = 0



246 CHAPTER 8. REDUCTION OF SUM-OF-SQUARES PROGRAMS

given that A∗Mxβ and X have disjoint support if supp(X) ⊆ supp(A∗Mxα). This shows
that AMX = λxα for some λ ∈ R. Further, λ 6= 0 since AMX 6= 0 by assumption.

We now show the last statement. By the first statement,

supp(A∗Mf) = ∪α∈supp(f) supp(A∗Mxα).

Further,

supp(AMA∗Mf) = ∪α∈supp(f) supp(AMA∗Mxα).

SinceAMA∗M is invertible, AMA∗Mxα 6= 0. Hence, by the third statement, supp(AMA∗Mxα) =
supp(xα), showing that

supp(AMA∗Mf) = ∪α∈supp(f) supp(xα) = supp(f).

We use this to prove the following which, combined with Lemma 7.3.1 (which established
a correspondence between transitive relations and coordinate projections that leave the
psd cone invariant), proves Theorem 8.4.1.

Lemma 8.4.2. The following statements hold

• The coordinate subspace SR contains A∗M (AMA∗M )−1f if and only if the relation
R contains the support of A∗Mf .

• The coordinate subspace SR is an invariant subspace of A∗M (AMA∗M )−1AM if and
only if there exists a subset T ⊆M +M for which

R =
⋃
γ∈T

supp(A∗Mxγ)

Proof. By definition, the subspace SR contains a point X if and only if the relation R
contains the support of X. By Lemma 8.4.1-(4), the polynomials f and (AMA∗M )−1f

have equal support. Hence, by Lemma 8.4.1-(2), the matrices A∗M (AMA∗M )−1f and
A∗Mf have equal support. Hence, SR contains A∗M (AMA∗M )−1f if and only if R contains
the support of A∗Mf .

Let Ψ denote A∗M (AMA∗M )−1AM and let

B = {Eαβ + Eβα : α, β ∈M} .

Finally, let G be the graph with node set B for whichX,Y ∈ B are adjacent if and only if
〈X,Ψ(Y )〉 6= 0. Finally, let Bαβ = Eαβ +Eβα. Let Sγ := {Bαβ : (α, β) ∈ supp(A∗Mxγ)}.
By Lemma 7.4.2, statement 2 follows if the collection of sets {Sγ : γ ∈ M + M}
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partitions B into connected components of G. For this, it suffices to show that Ψ(Bαβ)
and A∗Mxγ have equal support if α+ β = γ. To see they have equal support, note that
supp(Bαβ) ⊆ supp(A∗Mxγ) by definition of AM . Further,

supp
(
(AMA∗M )−1AM (Bαβ)

)
= supp (AM (Bαβ)) = supp(xγ)

where the first equality follows by Lemma 8.4.1-(4) and the next by Lemma 8.4.1-(3).
Hence, Ψ(Bαβ) and A∗Mxγ have equal support by Lemma 8.4.1-(2).

� 8.4.2 Characterization of transitivity and comparisons

By Theorem 8.4.1, the coordinate subspace SRT is admissible for (SOS-SDP) if and
only if T ⊆ (M + M) contains the support of the polynomial f and RT ⊆ M ×M
is transitive. We now study transitivity of RT in more detail. First we describe the
partition of M induced by RT when it is transitive. We then show how methods from
the literature for simplying (SOS-SDP) implicitly construct a transitive relation RT and
hence can be viewed as weaker versions of Algorithm 8.1; incidentally, these algorithms
run in exponential time (in n) whereas Algorithm 8.1 runs in polynomial time.

A characterization of transitivity When the symmetric relation RT ⊆M ×M is transi-
tive, it defines a collection of disjoint subsets ofM (and a partition ofM when it is also
reflexive). It turns out one can decompose T into unions of Minkowski sums using this
collection. Moreover, existence of this decomposition implies transitivity. Formally:

Lemma 8.4.3. Let M be a finite subset of Nn. For T ⊆ M + M , the following
statements are equivalent.

1. The relation RT is transitive.

2. T = ⋃p
i=1(Si + Si), where S0, S1, S2, . . . , Sp form a partition of M and satisfy

T ∩ (Si + Sj) = ∅ ∀i 6= j,

T ∩ (S0 + S0) = ∅.
(8.2)

Proof. (2 ⇒ 1): Suppose γ ∈ Si and β ∈ Sj for i, j ∈ [0, p] and that (β, γ) ∈ RT , i.e,
β + γ ∈ T . By (8.2), we conclude i = j and i 6= 0. By the exact same argument, if
(γ, µ) ∈ RT for µ ∈ Sk, then Sj = Sk. Hence, β + µ ∈ Si + Si ⊆ T , showing that
(β, µ) ∈ RT .

(1⇒ 2). Suppose RT is transitive. Then, there exists disjoint subsets S0, S1, . . . , Sp
of M for which

M = ∪pi=0Si,
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where S1, . . . , Sp form a partition of M̄ := {β : (β, β) ∈ RT }, S0 = M \ M̄ and
β, γ ∈ Si if and only if (β, γ) ∈ RT for all i ∈ [1, p]. By definition of RT , it follows that
T = ∪pi=1Si + Si.

If T ∩ (S0 + S0) 6= ∅, there exists β, γ ∈ S0 such that (β, γ) ∈ RT , which, using
the fact RT is symmetric and transitive, implies (β, β) ∈ RT , a contradiction of the
definition of S0. Similarly, T ∩ (Si + Sj) 6= ∅ cannot hold unless i = j by definition of
Si.

Transitivity of RT also implies existence of structured sums-of-squares decomposi-
tions. Specifically, if a polynomial f with supp(f) ⊆ T is a sum-of-squares of polyno-
mials supported by M , then f is also a sum-of-squares of polynomials supported by the
subsets Si of Lemma 8.4.3. Formally:

Corollary 8.4.1. Let M be a finite subset of Nn, T a finite subset of M + M and
suppose RT is transitive. Finally, for f ∈ R[x]M+M suppose supp(f) ⊆ T . The
following statements are equivalent.

1. f is a sum-of-squares of polynomials supported in M , i.e.

f =
∑
i

f2
i , supp(fi) ⊆M.

2. f is a sum-of-squares of polynomials supported in Sj, i.e.

f =
p∑
j=1

∑
i

f2
i,j supp(fi,j) ⊆ Sj ,

where S0, . . . , Sp are disjoint subsets ofM , satisfying (8.2), for which T = ∪pj=1Sj+
Sj.

Comparison with other methods

Since RT is transitive, the associated coordinate subspace is block diagonal up to per-
mutation, where the blocks correspond to the partition of |M | induced by RT . We next
show how other block-diagonalization strategies in the literature implicitly construct
transitive relations RT and hence admissible coordinate subspaces (Theorem 8.4.1).
Methods of [35] are based on Newton-polytope arguments and a generalization, whereas
a method of [85] is based on polynomials with sign-symmetries, which we discuss first.

Transitive relations from sign-symmetries Löfberg [85] shows (SOS-SDP) can be block-
diagonalized by identifying its sign-symmetries, where f ∈ R[x]M+M has a sign-symmetry
if jointly flipping the sign of a subset of indeterminates leaves f invariant. For instance,
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if f is in three variables, f has a sign-symmetry if, e.g., f(x1, x2, x3) = f(x1,−x2,−x3),
f(x1, x2, x3) = f(−x1, x2, x3), or f(x1, x2, x3) = f(−x1,−x2,−x3). For a polynomial in
n variables, there are 2n−1 possible sign-symmetries, each corresponding to a nonempty
subset of {1, . . . , n}. In three variables, the other symmetries are:

f(x1, x2, x3) = f(x1, x2,−x3),
f(x1, x2, x3) = f(x1,−x2, x3),

f(x1, x2, x3) = f(−x1, x2,−x3),
f(x1, x2, x3) = f(−x1,−x2, x3).

To identify every sign-symmetry, Löfberg [85] uses a set of binary vectors that label
sign flips, e.g., f(x1, x2, x3) = f(−x1, x2, x3) is labeled by the vector r = (1, 0, 0)T . He
then exploits the fact f has a sign-symmetry associated with r ∈ {0, 1}n if rTγ is an
even number for all γ ∈ supp(f). The next lemma shows the binary vectors identifying
sign-symmetries also define a transitive relation:

Lemma 8.4.4. Let M be a finite subset of Nn and let r1, . . . , rp ∈ {0, 1}n be a set of
non-zero binary vectors. If T = {α ∈ M + M : rTi α ∈ 2N for all i ∈ [p]}, the relation
RT := {(α, β) ∈M ×M : α+ β ∈ T } is transitive.

Proof. If β + γ and γ + µ are in T , then rTi (β + γ) and rTi (γ + µ) are even integers.
We conclude if rTi γ is odd (resp., even), then rTi β and rTi µ are both odd (resp., even).
Hence, rTi (β + µ) is even, showing that β + µ ∈ T .

Transitive relations from Newton polytopes Fix f ∈ R[x]M+M and recall that the New-
ton polytope new(f) of f is the convex hull of supp(f) is called the Newton polytope of
f , which we denote new(f). In [35], the authors show that if f is supported on disjoint
faces of new(f), then f is a sum-of-squares if and only if its restriction to each face is
a sum-of-squares. In other words, if

f =
p∑
i=1

∑
α∈Fi

bαx
α

for pairwise-disjoint faces Fi of new(f), then f is a sum-of-squares if and only if for
each i the polynomial ∑

α∈Fi
bαx

α

is a sum-of-squares. (An analogous result holds for nonnegative polynomials [120, The-
orem 3.6].)

The polynomial f(x1, x2) = 1+b1x4
1+b2x4

2, for instance, is supported only on vertices
of new(f), and therefore has this property. If M is a set of monomial exponents for
which (M + M) = new(f) ∩ Nn, we can prove this fact by constructing a transitive
relation RT as follows:
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Lemma 8.4.5. Let M be a finite subset of Nn and let F1, . . . ,Fp ⊆ Rn denote pairwise
disjoint faces of a convex polytope. If T ⊆M +M satisfies

T = ∪pi=1(M +M) ∩ Fi,

then the relation RT = {(α, β) ∈M ×M : α+ β ∈ T } is transitive.

Proof. Fix (β, γ) ∈ RT and (γ, µ) ∈ RT . By assumption, there exists faces Fi and Fj
for which

β + γ ∈ Fi, γ + µ ∈ Fj ,

or, equivalently,
1
2(2β + 2γ) ∈ Fi,

1
2(2γ + 2µ) ∈ Fj .

Since Fi and Fj are faces, we conclude that 2γ ∈ Fi ∩ Fj , which, using the pairwise-
disjointness assumption, implies that Fi = Fj . We also have that 2β, 2µ ∈ Fi, which,
since Fi is convex, shows that

1
2(2β + 2µ) = β + µ ∈ Fi,

implying that β + µ ∈ T , i.e., (β, µ) ∈ RT .

Transitive relations from functions Another block-diagonalization technique from [35]
constructs a function ψ : M +M → 2M with the following properties:

β + γ = α ⇒ ψ(2β) ∪ ψ(2γ) ⊆ ψ(α). (8.3)

To gain intuition behind the function ψ, observe that the minimal face operation
face(·, P ) of a polytope P satisfies a variant of property (8.3), i.e., if 2β, 2γ, and α

are contained in some polytope P , then

2β + 2γ
2 = α⇒ face(2γ, P ) ∪ face(2β, P ) ⊆ face(α, P ).

This parallel helps the authors of [35] generalize the Newton-polytope-based block-
diagonalization technique described in Section 8.4.2. While we will not state the specific
definition of ψ used in [35], we nevertheless show it defines a transitive relation when
paired with pairwise-disjoint subsets Pi of M . Consider the following.

Lemma 8.4.6. Let M be a finite subset of Nn. Let ψ : M + M → 2M be a function
with the property (8.3), and in addition assume that ψ(α) 6= ∅ for all α ∈ M + M .
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Next, suppose P1, . . . , Pp are pairwise-disjoint subsets of M for which

ψ(β + γ) ⊆ Pi when ψ(2β), ψ(2γ) ⊆ Pi.

If T = {α ∈M +M : ψ(α) ⊆ Pi for some i ∈ [p]}, then RT = {(α, β) ∈M ×M : α+ β ∈ T }
is transitive.

Proof. For γ, β, µ ∈ M , suppose that (β, γ) ∈ RT and (γ, µ) ∈ RT . Then, γ + β and
γ + µ are in T , which implies

ψ(2γ) ∪ ψ(2β) ⊆ ψ(γ + β) ⊆ Pi

and

ψ(2γ) ∪ ψ(2µ) ⊆ ψ(γ + µ) ⊆ Pj

for some Pi and Pj . Since ψ(2γ) ⊆ Pi ∩ Pj , the pairwise-disjointness assumption
implies that Pi = Pj . Since ψ(2β), ψ(2µ) ⊆ Pi, we have, by our assumption on Pi, that
ψ(β + µ) ⊆ Pi, showing that β + µ ∈ T , i.e., (β, µ) ∈ RT .



252 CHAPTER 8. REDUCTION OF SUM-OF-SQUARES PROGRAMS



Notation

Sets

V,W finite-dimensional inner product spaces
A an affine subset of an inner product space V
[n] the finite set {1, 2, . . . , n}

Linear maps

Φ :W → V a linear map between inner product spaces W and V
Φ∗ : V → W the adjoint of Φ
Φ · X the image {Φx : x ∈ X} of X ⊆ W under the map Φ :W → V
range Φ the range of Φ :W → V
null Φ the null space (kernel) of Φ :W → V

Convex cones

K a convex cone
K∗ the dual cone of K
F a face of K
relintK the relative interior of K

Subspaces

L a linear subspace of an inner product space V
L⊥ the orthogonal complement of L
spanX the linear subspace spanned by X ⊆ V
s⊥ the orthogonal complement of span{s} if s ∈ V (a hyperplane)
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Matrices

TrX the trace of a matrix X
Sn the vector space of n× n symmetric matrices equipped with trace inner product
Sn+ the cone of n× n symmetric positive semidefinite matrices

Jordan algebras

J a Euclidean Jordan algebra
x ◦ y the Jordan product between x, y ∈ J
x2 the square x ◦ x of x ∈ J
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