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Abstract— In this paper we describe a method for choosing
a “good” monomial basis for a sums of squares (SOS) program
formulated over a quotient ring. It is known that the monomial
basis need only include standard monomials with respect to a
Groebner basis. We show that in many cases it is possible
to use a reduced subset of standard monomials by combining
Groebner basis techniques with the well-known Newton poly-
tope reduction. This reduced subset of standard monomials
yields a smaller semidefinite program for obtaining a certificate
of non-negativity of a polynomial on an algebraic variety.

I. INTRODUCTION

Many practical engineering problems require demonstrat-
ing non-negativity of a multivariate polynomial over an
algebraic variety, i.e. over the solution set of polynomial
equations. This problem arises, for example, in local Lya-
punov analysis of a polynomial dynamical system.

Unfortunately, certifying non-negativity over a variety is
in general a hard computational problem. An alternative is to
demonstrate a polynomial is equal to a sum of squares over
the variety by solving a sums of squares program. A sums
of squares program optimizes a linear function of polyno-
mial coefficients subject to constraints that polynomials are
sums of squares. If the polynomials in the program are of
bounded degree, a sums of squares program is equivalent to
a semidefinite program (SDP) and hence efficiently solved
[7]. Consider the following sums of squares program, which
demonstrates non-negativity of the polynomial f(x) on the
set

V = {x : hi(x) = 0, i = 1, . . . ,m}, (1)

where x is a vector of indeterminates and each hi is a
polynomial in R[x]:

Find s(x) and λi(x) ∈ R[x]
subject to
s(x) is a sum of squares

s(x)− f(x) =
m∑
i

λi(x)hi(x).

(2)

Feasibility of (2) is sufficient to conclude non-negativity of
f(x) on V . To see this, note that feasibility implies f(x)
and a sum of squares polynomial differ by an expression that
vanishes everywhere on V . If one specifies a monomial basis
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for λi(x) and s(x), this feasibility problem is equivalent to
an SDP. This follows because the sum of squares constraint
is equivalent to a semidefinite constraint on the coefficients
of s(x), and the equality constraint is equivalent to linear
equations on the coefficients of s(x) and λi(x).

Naturally, the complexity of this sums of squares program
grows with the complexity of the underlying variety, as
does the size of the corresponding SDP. It is therefore
natural to explore how algebraic structure can be exploited
to simplify this sums of squares program. Consider the
following reformulation [10], which is feasible if and only
if (2) is feasible:

Find s(x)
subject to
s(x) is a sum of squares

s(x) = f(x).

(3)

Here, s(x) denotes the normal form of s(x) with respect to
a Groebner basis for the ideal I = 〈h1, h2, . . . , hm〉. Two
polynomials have the same normal form if and only if they
share an equivalence class in the quotient ring R[x]/I . In
other words, two polynomials have the same normal form
if and only if they differ by a polynomial of the form∑m
i λi(x)hi(x). Note if one specifies a vector of monomials

~m(x) one can solve (3) with the SDP:

Find Q ∈ Sn

subject to

~m(x)TQ~m(x) = f(x)

Q � 0.

(4)

This is an SDP since the constraint matching normal forms
is linear in the entries of Q.

Formulation (3) has two practical advantages over (2).
First, the polynomials λi(x) have been eliminated from the
search. Second, one can build ~m(x) in the SDP formulation
(4) using only standard monomials, which are defined with
respect to a Groebner basis as all monomials not divisible by
an initial term of a polynomial in the Groebner basis. Here,
initial term means the unique maximal term of a polynomial
with respect to a term ordering. Constructing ~m(x) from
standard monomials is justified by the fact that any sum
of squares polynomial is congruent modulo I to a sum of
squares of polynomials supported by standard monomials
(see, for example, Lemma 2 of Section III).

Systematic procedures for selecting ~m(x), however, have
not been thoroughly addressed. If we consider a total degree



ordering ≥α, a term bound xγ , and define inα(s(x)) to be
the maximal term of s(x) with respect to ≥α, an “optimal”
monomial vector is one of minimum dimension solving the
following problem:

Problem 1: Given a total degree ordering ≥α and term
bound xγ , find a vector of monomials ~m(x) such that the
semidefinite program (4) is feasible whenever the sums of
squares program (3) is feasible for some s(x) satisfying
inα(s(x)) ≤α xγ .

Note the total degree ordering ensures the set of all
polynomials satisfying the term bound xγ can be expressed
with a finite set of monomials, which in turn implies an ~m(x)
of finite dimension exists that solves Problem 1. In particular,
one can construct an ~m(x) solving Problem 1 from the set of
Term Bounded Standard Monomials, which we denote Mγ

and define below:
Definition 1: Term Bounded Standard Monomials. For a

given xγ and total degree ordering ≤α, let Mγ be the set
of all exponents β such that xβ is a standard monomial and
x2β ≤α xγ .

A monomial vector constructed from all elements of Mγ

solves Problem 1 for a general polynomial f(x) and a
general ideal I . In this paper, we develop an algorithm for
constructing ~m(x) using just a subset of Mγ by exploiting
problem specific structure. Given a Groebner basis for I
with respect to a total degree ordering ≤α, the algorithm we
present constructs a subset of Mγ using the structure induced
by multi-divisor polynomial division and well known Newton
polytope arguments. As we illustrate with examples, this
subset is often a strict subset of Mγ which enables one
to build smaller SDP formulations for the sums of squares
program (3).

A. Prior Work

Many authors have investigated ways of exploiting alge-
braic in sums of squares programs. General methods are
introduced in [10] and [8] that exploit sparsity and symmetry.
Other techniques for exploiting sparsity are further discussed
in [12], [6], [5]. Symmetry methods are discussed in [3].
Practical implementations of these types of techniques are
discussed in [4].

Quotient ring formulations, aside from their introduction
in [10] and discussion in [8], have received less attention. This
is perhaps due to their reliance on Groebner bases methods,
and their lack of support by sums of squares modeling tools.
The former concern is not always relevant since Groebner
bases are easily calculated (or are immediately available) in
many instances. The latter concern, of course, does not take
away from the inherent power of quotient ring formulations,
which we hope to extend with this paper.

II. BACKGROUND

We begin by reviewing polynomial ideals and Groebner
bases. We then discuss important properties of multivariate,
multi-divisor polynomial long division and its connections
to quotient rings.

A. Polynomial Ideals, Term Orderings, and Groebner Bases

The ideal I generated by a set of polynomials

H = {h1(x), h2(x), . . . , hm(x)}

is denoted

I = 〈h1(x), h2(x), . . . , hm(x)〉

and is equal to the set

I =

{
m∑
i=1

λi(x)hi(x) : λi(x) ∈ R[x]

}
. (5)

In other words, the ideal generated by a set of polynomials H
is the set of all polynomials that can be obtained by summing
scaled versions of polynomials in H , where the scale factors
can be any polynomial in R[x].

A term ordering ≥α is a relation on Zn+ (i.e. monomial
exponents) satisfying
• The relation ≥α is a total ordering.
• If γ >α β then for any ζ ∈ Zn+, γ + ζ >α β + ζ.
• The relation ≥α is a well-ordering, which means every

nonempty subset of Zn+ has a smallest element.
We say a term ordering is a total degree ordering whenever

n∑
i=1

γi ≥
n∑
i=1

βi ⇒ γ ≥α β.

We will abuse notation and write for a monomial that xγ ≥α
xβ whenever γ ≥α β.

The initial term inα(f(x)) of a polynomial is the unique
maximal term of f(x) with respect to ≥α. Given a term
ordering ≥α, one can consider the set of initial terms of
polynomials in I . These initial terms generate an ideal, called
the initial ideal, which we denote inα(I).

For a particular term ordering, we say a set of polynomials

G = {g1(x), g2(x), . . . , gn(x)}

is a Groebner basis for an ideal I if and only if it generates
I and

inα(I) = 〈inα(g1), inα(g2), . . . , inα(gn)〉. (6)

Property (6) implies the initial term of any polynomial in I is
divisible by an element of the Groebner basis. This enables a
division algorithm equipped with a Groebner basis to decide
if an arbitrary polynomial f(x) is a member of the ideal I .
We discuss the important properties of this division algorithm
in the next section.

B. Division Algorithm and Normal Forms

Given a polynomial f(x), a list of divisors H =
{h1(x), h2(x), . . . , hm(x)} and a monomial ordering ≥α,
a division algorithm can be defined as in [2] that finds λi(x)
and a remainder term f(x)

H
such that

f(x) =

m∑
i=1

λi(x)hi(x) + f(x)
H



with properties

inα(f(x)
H
) is not divisible by any inα(hi(x)) (7)

inα(f(x)
H
) ≤α inα(f(x)) (8)

inα(λi(x)hi(x)) ≤α inα(f(x))

If we use a list of divisors G that form a Groebner basis
for I = 〈h1, h2, . . . , hm〉, the remainder term f(x)

G
equals

f(x), the normal form of f(x) with respect to the Groebner
basis. The normal form of a polynomial is unique, meaning
the list of divisors G can be permuted without changing
the remainder term f(x)

G
. Normal forms also obey the

following properties:
• Ideal membership

f(x) ∈ I ⇔ f(x) = 0

• Arithmetic identities

g(x) · f(x) = g(x) · f(x) (9)

g(x) + f(x) = g(x) + f(x) (10)

• Congruence modulo I

s(x) ≡ f(x) mod I ⇔ f(x) = s(x) (11)

Note property (7) implies f(x) contains only standard
monomials, i.e. monomials not divisible by an initial term
of a polynomial in the Groebner basis. Property (11) gives
the correspondence between normal forms and equivalence
classes in R[x]/I .

III. APPROACH

We now present an algorithm for computing a vector of
standard monomials satisfying Problem 1 given a term bound
xγ , a total degree term ordering ≥α, and a corresponding
Groebner basis. First, we calculate a set of monomials Sγ
consistent with the structure induced by the Groebner basis
when it is used as the divisor set in the division algorithm.
We then use Sγ to compute a suitable set of monomials
appearing in a sum of squares decomposition of s(x) using
Newton polytope arguments. Finally, we take normal forms
of these monomials to arrive at a reduced set Nγ of standard
monomials. We prove Nγ is a subset of the term bounded
standard monomials Mγ and that this subset can be used to
construct a monomial vector solving Problem 1.

The proposed procedure is explicitly given in Algorithm 1.
Here, we define the support supp(w(x)) of a polynomial
w(x) to be the unique set giving

w(x) =
∑

β∈supp(w(x))

cβx
β

for nonzero real valued coefficients cβ . We claim Algo-
rithm 1 has the following properties:

Property 1: Algorithm 1 returns a set Nγ such that the
monomial vector ~m(x)i = xβi , βi ∈ Nγ , i = 1, . . . , |Nγ |
solves Problem 1.

Property 2: The set Nγ returned by Algorithm 1 is a
subset of the Term Bounded Standard Monomials Mγ .

Input: A polynomial f(x), a total degree term
ordering ≥α and corresponding Groebner basis
G, a maximal monomial xγ

Output: A set of standard monomial exponents Nγ
# Compute monomials in normal form of f(x)
Sγ = supp(f(x))
# Monomials that respect term bound
foreach g(x) ∈ G do

# Total degree ordering ensures this loop terminates
forall xβ ≤α xγ do

if inα(x
βg(x)) ≤α xγ then

Sγ = Sγ ∪ supp(xβg(x))
end

end
end
# Normal form of monomials in Newton polytope
Nγ = {}
foreach β ∈ conv( 12Sγ) ∩ Zn do

Nγ = Nγ ∪ supp(xβ)
end

Algorithm 1: Computes a reduced subset of term bounded
standard monomials.

To understand the mechanics of Algorithm 1 and how
Properties 1 and 2 can be demonstrated, first note that any
polynomial s(x) satisfying the conditions

inα(s(x)) ≤α xγ (12)
s(x) ≡ f(x) mod I (13)

can be decomposed using a Groebner basis G for I with
respect to the term ordering ≤α as

s(x) =

|G|∑
i=1

λi(x)gi(x) + f(x)

where

inα(λi(x)gi(x)) ≤α inα(s(x)) ≤α xγ ,

and gi ∈ G and λi(x) ∈ R[x]. Existence of this decomposi-
tion is implied by properties of division by a Groebner basis
and motivates the construction in Algorithm 1 of the set Sγ ,
which has the obvious property:

s(x) satisfies (12) and (13)⇒ supp(s(x)) ⊆ Sγ .

Remark 1: The total degree ordering ensures that the set
Sγ constructed by Algorithm 1 is finite.

The next phase of the algorithm exploits the structure of
sums of squares polynomials. If a polynomial with support
in Sγ is equal to a sum of squares

∑
i pi(x)

2, then Newton
polytope arguments given in [1] describe the support of
pi(x). Specifically,

s(x) =
∑
i

pi(x)
2 ⇒ supp(pi) ⊆ conv

(
1

2
Sγ

)
∩ Zn,

where conv denotes convex hull. This gives the following
immediate result:



Lemma 1: If a sums of squares polynomial
∑
i pi(x)

2

satisfies (12) and (13), then supp(pi(x)) is contained in
conv( 12Sγ) ∩ Zn.

Lemma 1 implies a monomial vector constructed from
conv( 12Sγ) ∩ Zn solves Problem 1. We are interested, how-
ever, not in conv( 12Sγ) ∩ Zn but in a set of standard mono-
mials. The algorithm therefore builds the set Nγ by taking
normal forms of monomials constructed from conv( 12Sγ) ∩
Zn. This is motivated by the following lemma:

Lemma 2: If a polynomial s(x) =
∑
i pi(x)

2 satisfies
s(x) ≡ f(x) mod I , then there exists a (possibly different)
sum of squares polynomial ŝ(x) =

∑
i p̂i(x)

2 satisfying
ŝ(x) ≡ f(x) mod I where supp(p̂i) = supp(pi).

Proof: See Appendix.
Combining Lemma 1, Lemma 2, and (10) demonstrates a
monomial vector constructed from Nγ solves Problem 1 and
hence demonstrates Property 1.

To demonstrate Property 2, we need the following basic
fact relating term orderings and polytopes:

Lemma 3: If ≥α is a valid term ordering and Sγ is a finite
set of exponents, then there is a unique maximal element xζ

of {xβ : β ∈ conv(Sγ)} with respect to ≥α, and ζ is an
element of Sγ .

Proof: See Appendix.
To show that Nγ ⊆ Mγ , we first note that for any σ ∈ Sγ ,
xσ ≤α xγ by construction of Sγ . We then use Lemma 3 to
conclude for any point β in conv( 12Sγ) ∩ Zn, x2β ≤α xγ .
Finally, we use (8) to conclude that for any ζ in supp(xβ),
x2ζ ≤α xγ . That is, all ζ in Nγ are also in Mγ and the
desired result follows.

IV. EXAMPLES

We illustrate the results with a few examples.

A. Example 1

Consider proving non-negativity of

f(x, y) = −x3 − xy2

on the variety V = {(x, y) : x3 + y2 = 0}. Take I to be the
ideal 〈x3 + y2〉 and ≥α to be the graded lex ordering with
x > y. Since the ideal I has one generator, a Groebner basis
for I in any term ordering is just the generator x3 + y2.

Consider a quotient ring formulation that searches for sum
of squares polynomials s(x, y) satisfying inα(s(x, y)) ≤α
y8. For this choice of term bound, the set of all term bounded
standard monomials is given by

{ 1 x y x2 x y y2 x2 y x y2 y3 x2 y2 x y3 y4 }.

The corresponding set of exponents Mγ is shown in Fig-
ure 1d.

Applying Algorithm 1, we’ll find a subset of exponents
from which a smaller set of monomials can be constructed.
Decomposing s(x, y) as

s(x, y) = λ(x, y)(x3 + y2) +−x3 − xy2

= λ(x, y)(x3 + y2) + y2 − xy2,

(a) Sγ (b) conv( 1
2
Sγ) ∩ Zn

(c) Nγ (d) Mγ

Fig. 1: Different sets of monomials arising in Example IV-A.
Fig. 1a-1c show monomial sets calculated at different stages
of Algorithm 1. Figure 1d shows all term bounded standard
monomials. Note Nγ is a strict subset of Mγ , which implies
Algorithm 1 leads to a smaller SDP for the given example.

we seek the set of monomials Sγ that can appear in s(x, y)
for all λ(x, y) such that

inα(λ(x, y)(x
3 + y2)) ≤α y8.

This set is plotted in Figure 1a. Plotted in Figure 1b are the
integer points contained in conv( 12 (Sγ)). Constructed from
these integer points is Nγ , the desired subset of Mγ . Note
from Figure 1 that Nγ is a strict subset of Mγ .

B. Example 2
The preceding example dealt with a positive dimensional

variety. We now explore a zero-dimensional case, for which
the set of standard monomials is always finite. One may
perhaps think that as the degree of s(x) in our search in-
creases, all standard monomials must eventually be included
and there is no benefit to running the proposed algorithm.
This example illustrates this is not necessarily the case.

Consider proving f(x) = −x3 is nonnegative on the
variety V

V = {(x, y) : x3 + y6 = 0, x2 − y5 = 0}.

Let I equal the ideal generated by the defining polynomials
of the variety V :

I = 〈x3 + y6, x2 − y5〉.

Taking ≥α to again be the graded lex ordering with x > y,
a Groebner basis for I is

{x2 − y5, x3 + x2y}.



(a) Sγ (b) conv( 1
2
Sγ) ∩ Zn

(c) Nγ (d) Mγ

Fig. 2: Different sets of monomials arising in Example IV-
B. Fig. 2a-2c show monomial sets calculated at different
stages of Algorithm 1. Figure 1d shows all term bounded
standard monomials. Note Nγ is a strict subset of Mγ , which
implies Algorithm 1 leads to a smaller SDP for the given zero
dimensional example.

We will consider all s(x, y) such that inα(s(x, y)) ≤α x12.
For this term bound, Mγ contains the exponents of all
standard monomials. We see in Figure 2 that even in this
case, the proposed technique leads to a set of monomials
Nγ that is a strict subset of Mγ . This will always happen
for the given f(x), even as inα(s(x, y)) is allowed to grow
arbitrarily large.

C. Example 3

As a final example, we explore a variety V relevant to
stability analysis of a cart-pole, a 4th order mechanical
system common in robotics. Here V takes the form

V = {x : s2θ + c2θ − 1 = 0, ẍ− g(x) = 0, Ẇ (x) = 0},

where
x = (x, ẋ, ẍ, θ̇, cθ, sθ).

Notice here that all variables are treated as independent
formal indeterminates, i.e., no algebraic relationship is as-
sumed to hold between x and ẋ (and similarly for all other
variables).

The first two equations encode a polynomial representation
of the cart-pole dynamics. The first equation is a unit circle
constraint for trigonometric variables. The second equation
encodes an implicit dynamical relationship between an ac-
celeration and the other system variables. The 3rd equation

xγ |Nγ | |Mγ | dim Sn dim Sn % Reduction
n = |Nγ | n = |Mγ |

x4 23 27 276 378 27
θ̇6 32 34 528 595 11
x6 63 75 2016 2850 29
θ̇8 81 84 3321 3570 7.0
x8 151 168 11476 14196 19
θ̇10 176 179 15576 16110 3.3
x10 300 323 45150 52326 14
θ̇12 333 336 55611 56616 1.8
x12 526 556 138601 154846 10

TABLE I: Comparative savings for different term bounds on
s(x) for Example IV-C. The |Mγ | column shows the number
of term bounded standard monomials. The |Nγ | column
shows the subset of monomials returned by Algorithm 1.
Columns also show the dimension of the vector space of
symmetric matrices appearing in the corresponding SDPs, a
quantity relevant for SDP solvers. The percent reduction in
dimension is shown in the last column.

Ẇ (x) is the time derivative of a quadratic Lyapunov func-
tion W (x, ẋ, θ̇, sθ). The hypersurface where Ẇ (x) vanishes
defines a verifiable region of stability.

If ≥α is the graded lex ordering with

x > ẋ > ẍ > θ̇ > cθ > sθ,

a Groebner basis for I , the ideal generated by the defining
polynomials of V, contains 8 polynomials in indeterminates
(x, ẋ, ẍ, θ̇, cθ, sθ) in degrees ranging from 2 to 8 (for a par-
ticular choice of Lyapunov function and system parameters).

Local stability can be estimated by finding the largest
scalar ρ such that

f(x) = (s2θ + θ̇2 + ẋ2 + x2)(W − ρ)

is congruent to a sum of squares polynomial s(x) modulo
I . For the same choice of Lyapunov function and system
parameters, the initial monomial of f(x) is x4. Thus, we
consider s(x) with inα(s(x)) bounded below by x4. Table I
compares the use of all term bounded standard monomials
versus the subset returned by the proposed algorithm for
various upper bounds on inα(s(x)). Compared are the num-
ber of monomials and the dimension of the corresponding
vector space of symmetric matrices Sn. The latter quantity
is relevant for SDP solvers such as SeDuMi [11] since it
equals the number of scalar decision variables introduced by
the solver.

V. CONCLUSIONS AND FUTURE WORK

A. Conclusions

We have proposed a technique for selecting a reduced
set of monomials in semidefinite program formulations for
sums of squares programs formulated over quotient rings.
The proposed method can lead to smaller, better conditioned
semidefinite programs for proving non-negativity of polyno-
mials over algebraic varieties.



B. Future Work

For the zero-dimensional case, the set of standard mono-
mials always has finite cardinality. This fact provides the
justification for a degree bound in [9] for sums of squares
representations of polynomials nonnegative on zero dimen-
sional varieties. Can the proposed method be used to improve
this bound?

Another open question addresses the issue of strict con-
tainment of Nγ in Mγ . Is it possible to characterize the cases
when strict containment holds, and under what conditions it
fails? In other words, in what cases is the proposed method
guaranteed to reduce the size of the resulting semidefinite
programs?

Finally, what role do the different possible term orderings
play in producing structure useful for complexity reduction?

APPENDIX

Proof: (of Lemma 2)
Since s(x) =

∑
i pi(x)

2 is congruent modulo I to f(x)
we can write that

f(x) =
∑
i

pi(x)2.

Using properties of normal form arithmetic given by (10)
and (9), we see that∑

i

pi(x)2 =
∑
i

pi(x)2

=
∑
i

pi(x) pi(x)

=
∑
i

p̂i(x)2

=
∑
i

p̂i(x)2 ,

where we have taken p̂i(x) = pi(x).
Thus, ŝ(x) =

∑
i p̂i(x)

2 is congruent modulo I to f(x)
and supp(p̂i) = supp(pi).

Proof: (of Lemma 3)
To prove this claim, we first recall a fact about valid term

orderings: monomials can be compared with respect to the
ordering by taking inner products of their exponents with the
rows of a suitable weight matrix. Suppose we want to show
xβ >α xσ . We first check that wT1 β ≥ wT1 σ, where wT1 is
the first row of the weight matrix. If wT1 β = wT1 σ, we move
to the next row of the matrix wT2 and check if wT2 β ≥ wT2 σ.

This process continues down the rows of the matrix until the
inequality is strict. For any valid term ordering, this process
terminates in finitely many steps.

From this we note if ≥α is a valid term ordering, there is a
unique maximal element of {xβ : β ∈ conv(Sγ)} and it can
be found by solving a series of linear programs (LPs) over
faces of conv(Sγ). The cost vector of the ith linear program
is wi and the feasible set of each LP is the face of conv(Sγ)
on which the (i− 1)th LP achieves its optimal solution (the
initial feasible set is just conv(Sγ)). We iterate until an LP
has a unique optimum, which occurs only at extreme points
of conv(Sγ). Since the extreme points are contained in the
set Sγ , we must have that the maximal element xζ satisfies
ζ ∈ Sγ .
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