
Planning, Sensing, and Control for Contact-rich
Robotic Manipulation with Quasi-static Contact

Models

by

Tao Pang

Submitted to the Department of Mechanical Engineering
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2023

© Massachusetts Institute of Technology 2023. All rights reserved.

Author .
Department of Mechanical Engineering

Feb 7, 2023

Certified by. .
Russ Tedrake

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Nicolas Hadjiconstantinou

Department Graduate Officer

2

Planning, Sensing, and Control for Contact-rich Robotic

Manipulation with Quasi-static Contact Models

by

Tao Pang

Submitted to the Department of Mechanical Engineering
on Feb 7, 2023, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Human-level manipulation is not limited to the finger tips. We use our palms, arms,
body and legs to make and break contact with the manipuland whenever and wher-
ever necessary. In contrast, the vast majority of robotic manipulators are artificially
divided into a small end effector that makes all the interactions, and a hefty arm that
needs to always remain collision-free.

One big reason behind this unsatisfying limitation on robotic manipulators is the
lack of planning algorithms that can efficiently reason about contact-rich interactions.
Navigating the non-smooth landscape of contact dynamics constraints is perhaps the
biggest challenge faced by model-based contact-rich planners. Existing methods either
descend along the gradients of smoothed contact dynamics and get stuck in local min-
ima, or search globally through contact mode transitions and get overwhelmed by the
exponentially many modes as the problem gets more complex. Drawing lessons from
the recent empirical success of reinforcement learning in contact-rich manipulation,
we hypothesize that smoothing and global search are both necessary for contact-rich
planners to succeed. In this thesis, we propose a model-based contact-rich planner
which searches globally under the guidance of a novel contact dynamics model. The
model is quasi-static, convex, differentiable and amenable to smoothing, all of which
are features designed to improve the planner’s efficiency. Our method can gener-
ate complex dexterous manipulation action plans with less than 1 minute of online
computation on a regular desktop computer. The plans can also transfer directly to
robotic hardware under certain conditions.

In addition to planning, a complete manipulation pipeline also needs contact force
sensing and feedback control. Therefore, this thesis also studies the viability of es-
timating external contact forces from only joint torque measurements, and explores
how to use feedback to keep the magnitude of contact forces bounded in an accidental
collision.

Thesis Supervisor: Russ Tedrake
Title: Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

I’d like to begin by thanking my advisor Russ. I don’t think a few sentences that

need to fit within half a page can describe how awesome Russ is, but I’ll give it

a try with some machine learning metaphors :D Russ has been an oracular reward

function as I navigate the fun but treacherous landscape in the (state) space of robotics

research. The hardest part of a reward function is to balance between exploration

and exploitation. Russ’s reward has been sparse enough that I always get to do what

I’m most excited about, but also dense enough that I eventually get to put together

this thesis. In addition, Russ’s rigorous attitude towards research, teaching, coding,

diet and bare-foot running has also made him an expert policy to imitate, not only

in work, but also in life.

I’d also like to thank my committee members, Tomas and Alberto, for their valu-

able feedback on both research and presentation, and for pointing out the blind spots

in my literature review.

I’d like to thank members of the robot locomotion group. I’ve received tremendous

help over the years on coding, writing, refining research ideas, learning about related

work, and finding good papers. I will miss the academic and non-academic discussions,

the lunches and dinners, and the beers. Special thanks to my co-author Terry, who,

in addition to being an awesome collaborator, kept our happiness and curiosity alive

on a journey that involves banging our heads against the wall on a daily basis.

Lastly, I’d like to thank my parents, parents-in-law, and Di, my lovely wife, for

their unwavering love and support during the incredible but tough journey of my

PhD. Whenever I feel like I’m a RL agent stuck with a useless policy, they’re there

to cheer me up and remind me that there is more to life than collecting rewards.

5

6

Contents

1 Introduction 23

1.1 Difficulty of Pushing a Box with a Ball 23

1.2 Related Work . 27

1.2.1 Modeling Contact with Complementarity Constraints 28

1.2.2 Nonlinear Optimization . 29

1.2.3 Contact Mode Transitions . 30

1.2.4 Reinforcement Learning . 32

1.3 Contributions and Thesis Structure 32

2 An Effective Contact Dynamics Model for Contact-rich Planning 35

2.1 Introduction . 35

2.2 Background . 37

2.2.1 Quasi-static Models in Robotic Manipulation 37

2.2.2 Convex Rigid-body Contact Dynamics 39

2.3 A Convex, Quasi-static and Differentiable Contact Model 40

2.3.1 Forward Dynamics . 41

2.3.2 Differentiability . 44

2.3.3 Implementation . 45

2.3.4 Interpreting Anitescu’s Convex Relaxation 46

2.3.5 Flaws of Prescribed Robot Motions as Control Input 49

2.3.6 Experimental Evaluation . 52

2.4 Smoothing of Contact Dynamics . 62

2.4.1 Smoothing Schemes for Dynamical Systems 62

7

2.4.2 Randomized Smoothing of Contact Dynamics 64

2.4.3 A Smoothed Contact Dynamics Model 66

2.4.4 The Smooth Contact Model as “Analytic Smoothing” 68

3 Contact-Rich Manipulation Planning using Quasi-static Models 73

3.1 Introduction . 73

3.2 Trajectory Optimization through Contact 74

3.2.1 Iterative MPC with Smoothing 75

3.2.2 Experiment Setup . 76

3.2.3 Results & Discussion . 79

3.3 Local Mahalanobis Metric for RRT 80

3.3.1 The Local Mahalanobis Metric 81

3.3.2 Metric on Smoothed Dynamics and Unactuated Objects . . . 83

3.4 RRT through Contact . 86

3.4.1 Nearest Node using Local Mahalanobis Metric 86

3.4.2 Dynamically Consistent Extension 87

3.4.3 Contact Sampling . 88

3.4.4 Effectiveness of Proposed Enhancements 89

3.4.5 Final Path Refinement . 90

3.5 Results & Discussion . 91

3.5.1 Experiment Setup . 92

3.5.2 Results & Discussion . 93

3.6 Sim2Real Transfer & Hardware Results 96

3.6.1 Experiment Setup . 97

3.6.2 Results & Discussion . 98

4 External Contact Detection from Joint Torque Measurements 103

4.1 Introduction . 103

4.2 Related Work . 105

4.3 Problem Formulation . 106

4.4 Detectability of contacts . 108

8

4.4.1 Detectability . 109

4.4.2 Quantifying “undetectability” 111

4.4.3 Implications . 113

4.5 Contact estimation from external torque measurements 113

4.5.1 Rejection sampling . 114

4.5.2 Rejection sampling + gradient descent (RSGD) 114

4.6 Active contact discrimination . 117

4.7 Implementation . 119

4.8 Conclusion . 121

5 Contact-aware Control with Quasi-static Models 123

5.1 Introduction . 123

5.2 Related Work . 125

5.2.1 Interaction Control . 125

5.2.2 Null-space Projection . 126

5.3 Background and Notations . 127

5.3.1 Constrained Inverse Dynamics Control 127

5.3.2 Contact and Multibody Notations 127

5.4 Quasi-static Dynamics . 128

5.4.1 Dynamics as Transitions between Equilibria 128

5.4.2 Relationship to Null-space Projection 130

5.5 QP Controller with Quasi-static Dynamics 133

5.5.1 Frictionless Contacts . 133

5.5.2 Frictional Contacts . 134

5.6 Experiments . 137

5.6.1 Mug Placement Task (Fig. 5-4a) 138

5.6.2 Mug Moving Task (Fig. 5-4b) 140

5.7 Conclusion . 140

6 Conclusion 143

9

10

List of Figures

1-1 (a-b) An actuated, PD-controlled ball and an un-actuated box, both

are constrained to slide along a rail. (a): Ball on the left of the box.

(b): Ball on the right of the box. (c-d) Dynamics of the ball-box

system when the ball is on the (c) left or (d) right side of the box. Red

and green indicate different contact modes. The maroon dashed lines

are the smoothed contact dynamics after introducing the smoothing

force field. 24

1-2 The Allegro Hand and an oriental melon [1]. 27

2-1 Anitescu’s friction constraints (2.12) under different contact modes:

(a) sticking, (b) sliding, and (c) separation. The normal and tangent

of the contact frame 𝑖 are denoted respectively by n𝑖 and t𝑖. The green

shaded area is the friction cone. The purple shaded area is the feasible

region of 𝛿x𝑖. Constraints corresponding to (2.12a) and (2.12b) are

color-coded blue and red, respectively. 48

2-2 (a) A planar quasi-static multibody system. The red rectangles are the

actuated gripper fingers, 𝑞a = [𝑥𝑙, 𝑥𝑟, 𝑦] and 𝑢 = [𝑢𝑙, 𝑢𝑟, 𝑢𝑦]. The gray

sphere is the un-actuated manipuland, 𝑞u = [𝑥𝑐, 𝑦𝑐]. 𝑟 = 0.1m. The

normal contact forces associated with contact pair 1 and 2 are denoted

respectively by 𝜆n1 and 𝜆n2 . (b) A grasping command violating the

non-penetration constraint. 50

2-3 Free-body diagrams of the left finger when it is (a) away from the

sphere, and (b) in contact with the sphere. 51

11

2-4 Bond graphs of a 1-DOF robot pushing against the wall. In (a), the

robot is modeled as admittance (a prescribed motion). In (b), the

robot is modeled as impedance. 53

2-5 Commanded and actual left finger positions for the system defined in

Fig. 2-2, as simulated by LCP and the proposed CQDC dynamics

(2.10). Recall that 𝑥𝑙 and 𝑢𝑙 are respectively the commanded and

actual 𝑥-coordinate of the left finger; 𝑦𝑙 and 𝑢𝑦 are respectively the

commanded and actual 𝑦-coordinate of both fingers. The right finger

is not shown, as the motions and forces of the left and right fingers are

symmetric about the 𝑦-axis. The green dashed vertical lines indicate

contact mode changes: separation to sticking at 𝑡 = 0.03s; sticking to

sliding at 𝑡 = 0.13s; sliding to sticking at 𝑡 = 0.23s. 55

2-6 Contact force and signed distance at contact 1 and 3 of the gripper-

sphere system defined in Fig. 2-2. 56

2-7 Starting (a) and ending (b) configurations of the reference joint-angle

trajectory 𝑞ref(·). 57

2-8 Mean tracking error ∆(𝑞CQDC/SAP, 𝑞ref) for trajectories simulated using

the CQDC dynamics or SAP at different simulation step sizes ℎ. . . . 57

2-9 KUKA IIWA robot stacking cubes. The red-and-grey cube has a quad-

rant colored grey to indicate its orientation. The red-and-grey cube

starts off on the ground (a) and is placed on a stack of cubes and

rotated by 90 degrees (b). 58

2-10 Angular and translational mean error of the pose of the red-and-grey

box, ∆(𝑞uCQDC/SAP, 𝑞
u
GT), at different step sizes ℎ. As shown in Fig. 2-9,

the box is picked up, rotated, and placed on the stack of cubes. The

ground truth trajectory, 𝑞uGT, is defined as the trajectory generated by

SAP with ℎ = 5× 10−5s. In the computation of the mean error ∆(·, ·),
the distance function 𝑑(·, ·) is the Euclidean 2-norm for translation,

and the absolute difference in angle for rotation. 59

12

2-11 Final configurations of the box stacking task shown in Fig. 2-9, simu-

lated using SAP (a-c) and CQDC (d-f). 60

2-12 Trajectories of the red cube in Fig. 2-9, including the ground truth

(GT) and the ones generated using the CQDC dynamics with different

step sizes ℎ. 𝑥, 𝑦 and 𝑧 are the cube’s center of mass coordinates

in world frame. Angle comes from the axis-angle representation of

the cube’s orientation relative to world frame. Here the angle plot

represents a rotation about the world 𝑦-axis by 90 degrees. The larger

𝑦 error at ℎ = 0.5s is caused by the gripper clipping the corner of the

red-and-grey box when the gripper retreats from the box after placing

it on the top of the stack. Due to the large ℎ, the gripper’s motion

is interpolated between an upward segment and a horizontal segment.

This error is visible by the difference of a few pixels between Fig. 2-11e

and Fig. 2-11f. 61

2-13 Figure for Example 1, where quasi-dynamics of motion is interpreted as

a projection operator. (a) Illustration of the system. (b) Distribution

of 𝑞+𝑤 (green) and 𝑓(𝑞+𝑤) (pink). Note that the samples for which

𝑞 + 𝑤𝑖 < 0 have been projected onto the surface into a delta function,

and the expectation of the pink distribution lies on the right side of

𝑞, creating a stochastic force field effect. (c) CQDC dynamics and its

randomized smoothed version. (d) Gradients of the CQDC dynamics

obtained with first-order randomized smoothing. 66

13

2-14 (a) A system consisting of an actuated cart constrained to slide on

a frictionless surface, and a wall occupying 𝑞a ≤ 0. The actuator has

stiffness 𝑘a. (b) A system consisting of an un-actuated cart constrained

to slide on a frictionless surface, and a ball actuated along both the

𝑥 and 𝑦 axes. The ball can touch the top surface of the cart with

a frictional contact. (c) Randomized and analytic smoothing of (a).

Randomized smoothing, shown in green, is done with a Gaussian ker-

nel with different variances 𝜎. Analytic smoothing, shown in magenta,

is done with different log-barrier weights 𝜅. (d) Density functions of

the Gaussian kernels (green) and the elliptical distributions used for

analytic smoothing (magenta). (e) Randomized and analytic smooth-

ing of (b). We plot 𝑞u+ against 𝑢𝑥 for a fixed 𝑢𝑦 that is inside the cart.

The linear region in the plot corresponds to sticking contact, and the

flat regions to sliding. 70

3-1 Performance of iMPC with different smoothing schemes: analytic, ran-

domized (first-order), randomized zero-order, and exact (no smooth-

ing). For each method, the solid line represents the mean over five

runs, and the shaded region represents the standard deviation. . . . 77

3-2 Tasks and results for the trajectory optimization case study. 79

14

3-3 (a) Two different sublevel sets ℛu
𝜌,𝜀,𝛾, represented as ellipsoids, shown

in the space of 𝑞u, with 𝜀 = 1, and 𝛾 = 10−6. The ellipsoid centers

are shifted to the origin for easy comparison. Red ellipsoid: ℛu
𝜌,𝜀,𝛾

for the system configuration in Fig. 3-3b; blue ellipsoid: ℛu
𝜌,𝜀,𝛾 for

the configuration in Fig. 3-3c. Points 𝑏1, 𝑐1 are where ellipsoids’ major

axes intersect their boundaries. Points 𝑏2, 𝑐2 are points along the minor

axes of the ellipsoids, and satisfy ‖𝑏1‖ = ‖𝑏2‖ and ‖𝑐1‖ = ‖𝑐2‖, where

the norm is based on the standard Euclidean metric. (b) The solid

robots and objects represent the 𝑞 at which the red ℛu
𝜌,𝜀,𝛾 in (a) is

computed. The straight line on the puck indicates its orientation. The

dashed dark red puck corresponds to the configuration 𝑏1, and pink to

𝑏2. Note that 𝑏1 is easier to each than 𝑏2. (c) Similar to Fig. 3-3b,

the dashed dark blue puck correspond to 𝑐1, and light blue to 𝑐2. It is

also easier to reach 𝑐1 than 𝑐2. (d) The volume of ℛu
𝜌,𝜀,𝛾 shrinks as the

fingers get further away from the puck. The ellipsoids on the right are

color-coded to match the robot configurations on the left. Note that

the blue ellipsoid is barely visible. 82

3-4 (a-d) RRT trees, shown in the space of 𝑞u, at different iterations of a

complete run of the enhanced RRT for the PlanarHandFixedY system.

The contours are the sub-level sets of the local Mahalanobis metric of

the nodes. The path from start (𝑞init) to goal (𝑞goal) is highlighted in

red in the final tree of (d). (e-h) Visualization of RRT trees with the

same number of nodes (50) but grown with different methods. (e) Tree

grown with our algorithm; (f) without contact sampling; (g) using a

globally uniform weighted Euclidean metric; (h) using exact gradients

without smoothing. Note that our method achieves the best coverage

of the space of 𝑞u. 90

3-5 Tasks for RRT. Similar to Fig. 3-2b, the thicker frame denotes the

goal, and the thinner frame the initial configuration of the object. . . 91

15

3-6 Planning performance for the tasks in Fig. 3-5. Results include running

RRT with the enhancements proposed in Sec. 3.4 using the three

smoothing schemes from Sec. 2.4.1, as well as the three ablation studies

proposed in Sec. 3.5.1. 94

3-7 Hardware for the IiwaBimanual setup, where the goal is to rotate the

bucket by 180∘. The left and right pictures correspond to the initial

state and the final state after the open-loop plan execution. The lines

between motion capture markers are connected to illustrate the change

of pose in the bucket. Readers are encouraged to watch the accompa-

nying video for the full execution. 99

3-8 Plots for sim2real performance of our CQDC dynamics, evaluated on

the plans of Sec.3.5. First Two Columns: Scatter plot of mean error

∆ vs. path length for position (first column) and orientation (second

column). Each dot in the plot represents one segment trajectory. Last

Two Columns: Box plot for the normalized error ∆̄ for positions

(third column) and orientation (fourth column). Note that the mean

in orange corresponds to the slope of the graph in the first two columns.

Finally, we note that the AllegroHandDoor (AHD) example only consists

of orientation, and has no position plot. Readers are highly encouraged

to watch the accompanying video for the qualitative behavior of the

actual segment trajectories in this plot. 99

4-1 For the true contact shown in (a), which generates little torque about

joint 6 and 7, the two contacts in (b) and (c), represented by red

cylinders, create almost identical torque measurements as (a). 104

4-2 A contact force on Link 6 of the KUKA IIWA robot. The orange mesh

is the surface of the link. The triad represents the body frame of the

link. (a) second-order friction cone. (b) Polyhedral approximation of

the friction cone with 𝑛𝑑 = 4. 107

16

4-3 The residual 𝑙(·) for 20000 sampled points on link 5 and 6 of the IIWA

arm. The true contact position and direction is indicated by the red

line. Multiple global minima of 𝑙(·) can be found on the robot’s surface

𝒮. 109

4-4 Full detectability of (a) link 6 of the IIWA arm and (b) “forearm” link

of the UR5 arm. Out of the 20000 samples generated on each link,

2.19% and 32.58% of the samples on (a) and (b) are fully detectable,

respectively. Fully detectable samples are shown in cyan, others in

black. The meshes of the links are shown in (c) and (d). Points 𝐴, 𝐵

and 𝐷 are examples of different levels of detectability, which will be

defined in Sec. 4.4.2. 110

4-5 𝜂𝜖(·) of IIWA link 6 and UR5 forearm. 112

4-6 Finding elements of 𝑃𝜖 on link 5 and link 6 with 𝜖 = 0.005 using

rejection sampling. A force of 10N is applied to the robot along the

green line. Enclosed by magenta boxes, the colored squares represent

accepted samples. (a) Dense 𝑃 : 491 out of 20000 samples are accepted.

(b) Sparse 𝑃 : 24 out of 1000 samples are accepted. 114

4-7 Running RSGD on the same robot and contact configuration as Fig.

4-6. Step 1: 175 out of 1000 samples are accepted with 𝛿 = 0.1, which

are shown as small squares color-coded by their residual values 𝑙. Step

2: 155 of the 175 samples in 𝑃𝛿 converge after running Algorithm 1,

which are shown as large squares. Every 𝑝𝐶 ∈ 𝑃𝛿 is connected by a

line to the corresponding element in 𝑃 ⋆
𝛿 to which it converges. 116

4-8 (a) Distribution of residual 𝑙(·) of the 𝑃𝛿 and 𝑃 *
𝛿 from Fig. 4-7. (b) A

gradient descent run on link 6 of IIWA. Algorithm 4 starts at 𝑝𝐶 ∈ 𝒮
and converges to 𝑝𝐶⋆ . Red lines represent the path taken by gradient

descent. White translucent disks represent local tangent planes. . . . 117

17

4-9 (a) Two possible contact positions to disambiguate. The centers of the

small red spheres are coincident with the candidate contact positions.

(b) Solving (4.13) finds a motion that pulls away from the contact on

link 6 and pushes into the contact on link 5. 119

4-10 Run-time breakdown of a typical iteration of RSGD. 119

5-1 As transparent obstacles are almost invisible to depth sensors, a collision-

free motion planner, with the goal to pick up the mug and unaware of

the transparent tray, plans a trajectory that crushes the egg along the

way. The crushed egg is highlighted in the red box. Our controller is

able to keep the egg intact even when the reference trajectory would

crush it. 124

5-2 Quasi-static dynamics of a 2D, 2-link robot arm. The arm starts at

𝑞𝑙 (black) and is commanded to go to 𝑞𝑙+1
cmd (red). The virtual spring

connecting 𝑞𝑙+1
cmd to 𝑞𝑙 pulls the robot towards 𝑞𝑙+1

cmd, but the robot even-

tually stabilizes to 𝑞𝑙+1 (green) due to contact constraints. At 𝑙+1, the

arm makes two contact with two obstacles at 𝐶1 and 𝐶2 with contact

forces 𝜆1 and 𝜆2. 129

5-3 (a): The reference trajectory brings the robot into contact at 𝐶. Due

to friction, the contact normal 𝑛 and the contact force direction 𝑢 are

different. Therefore, the commanded velocity at 𝐶 can separate from

the obstacle even when the angle between 𝑢 and 𝑊𝑣𝐶cmd is greater than

𝜋/2. (b): Definitions of ∆𝑞ref, ∆𝑞cmd and ∆𝑞. The range and null space

of the projection I− J
K𝑞+
𝑢 J𝑢 are 𝑁(J𝑢) and 𝑅

(︁
J
K𝑞+
𝑢

)︁
, respectively. . 136

18

5-4 (a): mug placement task. (b): mug moving task. Contacts are high-

lighted in red boxes. Blue arrows denote the direction of end effector

velocity. For both tasks, the photographs on the left show where the

real robot makes contact while executing the task. With collision ge-

ometry disabled, the simulation frames on the right show how much

penetration would happen if the original trajectory were strictly fol-

lowed. Videos of the real robot executing the tasks are included in the

attachment. 137

5-5 mug placement task. 𝑥, 𝑦, 𝑧 components and the norm of the contact

force 𝑓𝐶
𝑊 . Top: the baseline controller without contact force upper

bounds is shown in the top plot. Bottom: the contact-aware controller

(5.24) with a modified end effector tracking objective. In both plots,

the horizontal red dashed line represents 𝑓threshold and the green dashed

line 𝜆max. 139

5-6 mug placement task. Left: position tracking error. Right: orien-

tation tracking error. 139

5-7 Comparison between our QP controller and null-space projection-based

control in the mug moving task. Top: contact force norm
⃦⃦
𝑓𝐶
𝑊

⃦⃦
.

The red dashed line represents 𝑓threshold and the green dashed line 𝜆max.

Both controllers can keep
⃦⃦
𝑓𝐶
𝑊

⃦⃦
near 𝜆max when the robot is in contact.

Bottom: robot joint velocity norm ‖𝑣𝑞‖ during contact separation

(from 𝑡 = 10𝑠 to 𝑡 = 14𝑠). Note the velocity spike in the null-space

projection controller. In both plots, the solid lines are the mean of 10

runs; the shaded regions around the lines represent the maximum and

minimum values of all runs. 141

19

20

List of Tables

3.1 Minimum cost and running time achieved by different methods. All

methods are ran for 10 iterations across 5 trials. The methods names

are abbreviations from the legend of Fig. 3-1. 78

3.2 Running time achieved by different methods in seconds. Every trial

was run for 1000 iterations. We choose to not display running time for

the ablation options since they are slight variations of Analytic with

comparable running times. 95

21

22

Chapter 1

Introduction

In 1988, Salisbury et al. from the MIT AI lab envisioned contact-rich robotic ma-

nipulators that “employ all the available manipulation surfaces of the robot to act

upon and sense the environment”, in a way similar to how humans interact with the

environment using their limbs and torso [2]. This was in stark contrast with the

prevailing practice in robotic manipulation back then, where environmental interac-

tion is limited “at the hand of the arm”, while the arm itself needs to carefully avoid

contacts. Unfortunately, real-world deployment of contact-rich robotic manipulators

still remains elusive even after more than 30 years. In most contemporary commer-

cial applications of robotic manipulation, such as in warehouses or on factory floors,

the robotic manipulator is still divided into the touching hand and the collision-

avoiding arm [3]. The dichotomy between the hand and the arm is also prominent

in robotics research: although increasingly effective algorithms for grasping objects

with the hand [4, §17] and avoiding obstacles with the arm [5,6] have been developed

over the decades, a reliable, generalizable and interpretable solution to human-like

contact-rich manipulation still remains to be found.

1.1 Difficulty of Pushing a Box with a Ball

The difficulty of contact-rich manipulation planning is rooted in the non-smooth

nature of contact dynamics. In this section, we hope to illustrate this difficulty

23

Figure 1-1: (a-b) An actuated, PD-controlled ball and an un-actuated box, both are
constrained to slide along a rail. (a): Ball on the left of the box. (b): Ball on the right of
the box. (c-d) Dynamics of the ball-box system when the ball is on the (c) left or (d) right
side of the box. Red and green indicate different contact modes. The maroon dashed lines
are the smoothed contact dynamics after introducing the smoothing force field.

using a simple task that involves just one contact: pushing a box with a ball in 1D

(1-Dimension). As shown in Fig. 1-1, the system consists of an un-actuated box

which slides along a rail with sufficient damping, and an actuated ball controlled by

a Proportional-Derivative (PD) controller. The position of the box is denoted by

𝑞u ∈ R. The actual and commanded positions of the ball are denoted respectively by

𝑞a ∈ R and 𝑢 ∈ R. The ball can push on the left (Fig. 1-1a) or right (Fig. 1-1b)

surface of the box.

Starting from the system configuration in Fig. 1-1a, let us consider the task of

pushing the box to a goal configuration 𝑞ugoal on the right of the box (𝑞ugoal > 𝑞u).

To find an action 𝑢 that accomplishes the task, we can formulate an optimal control

problem that penalizes the distance between the goal and the box position after the

action 𝑢 is taken:

minimize
𝑢

1

2
(𝑞u+ − 𝑞ugoal)

2, (1.1)

24

where 𝑞u+ is the steady-state position of the box after the ball is commanded to position

𝑢. Note that 𝑞u+ depends on 𝑞u, 𝑞a and 𝑢. For instance, if the ball starts on the left of

the box (𝑞a < 𝑞u, Fig. 1-1a), any 𝑢 to the left of the box (𝑢 < 𝑞u) will not change the

box’s position, as the ball will not touch the box. In contrast, the box will follow the

ball to the commanded 𝑢 when the ball makes contact with the box (𝑢 ≥ 𝑞u). The

dependence of 𝑞u+ on (𝑞u, 𝑞a, 𝑢) is commonly called the dynamics of the system, and

is plotted in Fig. 1-1c-d.

Gradient descent is a common way to minimize the cost (1.1). Starting with an

initial guess of (𝑞u, 𝑞a, 𝑢) (without loss of generality, we assume the ball is on the left

of the box in the initial guess), gradient descent iteratively improves 𝑢 by taking steps

opposite to the cost’s gradient w.r.t. 𝑢:

𝜕

𝜕𝑢

(︂
1

2
(𝑞u+ − 𝑞ugoal)

2

)︂
= (𝑞u+ − 𝑞ugoal)

𝜕𝑞u+
𝜕𝑢

. (1.2)

However, 𝜕𝑞u+
𝜕𝑢

is 0 unless the ball is touching the box, as shown in Fig. 1-1c-d.

This means that if the box and ball are not in contact in the initial guess, the gradient
𝜕𝑞u+
𝜕𝑢

tells us nothing about how 𝑢 can be improved in order to get 𝑞u+ closer to the

goal 𝑞ugoal.

To combat the zero gradient problem, we can smooth the contact dynamics by

introducing a force field between the box and the ball: the ball can push the box

without touching it, and the magnitude of the force is inversely proportional to the

distance between them. This force field will make 𝜕𝑞u+
𝜕𝑢

positive even when the box and

ball are not touching (the dashed lines in Fig. 1-1c-d), thereby informing gradient

descent the direction in which 𝑢 needs to be improved. To make sure that the actual

non-smooth dynamics is satisfied at convergence, the amount of smoothing can be

iteratively reduced during the gradient steps.

However, smoothing is not the panacea in contact-rich planning. For example,

what if we want to push the box to the left (𝑞ugoal < 𝑞u), with an initial guess where

the ball is also on the left of the box (Fig. 1-1a)? Following the gradient would

move the ball further and further away from the box until 𝜕𝑞u+
𝜕𝑢

becomes so small that

25

gradient descent converges. This is an example of gradient descent getting stuck in

a bad local minimum. Bad local minima can be avoided to some extent with better

initial guesses: in the box-ball system, starting gradient descent with the ball on

the right of the box (as in Fig. 1-1b) would yield the correct 𝑢. However, for more

complex problems, good initial guesses are rarely handed to us on a silver platter [7].

To avoid bad local minima without good initial guesses, we need a more global

search strategy that explores beyond the gradient (which greedily decreases the cost).

A common way to organize the search is to divide the system dynamics into modes

based on which contacts are active. For the box-ball system, there are four modes:

(i) left contact, (ii) left no contact, (iii) right contact and (iv) right no contact. Each

mode corresponds to a linear piece in the dynamics (Fig. 1-1c-d), which is easy to

analyze. In this case, the search for the optimal action 𝑢 can be done by solving (1.1)

for every mode, and then picking the action with the lowest cost among all modes.

But the number of modes can grow out of control quickly. For a system with 𝑛c

rigid bodies, there are
(︀
𝑛𝑐

2

)︀
pairs of bodies, or contact pairs, that can be in contact.

Each contact pair can be in separation or in contact. If there is friction, “in contact”

can be further divided into sticking, sliding left and sliding right, with even more

sliding directions if the system is 3D. Other factors, such as the number of faces in

a body, can also contribute the the number of modes. Although the four modes for

the ball-box system seems manageable, the number of modes can be astronomical

for more complex systems. For instance, the system in Fig. 1-2, consisting of a

dexterous hand and a rigid object, has 6(
20
2) = 6190 contact modes 1. Although this

number can be reduced into the trillions with a more efficient counting scheme such

as [8], the reduced number of modes is still too much to handle for algorithms that

reason explicitly about modes.

1Each contact can be in separation, sticking or four directions of sliding (6 = 1 + 1 + 4). There
are 20 bodies in the system.

26

Figure 1-2: The Allegro Hand and an oriental melon [1].

1.2 Related Work

In Section 1.1, we formulated a simple pushing task (1.1) as an optimal control prob-

lem [9, §10], and identified the non-smoothness in contact dynamics constraints as a

key source of trouble in solving the problem. We have also illustrated the two major

categories of model-based solutions towards the non-smoothness and their drawbacks:

(i) nonlinear optimization using smoothed gradients of contact dynamics, which fre-

quently get stuck in local minima, and (ii) considering contact mode transitions

explicitly, which scales poorly due to the exponential explosion of the number of

modes.

In this subsection, after a brief review of how contacts are modeled numerically

and how such modeling leads to non-smoothness, we will give a more detailed account

on model-based contact-rich planning/control algorithms based on (i) nonlinear op-

timization and (ii) sequencing contact mode transitions. We will also discuss what

model-based methods can learn from the success of applying RL to contact-rich ma-

nipulation, which has created the most impressive contact-rich manipulation demos

(so far) on robotic hardware.

27

1.2.1 Modeling Contact with Complementarity Constraints

For a pair of rigid bodies, the contact force between them and the distance between

them need to satisfy some intuitive constraints: (i) the contact force cannot push the

bodies apart, (ii) the distance between the two bodies need to be non-negative, and

(iii) non-zero contact force only exists when the two bodies are touching.

Complementarity constraints are commonly used to mathematically represent the

constraints above. In addition, the Coulomb friction law which governs the magnitude

of friction forces, and the maximum dissipation principle which governs the direction

of friction force during sliding, can also be represented with additional complemen-

tarity constraints [10,11].

From a numerical optimization perspective, complementarity constraints are chal-

lenging to handle as they have no interior and violate constraint qualifications which

are needed by gradient-based methods to converge [12, §11]. As a result, in contact

dynamics simulation, specialized algorithms such as pivoting methods or projected

Gauss-Seidel [13] have been developed to efficiently handle the non-smoothness in-

troduced by complementarity constraints. Instead of following the gradient of non-

smooth constraints, these algorithms conduct a discrete search over which sides of

the complementarity constraints are active: they start with a guess of the active sides

and iteratively improves the guess until an iteration limit is reached, much like how

the simplex algorithm searches for the optimal active set. Such algorithms are ideal if

real-timeness is more important than physical accuracy, such as in video games: the

algorithm can be terminated prematurely without satisfying all constraints.

In contrast, contact-rich planning has different priorities: satisfaction of physics

constraints is essential; and the planner has to look ahead more than one step (usually

tens or even hundreds of steps) at a time. Therefore, a different set of techniques for

handling complementarity constraints in the context of planning have been developed,

and will be detailed in the next two sub-sections.

28

1.2.2 Nonlinear Optimization

An optimal control problem with contact dynamics constraints can be solved as a

generic nonlinear program [14]. A typical gradient-based solution algorithm starts

with an initial guess of the optimal trajectory, and iterates between (i) linearizing

the cost and dynamics constraints around the current trajectory, (ii) updating the

current trajectory in a direction that locally minimizes the cost [15, 16].

As a consequence of the non-smoothness of contact dynamics, its linearization

constructed from its gradient is no longer a good local approximation. Optimizing

the cost locally with a bad understanding of the constraint landscape will lead to

poor convergence behavior.

Smoothing of contact constraints, therefore, has become an essential ingredient for

good convergence when solving contact-rich planning problems. There are different

ways in which smoothing can be introduced. Posa et al. and Manchester et al.

include the complementarity constraints directly as constraints of the optimal control

problem. The complementarity constraints are relaxed to have non-empty interior [17,

18], thereby satisfying constraint qualifications [19, §12]. Tassa et al. solve the optimal

control problem with iterative LQR (iLQR), and imposes the dynamics constraints

using rollouts [20]. Their linearization of the dynamics is smoothed by regularizing the

contact forces [21]. Lastly, by penalizing constraint violation in the cost, Mordatch

et al. smooths contact constraints by not always strictly enforcing them and their

associated non-smoothness [22]. Importantly, smoothing introduces some form of

aphysical behavior into contact dynamics (such as the “force-at-a-distance” effect

in Posa’s relaxation [17] and MuJoCo [23]), and therefore needs to be iteratively

decreased in order to respect the true dynamics constraint when the solution algorithm

converges.

By “blending” adjacent contact modes (e.g. Fig. 1-1c-d), smoothing extends the

region where linearization is valid, thereby improving the performance of nonlinear

optimization algorithms that rely heavily on linearization of dynamics constraints.

With the help of smoothing, nonlinear optimization can find trajectories for complex

29

systems such as humanoids on monkey bars [24]. However, nonlinear optimization

frequently gets stuck in local minima due to the inherent non-convexity of many

contact-rich planning problems, and thus requires non-trivial initial guesses.

1.2.3 Contact Mode Transitions

Another approach to handle the non-smoothness in contact dynamics is to “chop

up” the dynamics into smooth pieces (contact modes). The “chopping” makes the

dynamics within modes relatively straightforward, and shifts the difficulty of the

planning problem to the transitions among modes.

Mixed-Integer Programming (MIP) [25] naturally transcribes the smooth dynam-

ics within modes and the discrete transitions between modes using continuous and

integer variables, respectively [26]. For simple systems (e.g. planar linear humanoid

between walls [27]), it is possible to discretize the entire state space and ask MIP

solvers for a globally optimal plan. Global MIP formulations of contact-rich planning

problems have very non-convex optimization landscapes, making them difficult for

nonlinear-optimization-based solvers [26].

Solving MIPs can be time-consuming and often too slow for using the planner at

real-time rates as a Model-Predictive Controller (MPC). As a result, various tech-

niques have been developed to accelerate solving MIPs in the context of contact-rich

planning. Marcucci et al. warm-start new MIPs using optimal solutions of similar

problems [28]. Deits et al. learned value functions for a humanoid push-recovery

task, making MIPs smaller by reducing the planning horizon [29]. Aydinoglu and

Posa developed a specialized MIP solver which is based on the alternating direction

method of multipliers (ADMM) and can solve small contact-rich planning problems

at real-time rates [30].

Despite these efforts to improve solver efficiency, discretizing the entire state space

for even moderately large systems (e.g. pushing a box in a plane) will lead to too

many contact modes for exiting methods find a solution within a reasonable amount

of time (e.g. a couple of minutes). As a result, global optimality is usually given up

in exchange for keeping the size of the planning problem manageable. For instance,

30

considering only contact modes around a nominal trajectory instead of the entire state

space can effectively reduce problem size [31,32]. However, by restricting the planner

to search around a nominal trajectory, the ability to globally search the state space,

a key feature to escape the local minima which plague methods based on nonlinear

optimization, is lost.

Is it possible to retain the ability of global search without incurring the cost of

global mode enumeration? If we are willing to give up on global optimality, sampling

contact modes, instead of enumerating them, is a good solution. Similar to classical

Sampling-Based Motion Planning (SBMP) methods in the configuration space [33],

SBMP through contact builds a graph in the state space. From a node in the graph

and its corresponding subgoal, the graph can be grown by randomly picking a contact

mode and moving towards a subgoal as much as possible without causing a mode

switch [34,35].

SBMP with sampled mode transitions (e.g. [34]) can handle moderately complex

systems such as 3D peg-hole insertion with point fingers. It has the best scalability

among all planning methods that consider mode transitions. However, the number

of contact modes in more complex tasks, such as dexterous in-hand manipulation,

will stagnate the search even if mode transitions are sampled instead of enumerated.

This suggests that contact-rich manipulation planning may need a method that is

fundamentally different from searching through mode switches.

Recently, Marcucci et al. has developed graph of convex sets (GCS), a novel MIP

formulation for optimal control problems that offers tight convex relaxations to the

original MIPs [36]. Similar to other MIP formulations, GCS does not scale well if the

convex sets it searches through are derived from mode enumeration. However, with

an appropriate decomposition of the state space that does not directly rely on contact

modes, GCS could efficiently search through contact dynamics globally without giving

up optimality.

31

1.2.4 Reinforcement Learning

Recent advances in deep RL have created impressive and convincing dexterous ma-

nipulation demos where a humanoid robotic hand in-hand re-orients a cube [37,38]. A

combination of domain randomization [39] and Proximal Policy Optimization (PPO)

[40], the algorithm for training the policy is conceptually straightforward. Yet the

complexity demonstrated in the learned policies far exceed the capabilities of the best

model-based contact-rich planning methods.

Although training an RL policy requires heavy offline computation, and the learned

policy often lacks interpretability and the ability to generalize to new tasks, it is un-

deniable that RL has solved challenging problems with which model-based methods

have struggled. Understanding the reasons behind RL’s success from a model-based

perspective will help us improve the performance of model-based methods.

Recent works have attributed the success of RL to its stochastic nature, where

the contact modes are abstracted by a process of sampling and averaging [41, 42].

This process, termed “randomized smoothing”, has a similar smoothing effect on con-

tact dynamics as the various model-based smoothing schemes introduced in Sec. 1.2.2.

Another key factor behind the empirical success of RL could lie in its goal of perform-

ing global optimization [42], which nonlinear optimization fails to do, and methods

based on mode transitions can do only at limited scale.

This hints at a possible strategy of enhancing model-based contact-rich planning

methods: if we could combine model-based smoothing with an efficient global search

scheme, we might be able to achieve RL-level performance without incurring RL-level

computational cost.

1.3 Contributions and Thesis Structure

Smoothing and global search are both essential to the success of contact-rich planning,

but as far as we know, no existing method does both. This thesis proposes a contact-

rich planning algorithm that searches globally under the guidance of a smoothed

contact model. The proposed method can, within 1-minute of wall-clock time on a

32

regular desktop computer, generate contact-rich plans for complex robotic systems

such as dexterous hands.

At the heart of the model-based planning approach we took lies the question: what

is the right model for contact-rich manipulation? In Chapter 2, we present a novel

formulation of rigid-body contact dynamics that is quasi-static, convex, differentiable

and amenable to smoothing, all of which are features chosen to improve the efficiency

of the planner.

In Chapter 3, we present the global contact-rich planner that utilizes the pro-

posed quasi-static contact model and combines SBMP with trajectory optimization.

Efficient global exploration is carried out with a kino-dynamic sampling-based mo-

tion planner that searches with large step sizes near the contact manifold. By ab-

stracting contact modes away with a smoothed version of the contact dynamics, the

sampling-based planner can effectively explore the state space without suffering from

the exponential explosion of contact modes. Once a coarse path is found by the

sampling-based planner, the path is refined by a trajectory optimizer with finer step

sizes to improve its quality and physical accuracy.

The challenges facing contact-rich manipulation extend far beyond planning. Once

a plan is generated, interaction forces between the robot and the objects need to be

sensed and estimated. The estimated forces, together with other estimated states,

are then fed to a stabilizing controller that is aware of making and breaking con-

tacts. Therefore, this thesis also explores (i) external contact force estimation from

joint torque measurements (Chapter 4), and (ii) reconciling tracking trajectory and

bounding contact forces using a inverse-dynamics controller in the simple case of in-

teracting with a static environment (Chapter 5). Interestingly, the methods in both

Chapter 4 and 5 benefit from the simplifying quasi-static assumption, highlighting

the utility of quasi-static dynamics in various components of the robotic manipulation

pipeline.

33

34

Chapter 2

An Effective Contact Dynamics

Model for Contact-rich Planning

2.1 Introduction

We believe an effective model for contact-rich manipulation planning needs to be (i)

numerically robust and (ii) differentiable, so that local linearizations can be reliably

computed for planning. Most importantly, the model should be able to (iii) predict

the long-term behavior of the system, so that the planner can look far ahead while

taking few steps. Last but not least, the model should be (iv) amenable to smoothing

in order to provide more informative locally linear models across contact modes.

In this chapter, we present a contact dynamics model that satisfies all of the

requirements above. Combining these ingredients enables our planner to reliably

generate complex contact-rich plans that have so far been considered challenging for

existing model-based approaches.

Specifically, we propose a convex implicit time-stepping contact model (Sec. 2.3.1).

Among several existing schemes to convexify frictional contact constraints (Sec. 2.2.1),

we adopt Anitescu’s convex relaxation [43] which in practice only introduces mild non-

physical behavior [44,45]. The convexity provides a clear numerical advantage over the

traditional Linear Complementarity Problem (LCP) formulation [10, 11]. Moreover,

the derivatives of the dynamics with respect to the current state and control action

35

can be readily computed using sensitivity analysis for convex conic programs [46] (Sec.

2.3.2). In addition, we will illustrate how Anitescu’s convex relaxation compares to

the LCP formulation, and why it introduces a non-physical “boundary layer” during

sliding (Sec. 2.3.4).

For long-term predictability, we adopt the quasi-static assumption widely used

in robotic manipulation [32, 34, 47, 48]. A quasi-static model “sees” further than its

second-order counterpart by ignoring transient dynamics and focuses on transitions

between steady-states. Furthermore, quasi-static models are simpler: not only do

they have half as many states, they also do not need parameters to describe damping,

as damping is modeled by throwing away kinetic energy at every time step.

In our quasi-static model, robots are modeled as an impedance source. However,

throughout the long history of quasi-static models in robotic manipulation planning

(Sec. 2.2.1), robots have often been modeled as an admittance source. This can lead

to an ill-defined behavior where the output cannot be uniquely determined by the

input, thereby limiting the utility of quasi-static models in contact-rich planning. In

Sec. 2.3.5, we will elaborate on the limitations of the admittance modeling choice,

and how impedance can resolve these problems.

The proposed quasi-static model is validated by running the same input trajecto-

ries in a high-fidelity second-order simulator (Sec. 2.3.6). Our results show that our

model is able to approximate the second-order dynamics well if the system considered

is highly damped and dominated by frictional forces. Furthermore, in contact-rich

scenarios, our model can keep the simulation error small at larger step sizes than the

second-order simulator.

Lastly, to leverage the benefits of smoothing (Sec. 2.4.1) in contact-rich planning,

we show that in addition to the standard randomized smoothing schemes (Sec. 2.4.2),

our contact model can be smoothed out using a log-barrier relaxation (Sec. 2.4.3).

In this relaxation scheme, the hard contact constraints are softly enforced by a log-

barrier function, a common technique used in the interior-point method for convex

programs [49, §11] [50]. We further show that the gradients of the smoothed contact

model can be easily computed with the implicit function theorem.

36

2.2 Background

In this section, we will review how quasi-static dynamical models have been applied

in manipulation planning, and highlight the flaw of modeling robots as an admittance

source (Sec. 2.2.1). We will also discuss the features of and trade-offs between various

convex relaxations of rigid-body contact models (Sec. 2.2.2).

2.2.1 Quasi-static Models in Robotic Manipulation

Quasi-static models, which previous works have used extensively for robotic manipula-

tion planning and control [32,34,47,48,51], simplify Newtonian dynamics by removing

terms related to velocity and acceleration, and focusing on contact forces at the core

of robot-object interactions. Although the model cannot describe highly-dynamics

behaviors such as spinning a pen between fingers [22], it holds up for a wide variety

of manipulation tasks, including many that involve dexterous hands [37].

Quasi-static models also have a long history in robotic manipulation. Planar

pushing is perhaps one of the earliest problems where quasi-static models are ap-

plied. Pioneering work by Mason and Lynch focuses on predicting the motion of an

object supported on a horizontal surface without knowledge of the pressure distribu-

tion between the object and the surface [52, 53]. Later work incorporates a detailed

pressure distribution [54,55] and stochasticity [56] into the quasi-static planar pushing

model. Such models have been effectively employed in a Model Predictive Control

(MPC) framework which enables an object pushed by a single point contact to track

complex planar trajectories [31]. In addition to planar pushing, quasi-static models

have also been applied in simple, planar instances of dexterous manipulation [57,58].

Halving the number of states by removing velocity is one of the most recognized

advantages of quasi-static systems [47, §10.1]. However, by focusing on transitions

between static equilibria and ignoring transients induced by damping and accelera-

tion, a quasi-static model can look further into the future while taking fewer steps

than its second-order counterpart, thereby reducing the planning horizon. We be-

lieve this temporal aspect of quasi-static models’ advantage is important but often

37

overlooked in the literature. In practice, many trajectory optimization formulations

for manipulation enforce the second-order Newtonian dynamics [59, 60]. Although

modeling the transients allows the discovery of more dynamic behaviors, we believe,

especially in the manipulation setting, that the added computational complexity due

to long planning horizon oftentimes outweighs the benefits.

Despite their popularity, many popular variants of quasi-static models, such as

[31, 52, 53, 56], have a serious flaw: the next state cannot be always be uniquely

determined from the current state and control input. In quasi-static models, the

control input is usually defined as the position commands of the robots. Many quasi-

static models also assume that the position commands can be perfectly executed as

prescribed robot motions. Under this assumption, contact forces and object motions

can be ambiguous for the same control input. This flaw does not manifest in simple

tasks such as planar pushing, where robot motion does uniquely determine object

motion. On the other hand, it can be crippling in more complex tasks such as grasping

(more details in Sec. 2.3.5).

It is possible to circumvent the ambiguity by including contact forces as additional

states of the dynamics model [57, 61]. However, reasoning about both positions and

forces compels the planner to handle the complementarity constraints between forces

and distances, thereby limiting the algorithms the planner can employ.

A more fundamental remedy to this flaw is to account for the unmodeled com-

pliance in the system, thereby allowing commanded and actual robot positions to

be different. For instance, Harm and Posa added compliance at the robot joints

by modeling the robot as velocity-controlled with finite gains [62]; in previous work

we added compliance at the contact points [63]. However, these remedies do not

always reflect the reality on robotic hardware, which often consists of rigid objects

and impedance-controlled robots. Moreover, [63] is too computationally expensive,

and [62] is developed specifically for manipulating planar objects supported on a

tabletop.

In Sec. 2.3.5, we will discuss in more detail the flaws of commanding prescribed

robot motions, and how our quasi-static formulation resolves it in a computationally-

38

efficient and hardware-consistent manner.

2.2.2 Convex Rigid-body Contact Dynamics

Without friction, quasi-static dynamics with frictionless unilateral contacts can be

written as the KKT optimality conditions of a convex Quadratic Program (QP) that

minimizes the system’s potential energy subject to non-penetration constraints [44].

The complementarity between forces and distances (Sec 1.2.1) are captured by the

complementarity slackness between primal constraints and dual variables. However,

the Coulomb friction law and the maximum dissipation principle, both of which are

needed to model frictional contacts, introduce additional complementarity constraints

that can no longer be accommodated by a convex program. Consequently, contact dy-

namics with Coulomb friction is formulated as an LCP, which is solved by specialized

non-convex solvers [10,11].

Anitescu restored convexity in contact dynamics by replacing the linear comple-

mentarity constraints with cone complementarity constraints. The price of convexity

is that the sliding velocity is no longer restricted to the tangent plane defined by

the contact normal [13, 43]. The resulting program is a convex QP with discretized

friction cones, or a Second-Order Cone Program (SOCP) with circular friction cones.

Both formulations can be readily solved with commercial convex solvers such as [64].

Anitescu’s convex relaxation exactly reproduces Coulomb friction when the con-

tact is sticking, and injects a non-physical “boundary layer” between relatively-sliding

objects. A big advantage of Anitescu’s relaxation is that the extent of relaxation is

controlled by only one hyperparameter: the step size. As the step size converges to

0, the boundary layer also vanishes [43]. The step size therefore can serve as a knob

that allows the planner to trade the dynamics model’s predictive power for physical

accuracy. We will discuss this non-physical behavior in more detail in Sec. 2.3.4.

The popular MuJoCo simulator [21, 65] solves a convex program that closely re-

sembles the dual of Anitescu’s formulation [9, Appendix B]. Moreover, Mujoco also

adds regularization on contact forces to the objective function in order to improve

numerical conditioning and make the dynamics invertible. However, the regulariza-

39

tion introduces non-physical behaviors such as “force at a distance” that are harder

to control as they are induced by many hyper-parameters [23].

Recently, Castro et al. developed an unconstrained convex formulation of contact

dynamics [45] that combines many of the nice features from MuJoCo [21] and An-

itescu’s convex relaxation [43]. For instance, Castro’s primal formulation is similar

to Anitescu’s; the contact force regularization and the removal of friction cone con-

straints using a projection function are inspired by similar techniques from MuJoCo.

Castro’s formulation is designed from ground up for efficient and accurate physics

simulation. For instance, it provides physical interpretations and units to the contact

force regularization parameters that are originally proposed by MuJoCo to improve

numerical conditioning.

2.3 A Convex, Quasi-static and Differentiable Con-

tact Model

In this section, we present the Convex, Quasi-static, Differentiable Contact (CQDC)

model which will be used for the contact-rich planning tasks in Chapter 3. Specifically,

we will start with the equations of motion of quasi-static contact dynamics, and

massage it into the KKT optimality conditions of a convex optimization program

(Sec. 2.3.1). We will then describe how to take the (discontinuous) derivatives of

the proposed contact dynamics (Sec. 2.3.2), and how the forward dynamics and

gradient computation are implemented (Sec. 2.3.3). In addition, we will illustrate

how Anitescu’s convex relaxation introduces a non-physical “boundary layer” during

sliding (Sec. 2.3.4). We will also dive more deeply into the common flaw in quasi-

static dynamical models brought up in Sec. 2.2, and explain how our quasi-static

model resolves it (Sec. 2.3.5). Lastly, with two examples of common manipulation

tasks, we show that the proposed quasi-static model and an established second-order

simulator (Drake [66]) generate very similar state trajectories for the same action

sequence (Sec. 2.3.6).

40

2.3.1 Forward Dynamics

Despite the numerical advantage of convex contact dynamics formulations [21,43,45],

some formulations can produce highly inaccurate contact forces with poorly-chosen

hyperparameters [23]. Our formulation adopts Anitescu’s convex relaxation of the

Coulomb friction constraints [43]. Anitescu’s convex relaxation is equivalent to com-

mon LCP formulations [10] in non-sliding contacts or in separation, and introduces

a non-physical yet mild “boundary layer” effect between relatively-sliding objects

[44, 45]. Not only does Anitescu’s convex friction model have the simulation step

size ℎ as the only hyperparameter, the “boundary layer” also disappears as ℎ → 0.

The step size therefore can serve as a knob that allows the planner to trade the

dynamics model’s predictive power for physical accuracy.

A generic discrete-time dynamical system is written as

𝑥+ = 𝑓(𝑥, 𝑢) (2.1)

where 𝑥 ∈ R𝑛 is the state, 𝑢 ∈ R𝑚 the control input, and 𝑓 : R𝑛 × R𝑚 → R𝑛 the

system dynamics. In the robotic manipulation setting, a system can be divided into

𝑛a actuated Degree of Freedoms (DOFs), which correspond to the robots, and 𝑛u

unactuated DOFs, which correspond to the objects. The configurations of objects

and robots are denoted respectively by 𝑞u ∈ R𝑛u and 𝑞a ∈ R𝑛a . The system state is

defined by 𝑥 := 𝑞 := (𝑞u, 𝑞a). We model the robots as impedances [67], which in the

quasi-static setting reduces to springs with a diagonal stiffness matrix Ka ∈ R𝑛a×𝑛a .

Accordingly, the input 𝑢 ∈ R𝑛a is defined by the commanded positions of the robots’

joints, which can also be interpreted as the equilibrium positions of the springs.

The discretized quasi-static equations of motion are

ℎKa (𝑞
a + 𝛿𝑞a − 𝑢) = ℎ𝜏 a +

𝑛c∑︁
𝑖=1

(Ja𝑖)
⊺𝜆𝑖, (2.2a)

(︁ 𝜖
ℎ
Mu

)︁
𝛿𝑞u = ℎ𝜏u +

𝑛c∑︁
𝑖=1

(Ju𝑖)
⊺𝜆𝑖, (2.2b)

41

where ℎ ∈ R++ is the step size in seconds; Mu ∈ R𝑛u×𝑛u is the mass matrix of the

objects; 𝜖 ∈ R+ is a small regularization constant; the change in system configuration

from the current to the next step is 𝛿𝑞 := (𝛿𝑞u, 𝛿𝑞a); 𝜏 a ∈ R𝑛a and 𝜏u ∈ R𝑛u are

non-contact external torques (e.g. due to gravity) for robots and objects. There

are 𝑛c contact pairs at the current time step. For the 𝑖-th contact, 𝜆𝑖 ∈ R3 is the

contact impulse; Ja𝑖 ∈ R3×𝑛a and Ju𝑖 ∈ R3×𝑛u are the contact Jacobians [68] of the

robots and the objects, respectively. For 3D systems, it is common that the rotational

displacement and the angular velocity are different and related by a linear map. As

the technique to deal with this difference is standard (e.g. [45, Section II]), we leave

it out here for brevity and notational simplicity.

Equation (2.2a) states that the robot joint positions’ deviation from their com-

manded values 𝑢, as a result of external impulses, is proportional to the stiffness Ka.

Equation (2.2b) can have different physical interpretations depending on the value

of the regularization constant 𝜖. If 𝜖 = 0, (2.2b) is the force (impulse) balance of

the objects. This corresponds to the exact quasi-static formulation in [44]. If 𝜖 = 1,

(2.2b) is the standard second-order rigid body equations of motion (expressed in

impulse-momentum form) for a system with 0 velocity at the current time step. This

corresponds to Mason’s classical definition of quasi-dynamic systems [47]. Note that

for any 𝜖, the momentum gained at every step due to external impulses is discarded

at the next time step, which is characteristic of the highly damped behavior typical

in quasi-static systems.

In our physical experiments in later sections where objects are light, we find that

the dynamics is closer to being exactly quasi-static (𝜖 = 0) than being classically

quasi-dynamic (𝜖 = 1). Therefore, we pick 𝜖 to be as small as possible without

causing numerical issues. A rule of thumb is to set 𝜖 such that the largest eigenvalue

of (𝜖Mu/ℎ) is one tenth of the smallest eigenvalue of (ℎKa) (see the definition of Q

in (2.6c)).

In addition, the Coulomb friction model requires the contact impulses 𝜆𝑖 to stay

inside the friction cone, and the relative sliding velocities to satisfy the maximum dis-

sipation principle [10]. To enforce these constraints, we first introduce some additional

42

notation. The contact Jacobian for contact 𝑖 is

J𝑖 := [Ju𝑖 ,Ja𝑖] :=

⎡⎣Jn𝑖

Jt𝑖

⎤⎦ ∈ R3×(𝑛u+𝑛a), (2.3)

where Jn𝑖 ∈ R1×(𝑛u+𝑛a) maps the generalized velocity of the system to the normal

contact velocity, and Jt𝑖 ∈ R2×(𝑛u+𝑛a) to the tangent velocities. Next, the friction

cone at contact 𝑖, 𝒦𝑖, and its dual cone 𝒦⋆
𝑖 , are denoted by

𝒦𝑖 :=

{︂
𝜆𝑖 = (𝜆n𝑖 , 𝜆t𝑖) ∈ R3|𝜇𝑖𝜆n𝑖 ≥

√︁
𝜆⊺
t𝑖𝜆t𝑖

}︂
, (2.4a)

𝒦⋆
𝑖 :=

{︂
𝑣𝑖 = (𝑣n𝑖 , 𝑣t𝑖) ∈ R3|𝑣n𝑖 ≥ 𝜇𝑖

√︁
𝑣⊺t𝑖𝑣t𝑖

}︂
, (2.4b)

where 𝜇𝑖 is the friction coefficient; the dual variable 𝑣𝑖 can also be interpreted as the

relative contact velocity for contact 𝑖; the subscripts (·)n and (·)t indicate respectively

the normal and tangential components.

With this notation, Anitescu’s frictional contact constraints can be written as:

𝑣𝑖 := J𝑖𝛿𝑞 +

⎡⎣𝜑𝑖

02

⎤⎦ ∈ 𝒦⋆
𝑖 , (2.5a)

𝜆𝑖 ∈ 𝒦𝑖, (2.5b)

𝑣⊺𝑖 𝜆𝑖 = 0, (2.5c)

where 𝜑𝑖 ∈ R is the signed distance for contact 𝑖 at the current time step. These

constraints enforce the Coulomb friction model exactly when a contact is sticking (not

sliding) and in separation. In sliding, these constraints enforce maximum dissipation,

but adds a small gap between the two relatively-sliding objects. Anitescu showed

that this gap converges to 0 as ℎ→ 0 [43].

Remarkably, this implies that the quasi-static equations of motion (2.2), together

with the friction constraints (2.5), are the KKT optimality conditions [49, §5.9] of the

43

following convex Second-Order Cone Program (SOCP) [43]:

min.
𝛿𝑞

1

2
𝛿𝑞⊺Q𝛿𝑞 + 𝑏⊺𝛿𝑞, subject to (2.6a)

J𝑖𝛿𝑞 +

⎡⎣𝜑𝑖

02

⎤⎦ ∈ 𝒦⋆
𝑖 , ∀𝑖 ∈ {1 . . . 𝑛c}, where (2.6b)

Q :=

⎡⎣𝜖Mu/ℎ 0

0 ℎKa

⎤⎦ , 𝑏 := −ℎ

⎡⎣ 𝜏u

Ka(𝑢− 𝑞a) + 𝜏 a

⎤⎦ , (2.6c)

whose primal and dual solutions, 𝛿𝑞⋆ and 𝜆⋆ := (𝜆⋆
1, . . . , 𝜆

⋆
𝑛c
), can be obtained by

conic solvers such as [64, 69]. Note that when 𝜖 = 0, which corresponds to strictly

enforcing force balance on the object, the objective (2.6a) is positive semi-definite,

and thus (2.6) may have multiple solutions.

The SOCP (2.6) reduces to a QP when there is no friction or if the friction cone

can be described by linear constraints. The second-order friction cones (2.4) can be

equivalently represented as linear constraints in the planar case, or be approximated

with polyhedral cones [10] in the 3D case. However, this approximation introduces

non-physical anisotropic behaviors [50,70], which is why (2.4) is preferred.

2.3.2 Differentiability

We illustrate how to compute the derivatives of the system configuration at the next

step, 𝑞+, with respect to the current 𝑞 and 𝑢. Let us express the forward contact

dynamics in the standard dynamical system form (2.1):

𝑞+ = 𝑓(𝑞, 𝑢) = 𝑞 + 𝛿𝑞⋆(𝑞, 𝑢), (2.7)

where 𝛿𝑞⋆ is the solution to (2.6). Taking the derivatives of (2.7) yields

A =
𝜕𝑓

𝜕𝑞
= I+

𝜕𝛿𝑞⋆

𝜕𝑞
, B =

𝜕𝑓

𝜕𝑢
=

𝜕𝛿𝑞⋆

𝜕𝑢
, (2.8)

44

where 𝜕𝛿𝑞⋆/𝜕𝑞 and 𝜕𝛿𝑞⋆/𝜕𝑢 can be expanded using the chain rule into:

𝜕𝛿𝑞⋆

𝜕𝑞
=

𝜕𝛿𝑞⋆

𝜕𝑏

𝜕𝑏

𝜕𝑞
+

𝜕𝛿𝑞⋆

𝜕Q

𝜕Q

𝜕𝑞
+

𝑛c∑︁
𝑖=1

𝜕𝛿𝑞⋆

𝜕J𝑖

𝜕J𝑖

𝜕𝑞
+

𝜕𝛿𝑞⋆

𝜕𝜑𝑖

𝜕𝜑𝑖

𝜕𝑞
, (2.9a)

𝜕𝛿𝑞⋆

𝜕𝑢
=

𝜕𝛿𝑞⋆

𝜕𝑏

𝜕𝑏

𝜕𝑢
. (2.9b)

Similar to other differentiable simulators based on implicit time-stepping [50,71],

we compute the derivatives of the solution 𝛿𝑞⋆ with respect to the problem data

(Q, 𝑏,J𝑖, 𝜑𝑖) by applying the implicit function theorem to the KKT optimality con-

ditions of the convex program (2.6) [46]. Then, the derivatives of (Q, 𝑏,J𝑖, 𝜑𝑖) with

respect to 𝑞 and 𝑢 can be straightforwardly computed using either automatic differ-

entiation or a more specialized method that takes advantage of the structure of rigid

body systems [72].

As the derivatives (2.9) are discontinuous functions of (𝑞, 𝑢) [41], they are not a

good local approximation of the CQDC dynamics unless multiple gradients are com-

puted for different state-action pairs and averaged using the first-order randomized

smoothing scheme (Sec. 2.4.1).

2.3.3 Implementation

As all existing rigid-body differentiable simulators, to the best of our knowledge,

assume second-order Newtonian dynamics, it is difficult and inefficient to modify

them to support our CQDC dynamics formulation. Therefore, we implemented the

proposed dynamics formulation using the Drake robotics toolbox [66]. Although our

implementation is not heavily optimized, it is adequate for computing contact-rich

plans within a reasonable amount of wall-clock time (a few minutes).

For the forward dynamics (Sec. 2.3.1), we use Drake’s MultibodyPlant and Scene-

Graph for collision detection and the computation of the object mass matrix Mu, con-

tact Jacobians J𝑖 and signed distances 𝜑𝑖. The SOCP (2.6) can then be constructed

with MathematicalProgram and solved with a third-party solver of our choice.

For the dynamics derivatives (Sec. 2.3.2), we have a custom implementation for

45

differentiating through the KKT optimality conditions of an SOCP using Eigen’s [73]

linear solvers, allowing us to efficiently compute the partial derivatives of 𝛿𝑞⋆ with

respect to (Q, 𝑏,J𝑖, 𝜑𝑖) from primal-dual solutions (𝛿𝑞⋆, 𝜆⋆) given by third-party conic

solvers. As for the partials of (Q, 𝑏,J𝑖, 𝜑𝑖) with respect to 𝑞, we note that 𝑏 is a

linear function of 𝑞; 𝜕𝜑𝑖/𝜕𝑞 = Jn𝑖 ; 𝜕J𝑖/𝜕𝑞 and 𝜕Q/𝜕𝑞 are computed with Drake’s

forward-mode automatic differentiation.

Finally, in order to avoid discontinuities coming from collision detection, we curate

our system models so that every contact pair is either sphere-sphere, sphere-box, or

sphere-cylinder, which means the contact points and normals change smoothly with

the system configuration 𝑞 [13]. For example, in Fig. 3-5, both the box-shaped

fingers of the Allegro hand and the box-shaped manipuland in the Allegro Plate

system are represented as arrays of inscribing spheres for the purpose of collision

detection. We note that this limitation can be alleviated with smoothing over collision

geometries [74,75].

2.3.4 Interpreting Anitescu’s Convex Relaxation

In this subsection, we will explain for planar (2D) systems how complementarity

constraints in Anitescu’s relaxation behave in different contact modes, namely stick-

ing, sliding and separation. We will also illustrate the cause of the “boundary layer”

artifact during sliding.

When both robots and objects are constrained in a plane, the CQDC dynamics

(2.6) simplifies to the following QP:

min.
𝛿𝑞

1

2
𝛿𝑞⊺Q𝛿𝑞 + 𝑏⊺𝛿𝑞, subject to (2.10a)

(Jn𝑖 + 𝜇𝑖Jt𝑖)𝛿𝑞 + 𝜑𝑖 ≥ 0, 𝑖 ∈ {1 . . . 𝑛c}, (2.10b)

(Jn𝑖 − 𝜇𝑖Jt𝑖)𝛿𝑞 + 𝜑𝑖 ≥ 0, 𝑖 ∈ {1 . . . 𝑛c}, (2.10c)

where the contact Jacobian Jt𝑖 has only one row instead of two, and the conic contact

constraint (2.6b) reduces to two inequality constraints (2.10b) and (2.10c). The KKT

46

conditions of (2.10) include the following complementarity constraints for the 𝑖-th

contact pair:

0 ≤ 𝛽𝑖1 ⊥ (Jn𝑖 + 𝜇𝑖Jt𝑖)𝛿𝑞 + 𝜑𝑖 ≥ 0, (2.11a)

0 ≤ 𝛽𝑖2 ⊥ (Jn𝑖 − 𝜇𝑖Jt𝑖)𝛿𝑞 + 𝜑𝑖 ≥ 0, (2.11b)

where the Lagrange multipliers 𝛽𝑖1 and 𝛽𝑖2 are no longer the normal and tangential

component of the contact impulses. Instead, they are the components of the contact

impulses along the extreme rays of the friction cone (Fig. 2-1a).

As the interplay between contact impulses (𝛽𝑖1, 𝛽𝑖2) and non-penetration con-

straints (RHS of (2.11)) are best shown in the contact frame of contact pair 𝑖, we

define the relative Cartesian translation of contact pair 𝑖 during the time step as

𝛿x𝑖 := [𝛿n𝑖, 𝛿t𝑖] ∈ R2, where 𝛿n𝑖 := Jn𝑖𝛿𝑞 ∈ R and 𝛿t𝑖 := Jt𝑖𝛿𝑞 ∈ R are the normal

and tangential components of 𝛿x𝑖 respectively. These quantities are illustrated in Fig.

2-1c. With this notation, (2.11) can be written as

0 ≤ 𝛽𝑖1 ⊥ 𝛿n𝑖 + 𝜇𝑖𝛿t𝑖 + 𝜑𝑖 ≥ 0, (2.12a)

0 ≤ 𝛽𝑖2 ⊥ 𝛿n𝑖 − 𝜇𝑖𝛿t𝑖 + 𝜑𝑖 ≥ 0. (2.12b)

Note that (i) the feasible region of 𝛿x𝑖 is defined by the RHS of (2.12a) and (2.12b);

(ii) both boundaries of the feasible region of 𝛿x𝑖 (the blue and red dashed lines in Fig.

2-1) intersect the n𝑖-axis at −𝜑𝑖, which is non-positive; (iii) the normal and tangential

contact force impulses are given respectively by 𝜆n𝑖 = 𝛽𝑖1+𝛽𝑖2 and 𝜆t𝑖 = 𝜇𝑖 (𝛽𝑖1 − 𝛽𝑖2).

Sticking (Fig. 2-1a)

In a sticking contact, 𝛿x𝑖 = 0, 𝜑𝑖 = 0 and the contact force is inside the friction cone.

The conditions for sticking, 𝛿x𝑖 = 0 and 𝜑𝑖 = 0, imply that 𝛿n𝑖 + 𝜇𝑖𝛿t𝑖 + 𝜑𝑖 = 0 and

𝛿n𝑖 − 𝜇𝑖𝛿t𝑖 + 𝜑𝑖 = 0, i.e. the RHS of (2.12a) and (2.12b) are active. Therefore, both

𝛽1𝑖 and 𝛽1𝑖 can be positive, allowing any contact impulse inside the friction cone. In

this case, Anitescu’s constraints are identical to Coulomb’s friction law.

47

Figure 2-1: Anitescu’s friction constraints (2.12) under different contact modes: (a) stick-
ing, (b) sliding, and (c) separation. The normal and tangent of the contact frame 𝑖 are
denoted respectively by n𝑖 and t𝑖. The green shaded area is the friction cone. The purple
shaded area is the feasible region of 𝛿x𝑖. Constraints corresponding to (2.12a) and (2.12b)
are color-coded blue and red, respectively.

48

Sliding (Fig. 2-1b)

In a sliding contact, the contact force is on the boundary of the friction cone, and

the relative displacement 𝛿x𝑖 is horizontal and opposing the friction force. Without

loss of generality, we can assume 𝛽𝑖2 > 0 and 𝛽𝑖1 = 0. Hence the RHS of (2.12b) is

active, i.e. 𝛿x𝑖 is constrained to the red dashed line defined by 𝛿n𝑖 − 𝜇𝑖𝛿t𝑖 + 𝜑𝑖 = 0.

Therefore, 𝜑𝑖 = 𝜇𝑖𝛿t𝑖 > 0 per the definition of sliding (𝛿n𝑖 = 0 and 𝛿t𝑖 > 0). This is

the source of the non-physical behavior of Anitescu’s friction constraints: when one

body is sliding relative to the other, the body slides at a positive distance away from

the other body instead of on its surface. In other words, to achieve pure sliding, there

must be some separation between the two relative-sliding objects.

Separation (Fig. 2-1c)

Separation indicates that there is no contact force, i.e. 𝛽1𝑖 = 𝛽2𝑖 = 0. Hence 𝛿x𝑖 can

take any value in the feasible region defined by the RHS of (2.12a) and (2.12b). For

moderate 𝜇𝑖 and reasonably large 𝜑𝑖, the feasible region is large enough to accommo-

date a wide range of velocities.

2.3.5 Flaws of Prescribed Robot Motions as Control Input

In Sec. 2.3.1, we model robots as impedance sources, but not all quasi-static models

have made this modeling choice. As discussed earlier in Sec. 2.2.1, many existing

quasi-static models assume the control input 𝑢 prescribes robot motions (admittance

source) [31,52,53,56], which can be sufficient for planning but insufficient for simula-

tion. In this subsection, we will illustrate the flaws of modeling robot as prescribed

motion for simulation from two complementary perspectives: (i) an example of a

parallel-jaw gripper lifting up a sphere, and (ii) bond graphs.

Parallel-jaw Gripper Lifting Up a Sphere

The gripper-ball system shown in Fig. 2-2a has three actuated DOFs: 𝑥𝑙 and 𝑥𝑟 are

the translation of the left and right gripper fingers along the 𝑥-axis, respectively; 𝑦 is

49

Figure 2-2: (a) A planar quasi-static multibody system. The red rectangles are the actu-
ated gripper fingers, 𝑞a = [𝑥𝑙, 𝑥𝑟, 𝑦] and 𝑢 = [𝑢𝑙, 𝑢𝑟, 𝑢𝑦]. The gray sphere is the un-actuated
manipuland, 𝑞u = [𝑥𝑐, 𝑦𝑐]. 𝑟 = 0.1m. The normal contact forces associated with contact
pair 1 and 2 are denoted respectively by 𝜆n1 and 𝜆n2 . (b) A grasping command violating
the non-penetration constraint.

the translation of both fingers along the 𝑦-axis. The two un-actuated DOFs, 𝑥𝑐 and

𝑦𝑐, are the 𝑥 and 𝑦 translation of the sphere.

As a consequence of modeling robots as prescribed motions, the robot force balance

condition (2.2a) is replaced by

𝑞a + 𝛿𝑞a = 𝑢. (2.13)

Although seemingly plausible, the simplistic robot dynamics (2.13) is an ill-posed

dynamical system: (i) it is possible to command a 𝑢 that violates non-penetration

constraints; (ii) when two bodies are in contact, the contact force between them can be

under-determined [62,63]. Instead of belonging to a niche set of contrived corner cases,

such issues arise naturally and frequently in even the simplest robotic manipulation

tasks. Consider the example in Fig. 2-2a, where the fingers are commanded to grasp

the sphere. For PD-controlled grippers, it is common to command a small amount of

penetration to establish contact forces. However, such commands would penetrate the

object, as shown in Fig. 2-2b. On the other hand, even if the fingers are commanded

to “graze” the sphere (𝜑1 = 𝜑2 = 0), which respects non-penetration constraints, any

non-negative contact force 𝜆n1 and 𝜆n2 would satisfy (2.2b). This is problematic if the

fingers are also commanded to move up: small contact forces would leave the sphere

on the ground, but large contact forces would generate enough friction to lift up the

sphere. Modeling control inputs as robot motions simply cannot determine whether

50

Figure 2-3: Free-body diagrams of the left finger when it is (a) away from the sphere, and
(b) in contact with the sphere.

the sphere moves with the hand or stays on the table.

Our impedance formulation (2.2a) resolves the ill-posedness of (2.13) by effectively

connecting 𝑞a and 𝑢 using springs with zero rest lengths. To illustrate how the spring

helps, we focus on 𝑥𝑙, the prismatic joint of left finger in the planar grasping example

in Fig. 2-2a. Force balance for 𝑥𝑙 is given by

𝑘(𝑢𝑙 − 𝑥𝑙) + 𝜆n1 = 0, (2.14)

where 𝑘 is the stiffness of the spring, 𝑘(𝑢𝑙 − 𝑥𝑙) is the spring force acting on the left

finger, and 𝑓𝑛1 the force from contact with the sphere.

When the left finger is not in the vicinity of the sphere (Fig. 2-3a), we have

𝜆n1 = 0, which together with (2.14) implies that 𝑥𝑙 = 𝑢𝑙. Therefore, in the absence

of contact, adding the spring has the same effect as (2.13). On the other hand, when

the left finger is commanded to squeeze the sphere (Fig. 2-3b), 𝑥𝑙 and 𝑢𝑙 are different

due to the non-penetration constraint. The spring force 𝑘(𝑥𝑙− 𝑢𝑙) is balanced by the

contact force 𝜆n1 .

The addition of the spring resolves both issues with (2.13): (i) feasibility of the

non-penetration constraint is retained by allowing 𝑥𝑙 to be different from its com-

manded value 𝑢𝑙; (ii) the magnitude of the contact force is also uniquely determined

by the difference between 𝑥𝑙 and 𝑢𝑙.

Although adding springs between 𝑞a and 𝑢 may seem arbitrary, it is equivalent to

51

modeling the actuators as impedances [67]. For instance, the closed-loop dynamics

of the KUKA iiwa arm in joint-impedance mode is:

M(𝑞)𝑞 + (D𝑞 +C(𝑞, 𝑞)) 𝑞 +K𝑞 (𝑞 − 𝑢) = 𝜏ext, (2.15)

where 𝑞 is the joint angles of the robot arm, M(𝑞) the mass matrix, C(𝑞, 𝑞) the Coriolis

force, K𝑞 the diagonal joint stiffness matrix, D𝑞 the diagonal damping matrix and

𝜏ext the joint torque generated by external contact [76]. Discarding terms related to

velocity and acceleration, the second-order dynamics (2.15) becomes

K𝑞 (𝑞 − 𝑢) = 𝜏ext, (2.16)

which can be interpreted as the joint space version of (2.14).

Bond Graph

Bond graph is a graphical tool for describing energy flows between components of a

dynamical system [77]. In his seminal work on impedance control, Hogan justified

modeling robots as impedances using bond graph analysis [78].

Fig. 2-4 shows bond graphs of a 1-DOF quasi-static robot pushing against a wall

when the robot is modeled as prescribed motions (admittance) vs. as impedance.

Both the robot and the wall are modeled as flow sources. In Fig. 2-4a the flows from

both sources are constrained to be equal by the 1 junction, whereas in Fig. 2-4b the

flows can be different due to the spring. The flaw of modeling robots as prescribed

motions is revealed clearly as a syntax error in the bond graph. In Fig. 2-4a, the 1

junction has two strong bonds, both of which dictate the flow. However, the syntax

of 1 junction only allows one strong bond per junction.

2.3.6 Experimental Evaluation

We want to understand the extent to which simulation accuracy is affected by the

“boundary layer” due to Anitescu’s convex relaxation of the Coulomb friction con-

52

Figure 2-4: Bond graphs of a 1-DOF robot pushing against the wall. In (a), the robot is
modeled as admittance (a prescribed motion). In (b), the robot is modeled as impedance.

straint, which has been illustrated in Sec. 2.3.4. By comparing the proposed CQDC

dynamics and a quasi-static LCP formulation on the 2D parallel gripper system using

a trajectory that involves multiple contact mode changes, we show that the difference

between the two friction formulations is small for typical manipulation tasks.

We also want to ensure that quasi-static simulations stay close to their second-

order counterparts for typical manipulation tasks. To this end, we compare the

CQDC dynamics against a high-fidelity second-order simulator, Drake’s Multibody-

Plant (MBP). To make the comparison as fair as possible, we turn on the semi-analytic

primal (SAP) solver [45] in MBP. Similar to CQDC, SAP uses Anistecu’s convex relax-

ation of friction constraints [43], and supports implicit integration for PD controllers1.

Our comparison shows that both CQDC and SAP are stable at large integration step

sizes (at least 0.5s), but CQDC seems to be better at respecting non-penetration con-

straints as the step size gets larger, possibly because CQDC enforces non-penetration

constraints directly on positions rather than on velocities.

1At the time of writing this thesis, implicit PD controller is still an experimental feature of
Drake, pending the merge of https://github.com/RobotLocomotion/drake/pull/17674. Implicit
integration provides stability at much larger step sizes than explicit integration. The latter has been
the default integration scheme in Drake due to the separation of plant and controller into individual
systems. In our earlier work [44], we compared CQDC which uses implicit integration against Drake’s
MBP, which is an unfair comparison due to the difference in integration schemes.

53

https://github.com/RobotLocomotion/drake/pull/17674

2D Parallel Gripper

We study the “boundary layer” effect of the CQDC dynamics by comparing it against

an LCP-based quasi-static formulation [44] which enforces the same object and robot

equations of motion in (2.2), but models friction using linear complementarity con-

straints [79] instead of the cone complementarity constraints (2.5).

The comparison is done on the 2D grasping example introduced in Fig. 2-2 using

a gripper trajectory that induces multiple contact mode changes between the fingers

and the sphere. As the system is planar, CQDC’s SOCP formulation (2.6) reduces

to the QP formulation (2.10). We use the QP formulation for the comparison in this

example.

The simulation time step ℎ is set to 0.01s; the weight of the sphere is 10N; the

stiffness for all actuated DOFs is 1000N/m and a friction coefficient of 0.5 is used

for all contacts. The regularization constant 𝜖 in (2.2b) is set to 0. We will use

𝑐n𝑖 := 𝜆n𝑖/ℎ and 𝑐f𝑖 := 𝜆t𝑖/ℎ to denote the normal and tangent components of the

contact forces.

As shown in Fig. 2-5, the grippers start 0.006m away from the surface of the

sphere. They are first commanded to translate horizontally, touching the sphere at

𝑡 = 0.03s. The grippers continue to squeeze the object until 𝑡 = 0.08s. Accordingly,

𝑐n1 grows from 0N to 10N, while 𝜑1 stays at 0. As shown in Fig. 2-6, this behavior is

reproduced by both the LCP formulation and the CQDC dynamics (2.10).

The grippers are then commanded to pull the ball downward into the ground.

Although initially resisted by friction, the downward commands eventually overcome

friction and slipping between the ball and the fingers starts at 𝑡 = 0.13s. In the LCP

simulation, 𝑐n1 , 𝑐f1 and 𝜑1 remain constant despite the contact mode transition from

sticking to sliding. In the CQDC simulation, however, as sliding starts at 𝑡 = 0.13s,

a small increase in 𝜑1 is observed, which, as explained in Section. 2.3.4, is needed by

sliding under Anitescu’s friction constraints. In both the LCP and CQDC simulations,

𝑐n3 grows with the friction 𝑐f1 in order to keep the sphere in force balance.

The downward commands stop at 𝑡 = 0.24s, and the contact mode switches back

54

−0.105

−0.100

−0.095

−0.090

[m
]

xl, LCP
xl, CQDC
ul

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

t [s]

−0.03

−0.02

−0.01

0.00

[m
]

yl, LCP
yl, CQDC
uy

Figure 2-5: Commanded and actual left finger positions for the system defined in Fig.
2-2, as simulated by LCP and the proposed CQDC dynamics (2.10). Recall that 𝑥𝑙 and
𝑢𝑙 are respectively the commanded and actual 𝑥-coordinate of the left finger; 𝑦𝑙 and 𝑢𝑦
are respectively the commanded and actual 𝑦-coordinate of both fingers. The right finger
is not shown, as the motions and forces of the left and right fingers are symmetric about
the 𝑦-axis. The green dashed vertical lines indicate contact mode changes: separation to
sticking at 𝑡 = 0.03s; sticking to sliding at 𝑡 = 0.13s; sliding to sticking at 𝑡 = 0.23s.

to sticking from sliding. Once again, 𝑐n1 , 𝑐f1 and 𝜑1 remain constant in the LCP for-

mulation. In contrast, the “boundary layer” created by sliding in the CQDC dynamics

disappears as sliding stops.

Iiwa Trajectory Tracking

Our first comparison between CQDC and SAP involves tracking a reference joint-

angle trajectory 𝑞ref(·) on a gravity-compensated and PD-controlled iiwa arm. The

task only involves the smooth closed-loop dynamics of the arm (2.15), and does not

involve any external contact. The starting and ending configurations of the reference

trajectory are shown in Fig. 2-7a and Fig. 2-7b, respectively. We interpolate between

the two configurations using a cubic spline, with maximum velocity in the middle and

zero velocity at the two ends. We will denote the trajectory simulated by the CQDC

dynamics as 𝑞CQDC(·), and SAP by 𝑞SAP(·).

To evaluate the performance of the two simulators, we first define the mean error

55

−5

0

5

10
co

nt
ac

tf
or

ce
[N

]

cn1

cf1

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

t [s]

0

10

20

co
nt

ac
tf

or
ce

[N
]

cn3

cf3

0.000

0.002

0.004

0.006

φ
1

[m
]

0.000

0.002

0.004

0.006

φ
3

[m
]

(a) Simulated by quasi-static LCP.

−5

0

5

10

co
nt

ac
tf

or
ce

[N
]

cn1

cf1

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

t [s]

0

10

20

co
nt

ac
tf

or
ce

[N
]

cn3

cf3

0.000

0.002

0.004

0.006

φ
1

[m
]

0.000

0.002

0.004

0.006

φ
3

[m
]

(b) Simulated by the proposed CQDC dynamics (2.10).

Figure 2-6: Contact force and signed distance at contact 1 and 3 of the gripper-sphere
system defined in Fig. 2-2.

56

Figure 2-7: Starting (a) and ending (b) configurations of the reference joint-angle trajec-
tory 𝑞ref(·).

∆(·, ·) between two joint-angle trajectories 𝑞1(·) and 𝑞2(·) as

∆(𝑞1, 𝑞2) :=
1

𝑇

∫︁ 𝑇

0

𝑑(𝑞1(𝑡), 𝑞2(𝑡))d𝑡, (2.17)

where 𝑇 denotes the duration of the trajectories; 𝑑(·, ·) is the distance metric for the

space of joint angles, which is simply the Euclidean 2-norm.

For different simulation step sizes ℎ, the mean errors between simulated and ref-

erence trajectories, i.e. ∆(𝑞CQDC/SAP, 𝑞ref), are shown in Fig. 2-8. The error increases

with ℎ, but remains small even for very large ℎ (ℎ = 0.5s). In addition, as CQDC

has no inertia, it tends to be slightly better at tracking the reference, especially as ℎ

gets smaller.

10−4 10−3 10−2 10−1

h [s]

10−7

10−5

10−3

10−1

∆
(q

C
Q

D
C
/
S
A

P
,q

re
f
)

[ra
d]

SAP
CQDC

Figure 2-8: Mean tracking error Δ(𝑞CQDC/SAP, 𝑞ref) for trajectories simulated using the
CQDC dynamics or SAP at different simulation step sizes ℎ.

57

Figure 2-9: KUKA IIWA robot stacking cubes. The red-and-grey cube has a quadrant
colored grey to indicate its orientation. The red-and-grey cube starts off on the ground (a)
and is placed on a stack of cubes and rotated by 90 degrees (b).

Box Stacking with Iiwa

Our second comparison between CQDC and SAP focuses on a complex 3D system

with many contacts, as shown in Fig. 2-9. The system has 10 cubes and 69 DOFs.

The task is the robot picking up the red-and-grey cube and placing it on the stack.

There is on average 56 contacts per time step during the execution of the task.

Firstly, although both CQDC and SAP are stable for large step sizes (at least

ℎ = 0.5s), CQDC is accurate for all step sizes, whereas the accuracy of SAP starts to

degrade significantly as ℎ crosses a threshold. Similar to the iiwa trajectory tracking

example, we compare trajectories of the red-and-grey cube using the mean error

defined by (2.17). Instead of comparing against a reference trajectory, we define the

ground truth trajectory of the box, 𝑞uGT(·), as the trajectory generated by SAP using

ℎ = 5 × 10−5s. As shown in Fig. 2-10, the mean error of the box pose between

CQDC and the ground truth, ∆(𝑞uCQDC, 𝑞
u
GT), remains small up to ℎ = 0.1s and is

still moderate at ℎ = 0.5s, indicating that a large ℎ can be used for planning without

impacting accuracy. In contrast, ∆(𝑞uSAP, 𝑞
u
GT) becomes large for ℎ ≥ 0.01s.

The reason behind the larger error of SAP at larger step sizes is shown in Fig.

2-11. With SAP, it appears that contacts become softer as ℎ increases, eventually

leading to boxes sinking into each other and the ground.

Good simulation accuracy by the CQDC dynamics at large ℎ is also evident in the

58

10−4 10−3 10−2 10−1

h [s]

10−5

10−4

10−3

10−2

10−1

100

∆
(q

u C
Q

D
C
/
S
A

P
,q

u G
T

),
an

gu
la

r[
ra

d] SAP
CQDC

10−4 10−3 10−2 10−1

h [s]

10−5

10−4

10−3

10−2

10−1

∆
(q

u C
Q

D
C
/
S
A

P
,q

u G
T

),
tra

ns
la

tio
na

l[
m

]

SAP
CQDC

Figure 2-10: Angular and translational mean error of the pose of the red-and-grey box,
Δ(𝑞uCQDC/SAP, 𝑞

u
GT), at different step sizes ℎ. As shown in Fig. 2-9, the box is picked up,

rotated, and placed on the stack of cubes. The ground truth trajectory, 𝑞uGT, is defined as
the trajectory generated by SAP with ℎ = 5× 10−5s. In the computation of the mean error
Δ(·, ·), the distance function 𝑑(·, ·) is the Euclidean 2-norm for translation, and the absolute
difference in angle for rotation.

59

Figure 2-11: Final configurations of the box stacking task shown in Fig. 2-9, simulated
using SAP (a-c) and CQDC (d-f).

pose trajectory of the box, which is shown in Fig. 2-12. The translational trajectories

are almost identical to the ground truth for all ℎ except ℎ = 0.5s, but even at ℎ = 0.5s

the error is just slightly more than 1cm. There is also no significant deviation of the

object orientation from the ground truth.

Lastly, the CQDC dynamics (2.6) scales well with the number of DOFs and con-

tacts. The mean time of solving SOCP (2.6) using Gurobi [80] for the box stacking

task in Fig. 2-9 is less than 10ms on a Mac mini with Intel i7-8700B CPU and 64GB

of RAM.

60

0.55

0.60

0.65

0.70

x
[m

]

−0.005

0.000

0.005

0.010

y
[m

]

0.1

0.2

0.3

z
[m

]

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

t [s]

0.0

0.5

1.0

1.5

an
gl

e
[ra

d] h=5e-05s
h=0.0001s
h=0.0005s
h=0.001s
h=0.005s

h=0.01s
h=0.05s
h=0.1s
h=0.5s
GT

Figure 2-12: Trajectories of the red cube in Fig. 2-9, including the ground truth (GT)
and the ones generated using the CQDC dynamics with different step sizes ℎ. 𝑥, 𝑦 and
𝑧 are the cube’s center of mass coordinates in world frame. Angle comes from the axis-
angle representation of the cube’s orientation relative to world frame. Here the angle plot
represents a rotation about the world 𝑦-axis by 90 degrees. The larger 𝑦 error at ℎ = 0.5s is
caused by the gripper clipping the corner of the red-and-grey box when the gripper retreats
from the box after placing it on the top of the stack. Due to the large ℎ, the gripper’s
motion is interpolated between an upward segment and a horizontal segment. This error is
visible by the difference of a few pixels between Fig. 2-11e and Fig. 2-11f.

61

2.4 Smoothing of Contact Dynamics

This section discusses how the proposed CQDC dynamics (Sec. 2.3) can be smoothed,

so that we can efficiently make good local linear approximations that are useful for

planning. We will begin with a summary of the randomized and analytic smoothing

schemes proposed in [42, Section II] (Sec. 2.4.1). We will then discuss how the

proposed quasi-static dynamics model readily supports both randomized (Sec. 2.4.2)

and analytic smoothing (Sec. 2.4.3), and how the two schemes are related (Sec. 2.4.4).

2.4.1 Smoothing Schemes for Dynamical Systems

This subsection summarizes three different smoothing schemes for dynamical systems

of the form 𝑥+ = 𝑓(𝑥, 𝑢) (2.1). The smoothing schemes are (i) analytic smoothing,

(ii) first-order randomized smoothing and (iii) zeroth-order randomized smoothing.

Although the three schemes all compute the same quantity, they require different

levels of access of the dynamics 𝑓(·, ·). Analytic smoothing utilizes the structure of

𝑓(·, ·) to efficiently compute a smoothed version of it, and therefore requires white-box

access to 𝑓(·, ·). In contrast, randomized smoothing schemes achieve smoothing via

sampling: first-order randomized smoothing needs black-box access to 𝑓(·, ·), 𝜕𝑓
𝜕𝑥
(·, ·)

and 𝜕𝑓
𝜕𝑢
(·, ·), whereas zeroth-order randomized smoothing only needs black-box access

to 𝑓(·, ·).
We use (A(�̄�, �̄�),B(�̄�, �̄�), 𝑐(�̄�, �̄�)) to parameterize the linear system 𝑓 that best

describes 𝑓 around some nominal point (�̄�, �̄�),

𝑓(𝑥, 𝑢) = A(�̄�, �̄�) (𝑥− �̄�)⏟ ⏞
=:𝛿𝑥

+B(�̄�, �̄�) (𝑢− �̄�)⏟ ⏞
=:𝛿𝑢

+𝑐(�̄�, �̄�). (2.18)

For dynamical systems, the Taylor expansion requires the system Jacobian,

A(�̄�, �̄�) =
𝜕

𝜕𝑥
𝑓(𝑥, 𝑢)|𝑥=�̄�,𝑢=�̄�

B(�̄�, �̄�) =
𝜕

𝜕𝑢
𝑓(𝑥, 𝑢)|𝑥=�̄�,𝑢=�̄�

𝑐(�̄�, �̄�) = 𝑓(�̄�, �̄�).

(2.19)

62

The smooth surrogate of 𝑓(𝑥, 𝑢) can be defined as

𝑓𝜌(𝑥, 𝑢) := E𝑤∼𝜌[𝑓(𝑥+ 𝑤𝑥, 𝑢+ 𝑤𝑢)], (2.20)

where 𝜌 is a probability distribution, 𝑤𝑥 is the component of 𝑤 that corresponds to

𝑥, and 𝑤𝑢 is defined similarly. The model parameters of the locally linear model 𝑓𝜌

are given as follows:

A𝜌(�̄�, �̄�) =
𝜕

𝜕𝑥
E𝑤∼𝜌[𝑓(𝑥+ 𝑤𝑥, 𝑢+ 𝑤𝑢)]|𝑥=�̄�,𝑢=�̄�

B𝜌(�̄�, �̄�) =
𝜕

𝜕𝑢
E𝑤∼𝜌[𝑓(𝑥+ 𝑤𝑥, 𝑢+ 𝑤𝑢)]|𝑥=�̄�,𝑢=�̄�

𝑐𝜌(�̄�, �̄�) = E𝑤∼𝜌[𝑓(�̄�+ 𝑤𝑥, �̄�+ 𝑤𝑢)].

(2.21)

In the remaining sections, we shorthand the notation and refer to the model param-

eters as a matrix instead of a function for compactness (e.g. A𝜌 instead of A𝜌(�̄�, �̄�)).

Analytic Smoothing

Analytic smoothing is done by explicit computation of 𝑓𝜌 as defined in (2.20). In

general, it is difficult to compute 𝑓𝜌 for arbitrary functions 𝑓 and smoothing kernels

𝜌. In Sec. 2.4.3, we introduce a method for computing 𝑓𝜌 when 𝑓 is the CQDC

dynamics.

First-Order Randomized Smoothing

We use the following estimators for first-order randomized smoothing of dynamical

systems,

A𝜌 ≈ 1
𝑁

∑︀𝑁
𝑖=1

[︀
𝜕
𝜕𝑥
𝑓(�̄�+ 𝑤𝑥

𝑖 , �̄�+ 𝑤𝑢
𝑖

]︀
𝑤𝑖 ∼ 𝜌 (2.22a)

B𝜌 ≈ 1
𝑁

∑︀𝑁
𝑖=1

[︀
𝜕
𝜕𝑢
𝑓(�̄�+ 𝑤𝑥

𝑖 , �̄�+ 𝑤𝑢
𝑖)]
]︀

𝑤𝑖 ∼ 𝜌 (2.22b)

𝑐𝜌 ≈ 1
𝑁

∑︀𝑁
𝑖=1 [𝑓(�̄�+ 𝑤𝑥

𝑖 , �̄�+ 𝑤𝑢
𝑖)]] 𝑤𝑖 ∼ 𝜌 (2.22c)

where 𝜕𝑓/𝜕𝑥, and 𝜕𝑓/𝜕𝑢 are Jacobians of the dynamics.

63

Zeroth-Order Randomized Smoothing

We estimate the gradients using least-squares when 𝜌 is Gaussian:

A𝜌,B𝜌 = argmin
A,B

∑︀𝑁
𝑖=1 ‖𝑓(�̄�+ 𝑤𝑥

𝑖 , �̄�+ 𝑤𝑢
𝑖)−A𝑤𝑥

𝑖 −B𝑤𝑢
𝑖 − 𝑐𝜌‖22 (2.23)

where 𝑐𝜌 is computed with (2.22c).

2.4.2 Randomized Smoothing of Contact Dynamics

We follow the method in Sec. 2.4.1 in order to perform randomized smoothing of

the contact dynamics. For first-order randomized smoothing, we utilize (2.22) with

access to gradients of the contact dynamics obtained in Sec.2.3.2. We similarly do

zero-order randomized smoothing using (2.23). As the state consists of only the

system configuration 𝑞 for quasi-static systems, we assume we compute a local model

around some nominal state-input pair (𝑞, �̄�) from here onward.

However, there is a caveat in the randomized smoothing scheme: if the sampling

distribution 𝜌 has infinite support, the sampled state 𝑞 + 𝑤𝑞
𝑖 could violate the non-

penetration constraint for rigid-bodies, i.e. 𝜑(𝑞 + 𝑤𝑞
𝑖) < 0 for some 𝑖.

Although reasoning about the dynamics 𝑓(𝑞, 𝑢) with an infeasible (penetrating)

𝑞 may seem ill-posed [81], we can define the dynamics from an infeasible 𝑞 as the

projection of 𝑞 to the “nearest” point in the feasible (non-penetrating) set. The

notion of nearest can be defined in terms of the work required to move the system

configuration by 𝛿𝑞, which is precisely the quadratic cost (2.6a) (divided by the step

size ℎ). This projection problem can then be written as

min.
𝛿𝑞

1

2
𝛿𝑞⊺Q𝛿𝑞 + 𝑏⊺𝛿𝑞, subject to (2.24a)

𝜑𝑖(𝑞 + 𝛿𝑞) ≥ 0, 𝑖 ∈ {1 . . . 𝑛c}, (2.24b)

where (2.24b) is the non-linear non-penetration constraint.

While the projection in (2.24) is difficult to solve in general, we can linearize the

constraint (2.24b) in order to locally approximate the problem as a QP. When the

64

constraint is linearized, the problem remarkably becomes equivalent to the frictionless

special case of the CQDC dynamics (2.6). In other words, projection is simply another

interpretation of what the CQDC dynamics does within the penetrating regime, and

no other explicit treatment is required for projection other than the evaluation of

CQDC dynamics. In practice, due to the local nature of linearization, we use a

low-variance distribution 𝜌 to sample states, though higher variance can be used for

inputs.

When samples within the penetrating regime are projected onto the boundary of

the feasible set and then averaged, the expected value of such a distribution creates

a stochastic force field that pushes the object away from feasible set’s boundary. We

illustrate this phenomenon through a simple example.

Example 1. (The Stochastic Force Field) Consider the dynamics of an unac-

tuated 1D block with a wall occupying 𝑞 ≤ 0 (Fig. 2-13a), such that the physical

dynamics is identity if the block is in a non-penetrating configuration, 𝑓(𝑞) = 𝑞 if

𝑞 ≥ 0. The dynamics within the penetrating regime is not well-defined physically;

yet, applying the quasi-dynamic equations of motions (2.24) to this system gives

min.
𝛿𝑞

1

2
𝑚(𝛿𝑞)2, subject to (2.25a)

𝑞 + 𝛿𝑞 ≥ 0. (2.25b)

which has the following solution,

𝑓(𝑞) = 𝑞 + 𝛿𝑞 =

⎧⎪⎨⎪⎩𝑞 if 𝑞 ≥ 0 (no penetration)

0 else (penetration)
(2.26)

One interpretation of (2.26) is that configurations inside the wall gets projected

onto the wall. By taking an average according to such dynamics, the expectation

pushes the box away from the wall as illustrated in Fig. 2-13, which creates a stochas-

tic force field. Note that with this interpretation, the gradients are also well-defined

within the penetrating regime - an infinitesimal change of position in the penetrating

65

Figure 2-13: Figure for Example 1, where quasi-dynamics of motion is interpreted as
a projection operator. (a) Illustration of the system. (b) Distribution of 𝑞 + 𝑤 (green)
and 𝑓(𝑞 + 𝑤) (pink). Note that the samples for which 𝑞 + 𝑤𝑖 < 0 have been projected
onto the surface into a delta function, and the expectation of the pink distribution lies on
the right side of 𝑞, creating a stochastic force field effect. (c) CQDC dynamics and its
randomized smoothed version. (d) Gradients of the CQDC dynamics obtained with first-
order randomized smoothing.

configuration does not have any effect on the location of projection in this example,

thus 𝜕𝑓(𝑞)/𝜕𝑞 = 0 if 𝑞 < 0. For more complex geometries, the location of projection

changes due to changes in the surface, which we connect back to the presence of the

𝜕J/𝜕𝑞 and 𝜕𝜑/𝜕𝑞 terms in (2.9a).

2.4.3 A Smoothed Contact Dynamics Model

Both randomized smoothing schemes only involve repeatedly solving the CQDC dy-

namics (2.6) and/or its gradient (2.8). In contrast, analytic smoothing (Sec.2.4.1)

of the CQDC dynamics (2.6) is not as straightforward, since the solution to an op-

timization problem does not give easy access to explicit forms from which we can

analytically design smooth surrogates.

To perform analytic smoothing, we can convert the hard constraints in a convex

program into costs using a penalty method. Specifically, we convert the constrained

program (2.6) into an unconstrained convex program using the log-barrier function,

66

a common technique in the interior-point method for convex conic programs, with

weight 𝜅:

min.
𝛿𝑞

1

2
𝛿𝑞⊺Q𝛿𝑞 + 𝑏⊺𝛿𝑞 − 1

𝜅

𝑛c∑︁
𝑖=1

log

[︂
(Jn𝑖𝛿𝑞 + 𝜑𝑖)

2

𝜇2
𝑖

− (Jt𝑖𝛿𝑞)
⊺Jt𝑖𝛿𝑞

]︂
, (2.27)

whose solution converges to the solution of (2.6) as 𝜅→∞ [49, §11.3 and §11.6].

From a contact mechanics perspective, the log-barrier formulation is motivated by

relaxing the strict complementary slackness condition of the CQDC dynamics to allow

contact forces at a distance. In fact, the optimality conditions of (2.27) are almost

identical to the KKT conditions of (2.6). The only difference is that complementary

slackness (2.5c) is relaxed from 𝑣⊺𝑖 𝜆𝑖 = 0 to 𝑣⊺𝑖 𝜆𝑖 = 𝜅−1 by the log barrier formulation

(𝑣𝑖 is defined in (2.5a)).

The log-barrier term in (2.27) can be interpreted as the potential of a force field

whose strength is inversely proportional to the distance to the boundary of the con-

straint [49, p.567]. For moderate values of 𝜅, constraints can exert forces even though

they are not active, achieving a smoothing effect similar to the “force-at-a-distance”

relaxation of complementarity constraints, which are commonly used in planning

through contact methods such as [17,50]. We will further illustrate this similarity in

Example 2.

From 𝛿𝑞⋆, the solution to the smoothed dynamics (2.27), we can directly compute

the smoothed gradient A𝜌 and B𝜌 in the same way as (2.8). Once again, the deriva-

tives of 𝛿𝑞⋆ with respect to 𝑞 and 𝑢 are computed by applying the implicit function

theorem to the optimality condition of (2.27), which only consists of the stationarity

condition due to the absence of conic constraints.

To solve (2.27), we implemented an in-house solver using Newton’s method [49,

§9.5], and find that our out-of-the-textbook implementation works robustly and reli-

ably for all numerical experiments in Sec. 3.2 and 3.5.

67

2.4.4 The Smooth Contact Model as “Analytic Smoothing”

In Sec. 2.4.1, we saw that randomized and analytic smoothing can be interpreted as

different methods of computing an equivalent quantity. Here, we show with examples

that (i) for simple systems, we can derive the sampling distribution 𝜌 needed to

obtain the smoothing given by the log-barrier-based analytic smoothing scheme; (ii)

for more complex systems, randomized smoothing schemes using a Gaussian 𝜌 and the

log-barrier-based analytic smoothing scheme result in qualitatively-similar smoothed

dynamics.

Example 2. (Equivalence of Smoothing Schemes) We start with the 1D fric-

tionless system in Fig. 2-14a, whose dynamics is an instance of the frictionless CQDC

dynamics (2.6):

min.
𝛿𝑞a

1

2
ℎ𝑘𝑎(𝛿𝑞

a)2 − ℎ𝑘a(𝑢− 𝑞a)𝛿𝑞a, subject to

𝑞a + 𝛿𝑞a ≥ 0,

(2.28)

The KKT conditions of (2.28) are also the equations of motion of the system:

ℎ𝑘a (𝑞
a + 𝛿𝑞a − 𝑢) = 𝜆, (2.29a)

0 ≤ (𝑞a + 𝛿𝑞a) ⊥ 𝜆 ≥ 0, (2.29b)

which has the explicit solution

𝑞a+ = 𝑞a + 𝛿𝑞a =

⎧⎪⎨⎪⎩𝑢 if 𝑢 ≥ 0 (no contact)

0 else (contact)
. (2.30)

Also as an instance of (2.27), (2.28) can be smoothed analytically by converting

the constraint into a cost using the log-barrier function:

min.
𝛿𝑞a

1

2
ℎ𝑘𝑎(𝛿𝑞

a)2 − ℎ𝑘a(𝑢− 𝑞a)𝛿𝑞a − 1

𝜅
log (𝑞a + 𝛿𝑞a) , (2.31)

whose optimality condition is obtained by setting the gradient of the smoothed cost

68

to 0, yielding the equations of motion of the smoothed system:

ℎ𝑘a(𝑞
a + 𝛿𝑞a − 𝑢) =

1

𝜅

(︂
1

𝑞a + 𝛿𝑞a

)︂
. (2.32)

The right-hand side of (2.32) can be interpreted as an impulse whose magnitude

is inversely proportional to the distance to the wall. Calling this impulse 𝛽, we note

that

𝛽(𝑞a + 𝛿𝑞a) = 𝜅−1, (2.33)

which is analogous to the common bilinear relaxation to the complementarity con-

straint for contact [17, 50]2.

The solution to (2.32) is given by

𝑞a+ =
1

2

(︃
𝑢+

√︃
𝑢2 +

4

𝜅ℎ2𝑘2
a

)︃
(2.34)

which is equivalent to randomized smoothing of the original dynamics under the

following elliptical distribution

𝜌(𝑤) =

√︃
4𝜎

(𝑤⊺𝜎𝑤 + 4)3
, (2.35)

where 𝜎 := ℎ𝑘𝜅.

Conversely, we hypothesize the existence of a barrier function that corresponds to

the Gaussian density, though its form is prohibitive for analysis. In addition, for more

complex examples involving friction, such as the system in Fig. 2-14b, obtaining an

analytic expression for 𝜌 when the contact dynamics is smoothed by log barrier (2.27)

is difficult. Instead, we numerically illustrate the performance of the two smoothing

schemes in Fig. 2-14e. More details about this example can be found in [41].

Finally, we note that with a different smoothing scheme which relaxes complemen-

tary slackness, Howell et al. showed a similar trend for the smoothed dynamics as
2In trajectory optimization, the complementarity constraint is usually relaxed to 𝛽(𝑞a + 𝛿𝑞a) ≤

𝜅−1, instead of the equality in (2.33). The inequality gives the constraint non-empty interior, making
it numerically better.

69

Figure 2-14: (a) A system consisting of an actuated cart constrained to slide on a fric-
tionless surface, and a wall occupying 𝑞a ≤ 0. The actuator has stiffness 𝑘a. (b) A system
consisting of an un-actuated cart constrained to slide on a frictionless surface, and a ball
actuated along both the 𝑥 and 𝑦 axes. The ball can touch the top surface of the cart with a
frictional contact. (c) Randomized and analytic smoothing of (a). Randomized smoothing,
shown in green, is done with a Gaussian kernel with different variances 𝜎. Analytic smooth-
ing, shown in magenta, is done with different log-barrier weights 𝜅. (d) Density functions
of the Gaussian kernels (green) and the elliptical distributions used for analytic smoothing
(magenta). (e) Randomized and analytic smoothing of (b). We plot 𝑞u+ against 𝑢𝑥 for a
fixed 𝑢𝑦 that is inside the cart. The linear region in the plot corresponds to sticking contact,
and the flat regions to sliding.

70

the relaxation is tightened [50, Fig. 7]. We believe this corroborates the equivalence

between analytic and randomized smoothing schemes.

71

72

Chapter 3

Contact-Rich Manipulation Planning

using Quasi-static Models

3.1 Introduction

In Chapter 2, we have developed the CQDC dynamics and prposed computational

methods to obtain local linear models of its smooth surrogate. These tools are not

specific to any algorithm: they can improve the performance of most iterative planning

algorithms that rely on local approximations.

We start the section on contact-rich planning with iterative MPC (iMPC) [41], a

variant of trajectory optimization, that uses the CQDC dynamics to enforce contact

dynamics constraints and compute smoothed gradients. In addition to demonstrating

the utility of the proposed CQDC dynamics, we also introduce iMPC as a handy re-

finement tool for trajectories generated by a sampling-based motion planner (SBMP).

Such trajectories are well-known for making inefficient and meandering “dances” be-

fore arriving at the goal.

However, we have argued that the success of contact-rich planning depends on

both smoothing and global search. Planning based on local optimization, including

trajectory optimization with smoothed contact dynamics, generally results in non-

convex optimization problems where the quality of different local minima can be a

make-or-break factor. Solving such problems requires non-trivial initialization and

73

cost tuning [7], both of which can be highly problem specific and notoriously hard to

debug. This motivates us to search further for a more global approach.

In robotics, SBMP algorithms such as the Rapidly-Exploring Random Tree (RRT)

[5] are widely used for global search problems, including those with kinodynamic

constraints [82]. However, the success of such planners has rarely extended to contact-

rich settings. We find that while optimization-based methods for planning through

contact have employed smoothing schemes, all existing SBMP methods for contact

planning explicitly consider modes instead of smoothing them [34, 35, 48, 83, 84], as

SBMP methods do not inherently require local characterizations of dynamics (i.e.

gradients). Yet, previous works have shown that such local models are highly relevant

for designing more efficient distance metrics during the nearest neighbor queries that

respects dynamic reachability [35,85,86].

In this chpater, we fill in this gap by combining contact mode abstraction via

smoothing, and the global search capabilities of RRT. We enable RRT to explore

efficiently through contact constraints by utilizing a novel distance metric based on

the local smoothed linearizations of CQDC dynamics (Sec.3.3). In addition, we fur-

ther propose an efficient extension step by computing actions that expand the tree to

new parts of the state space using the local linearizations (Sec.3.4). With a variety

of contact-rich tasks inspired by [87] that involve both intrinsic and extrinsic dex-

terity [88], we show that combining smoothing with RRT achieves tractable global

motion planning for highly contact-rich manipulation (Sec.3.5); and that the planned

trajectories can transfer to high-fidelity second-order simulations or even robot hard-

ware. To the best of our knowledge, our work appears to be the first to successfully

combine SBMP with contact mode smoothing.

3.2 Trajectory Optimization through Contact

In this section, we demonstrate the efficacy of smoothed CQDC dynamics on tra-

jectory optimization for systems with contacts. Although smoothing of hard con-

tact constraints has been widely utilized to improve convergence [17,50,89], existing

74

methods still struggle with complex problems such as dexterous manipulation. In

particular, the quality of solutions can be very sensitive to initial guesses [7]. In this

context, we show that a variant of trajectory optimization, with the help of smoothed

CQDC dynamics and only a trivial initial guess, can perform well even on dexterous

manipulation tasks.

3.2.1 Iterative MPC with Smoothing

The variant of trajectory optimization algorithm used in this section, which we call

iterative MPC (iMPC), is an iLQR-inspired algorithm proposed in [41]. We briefly

summarize iMPC here for completeness, and illustrate how smoothing can be easily

integrated into iMPC.

Consider the problem of finding an optimal sequence of inputs to track some

desired state trajectory {𝑥𝑑
𝑡 }𝑇𝑡=0. We need an initial guess for the nominal input

trajectory {�̄�𝑡}𝑇−1
𝑡=0 , from which the nominal state trajectory {�̄�𝑡}𝑇𝑡=0 can be obtained

by rolling out {�̄�𝑡}𝑇−1
𝑡=0 from the initial state 𝑥0. For every time 𝑡 (i.e. in a time-varying

manner), we can create a locally linear model that approximates the dynamics, with

model parameters {A𝑡,B𝑡, 𝑐𝑡}𝑇−1
𝑡=0 (2.19). Then, finding the optimal {�̄�𝑡}𝑇−1

𝑡=0 , subject

to the locally linear model of the dynamics, can be written as a QP. We present the

MPC variant of this problem that receives the initial state �̄�𝑗 at time 𝑡 = 𝑗 and

computes the optimal action for the remaining time steps,

MPC(�̄�𝑗) = 𝑢⋆
𝑗 ,where (3.1a)

{𝑥⋆
𝑡}𝑇𝑡=𝑗, {𝑢⋆

𝑡}𝑇−1
𝑡=𝑗 = argmin

{𝑥𝑡}𝑇𝑡=𝑗 ,{𝑢𝑡}𝑇−1
𝑡=𝑗

⃦⃦
𝑥𝑇 − 𝑥𝑑

𝑇

⃦⃦2
Q𝑇

+
𝑇−1∑︁
𝑡=𝑗

(︀
‖𝑥𝑡 − 𝑥𝑑

𝑡 ‖2Q𝑡
+ ‖𝑢𝑡‖2R𝑡

)︀
(3.1b)

s.t. 𝑥𝑡+1 = A𝑡(𝑥𝑡 − �̄�𝑡) +B𝑡(𝑢𝑡 − �̄�𝑡) + 𝑐𝑡, (3.1c)

C𝑥
𝑡 𝑥𝑡 ≤ 𝑑𝑥𝑡 , C

𝑢
𝑡 𝑢𝑡 ≤ 𝑑𝑢𝑡 , ∀𝑡 ∈ {𝑗 · · ·𝑇 − 1}, (3.1d)

𝑥𝑗 = �̄�𝑗. (3.1e)

Here, {Q𝑡,R𝑡} are the quadratic weights for state and input, respectively; Q𝑇 is

75

the weight on the terminal state; {C𝑥
𝑡 , 𝑑

𝑥
𝑡 } and {C𝑢

𝑡 , 𝑑
𝑢
𝑡 } are inequality parameters

on the state and input, respectively. The linear constraints (3.1e) can enforce, for

instance, joint and actuation limits.

The iMPC algorithm is summarized in Alg. 1. In every outer iteration (body of

the while loop starting at Line 4), iMPC solves truncated versions of (3.1) for 𝑇 − 1

times. Specifically, at inner iteration 𝑗 (body of the for loop starting at Line 6), we

solve MPC (3.1) for the sub-problem starting at 𝑡 = 𝑗 (Line 7), and apply 𝑢⋆
𝑗 from

the solution to update �̄�𝑗+1 (Line 8). In every inner iteration, we also enforce a trust

region by using (3.1e) to constrain 𝑥𝑡 and 𝑢𝑡 to stay close to �̄�𝑡 and �̄�𝑡, respectively.

Algorithm 1: iMPC
1 Input: Initial state 𝑥0, input trajectory guess {�̄�𝑡}𝑇−1

𝑡=0 ;
2 Output: Optimized input trajectory {�̄�𝑡}𝑇−1

𝑡=0 ;
3 {�̄�𝑡}𝑇𝑡=0 ← Rollout 𝑓 from 𝑥0 with{�̄�𝑡}𝑇−1

𝑡=0 ;
4 while not converged do
5 Compute system matrices {A𝑡,B𝑡, 𝑐𝑡}𝑇−1

𝑡=0 ;
6 for 0 ≤ 𝑗 < 𝑇 do
7 �̄�𝑗 ←MPC(�̄�𝑗) ;
8 �̄�𝑗+1 ← 𝑓(�̄�𝑗, �̄�𝑗) ;

9 return {�̄�𝑡}𝑇−1
𝑡=0

To apply smoothing to iMPC, we substitute the linearizations of smooth surro-

gates {A𝑡,𝜌,B𝑡,𝜌, 𝑐𝑡,𝜌}𝑇−1
𝑡=0 (2.21) for the first-order Taylor expansions {A𝑡,B𝑡, 𝑐𝑡}𝑇−1

𝑡=0

(2.19). After every outer iteration, we also reduce the variance of 𝜌 (this can be done

for analytic smoothing by increasing the log barrier weight 𝜅), allowing the smooth

surrogates 𝑓𝜌 to converge to the true CQDC dynamics 𝑓 .

3.2.2 Experiment Setup

Systems Description

We test iMPC with different smoothing schemes on two planar systems from [41]

and a 3D system for in-hand rotation. We describe our systems below, and their

visualization can be seen in Fig. 3-6. The three tuple after the name of each system

76

0 5 10 15 20
Iterations

10

20

30

40

50

60

70

80
Co

st
analytic
randomized_first
randomized_zero
exact

(a) PlanarPushing.

0 5 10 15 20
Iterations

0

200

400

600

800

Co
st

analytic
randomized_first
randomized_zero
exact

(b) PlanarHand Re-orientation.

0 5 10 15 20
Iterations

0

100

200

300

400

Co
st

analytic
randomized_first
randomized_zero
exact

(c) AllegroHand Rotation.

Figure 3-1: Performance of iMPC with different smoothing schemes: analytic, randomized
(first-order), randomized zero-order, and exact (no smoothing). For each method, the solid
line represents the mean over five runs, and the shaded region represents the standard
deviation.

indicates (𝑛u, 𝑛a, 𝑛cg), where 𝑛u is the number of unactuated DOFs, 𝑛a the number

of actuated DOFs, and 𝑛cg the number of collision geometries.

1. Planar Pushing, (3,2,2). A classical example of nonprehensile manipulation

[53]. The goal is specified as some 2D configuration of the box.

2. Planar Hand Reorientation, (3,4,13). We use a planar hand with two

fingers, each with two DOFs. The goal is to change the position and orientation

of the ball in a 2D plane.

3. Allegro In-Hand Rotation, (6,16,20). 3D In-hand rotation of the ball

with the full model of the allegro hand [90]. The goal is specified as a rotated

configuration of the ball.

Initialization

As mentioned in Sec. 3.2.1, given an initial state 𝑥0, we need to initialize the nominal

input trajectory {�̄�𝑡}𝑇−1
𝑡=0 , where �̄�𝑡 is the commanded positions of the robots at step

𝑡 under the CQDC dynamics. Empirically, we find that good convergence can be

achieved with a constant initialization, i.e. �̄�0 = �̄�1 = . . . �̄�𝑇−1. Although this

initialization is still prone to local minima, it is surprisingly effective when the solution

can be found without global search.

77

For the numerical experiments in this section, we need a �̄�0 that makes contact

with the object. Otherwise the baseline which does not use smoothing would have

zero gradients and make no progress at all.

In contrast, for iMPC with smoothing, it is sufficient to set �̄�0 = 𝑞a0, as long as 𝑞a0
is not “too far away” from making contact with the objects (the reason is explained

in Example 4). In many practical problems, the object’s initial configuration 𝑞u0 is

fixed, but we are free to choose the initial robot configuration 𝑞a0. In this case, we can

simply calculate a 𝑞a0 that is “close” to making contact using, for example, methods

that compute grasps [91].

Hardware & Implementation Details

The numerical experiments are run on a desktop with one AMD Threadripper 2950

CPU (16 cores, 32 threads) and 32GB of RAM. The code for iMPC using different

smoothing schemes is identical except for the computation of the linearizations. For

analytic smoothing and the baseline, we solve respectively the smoothed (2.27) and

original (2.6) dynamics once and then apply the chain rule to get the linearization.

For first-order randomized smoothing, we solve the original dynamics (2.6) and apply

the chain rule for 100 samples (𝑁 = 100), which is parallelized on all available threads,

and then average the gradients of the samples. Zeroth-order randomized smoothing

simply requires parallel evaluation of the dynamics.

Problem PlanarPushing PlanarHand AllegroHand
Method Cost Time(s) Cost Time(s) Cost Time(s)

A. 11.74 2.17 26.55 5.20 5.78 19.59
RF. 11.73 4.64 17.87 23.09 8.42 40.07
RZ. 12.86 4.61 18.29 11.93 28.21 34.05
E. 31.64 1.88 18.49 5.91 44.68 12.92

Table 3.1: Minimum cost and running time achieved by different methods. All methods
are ran for 10 iterations across 5 trials. The methods names are abbreviations from the
legend of Fig. 3-1.

78

(a) Initial configurations and goals. Each system is shown in its initial
configuration 𝑞0. The thicker frame denotes the goal while the thinner frame
denotes the initial configuration of the object.

(b) Final object configuration achieved by the best runs within each of the
four methods. Pink shaded denotes the goal configuration for the first two
examples, while the goal configuration in the last example is marked by the
pink line protruding out of the object. Colors correspond to the plots in Fig.
3-1.

Figure 3-2: Tasks and results for the trajectory optimization case study.

3.2.3 Results & Discussion

In Fig. 3-1, we plot the performance of iMPC with a baseline that does not use

smoothing, and the three different smoothing schemes in Sec. 2.4.1, namely analytic,

randomized first-order, and randomized zeroth-order. We also summarize the running

time of each method, as well as the minimum cost achieved across the iterations, in

Table 3.1. Illustrations of the tasks and the results achieved by different methods are

shown in Fig. 3-2. We interpret the results and discuss the relevant findings in this

section.

79

Exact vs. Smoothing

For PlanarPushing and AllegroRotation, the various smoothing schemes achieve much

lower costs than using exact gradients. However, for PlanarHand, using the exact lin-

earization is performant as well. This difference may be explained by the observation

that the planar hand example does not go through many mode changes, while the

planar pusher and the allegro hand require several mode changes to converge to the

locally optimal trajectory.

Analytic vs. Randomized Smoothing

Comparing the performance of the three smoothing schemes, the analytic and the

first-order randomized smoothing perform similarly, while the zeroth-order version

does not perform as well. We believe the cause lies in the high variance characteristic

of the zeroth-order estimator in higher dimensions.

Running (wall-clock) Time

While analytic smoothing only requires one evaluation of the smoothed dynamics

(2.27) in order to compute (A𝜌,B𝜌, 𝑐𝜌), randomized smoothing requires taking 𝑁

samples and averaging them, which costs 𝑁 times more compute-time. After par-

allelization, we expect randomized smoothing to be roughly 𝑁/𝜉 times slower than

analytic smoothing where 𝜉 is the number of threads. Indeed, with 𝑁 = 100 and

𝜉 = 32, our results show that randomized smoothing is 2 to 3 times slower than

analytic smoothing.

3.3 Local Mahalanobis Metric for RRT

While trajectory optimization can find trajectories reaching goals that are close to

the initial configuration, it is highly prone to local minima when the goal is further

away (e.g. moving the box back in PlanarPushing, rotating the ball by 180 degrees in

PlanarHand, AllegroHand). To solve these tasks, the planning algorithm needs to be

80

more global. When faced with such problems, the RRT algorithm [5] has proven to

be a classical and effective method for global planning.

However, extending RRT to dynamical systems (i.e. kinodynamic RRT) has been

difficult, as a distance metric between two states is hard to define. In [85], it was

argued that a good distance metric for RRT would need to explicitly consider dy-

namic reachability in order to efficiently grow the tree. The authors further proposed

Reachability-Guided RRT (RG-RRT), which had system-specific reachability metrics

that was shown to be effective for smooth systems. To alleviate the limitation of be-

ing system-specific, later works have considered building such metrics based on local

characteristics of the dynamics such as local linearizations [35, 86].

However, when the dynamics involves contact, such local linearizations are no

longer informative, and existing approaches often tackle dynamic reachability by ex-

plicitly considering contact modes [34,83]. This has led to planners that scale poorly

with the number of contacts. In contrast, we propose to handle the challenges brought

about by contact with smoothing. We show that when combined with smoothing,

the locally linear model can be used to construct an informative distance metric that

is consistent with notions of reachability.

3.3.1 The Local Mahalanobis Metric

Consider the following problem: given the current configuration 𝑞, and some queried

configuration 𝑞, how can we formulate a distance metric 𝑑(𝑞; 𝑞) that is consistent

with reachability characteristics of the system? We propose to utilize the locally

linear model around the nominal configuration 𝑞, that characterizes the local response

of the next system configuration 𝑞+ with respect to the movement of the actuated

configurations 𝑢. This local model can be written as

𝑞+ = B(𝑞, 𝑞a) (𝑢− 𝑞a)⏟ ⏞
𝛿𝑢

+𝑐(𝑞, 𝑞a) (3.2)

where the notation is consistent with the CQDC dynamics formulation in Sec.2.3.1;

the input 𝑢 is the position command to the system), and B, 𝑐 are defined as (2.19).

81

Figure 3-3: (a) Two different sublevel sets ℛu
𝜌,𝜀,𝛾 , represented as ellipsoids, shown in the

space of 𝑞u, with 𝜀 = 1, and 𝛾 = 10−6. The ellipsoid centers are shifted to the origin for easy
comparison. Red ellipsoid: ℛu

𝜌,𝜀,𝛾 for the system configuration in Fig. 3-3b; blue ellipsoid:
ℛu

𝜌,𝜀,𝛾 for the configuration in Fig. 3-3c. Points 𝑏1, 𝑐1 are where ellipsoids’ major axes
intersect their boundaries. Points 𝑏2, 𝑐2 are points along the minor axes of the ellipsoids,
and satisfy ‖𝑏1‖ = ‖𝑏2‖ and ‖𝑐1‖ = ‖𝑐2‖, where the norm is based on the standard Euclidean
metric. (b) The solid robots and objects represent the 𝑞 at which the red ℛu

𝜌,𝜀,𝛾 in (a) is
computed. The straight line on the puck indicates its orientation. The dashed dark red
puck corresponds to the configuration 𝑏1, and pink to 𝑏2. Note that 𝑏1 is easier to each than
𝑏2. (c) Similar to Fig. 3-3b, the dashed dark blue puck correspond to 𝑐1, and light blue to
𝑐2. It is also easier to reach 𝑐1 than 𝑐2. (d) The volume of ℛu

𝜌,𝜀,𝛾 shrinks as the fingers get
further away from the puck. The ellipsoids on the right are color-coded to match the robot
configurations on the left. Note that the blue ellipsoid is barely visible.

We note that the contribution of A term is zero since 𝛿𝑥 = 0.

Given such a local characterization, and a queried state 𝑞, we define the Maha-

lanobis metric as follows.

Definition 1. Local Mahalanobis Metric. Given a nominal configuration 𝑞, and

queried configuration 𝑞, we define the Mahalanobis distance 𝑑𝛾 of 𝑞 from 𝑞 as follows:

𝑑𝛾(𝑞; 𝑞) := ‖𝑞 − 𝜇‖Σ−1
𝛾

= 1
2
(𝑞 − 𝜇)⊺Σ−1

𝛾 (𝑞 − 𝜇)

Σ𝛾 := B(𝑞, 𝑞a)B(𝑞, 𝑞a)⊺ + 𝛾I𝑛, 𝜇 := 𝑐(𝑞, 𝑞a).
(3.3)

The regularization 𝛾I𝑛 is added to ensure that Σ𝛾 is positive definite and the

inverse Σ−1
𝛾 is well-defined. Note that the 𝜀-sublevel set of this metric 𝑑𝛾(𝑞; 𝑞), which

we denote by ℛ𝜀,𝛾(𝑞), describes an ellipsoid that is centered at 𝜇 and has a shape

matrix Σ−1
𝛾 . We further motivate our construction of the metric by noting that this

ellipsoid can be alternatively characterized (equivalent up to a regularization) by the

following set,

ℛ𝜀(𝑞) := {B(𝑞, 𝑞a)𝛿𝑢+ 𝑐(𝑞, 𝑞a) | ‖𝛿𝑢‖ ≤ 𝜀} . (3.4)

82

This equivalence relation is exact when B has full row rank (i.e. the system is

one-step controllable) and 𝛾 = 0. On the other hand, if B loses rank, one of the

principle axis of ℛ𝜀 has a length of zero and the set becomes degenerate.

Finally, note that when 𝑞 − 𝜇 /∈ Range(B), i.e. there is no actuation 𝑢 that

can take the state 𝑞 to the queried state 𝑞, the distance 𝑑𝛾(𝑞; 𝑞) is a large number

dominated by the inverse of the regularization term 𝛾−1, which is consistent with the

intuition that states that are harder to reach are further away.

3.3.2 Metric on Smoothed Dynamics and Unactuated Objects

As explained in the previous sections, the local model constructed using B may not

be a very informative one for non-smooth systems with contact. In light of the various

smoothing schemes introduced in Sec.2.4.1 to alleviate this issue, we propose a metric

by utilizing the linearization of the smooth surrogate (B𝜌, 𝑐𝜌), as opposed to those of

the original contact dynamics, (B, 𝑐).

Furthermore, for systems where robots interact with unactuated objects through

contact, we focus on the reachability of the objects, as the robots are actuated and

can easily move to a desired configuration without contact. We combine smoothing

and the object-centric reachability in the following variant of the Mahalanobis metric

𝑑u𝜌,𝛾,

𝑑u𝜌,𝛾(𝑞; 𝑞) := ‖𝑞u − 𝜇u
𝜌‖Σu−1

𝜌,𝛾
,

Σu
𝜌,𝛾 := Bu

𝜌(𝑞, 𝑞
a)Bu

𝜌(𝑞, 𝑞
a)⊺ + 𝛾I𝑛u ,

𝜇u
𝜌 := 𝑐u𝜌(𝑞, 𝑞

a).

(3.5)

where Bu
𝜌 is formed by the rows of B𝜌 corresponding to the unactuated DOFs, and

𝑐u𝜌 is defined similarly. Finally, we define ℛu
𝜌,𝜀,𝛾(𝑞) as the 𝜀-sublevel set of 𝑑u𝜌,𝛾(𝑞; 𝑞).

In the rest of this section, we give several examples that provide intuition into the

local Mahalanobis metric 𝑑u𝜌,𝛾 and its sublevel set ℛu
𝜌,𝜀,𝛾.

Example 3. (Understanding B for Planar Systems) As shown in Sec. 2.3.4,

3.2.2), the CQDC dynamics (2.6) simplifies to a QP (2.10) for planar systems. For

83

reference, the QP (2.10) is reproduced below:

min.
𝛿𝑞

1

2
𝛿𝑞⊺Q𝛿𝑞 + 𝑏⊺𝛿𝑞, subject to (3.6a)

(Jn𝑖 + 𝜇𝑖Jt𝑖)𝛿𝑞 + 𝜑𝑖 ≥ 0, 𝑖 ∈ {1 . . . 𝑛c}, (3.6b)

(Jn𝑖 − 𝜇𝑖Jt𝑖)𝛿𝑞 + 𝜑𝑖 ≥ 0, 𝑖 ∈ {1 . . . 𝑛c}. (3.6c)

Recall that the contact Jacobian Jt𝑖 has only one row instead of two. We define

J ∈ R(2𝑛c)×𝑛𝑞 by stacking the Jn𝑖 + 𝜇𝑖Jt𝑖 and Jn𝑖 − 𝜇𝑖Jt𝑖 from (3.6b) and (3.6c) into

a single matrix, and partition J into Ju and Ja in a similar way as in (2.3).

More structure behind the B matrix (as defined in (2.8)) can be revealed with a

bit of linear algebra. We can work out by hand the application of the implicit function

theorem to the KKT conditions of (2.10), and the chain rule in (2.9b), to obtain an

explicit expression for B:

B =

⎡⎣Ba

Bu

⎤⎦ =

⎡⎣I− (ℎ2Ka)
−1(J̃a)

⊺PJ̃a

M−1
u (J̃u)

⊺PJ̃a

⎤⎦ , with (3.7a)

P =
[︁
J̃uM

−1
u (J̃u)

⊺ + J̃a(ℎ
2Ka)

−1(J̃a)
⊺
]︁−1

. (3.7b)

where we assume J̃u and J̃a have full row rank. The tilde over a Jacobian indicates

the sub-matrix formed by rows of the original matrix corresponding to the active

constraints, i.e. contacts with non-zero contact forces.

The structure in Bu explains why Bu
𝜌 is a good measure of the object’s reachability

when there is contact. We can interpret Range(J̃⊺
u) as achievable object motions

under the specific subset of active contacts. By averaging Bu computed from different

contacts which can be activated from the nominal (𝑞, �̄�), Bu
𝜌 summarizes possible

object motions due to contact, in the form of Range(J̃⊺
u) weighted by Mu and P.

Furthermore, for a configuration with no active contacts, (3.7) implies that Ba = I

and Bu = 0, as both J̃a and J̃u are empty matrices in the absence of active contacts.

This has the intuitive interpretation that under a 𝑢 that does not lead to contacts,

the robot will move to where it is commanded to, and the object will remain still.

84

As Bu
𝜌 is the expected value of Bu, it follows naturally from the above observation

that the local distance metric 𝑑u𝜌,𝛾 tends to be dominated by the regularization 𝛾I𝑛u

for a nominal configuration 𝑞 where robots and objects are far from making contact.

In such cases, the probability that an action 𝑢 sampled from a distribution 𝜌 centered

at 𝑞a leads to active contacts is low. As a result, in the Monte-Carlo estimation of

Bu
𝜌, such samples simply introduce 0 into the average, dragging the distance metric

𝑑u𝜌,𝛾 towards being dominated by the regularization.

Example 4. (Metric on Planar Hand) We illustrate how the Mahalanobis metric

can guide planning using the PlanarHand system first introduced in Sec. 3.2.2. As

shown in Fig. 3-3, the system lives in the 𝑥𝑦 plane, with gravity pointing into the

paper along the negative 𝑧 direction. The system consists of two actuated 2-link

robotic fingers and an unactuated puck which is free to translate and rotate. Each

finger can interact with the ball through frictional contacts along both links.

For a given 𝑞u, the difficulty of reaching 𝑞u from (𝑞, �̄�) can be measured by the local

Mahalanobis metric 𝑑u𝜌,𝛾, whose 1-sublevel sets are shown in Fig. 3-3a as ellipsoids.

Although object configurations 𝑏1 and 𝑏2 are equidistant to the origin under the

globally-uniform Euclidean metric, 𝑏1 is considered much closer than 𝑏2 under the

local Mahalanobis metric (red ellipsoid). Indeed, in Fig. 3-3b, reaching 𝑏1 from the

current puck configuration seems easier than reaching 𝑏2. A similar observation can

be made for the configuration in Fig. 3-3c.

In addition, the local Mahalanobis metric also varies greatly from one configura-

tion another, as evidenced by the difference between the blue and red ellipsoids in

Fig. 3-3a. This implies that a globally-uniform metric is rarely a good measure of

reachability characteristics.

Lastly, the ellipsoid that corresponds to the 1-sublevel set shrinks as the nominal

state gets further away from the contact manifold, as shown in Fig. 3-3d. This

signifies that the configurations where the object is less accessible by the robot are

naturally considered “further away” and can thus be avoided by the planner.

85

Algorithm 2: RRT
1 Input: 𝑞init, 𝑞goal, 𝐾;
2 Output: 𝒯 ;
3 𝒯 = {𝑞init};
4 for 𝑘 = 1, . . . , 𝐾 do
5 𝑞subgoal = SampleSubgoal(p);
6 𝑞nearest = Nearest(𝑞subgoal);
7 𝑞new = Extend(𝑞nearest, 𝑞subgoal);
8 AddNode(𝑞new) ;
9 if GoalReached then

10 break;

3.4 RRT through Contact

We are now ready to present our smoothing-based enhancements to the vanilla RRT

algorithm, which we reproduce in Alg. 2 to establish notations for our discussion. Our

method enhances RRT by incorporating (i) a reachability-aware Nearest operation

based on the smoothed Mahalanobis metric on the unactuated objects 𝑑u𝜌,𝛾, (ii) a fast

Extend operation based on the projection of the subgoal to the range of B𝜌; and (iii)

a contact sampling procedure which improves the reachability of nodes added to the

tree.

We denote the RRT tree as 𝒯 = (𝒱 , ℰ) with vertex set 𝒱 and edge set ℰ . Each

node 𝑞 ∈ 𝒱 is simply a point in the configuration space of the system.

3.4.1 Nearest Node using Local Mahalanobis Metric

As illustrated in Sec.3.3, in particular by Example 4, a globally-uniform metric used

by the vanilla RRT is usually a poor measure of reachability. Given a subgoal 𝑞subgoal,

if the nearest node 𝑞nearest is chosen under a globally-uniform metric, reaching 𝑞subgoal

from 𝑞nearest may require large 𝑢 or even be dynamically infeasible. This will compro-

mise RRT’s ability to explore the configuration space, as trying to Extend towards a

hard-to-reach 𝑞subgoal typically returns a child node that is close to the parent node

𝑞nearest. In order to retain RRT’s ability to efficiently explore under dynamics con-

straints, we use the smoothed Mahalanobis metric (3.5) instead of the usual Euclidean

86

metric in the Nearest step:

𝑞nearest = argmin𝑞∈𝒱 𝑑u𝜌,𝛾(𝑞subgoal; 𝑞). (3.8)

3.4.2 Dynamically Consistent Extension

After choosing 𝑞nearest from the tree 𝒯 , we need an action or a sequence of actions

that moves the system from 𝑞nearest to 𝑞subgoal subject to the dynamics constraint.

One feasible strategy to connect 𝑞nearest to 𝑞subgoal is to solve for an input sequence

{𝑢𝑡}𝑇−1
𝑡=0 using a trajectory optimization algorithm such as Alg. 1 [82]. However, the

high computational cost of trajectory optimization motivates us to seek a simpler

solution.

Fortunately, as a result of the farsightedness of quasi-static models, even an input

sequence with 𝑇 = 1 (i.e. a single time step) can steer the system fairly far away

from 𝑞nearest. Although trajectory optimization with 𝑇 > 1 can explore a larger region

around 𝑞nearest, we find in practice that a single time step is sufficient for Extend to

effectively grow the RRT tree 𝒯 .

We present the modified Extend that uses a single time step in Alg. 3. The input

𝑢 is computed by projecting (𝑞usubgoal − 𝜇u
𝜌) to Range(Bu

𝜌) using least squares (Line

3), which is significantly cheaper than solving trajectory optimization. Afterwards,

we normalize the input and multiply it by some stepsize 𝜀. The scaled input is then

passed to the forward dynamics to obtain a new node. Crucially, we use the actual

dynamics 𝑓 as opposed to the smooth surrogate dynamics 𝑓𝜌 (Line 4). This ensures

that while the search for the next action relies on the smoothed model, the actual

path is dynamically consistent under the original non-smooth contact dynamics (i.e.

CQDC).

Algorithm 3: Extend
1 Input: 𝑞nearest, 𝑞subgoal;
2 Output: 𝑞new;
3 𝛿𝑢⋆ = argmin𝛿𝑢‖Bu

𝜌𝛿𝑢+ 𝑐u𝜌 − 𝑞usubgoal‖ ;
4 return 𝑓(𝑞nearest, 𝑞

a
nearest + 𝜀 · 𝛿𝑢⋆/‖𝛿𝑢⋆‖) ;

87

3.4.3 Contact Sampling

A node 𝑞 where robots and objects are far from making contacts hinders the growth

of the RRT tree for two reasons. First, such nodes are considered far away under

the local Mahalanobis metric from most sampled 𝑞subgoal, as the sublevel sets of their

Mahalanobis distance metric have small volume (e.g. Fig. 3-3d). As a result, adding

such nodes to the tree simply increases “deadweight” without improving coverage of

the state space. Moreover, when such a node is chosen by Nearest, the Extend

operation that follows often results in another non-contact configuration.

To reduce the number of such nodes in 𝒯 and improve exploration during tree

growth, the Extend operation is replaced, with some probability, by a new operation

called ContactSample. ContactSample takes 𝑞nearest as input, and creates another

node with a better local metric by fixing 𝑞unearest and finding an informative 𝑞anearest

that makes contact with the object.

The ContactSample operation is essential for adequate exploration of the robot’s

state space, and needs to be designed differently for different robots. As an example,

we briefly describe how ContactSample is implemented for the three robots shown in

Fig. 3-5, which are used in our experiments in Sec. 3.5.

• PlanarPushing. The robot (the red sphere) is placed at a random point sampled

on the perimeter of the box.

• PlanarHand. The robot consists of two fingers that can be treated as two-link

robot arms. There are two different ways for the robot to contact the sphere:

(i) enveloping grasps, where for each finger, we start with the finger straight

and horizontal, and then rotate each joint towards the ball until all links are

touching the ball; (ii) pinch grasps, where for each finger, we sample a point

on the sphere, and solve inverse kinematics to find a finger configuration that

touches the ball at the fingertip.

• AllegroHand (in all 4 systems with the hand). We start with the hand open and

near the object (for AllegroDoor the object is the door knob). We then close

88

the hand along a randomly picked direction in the robot’s joint space until the

object is “grasped”. The direction is generated by a weighted average of several

EigenGrasps directions [92], where the weights are sampled randomly.

Contact sampling introduces non-physical behavior where the robot teleports from

one configuration to another. This is not a problem when the object can sustain

static equilibrium without the actuated DOFs that need to teleport. For instance,

in AllegroHand, when the ball is supported by the palm, the fingers are free to move

around the ball to regrasp. In contrast, if AllegroHand were facing downwards, the

ball would fall under gravity if it were not secured by some of the fingers. Although

this is a limitation of our current contact sampling implementation, we believe this

can be resolved by a more sophisticated contact sampler which moves some of the

actuated DOFs while keeping the object in static equilibrium with the rest.

3.4.4 Effectiveness of Proposed Enhancements

We introduce a new system with a 2-dimensional object configuration space to illus-

trate the effectiveness of the proposed RRT enhancements:

• Planar Hand with fixed 𝑦, (2,4,13). A simplified version of the PlanarHand

system in Sec. 3.2.2. We fix the 𝑦-coordinate of the object, so that 𝑞u = (𝑥, 𝜃) ∈
R2 can be easily plotted on paper.

As shown in Fig. 3-4e, the vanilla RRT enhanced with the proposed Nearest,

Extend and ContactSample achieves good coverage of the space of 𝑞u, which is crucial

for RRT to adequately explore the configuration space and find a path to 𝑞goal. In

contrast, tree growth is stuck around the root without contact sampling (Fig. 3-4f)

or the local metric (Fig. 3-4g).

We also illustrate how the tree grows throughout a complete run of the enhanced

RRT in Fig. 3-4a-d. Even with the proposed enhancements, tree growth can get

stuck at times. This is characterized by a specific type of subgraph of the tree which

we call a “broom”. A broom consists of one parent node with many child nodes,

and is formed by repeated unsuccessful attempts to grow towards different subgoals

89

Figure 3-4: (a-d) RRT trees, shown in the space of 𝑞u, at different iterations of a complete
run of the enhanced RRT for the PlanarHandFixedY system. The contours are the sub-level
sets of the local Mahalanobis metric of the nodes. The path from start (𝑞init) to goal (𝑞goal)
is highlighted in red in the final tree of (d). (e-h) Visualization of RRT trees with the same
number of nodes (50) but grown with different methods. (e) Tree grown with our algorithm;
(f) without contact sampling; (g) using a globally uniform weighted Euclidean metric; (h)
using exact gradients without smoothing. Note that our method achieves the best coverage
of the space of 𝑞u.

from the same parent node. The occasional appearance of brooms is a sign that the

proposed enhancements are not perfect. Nevertheless, the enhanced RRT is able to

quickly branch out into empty part of the configuration space, and sufficiently cover

the space as the tree grows.

3.4.5 Final Path Refinement

The final path returned by the RRT algorithm is visually plausible, yet suffers from

two minor drawbacks: (i) RRT tends to produce randomized paths that can be

shortened, and (ii) the big step size used in the Extend operation creates some non-

physical artifacts due to Anitescu’s convex relaxation of the Coulomb friction model

(Sec.2.3.1).

To mitigate these issues, we refine the RRT plan using trajectory optimization

[84, 93] and short-cutting [94]. We first divide the RRT path into segments punc-

tuated by ContactSample operations. We call these segments contact-rich as they

90

Figure 3-5: Tasks for RRT. Similar to Fig. 3-2b, the thicker frame denotes the goal, and
the thinner frame the initial configuration of the object.

involve contact-based interactions between the object and the robot. We shortcut the

sequence of trajectories by (i) removing consecutive ContactSample steps, and (ii)

truncating each segment if there is no movement in 𝑞u. Then, for each contact-rich

segment, we run trajectory optimization (Alg.1) with a smaller time step ℎ, using

the RRT path segment as the initial guess. This not only smooths the final path,

but also ensures that each trajectory segment is more physically realistic. Finally, we

connect adjacent contact-rich segments with a collision-free robot trajectory created

by a collision-free RRT. We assume that the object configuration remains unchanged

during the collision-free segment.

We find that combining these two strategies is effective in creating shorter and

more physically realistic trajectories.

3.5 Results & Discussion

In this section, we apply our algorithm on difficult 3D contact-rich manipulation

problems previously only tackled by heavy offline approaches in RL [87, 95], and

illustrate that we can generate plans on the order of a minute of online compute time,

all on the CPU, which shows the efficacy of our method. The experiments in this

section are designed to validate the following four hypotheses.

1. Using the smooth surrogate greatly improves the performance over using the

exact dynamics for linearization.

2. The equivalence of smoothing schemes establishes that analytic and randomized

smoothing will have similar levels of performance empirically, with analytic

91

smoothing showing superior computation time.

3. Using the Mahalanobis distance metric improves performance over a globally

uniform distance metric.

4. Contact sampling greatly aids sample efficiency of the algorithm.

3.5.1 Experiment Setup

To test the efficacy of our algorithm and the above stated hypotheses, we run our

algorithm to reach more challenging goals than the trajectory optimization examples

in Sec. 3.2.2, as well as on 3 more contact-rich tasks on 3 new systems defined below.

1. Pen Placement (6,19,24). The robot hand needs to both translate and rotate

the pen [87] to the desired configuration.

2. Plate Pickup (6,19,42). The robot has to exploit the external contact be-

tween the plate and the wall [34], showing extrinsic dexterity [88].

3. Door Opening (2,19,22) [87] involves reasoning about a constrained system,

where the handle must be rotated first before the door can be pushed open.

The definition of the number tuples is identical to Sec.3.2.2.

The contact-rich planning tasks are illustrated in Fig. 3-5. We design the tasks

so that solving any of them with a single run of trajectory optimization is expected

to fail due to their difficulty and the resulting non-convexity of the problem.

To compare our algorithm with different baselines, we rate the quality of planners

using two metrics:

1. Iteration vs. Minimum distance to goal. we measure the distance between

the goal and the tree, defined by min𝑞∈𝒱 ‖𝑞u − 𝑞ugoal‖ for every iteration. A

successful planning algorithm would eventually reach the vicinity of the goal

asymptotically, driving this metric to zero.

92

2. Iteration vs. Packing Ratio. To characterize the exploration performance

of RRT, we do a Monte-Carlo estimation of the packing ratio, which is defined

as the volume of the space occupied by the reachability ellipses, divided by

the total volume of some workspace limit for the unactuated objects. The

workspace limit is the set from which subgoals are sampled when running RRT.

More formally, we define the numerator as

𝑉reachable = vol
(︀
{𝑞u|min

𝑞∈𝒱
𝑑u𝜌,𝛾(𝑞; 𝑞) ≤ 𝜂}

)︀
(3.9)

where 𝜂 is some threshold on the distance metric. The Monte-Carlo estimate of

𝑉reachable/𝑉workspace can be computed by drawing 𝑁 samples within the workspace

and counting how many of them belong to 𝑉reachable. A good planner should

asymptotically reach a ratio of 1 if the system can reach all points in the

workspace.

For both metrics, the performance of our RRT algorithms averaged over 5 runs is

plotted in Fig. 3-6 for different smoothing schemes, as well as ablations of different

choices we made for the algorithm. In particular, we run three variations of our

algorithm that misses a crucial ingredient.

1. Exact. We replace the linearization of the smooth surrogate B𝜌 with the exact

linearization B, used for both extension and metric computation.

2. NoContact. We do not allow contact sampling (Sec.3.4.3) in this variant of

the algorithm.

3. Global. Instead of the local Mahalanobis metric, we use a globally uniform

metric during the Nearest step of the algorithm. For our experiments, we use

a carefully-chosen weighted Euclidean norm.

3.5.2 Results & Discussion

We plot the results of our experiments in Fig. 3-6, and display the running time of

our algorithm using the three different smoothing schemes in Table 3.2. We discuss

93

0 200 400 600 800 1000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Cl
os

es
t D

ist
an

ce
 to

 G
oa

l

analytic
randomized_zero
exact
no_contact
global

0 200 400 600 800 1000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ck

in
g

Ra
tio analytic

randomized_zero
exact
no_contact
global

randomized_first randomized_first

(a) Planar Pushing.

0 200 400 600 800 1000
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Cl
os

es
t D

ist
an

ce
 to

 G
oa

l

analytic
randomized_first
randomized_zero
exact
no_contact
global

0 200 400 600 800 1000
Iterations

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ck

in
g

Ra
tio

analytic
randomized_first
randomized_zero
exact
no_contact
global

(b) Allegro Plate.

0 200 400 600 800 1000
Iterations

0.0

0.5

1.0

1.5

2.0

Cl
os

es
t D

ist
an

ce
 to

 G
oa

l

analytic
randomized_zero
exact
no_contact
global

0 200 400 600 800 1000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ck

in
g

Ra
tio analytic

randomized_zero
exact
no_contact
global

randomized_first randomized_first

(c) Planar Hand.

0 200 400 600 800 1000
Iterations

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Cl
os

es
t D

ist
an

ce
 to

 G
oa

l

analytic
randomized_first
randomized_zero
exact
no_contact
global

0 200 400 600 800 1000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ck

in
g

Ra
tio

analytic
randomized_first
randomized_zero
exact
no_contact
global

(d) Allegro Pen.

0 200 400 600 800 1000
Iterations

0.0

0.5

1.0

1.5

2.0

Cl
os

es
t D

ist
an

ce
 to

 G
oa

l

randomized_first
analytic
randomized_zero
exact
no_contact
global

0 200 400 600 800 1000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ck

in
g

Ra
tio

randomized_first
analytic
randomized_zero
exact
no_contact
global

(e) Allegro Hand.

0 200 400 600 800 1000
Iterations

0.0

0.5

1.0

1.5

2.0

Cl
os

es
t D

ist
an

ce
 to

 G
oa

l

analytic
randomized_first
randomized_zero
exact
no_contact
global

0 200 400 600 800 1000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ck

in
g

Ra
tio

analytic
randomized_first
randomized_zero
exact
no_contact
global

(f) Allegro Door.

Figure 3-6: Planning performance for the tasks in Fig. 3-5. Results include running RRT
with the enhancements proposed in Sec. 3.4 using the three smoothing schemes from Sec.
2.4.1, as well as the three ablation studies proposed in Sec. 3.5.1.

94

some of our findings from the experiment, in the context of our hypotheses in the

beginning of this section.

Method PPushing PHand AHand APlate APen ADoor
A. 3.25 10.32 31.01 117.16 24.84 12.42
RF. 7.50 21.34 80.12 161.64 86.12 34.55
RZ. 7.40 21.00 82.00 168.11 81.23 33.80

Table 3.2: Running time achieved by different methods in seconds. Every trial was run for
1000 iterations. We choose to not display running time for the ablation options since they
are slight variations of Analytic with comparable running times.

Smoothing vs. Exact

Throughout all experiments, we saw that using the exact linearization to compute

the distance metric and extension results in much worse performance compared to

any of the smoothing schemes, which supports our hypothesis that mode smoothing

is necessary in order to solve many of the tasks.

Analytic vs. Randomized Smoothing

For most of the tasks, we saw no meaningful difference between analytic and ran-

domized smoothing schemes in terms of both how fast the goal is reached and the

packing ratio. This empirically supports our theory that the two smoothing schemes

are equivalent methods to compute local models of surrogate dynamics. The running

time in Table 3.2, however, shows that analytic smoothing results in faster computa-

tion time as it does not require taking multiple samples.

Astute readers might have noticed that in the AllegroPlate results (Fig. 3-6b),

the packing ratio curve of analytic smoothing lags behind those of both randomized

smoothing schemes by a few hundred iterations. First of all, it takes only a few

seconds to generate the several hundred samples, so this lag in practice is barely

noticeable.

Nevertheless, we believe the small amount of lag can be attributed to hyper-

parameter tuning. For a given amount of smoothing, there is a sweet spot for the

step size ℎ: if ℎ is too small, RRT makes little progress; if ℎ is too large, RRT

95

takes steps beyond the locality where the smoothed linearization is valid. As the

sampling distribution corresponding to a specific 𝜅 in analytic smoothing is difficult

to determine in general, we usually independently pick the variance for randomized

smoothing and the 𝜅 for analytic smoothing, which means the sizes of the valid regions

of the smoothed linearizations under different smoothing schemes can be different.

Ideally, we should pick the best ℎ for every smoothing scheme, but in practice we

found that an ℎ between 0.1s and 0.2s works reasonably well for all smoothing schemes

on all systems. Coming back to the AllegroPlate example, we believe fine-tuning ℎ for

analytic smoothing can remove the lag, but the benefit of doing so is marginal.

Global vs. Mahalanobis Metric

Despite reasonable efforts to choose good weights for the weighted Euclidean norm, we

consistently observed that the globally uniform weighted Euclidean metric resulted in

much worse performance compared to the local Mahalanobis metric. This supports

our hypothesis, and the findings of [85] that kino-dynamic RRT in general greatly

benefits from guiding tree growth with reachability information.

Effect of Contact Sampling

For some of the tasks (e.g. AllegroPlate, AllegroPen), contact sampling was not neces-

sary. However, for examples that require resetting the actuator into a completely dif-

ferent configuration to make progress (e.g. PlanarPushing, AllegroHand, PlanarHand),

contact sampling greatly improves the planner’s performance.

3.6 Sim2Real Transfer & Hardware Results

Although our planner successfully plans through our CQDC dynamics model, we

further investigate if the plans can successfully transfer to real experiments. For

this purpose, we run the obtained plans from Sec.3.5 in open-loop on a higher fidelity

simulator Drake [66], as well as an actual hardware setting. These experiments further

shed light on the efficacy and the limitations of our proposed method.

96

3.6.1 Experiment Setup

Open-Loop Plan Transfer

Our plan consists of state and action sequences, i.e. lists of “knot” points, that

are consistent with the CQDC dynamics. We first divide this plan into individual

segments
(︀
{𝑞𝑘,sim}𝐾𝑘=0, {𝑢𝑘}𝐾−1

𝑘=0

)︀
, punctuated by the ContactSample operation.

We convert the knot points ({𝑞𝑘,sim}𝐾𝑘=0, {𝑢𝑘}𝐾−1
𝑘=0) into state and action trajectories

𝑞sim : [0, 𝑇]→ R𝑛u+𝑛a and 𝑢 : [0, 𝑇]→ R𝑛a using first-order hold. Here 𝑇 denotes the

duration of the trajectories in seconds. Specifically, we connect adjacent knot points

with linear interpolation for positions and joint angles, or spherical linear interpolation

(Slerp) for 3D orientations. The duration of each linear piece is computed such that

the robots move at a small and constant speed. Lastly, rolling out 𝑢(·) on the real

dynamics gives 𝑞real : [0, 𝑇] → R𝑛u+𝑛a , which is compared against 𝑞sim(·) to evaluate

the sim2r

Evaluation Metrics

To evaluate the performance of sim2real transfer, we first define the mean error ∆(·, ·)
between the two trajectories 𝑞usim(·) and 𝑞ureal(·) as

∆(𝑞usim, 𝑞
u
real) :=

1

𝑇

∫︁ 𝑇

0

𝑑 (𝑞usim(𝑡), 𝑞
u
real(𝑡)) d𝑡 (3.10)

where 𝑑(·, ·) is the Euclidean 2-norm for position (in meters), and the absolute change

in angle for orientation (in radians). Note that for 3D, this change of angle is well-

defined in the axis-angle representation.

In addition, we expect that the metric ∆ will depend on how much movement is

inside the reference trajectory of the plan. To account for this scaling, we normalize

∆ by dividing it by the length of the trajectory in the original plan, and denote the

normalized error as ∆̄:

∆̄(𝑞usim, 𝑞
u
real) :=

∆(𝑞usim, 𝑞
u
real)

𝐿(𝑞usim)
, (3.11)

97

where the denominator computes the path length of 𝑞usim:

𝐿(𝑞usim) :=

∫︁ 𝑇

0

‖𝑞usim(𝑡)‖2 d𝑡 =
𝐾−1∑︁
𝑘=0

𝑑(𝑞u𝑘+1,sim, 𝑞
u
𝑘,sim). (3.12)

This normalization also takes into account the inherent scales of the system, and

makes ∆̄(·, ·) a dimensionless quantity. For each system in Fig. 3-5, we obtain at

least 10 segments and evaluate our error metrics.

Simulation Setup

We transfer the examples of Fig.3-5 into Drake [66], which utilizes a full second-

order dynamics model with error-controlled integration, as well as a sophisticated and

realistic contact model [96]. The collision geometries, robot controller stiffness and

coefficients of friction are kept consistent between the CQDC dynamics and Drake.

Hardware Setup

To verify results on actual hardware, we create a variant of the PlanarHand environ-

ment, where the object is replaced by a bucket, and 2 Kuka iiwa arms are used for

the actuators. We name this environment IiwaBimanual. We utilize a motion capture

system to estimate the state of the bucket in order to compare the two trajectories

of 𝑞usim(·) and 𝑞ureal(·). Our setup is illustrated in Fig. 3-7.

3.6.2 Results & Discussion

We plot the results of our experiments in Fig.3-8. While 2D systems such as Planar-

Pushing, PlanarHand, and IiwaBimanual display low error and good sim2real transfer,

3D systems such as AllegroHand, AllegroPlate, AllegroPen and AllegroDoor show larger

error. To better understand the discrepancy of sim2real performance on different

systems, we visualized trajectories from all systems by overlaying 𝑞ureal on top of 𝑞sim

(some of these visualizations are shown in the accompanying video).

From the video, it is clear that on all systems, there exists a persistent phase

98

Figure 3-7: Hardware for the IiwaBimanual setup, where the goal is to rotate the bucket
by 180∘. The left and right pictures correspond to the initial state and the final state after
the open-loop plan execution. The lines between motion capture markers are connected to
illustrate the change of pose in the bucket. Readers are encouraged to watch the accompa-
nying video for the full execution.

−2 −1 0
path length [m] (log-scale)

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

∆
,M

ea
n

po
si

tio
n

er
ro

r[
m

](
lo

g-
sc

al
e)

AH
AHPe
AHPl
PP
PH
IB

−3 −2 −1 0
path length [rad] (log-scale)

−4

−3

−2

−1

0

∆
,M

ea
n

an
gu

la
re

rr
or

[ra
d]

(lo
g-

sc
al

e)

AH
AHPe
AHPl
AHD
PP
PH
IB

AH AHPe AHPl PP PH IB

−1

0

1

2

∆̄
,N

or
m

al
iz

ed
po

si
tio

n
er

ro
r(

lo
g-

sc
al

e)

AH AHPe AHPl AHD PP PH IB

−3

−2

−1

0

∆̄
,N

or
m

al
iz

ed
an

gu
la

re
rr

or
(lo

g-
sc

al
e)

Figure 3-8: Plots for sim2real performance of our CQDC dynamics, evaluated on the plans
of Sec.3.5. First Two Columns: Scatter plot of mean error Δ vs. path length for position
(first column) and orientation (second column). Each dot in the plot represents one segment
trajectory. Last Two Columns: Box plot for the normalized error Δ̄ for positions (third
column) and orientation (fourth column). Note that the mean in orange corresponds to
the slope of the graph in the first two columns. Finally, we note that the AllegroHandDoor
(AHD) example only consists of orientation, and has no position plot. Readers are highly
encouraged to watch the accompanying video for the qualitative behavior of the actual
segment trajectories in this plot.

99

difference between 𝑞ureal and 𝑞usim: 𝑞ureal tends to lag 𝑞usim when the robot accelerates,

and lead when the robot decelerates. This is not surprising, as the CQDC dynamics

that generates 𝑞usim is inherently a first-order system, whereas 𝑞ureal is generated from

second-order dynamics. On trajectory segments with good sim2real performance, the

phase gap only results in harmless oscillations of 𝑞ureal around 𝑞usim. In these cases, we

believe that the good sim2real performance validates our contact model. However,

the phase gap can have more serious consequences, which we will discuss next.

Violation of Quasi-static Assumption

The quasi-static assumption implies that objects are quickly stopped by damping

when they are not “pushed around” by the robot. This is true on 2D systems, as the

friction patch between the object and its supporting surface is persistent and always

provides enough damping to bring the object to still.

However, the necessary damping to uphold the quasi-static assumption does not

always exist on 3D systems. For instance, in AllegroHand and AllegroHandPen, the

point contact between the object and the palm provides very little damping. Most of

the damping comes from the finger joints when the fingers are opposing the object’s

motion. Therefore, when the grasp on the object “leaves an opening”, the object can

roll quite far from the planned trajectory or even off the palm.

Missed Contacts

Due to the non-smooth nature of contact dynamics, small discrepancies in object

trajectory caused by the phase gap can lead to the robot completely missing contacts

with the object. For example, we observed that in AllegroHandPlate or AllegroHand-

Door, some grasps that were valid under the CQDC dynamics no longer succeeded in

holding the object in place in Drake. The consequence of these failed grasps is that

plates are dropped on the table in AllegroHandPlate, and door handles are missed in

AllegroHandDoor.

100

Necessity of Stabilization & Robustification

These results tell us that the plan suggested by the CQDC dynamics might give a

high-level direction, but its open-loop execution may not succeed under second-order

dynamics with high velocities and low amount of damping. We believe that tracking

this high-level plan requires low-level feedback controllers that can stabilize to the

plan, and actively enforce the closed-loop system to be quasi-static. We also believe

that the high-level planer can benefit from robustness objectives such as encouraging

grasps that are considered good under classical grasping metrics. Such grasps will

increase the control authority of the robot over the object, thereby providing suffi-

cient damping and decreasing the chances of dropping the object. We leave these as

promising directions for future work.

101

102

Chapter 4

External Contact Detection from

Joint Torque Measurements

4.1 Introduction

No longer confined to factory-floor workcells repeating painstakingly hand-coded tra-

jectories, robot arms today have been tasked with increasingly open-ended assign-

ments such as “put this shoe on the shelf” or “load the dish washer”, where the robots

need to operate in unknown, unstructured environments potentially populated by

humans. Naturally, the safety of such operations hinges upon the robot’s ability to

reliably handle unplanned collisions between any part of itself and the environment.

The ultimate sensor for collision detection is perhaps a sensitive tactile skin cover-

ing the entire surface of the robot [97,98]. However, such skins are rarely seen outside

research labs, as they are usually expensive and prone to wear and tear. On the other

hand, joint-level proprioceptive torque sensors are mature, robust and becoming more

common in robot arms designed for human-robot interactions [99, 100].

Several techniques have been developed to estimate both the external contact

force and its location on the whole robot using only proprioceptive torque sensors

[101–104]. However, due to the sparse nature of proprioceptive measurements (one

torque measurement per link), estimation of contact force and location from only joint

torque has obvious limitations. For a typical serial robot arm with 7 links, when link

103

Figure 4-1: For the true contact shown in (a), which generates little torque about joint 6
and 7, the two contacts in (b) and (c), represented by red cylinders, create almost identical
torque measurements as (a).

𝑖 (numbered from the base) of the arm is in contact, there are 𝑖 torque measurements

available, and 𝑖 ≤ 6 if the contact is not on the end effector. The fact that the contact

is pushing the robot gives two additional constraints: the force being in the friction

cone and the position being on the robot’s surface. In contrast, a contact position has

3 independent components to estimate, and a contact wrench has 6. As a result of

this deficiency in available measurements, the literature on joint-torque-based contact

estimation commonly assumes that (i) there exists at most one external contact, and

(ii) the contact generates negligible moments at the contact point [101,104].

However, even within the boundary set by these simplifying assumptions, joint-

torque-based contact estimation is still limited by the loss of detectability of contacts

from joint torque measurements, which we will discuss more formally in Section. 4.4.

Intuitively, as shown in Fig. 4-1, it is likely that multiple contact positions and

forces (Fig. 4-1b and 4-1c) create almost identical torque measurements, making

them impossible to distinguish by looking at joint torque alone. Although this failure

mode has been observed in existing work [103], a thorough analysis on how often

joint-torque-based contact estimators fail and what can be done to mitigate such

failures appears to be absent from the literature.

In this chapter, we show quantitatively that two distinct contacts generating al-

most identical joint torque measurements is far from a 0-probability event. Moreover,

104

this probability can get alarmingly high for links whose geometry is “concentrated”

around their joint axes, such as links of the IIWA arm. Therefore, we believe that

solving for a single contact estimate from joint torque measurements is an inadequate

problem formulation. Instead we propose to estimate the set of possible contact po-

sitions consistent with the measurements. Elements of this set can be cast as the

global optimal solution of a nonlinear optimization problem, which is difficult to

solve directly. Nevertheless, by combining rejection sampling and gradient descent on

manifolds, we propose an estimator that searches for local minima of the nonlinear

optimization problem, and provide an efficient implementation capable of running at

real-time rates. In practice, the proposed estimator usually finds all local minima

on the links it searches. In addition, given the set of possible contact positions, we

also propose an active contact discrimination strategy that falsifies spurious contact

positions by slightly moving the robot.

4.2 Related Work

Although raw measurements from joint torque sensors include gravitational and in-

ertial effects, the torque generated by external contacts, also known as the residual

torque, can be extracted from them using external torque observers [101]. Having

become an integral part in many robot arms’ firmware [99, 100], such observers can

update residual torque estimates at hundreds of Hz, providing the foundation for all

proprioceptive contact estimation methods.

The contact estimator by Haddadin et al. [101] first determines the link in contact

as the last link with non-zero residual torque. It then solves for the line of action of

the contact force from a system of linear equations relating torque measurements to

the contact wrench. Finally, if the contact geometry of the link is convex, intersecting

the line with the link will give two potential contact points, one for pulling and the

other for pushing. As contact forces almost always push, the contact point can thus

be uniquely determined. However, solving for the line of force action needs at least

6 torque measurements and a full-rank contact Jacobian, which implies this method

105

does not produce any outcome on links more proximal to the base than link 6 or when

the robot is close to singular. Moreover, when a link is not convex (e.g. link 5 in

Fig. 4-1), the line of force action may intersect the link at more than two locations,

making it impossible to uniquely determine the contact point. Last but not least,

when the joint torque signals are noisy, which they always are, it is likely that the

computed line of action does not intersect with the link geometry at all, making it

impossible to determine the contact location [105].

Methods based on the Markov Chain Monte Carlo (MCMC) methodology [102,

104] can theoretically work on any link and with rank-deficient contact Jacobians,

although estimation accuracy typically degrades on links too close to the base, or

when the robot is close to singular. The degradation is not a limitation of the methods

themselves, but a result of the loss of detectability of contacts from joint torque

measurements. Both [102] and [104] use random walk on the robot’s surface as the

proposal distribution, and evaluate the likelihood of samples using the L2 norm of

the difference between the measured joint torque and the joint torque created by

the sample. The difference is that [102] assumes frictional contacts whereas [104]

assumes that contacts are frictionless. The biggest drawback of MCMC methods is

that they typically converge to only one local minima of the likelihood function, and

are oblivious of other local minima when they exist.

Proprioceptive contact estimator based on machine learning has also been ex-

plored. Zwiener et al. discretize a robot’s surface into finitely many patches, and

train a classification network to predict the patch in contact from joint torque [103].

Although the contact classifier works well on both the training and validation data

sets, its limitations and failure modes are difficult to analyze; its ability to generalize

beyond the data set it is trained on is also hard to gauge.

4.3 Problem Formulation

For given joint angles 𝑞 ∈ R𝑛𝑞 and residual joint torque 𝜏ext ∈ R𝑛𝑞 created by one

external contact at point 𝐶⋆, the problem is to find 𝑝𝐶⋆ ∈ R3, the coordinate of

106

contact point 𝐶⋆, and the contact force 𝑓𝐶⋆ . In other words, we would like to solve

for 𝑝𝐶⋆ and 𝑓𝐶⋆ from the following equation:

𝜏ext = J𝐶(𝑞, 𝑝𝐶)
⊺𝑓𝐶 , (4.1)

where 𝐶 is a generic point on the robot’s surface; J𝐶(𝑞, 𝑝𝐶) ∈ R3×𝑛𝑞 the contact

Jacobian that maps joint velocity 𝑞 to the velocity of 𝐶.

As shown in Fig. 4-2a, the contact force 𝑓𝐶 needs to stay inside the friction

cone at 𝐶:
⃦⃦
𝑓𝐶𝑓

⃦⃦
≤ 𝜇 ‖𝑓𝐶𝑛‖. The second-order cone can be approximated with the

polyhedral cone in Fig. 4-2b, which is generated by a set of 𝑛𝑑 extreme rays

V𝐶 =
[︀
𝑣𝐶1 , . . . , 𝑣𝐶𝑛𝑑

]︀
∈ R3×𝑛𝑑 , (4.2)

such that

𝑓𝐶 =

𝑛𝑑∑︁
𝑖=1

𝑣𝐶𝑖
𝛽𝑖 = V𝐶𝛽 (4.3)

where 𝛽𝑖 ≥ 0 ∀𝑖 [106].

Figure 4-2: A contact force on Link 6 of the KUKA IIWA robot. The orange mesh is
the surface of the link. The triad represents the body frame of the link. (a) second-order
friction cone. (b) Polyhedral approximation of the friction cone with 𝑛𝑑 = 4.

Solving (4.1) with the friction cone constraint is equivalent to solving the following

107

optimization problem:

min.
𝛽≥0, 𝑝𝐶∈𝒮

‖J(𝑞, 𝑝𝐶)⊺𝛽 − 𝜏ext‖2, (4.4)

where J(𝑞, 𝑝𝐶) = V⊺
𝐶J𝐶(𝑞, 𝑝𝐶) ∈ R𝑛𝑑×𝑛𝑞 , and 𝒮 is the manifold of the robot’s surface.

For fixed 𝑞 and 𝜏ext, a contact position estimate 𝑝𝐶 has an associated cost defined as

𝑙(𝑝𝐶 ; 𝑞, 𝜏ext) :=min.
𝛽≥0
‖J(𝑞, 𝑝𝐶)⊺𝛽 − 𝜏ext‖2 (4.5a)

=min.
𝛽≥0

⎛⎝𝛽⊺ JJ⊺⏟ ⏞
Q

𝛽 − 2

⎛⎝J𝜏ext⏟ ⏞
−𝑏

⎞⎠⊺

𝛽 + 𝜏 ⊺ext𝜏ext

⎞⎠ . (4.5b)

The function 𝑙(· ; 𝑞, 𝜏ext) : R3 → R is also called the residual, and can be computed

by solving (4.5b), which is a convex QP. Using 𝑙(·), the set of solutions of (4.4) can

be described by the set

𝑃0(𝑞, 𝜏ext) := {𝑝𝐶 ∈ 𝒮 : 𝑙(𝑝𝐶 ; 𝑞, 𝜏ext) = 0}. (4.6)

The true contact location 𝑝𝐶⋆ is clearly in 𝑃0(𝑞, 𝜏ext). However, 𝑃0 can have many

or even a continuum of elements, i.e. different contact forces at different positions

can generate the same joint torque 𝜏ext, as shown in Fig. 4-3. In general, it is not

possible to distinguish 𝑝𝐶⋆ from other elements of 𝑃0(𝑞, 𝜏ext) using only 𝑞 and 𝜏ext.

4.4 Detectability of contacts

The joint torque sensor of a link is only able to measure the torque about the axis of

the link’s revolute joint. It is therefore possible for the torque sensor to register zero

or small torque measurement, even if the link is in contact with significant contact

force. In this section, we give a quantitative analysis on how likely a contact force

creates little or no measurable torque by studying the simplest case of a single link.

108

Figure 4-3: The residual 𝑙(·) for 20000 sampled points on link 5 and 6 of the IIWA arm.
The true contact position and direction is indicated by the red line. Multiple global minima
of 𝑙(·) can be found on the robot’s surface 𝒮.

4.4.1 Detectability

We assume that a link’s joint axis is aligned with the z-axis of the link’s body frame.

Let 𝑝𝐶 ∈ 𝒮 denote a generic point on the robot’s surface, 𝒦𝐶 the friction cone at 𝑝𝐶 ,

and 𝜏𝑧(·) : R3 → R the function that returns the z-component of the torque generated

by a force. For illustrative purposes, the friction coefficient 𝜇 is set to 1. We call the

contact at 𝑝𝐶 fully detectable1 if ∀𝑓𝐶 ∈ 𝒦𝐶 , ‖𝑓𝐶‖ ̸= 0 ⇒ 𝜏𝑧(𝑓𝐶) ̸= 0. Similarly, the

contact is partially detectable if ∃𝑓𝐶 ∈ 𝒦𝐶 , ‖𝑓𝐶‖ ̸= 0⇒ 𝜏𝑧(𝑓𝐶) ̸= 0, and undetectable

if ∀𝑓𝐶 ∈ 𝒦𝐶 , 𝜏𝑧(𝑓𝐶) = 0.

We first look at the condition under which a contact at 𝑝𝐶 is fully detectable. A

non-zero force at 𝑓𝐶 satisfies 𝜏𝑧(𝑓𝐶) = 0 if and only if its line of action intersects with

the z-axis. The set of such 𝑓𝐶 ’s belong to the plane which passes through both 𝑝𝐶

and the z-axis. We denote this plane by 𝒫𝐶 . The contact at 𝑝𝐶 is fully detectable if

and only if 𝒦𝐶 ∩𝒫𝐶 = {0}, which is equivalent to the following linear program being

1The term “detectable”, which is rigorously-defined in control theory, is abused in this section in
order to facilitate exposition.

109

infeasible:

Find 𝛽, subject to (4.7a)

(𝑝𝐶 × 𝑒𝑧)
⊺ (V𝐶𝛽) = 0, (4.7b)

𝛽 ≥ 1, (4.7c)

where 𝑒𝑧 is the unit vector along the z-axis; (𝑝𝐶×𝑒𝑧) is normal to 𝒫𝐶 . (4.7b) constrains

the contact force 𝑓𝐶 = V𝐶𝛽 to 𝒫𝐶 . (4.7c) makes sure that 𝑓𝐶 is non-zero.

To find out which part of a link is fully detectable, we can sample uniformly on the

link’s surface and solve (4.7) for all samples. The results for two links with distinct

geometries are shown in Fig. 4-4. As the IIWA link’s surface is “concentrated” around

its joint axis, only a tiny fraction of the link’s surface is fully detectable. In contrast,

the “elongated” link of UR5 has significantly more fully detectable surface, which is

located further away from the joint axis. On both links, the majority of the samples

are not fully detectable.

Figure 4-4: Full detectability of (a) link 6 of the IIWA arm and (b) “forearm” link of
the UR5 arm. Out of the 20000 samples generated on each link, 2.19% and 32.58% of the
samples on (a) and (b) are fully detectable, respectively. Fully detectable samples are shown
in cyan, others in black. The meshes of the links are shown in (c) and (d). Points 𝐴, 𝐵 and
𝐷 are examples of different levels of detectability, which will be defined in Sec. 4.4.2.

110

4.4.2 Quantifying “undetectability”

A contact at 𝐶 is fully detectable if any contact force in 𝒦𝐶 generates any non-

zero torque measurement. However, as real torque sensor measurements are usually

corrupted by noise, it is useful to know when a contact force generates a torque

measurement no less than a threshold 𝜖.

Moreover, for contacts that are not fully detectable, it is worth noting that the

extent of their “undetectability” varies. For example, point 𝐴 in Fig. 4-4c is unde-

tectable, as it is the intersection of the z-axis and the link’s surface. Although both

point 𝐷 (Fig. 4-4d) and 𝐵 (Fig. 4-4c) are partially detectable, it generally takes a

smaller force to generate 𝜏𝑧 > 𝜖 at 𝐷 than at 𝐵, as 𝐷 is further away from its joint

axis.

The degree of a contact’s “undetectability” with respect to the threshold 𝜖 can be

quantified by:

𝜂𝜖(𝑝𝐶) :=
Area(𝒟𝜖

𝑐)

Area(𝒟𝑐)
∈ [0, 1], (4.8a)

𝒟𝐶 := {𝑓𝐶 ∈ R2 : ‖𝑓𝐶‖ = 1, 𝑓𝐶 ∈ 𝒦𝐶}, (4.8b)

𝒟𝜖
𝐶 := {𝑓𝐶 ∈ 𝒟𝐶 : 𝜏𝑧(𝑓𝐶) ≤ 𝜖}, (4.8c)

where 𝒟𝐶 is a “dome” in the friction cone consisting of unit-norm forces, and 𝒟𝜖
𝐶 is

the subset of 𝒟𝐶 consisting of forces whose torque measurement 𝜏𝑧(𝑓𝐶) is less than

𝜖. Intuitively, 𝜂𝜖(𝑝𝐶) is the proportion of contact forces in 𝒦𝐶 that create small (≤ 𝜖)

torque measurements. The closer 𝜂(𝑝𝐶) is to 1, the less detectable 𝑝𝐶 becomes. Using

Fig. 4-4c and 4-4d again as examples, we expect 𝜂𝜖(𝑝𝐴) = 1, 𝜂𝜖(𝑝𝐵) be close to 1, and

𝜂𝜖(𝑝𝐷) < 𝜂𝜖(𝑝𝐵).

Computing 𝜂𝜖(𝑝𝐶) can be done analytically, but a sampling based approach is

much easier to implement. Uniform samples on 𝒟𝐶 can be easily generated, and

checking membership of 𝒟𝜖
𝐶 is trivial. We can then approximate 𝜂𝜖(𝑝𝐶) by the ratio

of samples in 𝒟𝜖
𝐶 to the total number of samples.

To evaluate the “undetectability” of an entire link, we can once again compute 𝜂𝜖(·)

111

(a) 𝜖=0.02. IIWA: 𝜂min = 0.011, 𝜂max = 1. UR5: 𝜂min = 0, 𝜂max = 1.

(b) 𝜖=0.05. IIWA: 𝜂min = 0.249, 𝜂max = 1. UR5: 𝜂min = 0, 𝜂max = 1.

(c) 𝜖=0.1. IIWA: 𝜂min = 1, 𝜂max = 1. UR5: 𝜂min = 0, 𝜂max = 1.

Figure 4-5: 𝜂𝜖(·) of IIWA link 6 and UR5 forearm.

for samples generated uniformly from the link’s surface. The results for two different

links using different 𝜖’s are summarized in Fig. 4-5. As 𝜖 increases, the surface close to

the z-axis quickly becomes fully undetectable. If we treat 𝜖 as a detection threshold,

the result becomes particularly alarming for links with a more “concentrated” shape:

even for 𝜖 = 0.02 (Fig. 4-5a): 𝜂𝜖 ≥ 0.4 for 80% of the samples. In other words, if

a force of 1N is applied at a random point 𝐶 along a random direction in 𝒦𝐶 , the

probability of not detecting the contact force is at least 0.32.

112

4.4.3 Implications

The analysis in this section reveals a fundamental limitation of existing joint-torque-

based contact estimation methods: when a contact force generates small torque about

the axis of a link, the observed 𝜏ext could be equally well explained by a different

contact point on a different link.

Haddadin’s method [101] determines the link in contact as the most distal link

with 𝜏𝑧(·) ≥ 𝜖. As there is a significant chance that 𝜏𝑧(𝑝𝐶⋆) ≤ 𝜖 at the true contact

position 𝐶⋆, it is likely that their strategy believes the contact to be on a wrong link.

MCMC methods [102, 104] evaluate the likelihood of points being the true contact

point 𝐶⋆ using the residual (4.5). If 𝜂𝜖(𝑝𝐶⋆) is large, it is likely for other points to

have a residual that is only larger by 𝜖2 ‖𝑓𝐶⋆‖2, thereby trapping MCMC methods in

a wrong local minimum of 𝑙(·).

4.5 Contact estimation from external torque mea-

surements

We have demonstrated that the best contact estimate achievable from 𝑞 and 𝜏ext is

𝑃0(𝑞, 𝜏ext) (Section 4.3), which is likely to have more than one element (Section 4.4).

Elements of 𝑃0(𝑞, 𝜏ext) are global optimizers of (4.4), which are also global minima

of the residual 𝑙(·; 𝑞, 𝜏ext) on 𝒮. However, due to the dependence of 𝐽 on 𝑝𝐶 and the

manifold constraint 𝑝𝐶 ∈ 𝒮, (4.4) is nonlinear and difficult to solve directly.

In this section, we present a contact estimation strategy called RSGD, which is

named after the combination of Rejection Sampling and Gradient Descent. RSGD

is able to find every local minima of 𝑙(·; 𝑞, 𝜏ext). Although not as ideal as finding

𝑃0(𝑞, 𝜏ext), RSGD is stronger than MCMC methods: it locates every point on 𝒮 to

which MCMC methods may converge.

113

4.5.1 Rejection sampling

Starting with 𝑃 := {𝑝𝐶 ∈ 𝒮}, a set of finitely many samples drawn uniformly from

𝒮, we can calculate the residual 𝑙(·) for all samples in 𝑃 , and keep the samples which

satisfy 𝑙 ≤ 𝜖:

𝑃𝜖(𝑞, 𝜏ext) := {𝑝𝐶 ∈ 𝑃 : 𝑙(𝑝𝐶 ; 𝑞, 𝜏ext) ≤ 𝜖}. (4.9)

When using a dense 𝑃 (Fig. 4-6a), |𝑃𝜖| is usually sufficiently large so that the local

minima of 𝑙(·) can be estimated, for instance, by clustering the points in 𝑃𝜖, finding

the cluster centers, and then projecting the centers back onto the robot surface 𝒮. In

contrast, when 𝑃 is sparse (Fig. 4-6b), the few samples in 𝑃𝜖 are typically too noisy

to make a reasonable estimate.

The biggest drawback of rejection sampling is the high rejection rate, which, for

example, can get to approximately 98% for the robot and contact configuration in

Fig. 4-6. Calculating residuals for a very dense 𝑃 is therefore needed for an accurate

contact estimate, which will incur prohibitively high computational cost.

Figure 4-6: Finding elements of 𝑃𝜖 on link 5 and link 6 with 𝜖 = 0.005 using rejection
sampling. A force of 10N is applied to the robot along the green line. Enclosed by magenta
boxes, the colored squares represent accepted samples. (a) Dense 𝑃 : 491 out of 20000
samples are accepted. (b) Sparse 𝑃 : 24 out of 1000 samples are accepted.

4.5.2 Rejection sampling + gradient descent (RSGD)

The high computational cost of vanilla rejection sampling, due to the high rejection

rate for small 𝜖, can be reduced significantly by

114

1. Generating a set of potential contact positions by rejection sampling using a

sparse sample set 𝑃 and a large threshold 𝛿:

𝑃𝛿(𝑞, 𝜏ext) := {𝑝𝐶 ∈ 𝑃 : 𝑙(𝑝𝐶 ; 𝑞, 𝜏ext) ≤ 𝛿}. (4.10)

2. Running gradient descent (Algorithm 4) for every 𝑝𝐶 ∈ 𝑃𝛿(𝑞, 𝜏ext), collecting the

converged points 𝑝𝐶⋆ into a set of locally optimal contact position estimates:

𝑃 ⋆
𝛿 (𝑞, 𝜏ext) := {𝑝𝐶⋆ ∈ 𝒮}. (4.11)

Note the bar over 𝐶⋆. The bar indicates that the converged point 𝐶⋆ is only an

estimate of the true contact point 𝐶⋆.

As shown in Fig. 4-7, a large 𝛿 in Step 1 increases the acceptance rate, ensuring

that 𝑃𝛿 has enough samples even if the initial sample set 𝑃 is sparse. Although

samples in 𝑃𝛿 are spread out at the beginning, Step 2 runs them through Algorithm

1, making most of them converge to local minima of 𝑙(·).

Algorithm 4: Gradient descent on manifold 𝒮
1 Input: 𝑞, 𝜏ext, 𝑝𝐶 ;
2 Output: 𝑝𝐶⋆ ;
3 while ‖∇𝑝𝐶 𝑙(𝑝𝐶 ; 𝑞, 𝜏ext)‖ > 𝜀𝐺 do
4 𝑡← (𝐼3 − 𝑛𝐶𝑛

⊺
𝐶)∇𝑝𝐶 𝑙(𝑝𝐶 ; 𝑞, 𝜏ext) ;

5 𝑎← LineSearch(𝑝𝐶 , 𝑡) ;
6 𝑝𝐶 ← 𝑝𝐶 + 𝑎𝑡;
7 𝑝𝐶 ← Retract(𝑝𝐶 ,𝒮) ;

8 𝑝𝐶⋆ ← 𝑝𝐶 ;

Algorithm 4 is the standard Gauss-Newton method for Riemannian optimization.

In Line 4, the gradient ∇𝑝𝐶 𝑙 is projected to the local tangent plane, which has normal

𝑛𝐶 and passes through 𝑝𝐶 . In Line 5, a standard line search method is used to ensure

that 𝑙 is decreasing after taking the gradient step 𝑎𝑡 [49]. In Line 7, the new point in

the local tangent plane is projected back onto 𝒮.

115

Figure 4-7: Running RSGD on the same robot and contact configuration as Fig. 4-6. Step
1: 175 out of 1000 samples are accepted with 𝛿 = 0.1, which are shown as small squares
color-coded by their residual values 𝑙. Step 2: 155 of the 175 samples in 𝑃𝛿 converge after
running Algorithm 1, which are shown as large squares. Every 𝑝𝐶 ∈ 𝑃𝛿 is connected by a
line to the corresponding element in 𝑃 ⋆

𝛿 to which it converges.

Using (4.5b), the gradient ∇𝑝𝐶 𝑙 can be written as

(∇𝑝𝐶 𝑙)
⊺ =

𝜕𝑙

𝜕𝑝𝐶
=

𝜕𝑙

𝜕Q

𝜕Q

𝜕𝑝𝐶
+

𝜕𝑙

𝜕𝑏

𝜕𝑏

𝜕𝑝𝐶
(4.12)

where 𝜕Q
𝜕𝑝𝐶

and 𝜕𝑏
𝜕𝑝𝐶

can be obtained using automatic differentiation [107]; 𝜕𝑙
𝜕Q

and 𝜕𝑙
𝜕𝑏

can be obtained from differentiating the implicit function defined by the optimality

condition of QP (4.5b) [108].

As shown in Fig. 4-8a, Algorithm 1 is effective at reducing the residual 𝑙(·) of

samples in 𝑃𝛿. Note that about 60 samples converge to positions on 𝒮 with 𝑙 = 0.003,

which is a local minimum on link 5, but not the global minimum on link 6. An

example gradient descent run is shown in Fig. 4-8b.

The ability of an approach such as RSGD to find all local minima depends on two

factors: the sampling strategy and the convergence properties of gradient descent.

116

Figure 4-8: (a) Distribution of residual 𝑙(·) of the 𝑃𝛿 and 𝑃 *
𝛿 from Fig. 4-7. (b) A gradient

descent run on link 6 of IIWA. Algorithm 4 starts at 𝑝𝐶 ∈ 𝒮 and converges to 𝑝𝐶⋆ . Red
lines represent the path taken by gradient descent. White translucent disks represent local
tangent planes.

By construction the entire surface of the robot is contained with the support of the

distribution of the sampling procedure. As such, for every local minimum that has a

non-measure-zero region of attraction, the probability that we draw a sample in that

region and converge to the minimum in non-zero. Characterizing these regions of

attraction, however, is more challenging, and one cannot rule out, e.g. saddle points

and limit cycles. Nevertheless, empirically, we observe that the algorithm succeeds in

finding all local minima for sufficiently dense sampling.

4.6 Active contact discrimination

In the event that RSGD returns multiple (possible) contacts, some form of active

exploration may be desirable to discriminate the true contact from the spurious.

Assuming contact with a static object, that will remain (approximately) in place

irrespective of the robot’s motion, a simple strategy to falsify a spurious contact is

to move the robot so as to break contact (pull away) at that location; if residual

torque remains, then this cannot have been the true contact (assuming no additional

contacts were introduced during the robot’s motion). Similarly, the robot motion

may preserve (push into) a possible contact; if the residual torque vanishes, then this

(spurious) contact is falsified. Given 𝑁 possible contacts {𝑝𝑖}𝑁𝑖=1, rather than test

117

each (possible) contact individually, it is more efficient to “pull away from” ⌊𝑁/2⌋
such contacts, and “push into” the other ⌈𝑁/2⌉, thereby falsifying half of the contacts

with each change of robot pose. The following program searches for such a change in

pose, 𝛿𝑞 ∈ R𝑛𝑞 .

min
𝛿𝑞, 𝑏∈{0,1}𝑁

|
∑︁𝑁

𝑖=1
𝑏𝑖 − ⌊𝑁/2⌋| (4.13a)

𝑛⊺
𝑖J𝑖𝛿𝑞 ≤ 𝜖max

push − (𝜖max
push + 𝜖min

pull)𝑏𝑖, 𝑖 = 1, . . . , 𝑁 (4.13b)

𝑛⊺
𝑖J𝑖𝛿𝑞 ≥ 𝜖min

push − (𝜖min
push + 𝜖max

pull)𝑏𝑖, 𝑖 = 1, . . . , 𝑁 (4.13c)

|(𝐼 − 𝑛𝑖𝑛
⊺
𝑖)J𝑖𝛿𝑞| ≤ 𝑟orth, 𝑖 = 1, . . . , 𝑁 (4.13d)

|𝛿𝑞| ≤ 𝛿max
𝑞 1. (4.13e)

Here, 𝑏 ∈ {0, 1}𝑁 represents the decision(s) to pull away (𝑏𝑖 = 1) or push into (𝑏𝑖 = 0)

the 𝑖th contact. The objective (4.13a) attempts to push into as close to half (⌊𝑁/2⌋)
of the contacts as possible. The constraints (4.13b) and (4.13c) require that, e.g.,

a “pull away” moves the 𝑖th possible contact point (on the robot) at least 𝜖min
pull, but

at most 𝜖max
pull , in the opposite direction to the outward facing surface normal 𝑛𝑖,

assuming a linearized relationship between the change in position and change in pose,

𝛿𝑝 ≈ J𝑖𝛿𝑞. Constraint (4.13d) restricts the motion (of each contact point) close to

the corresponding surface normal, to minimize the chance of introducing new contacts

after the change in pose. Constraint (4.13e) restricts the change in each joint angle.

An example of this method in action is shown in Fig. 4-9.

There is no guarantee that this simple discrimination strategy will falsify all spu-

rious contacts; success depends on problem specifics, e.g. robot pose, robot geometry,

and the contact locations. In particular, (4.13) may return infeasible, or 𝑏 ≡ 1

(𝑏 ≡ 0) (i.e. pull/push on all contacts, which gathers no useful information). How-

ever, problem (4.13) is a (convex) mixed-integer linear program (MILP) that can be

efficiently solved to global optimality by commercial solvers. This means that, in the

event of failure, we have a certificate that no such (sequence of) discriminating actions

𝛿𝑞 exist, at least not without relaxing the constraints (4.13b)-(4.13e), or abandoning

118

Figure 4-9: (a) Two possible contact positions to disambiguate. The centers of the small
red spheres are coincident with the candidate contact positions. (b) Solving (4.13) finds a
motion that pulls away from the contact on link 6 and pushes into the contact on link 5.

the linearized model and resorting to nonlinear motion planning.

4.7 Implementation

RSGD requires a lot more computation than existing methods. Nevertheless, by

leveraging efficient open-source libraries, our implementation can run at real-time

rates on a single CPU thread.

Fig. 4-10 shows the run-time breakdown of a typical iteration of RSGD, collected

on a Mac mini with Intel i7-8700B CPU and 64GB of RAM. In Step 1, the residual

𝑙(·) is computed for 1000 points drawn uniformly from 𝑆, of which 184 points satisfy

𝑙 < 𝛿. In Step 2, Algorithm 4 is run on each of the 184 points until convergence, or

until the limit on gradient steps is reached.

Figure 4-10: Run-time breakdown of a typical iteration of RSGD.

119

As most of the time is spent on running Algorithm 4 for accepted samples in 𝑃𝛿,

how long one iteration of RSGD takes is almost linearly proportional to |𝑃𝛿|. In this

case, |𝑃𝛿| = 184 leaves RSGD running at roughly 10Hz. This can be improved, for

instance, by using a sparser 𝑃 , putting an upper bound on |𝑃𝛿|, using more CPU

threads, or a combination of these strategies.

An average run of Algorithm 4 takes 472𝜇𝑠. The most frequently-used atomic

operation is computing the residual 𝑙(·), which involves solving QP (4.5b). In every

gradient step, 𝑙(·) needs to be computed once to evaluate the gradient ∇𝑝𝐶 𝑙(·), and

a couple more times by line search. Moreover, 𝑙(·) is also computed for every sample

in 𝑃 in the earlier rejection sampling step. The lightweight QP solver OSQP [109]

allows us to compute 𝑙(·) quickly: it takes 6𝜇𝑠 on average to solve QP (4.5b).

Retracting points back onto the robot surface 𝒮 is the second most time-consuming

operation in Algorithm 4. With the robot surface 𝒮 represented by triangle meshes,

retraction can be done efficiently by a mature proximity query routine implemented

in the Flexible Collision Library (FCL) [110].

The chain rule for computing ∇𝑝𝐶 𝑙(·) in (4.12) is implemented with Eigen [73],

which takes only 2% of the total time needed for Algorithm 4 to converge.

Algorithm 4 may fail to converge if gradient descent passes through a region of

𝒮 with almost discontinuous surface normal, e.g. a groove or an engraved letter.

Proximity queries also occasionally return a point off the mesh, throwing gradient

descent off its track. Nonetheless, such failures are relatively rare and easy to detect

and reject when they do occur.

Concerning the active contact discrimination, although complexity of the MILP is

exponential in the number of contact locations to be falsified, moderate-size problems

can be solved efficiently with SOTA solvers, such as GUROBI [80]; e.g., a problem

with 𝑁 = 10 contacts can be solved in approximately 5ms.

120

4.8 Conclusion

With a detailed analysis on two notions of contact detectability, we have demonstrated

that a contact estimate from joint torque measurements typically consists of more

than one possible contact positions, which are the global minima of the residual

function 𝑙(·). Finding all global minima of 𝑙(·) is generally hard, but the proposed

RSGD estimator empirically locates all local minima of 𝑙(·). Considering that joint

torque measurements are inherently noisy, being able to find contact points with a

small but positive residual could actually be beneficial. We have also provided a

strategy to search for small robot motions which falsify as many spurious contact

positions found by RSGD as possible. Moreover, when this strategy fails, it provides

a certificate that no other small motion can do better.

On a robot that streams joint angle and residual torque (𝜏ext) signals, such as

the KUKA IIWA, deploying RSGD is expected to be straightforward. Nevertheless,

pre-processing of the raw 𝜏ext signal provided by the robot’s driver, which filters out

noise and ensures that the signal is unbiased, will probably be necessary.

121

122

Chapter 5

Contact-aware Control with

Quasi-static Models

5.1 Introduction

Most robots today are programmed to move through the world as if they are afraid

of making contact. Perhaps they should be: unexpected collisions while a robot is

tracking a trajectory can create a large force at the point of contact, putting at risk

both the robot and the environment with which it interacts (Fig. 5-1). Consequently,

a significant amount of effort and care in robot motion planning is spent on avoiding

collisions. For example, sampling-based planners need to perform numerous colli-

sion checks [33]; optimization-based planners need to constantly evaluate the signed

distance functions and their gradients [111]. Moreover, high resolution collision ge-

ometries are usually needed to increase the chances of finding a collision-free path,

which further increases the computational cost [110].

However, the complete and total avoidance of contacts is a severe limitation, even

if we are willing to tolerate the computational cost. First, the effectiveness of collision-

free planning is limited by the quality of the geometric models used for collision checks.

Unless in structured environments where everything has been perfectly measured,

models of the environment need to be reconstructed from range sensor (e.g. depth

camera) measurements, which usually have a fair amount of uncertainty and can suffer

123

Figure 5-1: As transparent obstacles are almost invisible to depth sensors, a collision-free
motion planner, with the goal to pick up the mug and unaware of the transparent tray, plans
a trajectory that crushes the egg along the way. The crushed egg is highlighted in the red
box. Our controller is able to keep the egg intact even when the reference trajectory would
crush it.

from occlusion. Moreover, collision-free trajectories can be unnecessarily conservative

[112]: a task achievable by making some contacts can be deemed infeasible by a

collision-free planner.

In this chapter, we propose a QP controller which, given estimated contact posi-

tions and forces in unexpected contacts, tracks the reference trajectory as closely as

possible while keeping contact forces below a user-defined upper bound. Compared

with similar controllers based on null-space projection [113–117], the QP formulation

shares the same underlying dynamics, but allows for more gentle separation when the

robot breaks contact with the environment. The gentle separation happens naturally

as a result of bounding the contact forces with inequality constraints, which are not

supported by null-space projection.

Instead of the usual second-order dynamics constraints used in robot locomo-

tion [118, 119], the proposed QP controller utilizes a simplified version of the CQDC

dynamics model proposed in Chapter 2. Similar to CQDC, the simplified quasi-static

model predicts future equilibrium configurations and contact forces for a stiffness-

controlled robot in response to position commands. The simplified model consists

124

of only the robot, and assumes that the world is rigid and stationary. In addition,

it assumes bi-lateral, frictionless contacts which can be modeled with only equality

constraints. In addition to the numerical simplicity, this modeling choice also simpli-

fies contact sensing in hardware experiments: it only needs contact locations on the

robot, and does not need friction coefficients. As real-world contacts are uni-lateral

and frictional, we also propose measures which both capitalize the simplicity of bi-

lateral, frictionless contact models and mitigate the side effects of modeling real-world

contacts as such.

5.2 Related Work

5.2.1 Interaction Control

As the primary objective of the proposed QP controller is to bound unexpected con-

tact forces while tracking a joint-space or end-effector trajectory, we review existing

methods for combined motion and force control, which are also referred to as inter-

action control in the literature [4, Chapter 9]. Interaction control techniques can be

broadly classified by whether the interaction force is controlled directly or indirectly.

Direct force control typically splits the task space into two orthogonal subspaces

based on the robot’s kinematic constraints: one motion-controlled subspace along

the tangents of the kinematic constraints, and one force-controlled subspace along

the normals. Desired motion and force trajectories are specified in the motion and

force controlled subspaces, and tracked independently using motor torque commands

computed from the robot’s second-order model [120–122].

However, the success of direct force control relies on accurate robot and environ-

ment models, which are not easily available in unstructured environments. Moreover,

with few exceptions [100], most industrial robot arms, including the KUKA iiwa, do

not have an interface for end-users to directly control motor torques [123]. Last but

not least, by directly controlling motor torque, the interaction controller bypasses the

robot’s factory motion controller, and thus needs to run at high frequency in order

125

to maintain stability.

On the other hand, a classical example of indirect force control is impedance

control [78], which regulates the robot’s response to external forces to that of a mass-

spring-damper system (a mechanical impedance), thereby guaranteeing interaction

stability by passivity. When the robot moves slowly, which is often the case in ma-

nipulation tasks, impedance control can be simplified to stiffness control [124], which

can be interpreted as connecting the robot’s end effector to a user-specified set-point

by virtual springs. In the presence of contact, contact force can be controlled by

commanding how much the set point penetrates the obstacle.

Compared with direct force control, indirect force control schemes are usually im-

plemented as an outer-loop around the robot’s factory motion controller, and therefore

does not bear the responsibility of maintaining stability and can run at a much lower

rate.

5.2.2 Null-space Projection

Null-space projection is a classical and popular technique for executing a hierarchy of

tasks defined by equality constraints [113–117]. The constraints imposed by higher-

priority tasks are enforced by projecting the torque needed by low-priority tasks into

the null space of the higher-priority tasks. The projections are defined over the

ranges and null spaces of the task Jacobians and their weighted pseudo-inverses. It

is noteworthy that the projections are generally not orthogonal, unless the weight

matrix is identity [125].

More recently, controllers based on constrained optimizations such as quadratic

programs (QP) have gained popularity in both locomotion [118, 119] and manipula-

tion [126]. Compared with null-space projections, QP-based controllers can handle

both equality and inequality constraints. In this work, we formulate the problem of

trajectory tracking with bounded contact forces as a QP with a novel quasi-static

dynamics constraint. We also show that a controller based on null-space projection

implicitly enforces the same quasi-static dynamics constraint when the projection is

stiffness-consistent [125].

126

5.3 Background and Notations

5.3.1 Constrained Inverse Dynamics Control

A popular controller in locomotion and manipulation is based on the following optimization-

based formulation [118,119,127]:

min.
𝑥𝑙+1,𝑢𝑙

𝑐𝑥(𝑥
𝑙+1) + 𝑐𝑢(𝑢

𝑙), s.t. (5.1a)

𝑥𝑙+1 = 𝑓(𝑥𝑙, 𝑢𝑙), (5.1b)

where 𝑥𝑙 and 𝑢𝑙 are the state and input at the current time step 𝑙, and 𝑥𝑙+1 is the state

at the next time step, 𝑙+1. The controller (5.1) picks an action 𝑢𝑙 that minimizes the

(usually LQR-style) state and action cost, 𝑐𝑥(·) and 𝑐𝑢(·), subject to the dynamics

constraint (5.1b).

The most common choice for the dynamics constraint (5.1b) is the Newton’s Sec-

ond Law (N2L). For example, the DLR (German Aerospace Center) family of robots,

including the KUKA iiwa and FRANKA panda, has the following closed-loop second-

order dynamics after gravity compensation [76]:

M(𝑞)𝑞 + (C(𝑞, 𝑞) +D𝑞) 𝑞 +K𝑞(𝑞 − 𝑞cmd) = 𝜏ext, (5.2)

where 𝑞 ∈ R𝑛𝑞 is the joint angles of the robot, C(𝑞, 𝑞)𝑞 is the Coriolis force, D𝑞 is a

diagonal damping matrix, K𝑞 is a diagonal stiffness matrix, 𝑞cmd is the commanded

joint angles, and 𝜏ext is the torque by external contacts.

5.3.2 Contact and Multibody Notations

We consider rigid, point contacts in this work. The number of contacts the robot

makes with the environment is denoted by 𝑛𝑐. Each contact point is denoted by 𝐶𝑖.

The coordinates of the contact point relative to world frame, expressed in world frame

is written as 𝑊𝑝𝐶𝑖 ∈ R3; contact force at 𝐶𝑖 expressed in world frame is represented

by 𝑓𝐶𝑖
𝑊 ∈ R3.

127

Position Jacobian of the contact point 𝐶𝑖 relative to frame 𝑊 , expressed in frame

𝑊 , is denoted by J
𝑊 𝑝𝐶𝑖

𝑞 (𝑞) : R𝑛𝑞 → R3×𝑛𝑞 . It maps the robot’s joint velocity 𝑞 to the

velocity of point 𝐶𝑖 in world frame 𝑊 :

𝑊𝑣𝐶𝑖 = J
𝑊 𝑝𝐶𝑖

𝑞 (𝑞)𝑞. (5.3)

We further define

𝑓𝑖 :=
⃦⃦
𝑓𝐶𝑖
𝑊

⃦⃦
∈ R; 𝑢𝑖 := 𝑓𝐶𝑖

𝑊 /𝑓𝑖 ∈ R3 (5.4a)

J𝑢𝑖
:= 𝑢⊺

𝑖J
𝑊 𝑝𝐶𝑖

𝑞 ∈ R1×𝑛𝑞 (5.4b)

J𝑢 :=
[︀
J⊺
𝑢1
,J⊺

𝑢2
, · · ·J⊺

𝑢𝑛𝑐

]︀⊺ ∈ R𝑛𝑐×𝑛𝑞 . (5.4c)

The 𝑖-th row of J𝑢 maps 𝑞 to the Cartesian velocity of 𝐶𝑖 along 𝑢𝑖 in world frame.

We assume that J𝑢 is full-rank.

5.4 Quasi-static Dynamics

5.4.1 Dynamics as Transitions between Equilibria

In this subsection, we introduce the simplified quasi-static contact model to be used

by the inverse dynamics controller (5.1). When a CQDC dynamics model has only

one robot and no objects, the system’s state consists only of the joint angles 𝑞,

and input the commanded joint angles 𝑞cmd. Similar to CQDC, the steady-state

equilibrium condition can be obtained by setting the derivative terms in the second-

order dynamics (5.2) to 0:

K𝑞(𝑞cmd − 𝑞) + 𝜏ext = 0. (5.5)

As shown in Fig. 5-2, the simplifed quasi-static dynamics predicts 𝑥𝑙+1 := 𝑞𝑙+1,

the equilibrium configuration at the next time step, from the current equilibrium

configuration 𝑞𝑙 and the next commanded configuration 𝑢𝑙 := 𝑞𝑙+1
cmd.

128

Figure 5-2: Quasi-static dynamics of a 2D, 2-link robot arm. The arm starts at 𝑞𝑙 (black)
and is commanded to go to 𝑞𝑙+1

cmd (red). The virtual spring connecting 𝑞𝑙+1
cmd to 𝑞𝑙 pulls

the robot towards 𝑞𝑙+1
cmd, but the robot eventually stabilizes to 𝑞𝑙+1 (green) due to contact

constraints. At 𝑙 + 1, the arm makes two contact with two obstacles at 𝐶1 and 𝐶2 with
contact forces 𝜆1 and 𝜆2.

Assuming that the contacts are bi-lateral constraints instead of the usual unilateral

constraints which need to be modeled with complementarity, the new equilibrium 𝑞𝑙+1

can be solved for by minimizing the potential energy of the robot subject to equality

constraints:

min.
𝑞𝑙+1

1

2
(𝑞𝑙+1

cmd − 𝑞𝑙+1)⊺K𝑞(𝑞
𝑙+1
cmd − 𝑞𝑙+1) s.t. (5.6a)

J𝑢(𝑞
𝑙)(𝑞𝑙+1 − 𝑞𝑙) = 0. (5.6b)

To derive the contact forces, we start with the Lagrangian of QP (5.6):

𝐿(𝑞𝑙+1, 𝜆) =
1

2
(𝑞𝑙+1

cmd − 𝑞𝑙+1)⊺K𝑞(𝑞
𝑙+1
cmd − 𝑞𝑙+1)− (𝜆𝑙+1)⊺J𝑢(𝑞

𝑙+1 − 𝑞𝑙) (5.7)

where 𝜆𝑙+1 ∈ R𝑛𝑐 is the Lagrange multipliers of the contact constraint (5.6b), which

can also be interpreted as the contact forces generated by (5.6b); the dependency of

J𝑢 on 𝑞𝑙 is dropped for simplicity.

The KKT optimality condition of QP (5.6) is given by

129

∇𝑞𝑙+1𝐿 = K𝑞(𝑞
𝑙+1 − 𝑞𝑙+1

cmd)− J⊺
𝑢𝜆

𝑙+1 = 0, (5.8a)

J𝑢

(︀
𝑞𝑙+1 − 𝑞𝑙

)︀
= 0. (5.8b)

where (5.8a) is equivalent to the steady-state force balance condition (5.5), assuming

that 𝜏ext is generated by the 𝑛𝑐 point contacts, i.e. 𝜏ext = J⊺
𝑢𝜆

𝑙+1.

Explicit expressions for 𝜆𝑙+1 and 𝑞𝑙+1 can also be derived from the KKT conditions

(5.8):

𝜆𝑙+1 = −(J𝑢K
−1
𝑞 𝐽⊺

𝑢)
−1J𝑢(𝑞

𝑙+1
cmd − 𝑞𝑙), (5.9a)

𝑞𝑙+1 = 𝑞𝑙 +
(︀
I−K−1

𝑞 J⊺
𝑢(J𝑢K

−1
𝑞 J⊺

𝑢)
−1J𝑢

)︀
(𝑞𝑙+1

cmd − 𝑞𝑙). (5.9b)

5.4.2 Relationship to Null-space Projection

In this sub-section, we show that when controlling stiffness-controlled robots using

null-space projection, lower-priority tasks can be guaranteed to not interfere with

higher-priority tasks during transients if the stiffness-consistent projection [125] is

used. We also show that the underlying dynamics model of a controller based on

stiffness-consistent projection is the same as the model proposed in Sec. 5.4.1.

Null-space projection technique revolves around two projections:

𝑃𝑅(𝑊) := J⊺
𝑢

(︀
J𝑊+
𝑢

)︀⊺
, (5.10a)

𝑃𝑁(𝑊) := I− J⊺
𝑢

(︀
J𝑊+
𝑢

)︀⊺
, (5.10b)

where JW+
𝑢 := W−1J⊺

𝑢(J𝑢W
−1J⊺

𝑢)
−1 is the pseudo-inverse weighted by a positive-

definite W. The range and null space of 𝑃𝑅(W) are respectively 𝑅(J⊺
𝑢) and 𝑁

(︀(︀
JW+
𝑢

)︀⊺)︀,
whereas the range and null space of 𝑃𝑁(W) are reversed. Note that such projections

can be defined for arbitrary task Jacobians, but we specialize to the contact Jacobian

130

defined in (5.4c) without loss of generality.

For any choice of W and any joint torque 𝜏m, 𝑃𝑅(W)𝜏m ∈ 𝑅(J⊺
𝑢) generates contact

forces, whereas 𝑃𝑁(W)𝜏m generates no joint torque in 𝑅(J⊺
𝑢) after static equilibrium

is reached. Choosing an appropriate W, however, can provide additional guaran-

tees during the transient into this steady state [125]. For instance, the dynamically-

consistent pseudo-inverse JM+
𝑢 [128], which uses the robot’s mass matrix M for W,

ensures that

0 ≡ J𝑢M
−1𝑃𝑁(M)𝜏m, ∀𝜏m. (5.11)

Assuming that the dominant effect of 𝑃𝑁(M)𝜏m during the transient is to generate

acceleration, property (5.11) guarantees that and the generated acceleration lies inside

𝑁(J𝑢).

To determine the appropriate choice of W when the dominant effect of the 𝑃𝑁(W)𝜏m

during transient is to stretch/contract the virtual spring of a stiffness-controlled

robot, we start at the instant 𝑙+, immediately after sending the joint angle command

𝑢𝑙 = 𝑞𝑙+1
cmd at time step 𝑙. At 𝑙+, the joint torque can be expressed as

𝜏 𝑙
+

m = K𝑞(𝑞
𝑙+1
cmd − 𝑞𝑙), (5.12)

which can be decomposed as

𝜏 𝑙
+

m = 𝑃𝑅(W)𝜏 𝑙
+

m⏟ ⏞
𝜏𝑅

+𝑃𝑁(W)𝜏 𝑙
+

m⏟ ⏞
𝜏𝑁

, (5.13)

where 𝜏𝑅 ∈ 𝑅(J⊺
𝑢) generates contact forces, and 𝜏𝑁 ∈ 𝑁

(︀(︀
J𝑊+
𝑢

)︀⊺)︀ generates a motion

that needs to be in 𝑁(J𝑢).

Combining (5.12) and (5.13) yields

K𝑞(𝑞
𝑙+1
cmd − 𝑞𝑙) = 𝜏𝑅 + 𝜏𝑁 . (5.14)

At time instant (𝑙 + 1)−, when the equilibrium at time step 𝑙 + 1 is reached but

𝑢𝑙+1 has not been commanded, 𝜏𝑁 has generated a displacement and been dissipated

131

by damping, but 𝜏𝑅, the generalized force due to contact, remains:

𝜏 (𝑙+1)−

m = 𝜏𝑅. (5.15)

Moreover, static equilibrium (5.5) at (𝑙 + 1)− dictates that

𝜏 (𝑙+1)−

m = K𝑞(𝑞
𝑙+1
cmd − 𝑞𝑙+1). (5.16)

Combining (5.15) and (5.16) yields

K𝑞(𝑞
𝑙+1
cmd − 𝑞𝑙+1) = 𝜏𝑅. (5.17)

Finally, subtracting (5.17) from (5.14) gives

K𝑞(𝑞
𝑙+1 − 𝑞𝑙) = 𝜏𝑁 = 𝑃𝑁(W)𝜏 𝑙

+

m . (5.18)

As the motion from 𝑙 to 𝑙 + 1 needs to stay in 𝑁(J𝑢), we need J𝑢(𝑞
𝑙+1 − 𝑞𝑙) ≡ 0,

which implies through (5.18) that

0 ≡ J𝑢K
−1
𝑞 𝑃𝑁(W)𝜏 𝑙

+

m , ∀𝜏 𝑙+m , (5.19)

which has the same form as dynamic-consistency defined in (5.11). Not surprisingly,

choosing W = K𝑞 ensures the motion generated by 𝜏𝑁 stays in 𝑁(J𝑢), and the

resulting pseudo-inverse JK𝑞+ is called stiffness-consistent [125].

We can solve for 𝑞𝑙+1 by plugging (5.12) into (5.18) and setting W to K𝑞, yielding

𝑞𝑙+1 = 𝑞𝑙 + (I− JK𝑞+
𝑢 J𝑢)(𝑞

𝑙+1
cmd − 𝑞𝑙). (5.20)

Furthermore, as the contact force is the reaction to 𝜏𝑅, we have 𝜏𝑅 = −J⊺
𝑢𝜆

𝑙+1,

combining this with the definition of 𝜏𝑅 in (5.13) gives

𝜆𝑙+1 = −
(︀
JK𝑞+

)︀⊺
K𝑞(𝑞

𝑙+1
cmd − 𝑞𝑙). (5.21)

132

It can be shown that (5.20) and (5.21) are equivalent to (5.9b) and (5.9a), re-

spectively. This equivalence implies that a controller based on stiffness-consistent

projections and a controller (5.1) using QP (5.6) as its dynamics constraint share

the same underlying dynamics model. Therefore, the QP formulation in Sec. 5.5 is

preferred as it can handle inequality constraints.

5.5 QP Controller with Quasi-static Dynamics

5.5.1 Frictionless Contacts

To track a reference trajectory 𝑞ref(𝑡) as closely as possible while respecting dynam-

ics constraints and upper bounds on contact forces, we can specialize the generic

optimization-based controller (5.1) to the following QP:

min
𝑞𝑙+1,𝑞𝑙+1

cmd,𝜆
𝑙+1

⃦⃦
𝑞𝑙+1 − 𝑞𝑙+1

ref

⃦⃦2
+ 𝜖
⃦⃦
𝑞𝑙+1
cmd − 𝑞𝑙+1

ref

⃦⃦2
, s.t. (5.22a)

K𝑞(𝑞
𝑙+1 − 𝑞𝑙+1

cmd)− J⊺
𝑢𝜆

𝑙+1 = 0 (5.22b)

J𝑢(𝑞
𝑙+1 − 𝑞𝑙) = 0 (5.22c)

𝜆𝑙+1 ≤ 𝜆max (5.22d)⃒⃒
𝑞𝑙+1
cmd − 𝑞𝑙cmd

⃒⃒
≤ ∆𝑞max. (5.22e)

Here, the dynamics constraint (5.1b) consists of (5.22b) and (5.22c), which are the

KKT conditions (5.8) of the quasi-static dynamics (5.6). Constraint (5.22d) places

an upper bound on contact forces. The last constraint (5.22e) bounds how quickly

𝑞cmd changes.

In the objective (5.22a), the first term penalizes deviation at 𝑙+1 from the reference

trajectory. The second term, weighted by a small positive scalar 𝜖, adds regularization

without which the objective would become semi-definite. To see why, we re-write(︀
𝑞𝑙+1 − 𝑞𝑙+1

ref

)︀
by expressing 𝑞𝑙+1 explicitly as a function of 𝑞𝑙+1

cmd using (5.20):

𝑞𝑙+1 − 𝑞𝑙+1
ref = (I− JK𝑞+

𝑢 J𝑢)(𝑞
𝑙+1
cmd − 𝑞𝑙) + (𝑞𝑙 − 𝑞𝑙+1

ref), (5.23)

133

where the second term is a constant, and the first term multiplies (𝑞𝑙+1
cmd − 𝑞𝑙) by a

projection which has a non-zero null space.

In the quasi-static dynamics (5.6), expressing contact constraints as equality con-

straints (5.6b) and contact forces as the constraints’ Lagrange multipliers implies that

the contacts are bi-lateral and frictionless. In reality, however, contacts are uni-lateral

and frictional.

The bi-lateralness of (5.6b) is less concerning. As contact sensors are inevitably

noisy, only contact forces above a threshold are added to QP (5.22). In addition, by

(5.9a), the change in contact force is bounded as long as
⃒⃒
𝑞𝑙+1
cmd − 𝑞𝑙

⃒⃒
is bounded, and

the boundedness of
⃒⃒
𝑞𝑙+1
cmd − 𝑞𝑙

⃒⃒
is enforced by (5.22e). Therefore, as long as the bound

∆𝑞max is sufficiently small, we do not need to worry about contact forces flipping sign

in the middle of a control step.

On the other hand, naively ignoring friction will severely impact the performance

of the controller, which motivates the mitigating measures detailed in the next sub-

section.

5.5.2 Frictional Contacts

It is possible to model friction contact in quasi-static dynamics [44], but control

through a frictional contact requires estimating the contact normal and the friction

coefficient, in addition to estimating contact forces. This requires either more so-

phisticated whole-arm contact sensors, or making additional assumptions about the

environments that make the control-estimation pipeline more brittle.

Therefore, we will retain the simpler frictionless contact model for controlling

through a frictional contact, and mitigate the side effects of the wrong contact model

by modifying the frictionless QP (5.22) to

min
𝑞𝑙+1,𝑞𝑙+1

cmd,𝜆
𝑙+1

⃦⃦
𝑞𝑙+1
cmd − 𝑞𝑙+1

ref

⃦⃦2⏟ ⏞
tracking

+𝑤𝑙
⃦⃦
𝑞𝑙+1
cmd − 𝑞𝑙cmd

⃦⃦2⏟ ⏞
damping

, s.t. (5.24a)

(5.22b), (5.22c), (5.22d) and (5.22e),

134

which has the same constraints as (5.22) but a different objective. In the rest of this

section, we will elaborate on the reason for both terms in the objective (5.24a).

Tracking

When the reference trajectory 𝑞𝑙+1
ref leads the robot to make contact with a frictional

surface at point 𝐶 (Fig. 5-3a), the surface normal 𝑛 ∈ R3 and the contact force

direction 𝑢 ∈ R3 can be different. However, the frictionless contact model (5.22b)-

(5.22c) assumes that 𝑢 is always the same as 𝑛. Therefore, it is possible for 𝑊𝑣𝐶cmd,

the commanded velocity of 𝐶, to have a negative component along 𝑢 but a positive

component along 𝑛, as shown in Fig. 5-3a. Such a 𝑊𝑣𝐶cmd would lead to the robot

separating from the obstacle at 𝑙+ 1. When the frictionless QP (5.22) is constructed

again at 𝑙+1, no contact force constraints are added but 𝑞𝑙+2
ref can still lead the robot

to contact with a large amount of penetration. Therefore, the robot could re-establish

contact with a large contact force at 𝑙 + 2.

Although it is difficult to guarantee that 𝑊𝑣𝐶cmd has a negative component along

𝑛 without knowing 𝑛, undesired contact jitters can be effectively reduced by making
𝑊𝑣𝐶cmd as close as possible to 𝑊𝑣𝐶ref. In joint space, this translates to minimizing

the distance between 𝑞𝑙+1
cmd and 𝑞𝑙+1

ref , which can be achieved by replacing the term⃦⃦
𝑞𝑙+1 − 𝑞𝑙+1

ref

⃦⃦2 in (5.22a) by
⃦⃦
𝑞𝑙+1
cmd − 𝑞𝑙+1

ref

⃦⃦2 in (5.24a).

To further illustrate the advantage of the new objective, we first re-write 𝑞𝑙+1
cmd−𝑞𝑙+1

ref

using the relative quantities defined in Fig. 5-3b:

𝑞𝑙+1
cmd − 𝑞𝑙+1

ref =
(︀
𝑞𝑙+1
cmd − 𝑞𝑙

)︀
−
(︀
𝑞𝑙+1
ref − 𝑞𝑙

)︀
= ∆𝑞𝑙+1

cmd −∆𝑞𝑙+1
ref . (5.25)

It is also easy to see from (5.23) that

∆𝑞𝑙+1 = (I− JK𝑞+
𝑢 J𝑢)∆𝑞𝑙+1

cmd. (5.26)

135

The first term in the original objective (5.22a) thus becomes

𝑞𝑙+1 − 𝑞𝑙+1
ref =∆𝑞𝑙+1 −∆𝑞𝑙+1

ref

=(I− JK𝑞+
𝑢 J𝑢)∆𝑞𝑙+1

cmd −∆𝑞𝑙+1
ref ,

(5.27)

where (I − J
K𝑞+
𝑢 J𝑢) is the projection into 𝑁(J𝑢) along 𝑅

(︁
J
K𝑞+
𝑢

)︁
, as shown in Fig.

5-3b.

As a result, minimizing
⃦⃦
∆𝑞𝑙+1

cmd −∆𝑞𝑙+1
ref

⃦⃦2 encourages ∆𝑞𝑙+1
cmd to be close to ∆𝑞𝑙+1

ref

in the entire vector space. In contrast, when
⃦⃦
∆𝑞𝑙+1 −∆𝑞𝑙+1

ref

⃦⃦2 is used as the cost, only

the distance between ∆𝑞𝑙+1
ref and the component of ∆𝑞𝑙+1

cmd along 𝑁(J𝑢) is minimized.

Figure 5-3: (a): The reference trajectory brings the robot into contact at 𝐶. Due to
friction, the contact normal 𝑛 and the contact force direction 𝑢 are different. Therefore, the
commanded velocity at 𝐶 can separate from the obstacle even when the angle between 𝑢
and 𝑊 𝑣𝐶cmd is greater than 𝜋/2. (b): Definitions of Δ𝑞ref, Δ𝑞cmd and Δ𝑞. The range and
null space of the projection I− J

K𝑞+
𝑢 J𝑢 are 𝑁(J𝑢) and 𝑅

(︁
J
K𝑞+
𝑢

)︁
, respectively.

Damping

The goal of this term is to command more conservative robot motions when we are less

confident in the correctness of the frictionless contact model. As real-world contacts

are almost always frictional, the contact force predicted by the frictionless model and

the actual contact force measured by contact sensors are bound to be different. At

every time step, this discrepancy can be quantified by

𝑒𝑙𝜆 := 1− exp
(︁⃦⃦

𝜆𝑙
pred − 𝜆𝑙

est

⃦⃦
∞ /𝑎

)︁
∈ [0, 1], (5.28)

136

Figure 5-4: (a): mug placement task. (b): mug moving task. Contacts are highlighted
in red boxes. Blue arrows denote the direction of end effector velocity. For both tasks,
the photographs on the left show where the real robot makes contact while executing the
task. With collision geometry disabled, the simulation frames on the right show how much
penetration would happen if the original trajectory were strictly followed. Videos of the real
robot executing the tasks are included in the attachment.

where 𝜆𝑙
pred is the contact forces predicted by the frictional QP (5.24) at time step

𝑙 − 1; 𝜆𝑙
est is the measured contact forces at time step 𝑙; 𝑎 is a positive constant that

weights the force prediction error. The discrepancy 𝑒𝜆 is close to 1 when the force

prediction error is large, and close to 0 when the error is small.

The weight of the second term of (5.24a), 𝑤𝑙, is the low-pass-filtered version of

the discrepancy 𝑒𝑙𝜆:

𝑤𝑙 = 𝑤max
[︀
𝛼𝑒𝑙𝜆 + (1− 𝛼)𝑒𝑙−1

𝜆

]︀
, (5.29)

where 𝑤max is the upper bound on 𝑤𝑙 and 𝛼 is the forget rate of the low-pass filter.

A larger 𝑤𝑙 encourages more conservative robot motions by more heavily penalizing

the change in 𝑞cmd from 𝑙 to 𝑙 + 1.

5.6 Experiments

In this section, we demonstrate the advantages of the proposed contact-aware con-

troller through two tasks that involve unexpected contact with the environment, which

137

are shown in Fig. 5-4. In both experiments, 𝑞cmd is tracked using the iiwa’s factory

impedance controller. The factory controller’s stiffness is set to [800, 600, 600, 600,

400, 200, 200] N ·m/rad, from base joint to wrist joint. The proposed contact-aware

controller runs at 200Hz. The external contacts are estimated from iiwa’s external

torque measurements using the Contact Particle Filter [102], which runs at around

100Hz. QPs are constructed using Drake’s MathematicalProgram interface [66] and

solved by GUROBI [80].

In order to reduce sensitivity to measurement noise, only contact forces with norm

𝑓𝑖 ≥ 𝑓threshold are considered when constructing the contact Jacobian J𝑢 (5.4c). We

have chosen 𝑓threshold = 5N, and set the upper bound on contact forces in (5.22d)

to be 𝜆max = 15N. Ignoring contacts with small contact forces can be justified by

the passivity of the robot’s internal controller [129], which ensures stability in the

presence of external contacts.

5.6.1 Mug Placement Task (Fig. 5-4a)

This task is defined by an end-effector pose trajectory
(︀
𝑊𝑅𝑇𝑟(𝑡),𝑊𝑝𝑇𝑟(𝑡)

)︀
, where 𝑇𝑟

is the reference for the tool frame 𝑇 , 𝑊𝑅𝑇𝑟 is the orientation of frame 𝑇𝑟 w.r.t. the

world frame 𝑊 , and 𝑊𝑝𝑇𝑟 is the position of the origin of 𝑇𝑟 in world frame. It is

straightforward to modify the tracking term in the frictional QP objective (5.24a)

to minimize the pose difference between frame 𝑇 and its reference 𝑇𝑟, as described

in [119] [130, Chapter 3].

The robot starts with a mug held in the gripper. It then (i) reaches down (−𝑧
of world frame) by 0.22𝑚 in 4s, (ii) opens the gripper and drops the mug on the

cart below the table in 2s, and (iii) moves back up to where it started in 4s. The

orientation of the gripper is kept constant throughout the trajectory. As shown in

Fig. 5-4a, the “wrist” (link 6) of the robot collides with the edge of the table as the

gripper moves down and up.

138

Figure 5-5: mug placement task. 𝑥, 𝑦, 𝑧 components and the norm of the contact force
𝑓𝐶
𝑊 . Top: the baseline controller without contact force upper bounds is shown in the top

plot. Bottom: the contact-aware controller (5.24) with a modified end effector tracking
objective. In both plots, the horizontal red dashed line represents 𝑓threshold and the green
dashed line 𝜆max.

0.0 2.5 5.0 7.5 10.0
t [s]

0.0

0.1

[m
]

contact-aware
baseline

0 2 4 6 8
t [s]

10

20

[d
eg

re
es

] contact-aware
baseline

Figure 5-6: mug placement task. Left: position tracking error. Right: orientation
tracking error.

Contact force

As shown in Fig. 5-5, except during the initial impact, our controller is able to keep

the contact force norm
⃦⃦
𝑓𝐶
𝑊

⃦⃦
close to 𝜆max. In contrast, the baseline controller we

compare against, which computes 𝑞cmd by greedily minimizing tracking error with-

out the dynamics and contact force constraints (5.22b)-(5.22e), incurs larger contact

forces.

Tracking error

As shown in Fig. 5-6, compared with the baseline, the contact-aware controller pro-

duces significantly less tracking error in the presence of external contact.

139

5.6.2 Mug Moving Task (Fig. 5-4b)

This task is defined by a joint-space trajectory 𝑞ref(𝑡), with the goal of moving the

mug along a straight line while keeping the mug orientation constant. The 16s tra-

jectory 𝑞ref(𝑡) is an interpolation between joint-space knot points obtained by inverse

kinematics. As shown in Fig. 5-4b, to move the mug to the desired destination, the

robot needs to first establish a contact with the top face of the table, and then breaks

contact with the side of the table.

The baseline we are comparing against is the class of controllers trying to achieve

similar goals as ours but uses null-space projection, such as [117]. As null-space

projection cannot handle inequality constraints, the contact force upper bound is

usually enforced by an equality constraint which sets the contact force to 𝜆max. When

commanded to break contact by the reference trajectory, i.e.

J𝑢(𝑞
𝑙+1
ref − 𝑞𝑙) ≤ 0, (5.30)

the contact force constraint needs to be abruptly removed in order to continue to track

the reference trajectory [117]. This can lead to large joint velocity during separation,

as shown in Fig. 5-7.

In contrast, the proposed QP controller does not explicitly make the decision to

break contact based on (5.30), instead the break of contact comes naturally as a

consequence of solving QP (5.24) with the inequality constraints on contact forces

(5.22d). As shown in Fig. 5-7, when the robot separates from the table, the drop in⃦⃦
𝑓𝐶
𝑊

⃦⃦
occurs gradually with our QP controller, but abruptly with a null-projection-

based controller.

5.7 Conclusion

We have presented a contact-aware controller that reconciles trajectory tracking with

safety in unexpected contacts. The proposed controller is formulated as a QP with

a quadratic cost on tracking error, a quasi-static model of the robot dynamics as

140

0 2 4 6 8 10 12 14 16
0

10

20

‖f
C W
‖

[N
] Null-space

ours

10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5
t[s]

0.2

0.4

‖v
q
‖

[ra
d/

s]

Null-space
ours

Figure 5-7: Comparison between our QP controller and null-space projection-based control
in the mug moving task. Top: contact force norm

⃦⃦
𝑓𝐶
𝑊

⃦⃦
. The red dashed line represents

𝑓threshold and the green dashed line 𝜆max. Both controllers can keep
⃦⃦
𝑓𝐶
𝑊

⃦⃦
near 𝜆max when

the robot is in contact. Bottom: robot joint velocity norm ‖𝑣𝑞‖ during contact separation
(from 𝑡 = 10𝑠 to 𝑡 = 14𝑠). Note the velocity spike in the null-space projection controller.
In both plots, the solid lines are the mean of 10 runs; the shaded regions around the lines
represent the maximum and minimum values of all runs.

constraints, and upper bounds on contact forces.

The tasks for hardware experiments are designed based on our vision of future

motion planners: they are comprised of smooth, simple trajectories defined by only a

few knot points. We have shown that the proposed controller is able to keep both the

tracking error and contact forces small if the robot makes an accidental contact. In

addition, our controller outperforms controllers based on null-space projection when

an established contact needs to be broken as the robot follows a reference trajectory.

It is difficult to reliably sense more than one contacts on the arm from only joint

torque [131]. Nevertheless, with a more capable contact sensor such as [132], we

believe the proposed contact-aware controller will greatly reduce robots’ reliance on

environment sensing/monitoring and collision-free motion planning.

141

142

Chapter 6

Conclusion

We motivated our work by noting the stark contrast between the promise of robots

that are capable of contact-rich interactions, and the reality that most robotic ma-

nipulators are simply executing grasps connected by collision-free trajectories. Fur-

thermore, the recent empirical success of RL in contact-rich settings has made it even

more desirable and urgent to seek deeper understanding of contact-rich manipulation

from a model-based perspective.

By analyzing the successes and pitfalls of existing model-based methods for contact-

rich planning, and understanding how RL was able to alleviate such pitfalls, we have

identified two key ingredients for successful contact-rich planning: (i) smoothing of the

non-smooth contact dynamics, and (ii) global exploration through contact dynamics

constraints. By proposing a sampling-based motion planner guided by a smoothed

contact dynamics model, we have shown that traditional model-based approaches can

be effective in contact-rich manipulation planning. Compared to existing tools in RL

which use heavy offline computation on the order of hours or days, our contribu-

tion offers a powerful alternative in the spectrum of solutions by enabling efficient

online planning in the order of a minute while being generalizable with respect to

environments and tasks.

At the heart of our model-based planner is CQDC, a novel contact dynamics model

that is convex, quasi-static, and differentiable. In contrast with the standard second-

order dynamics, CQDC removes transients that can lead to myopic linearizations

143

which are uninformative about long-term planning. Through a number of theoretical

arguments and empirical studies, we have shown the efficacy of our contact model.

We have further shown that by inspecting the structure in our proposed model, we can

analytically smooth out the contact dynamics with a log-barrier relaxation. With ex-

periments, we have shown that our method of analytic smoothing has computational

benefits over randomized smoothing.

In our analysis of existing methods for model-based contact-rich planning, we

observed that smoothing has been tied to local trajectory optimization. Due to its

weakness to local minima, local trajectory optimization has been less effective in dif-

ficult problems compared to RL-based approaches that attempt to perform global

search. On the other hand, the SBMP methods for contact-rich systems have ex-

plicitly considered contact modes which fall into the pitfall of mode enumeration.

Our contribution fills in a gap in existing methods by combining mode smoothing

with RRT, where local approximation to the smooth surrogate was used to guide the

exploration process of RRT via the local Mahalanobis metric.

By enabling SBMP to effectively search through contact dynamics constraints

guided by smoothed CQDC, we have enabled efficient global motion planning for

highly contact-rich and high-dimensional systems that were previously not achievable

by existing model-based or RL-based methods. We believe that in the future, a highly

optimized version of our planner can be used to perform real-time motion planning,

or be used to guide policy search. With this capability, we hope to enable robots

to find contact-rich plans online in previously unseen environments within seconds of

planning time.

Planning is only part of the “sense-plan-act” pipeline that powers almost every

modern robot. Although Chapter 4 and 5 only dabble in sensing and control, they

shed light on what a complete contact-rich robotic system might look like. For in-

stance, we believe that tactile sensing is needed to accurately determine contact forces,

points and normals; and that a controller, which is responsible for short-horizon feed-

back, may function well with only local contact geometry and simplified contact

dynamics.

144

We hope that our work has taken a small yet meaningful step towards building

robots capable of human-level contact-rich interactions, which we hope will help make

our world a better place.

145

146

Bibliography

[1] Wonik Robotics. Allegro hand v4, 2022.

[2] Kenneth Salisbury, William Townsend, B Ebrman, and David DiPietro. Prelim-
inary design of a whole-arm manipulation system (wams). In Proceedings. 1988
IEEE International Conference on Robotics and Automation, pages 254–260.
IEEE, 1988.

[3] Sean O’Neill. How amazon robotics researchers are solving a “beautiful prob-
lem”, 2022.

[4] Bruno Siciliano, Oussama Khatib, and Torsten Kröger. Springer handbook of
robotics, volume 200. Springer, 2008.

[5] Steven M LaValle et al. Rapidly-exploring random trees: A new tool for path
planning. 1998.

[6] Tobia Marcucci, Mark Petersen, David von Wrangel, and Russ Tedrake. Mo-
tion planning around obstacles with convex optimization. arXiv preprint
arXiv:2205.04422, 2022.

[7] Aykut Özgun Önol, Radu Corcodel, Philip Long, and Taşkın Padır. Tuning-free
contact-implicit trajectory optimization. In 2020 IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 1183–1189. IEEE, 2020.

[8] Eric Huang, Xianyi Cheng, and Matthew T Mason. Efficient contact mode
enumeration in 3d. In International Workshop on the Algorithmic Foundations
of Robotics, pages 485–501. Springer, 2021.

[9] Russ Tedrake. Underactuated Robotics. 2022.

[10] David E Stewart. Rigid-body dynamics with friction and impact. SIAM review,
42(1):3–39, 2000.

[11] Mihai Anitescu and Florian A Potra. Formulating dynamic multi-rigid-body
contact problems with friction as solvable linear complementarity problems.
Nonlinear Dynamics, 14(3):231–247, 1997.

[12] Lorenz T Biegler. Nonlinear programming: concepts, algorithms, and applica-
tions to chemical processes. SIAM, 2010.

147

[13] Sheldon Andrews, Kenny Erleben, and Zachary Ferguson. Contact and fric-
tion simulation for computer graphics. In ACM SIGGRAPH 2022 Courses,
SIGGRAPH ’22, New York, NY, USA, 2022. Association for Computing Ma-
chinery.

[14] Dimitri P Bertsekas. Nonlinear programming. Journal of the Operational Re-
search Society, 48(3):334–334, 1997.

[15] Philip E Gill, Walter Murray, and Michael A Saunders. Snopt: An sqp algorithm
for large-scale constrained optimization. SIAM review, 47(1):99–131, 2005.

[16] Emanuel Todorov and Weiwei Li. A generalized iterative lqg method for locally-
optimal feedback control of constrained nonlinear stochastic systems. In Pro-
ceedings of the 2005, American Control Conference, 2005., pages 300–306.
IEEE, 2005.

[17] Michael Posa, Cecilia Cantu, and Russ Tedrake. A direct method for trajectory
optimization of rigid bodies through contact. The International Journal of
Robotics Research, 33(1):69–81, 2014.

[18] Zachary Manchester and Scott Kuindersma. Variational contact-implicit tra-
jectory optimization. In Robotics Research, pages 985–1000. Springer, 2020.

[19] Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 1999.

[20] Yuval Tassa, Tom Erez, and Emanuel Todorov. Synthesis and stabilization of
complex behaviors through online trajectory optimization. In 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 4906–4913.
IEEE, 2012.

[21] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for
model-based control. In 2012 IEEE/RSJ international conference on intelligent
robots and systems, pages 5026–5033. IEEE, 2012.

[22] Igor Mordatch, Zoran Popović, and Emanuel Todorov. Contact-invariant
optimization for hand manipulation. In Proceedings of the ACM SIG-
GRAPH/Eurographics symposium on computer animation, pages 137–144,
2012.

[23] Roman Kolbert, Nikhil Chavan-Dafle, and Alberto Rodriguez. Experimental
validation of contact dynamics for in-hand manipulation. In International Sym-
posium on Experimental Robotics, pages 633–645. Springer, 2016.

[24] Hongkai Dai, Andrés Valenzuela, and Russ Tedrake. Whole-body motion plan-
ning with centroidal dynamics and full kinematics. In 2014 IEEE-RAS Inter-
national Conference on Humanoid Robots, pages 295–302. IEEE, 2014.

[25] Dimitris Bertsimas and John N Tsitsiklis. Introduction to linear optimization,
volume 6. Athena scientific Belmont, MA, 1997.

148

[26] Tobia Marcucci and Russ Tedrake. Mixed-integer formulations for optimal con-
trol of piecewise-affine systems. In Proceedings of the 22nd ACM International
Conference on Hybrid Systems: Computation and Control, pages 230–239, 2019.

[27] Tobia Marcucci, Robin Deits, Marco Gabiccini, Antonio Bicchi, and Russ
Tedrake. Approximate hybrid model predictive control for multi-contact push
recovery in complex environments. In 2017 IEEE-RAS 17th International Con-
ference on Humanoid Robotics (Humanoids), pages 31–38. IEEE, 2017.

[28] Tobia Marcucci and Russ Tedrake. Warm start of mixed-integer programs for
model predictive control of hybrid systems. IEEE Transactions on Automatic
Control, 66(6):2433–2448, 2020.

[29] Robin Deits, Twan Koolen, and Russ Tedrake. Lvis: Learning from value
function intervals for contact-aware robot controllers. In 2019 International
Conference on Robotics and Automation (ICRA), pages 7762–7768. IEEE, 2019.

[30] Alp Aydinoglu and Michael Posa. Real-time multi-contact model predictive con-
trol via admm. In 2022 International Conference on Robotics and Automation
(ICRA), pages 3414–3421. IEEE, 2022.

[31] François Robert Hogan and Alberto Rodriguez. Feedback control of the pusher-
slider system: A story of hybrid and underactuated contact dynamics. In Al-
gorithmic Foundations of Robotics XII, pages 800–815. Springer, 2020.

[32] Bernardo Aceituno-Cabezas and Alberto Rodriguez. A global quasi-dynamic
model for contact-trajectory optimization. In Robotics: Science and Systems
(RSS), 2020.

[33] Steven M LaValle. Planning algorithms. Cambridge university press, 2006.

[34] Xianyi Cheng, Eric Huang, Yifan Hou, and Matthew T Mason. Contact mode
guided motion planning for quasidynamic dexterous manipulation in 3d. arXiv
preprint arXiv:2105.14431, 2021.

[35] Albert Wu, Sadra Sadraddini, and Russ Tedrake. R3t: Rapidly-exploring ran-
dom reachable set tree for optimal kinodynamic planning of nonlinear hybrid
systems. In 2020 IEEE International Conference on Robotics and Automation
(ICRA), pages 4245–4251. IEEE, 2020.

[36] Tobia Marcucci, Jack Umenberger, Pablo A Parrilo, and Russ Tedrake. Shortest
paths in graphs of convex sets. arXiv preprint arXiv:2101.11565, 2021.

[37] OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefow-
icz, Bob McGrew, Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn
Powell, Alex Ray, et al. Learning dexterous in-hand manipulation. The Inter-
national Journal of Robotics Research, 39(1):3–20, 2020.

149

[38] Ankur Handa, Arthur Allshire, Viktor Makoviychuk, Aleksei Petrenko, Ritvik
Singh, Jingzhou Liu, Denys Makoviichuk, Karl Van Wyk, Alexander Zhurke-
vich, Balakumar Sundaralingam, et al. Dextreme: Transfer of agile in-hand
manipulation from simulation to reality. arXiv preprint arXiv:2210.13702, 2022.

[39] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and
Pieter Abbeel. Domain randomization for transferring deep neural networks
from simulation to the real world. In 2017 IEEE/RSJ international conference
on intelligent robots and systems (IROS), pages 23–30. IEEE, 2017.

[40] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.

[41] Hyung Ju Terry Suh, Tao Pang, and Russ Tedrake. Bundled gradients through
contact via randomized smoothing. IEEE Robotics and Automation Letters,
pages 1–1, 2022.

[42] Tao Pang, HJ Suh, Lujie Yang, and Russ Tedrake. Global planning for contact-
rich manipulation via local smoothing of quasi-dynamic contact models. arXiv
preprint arXiv:2206.10787, 2022.

[43] Mihai Anitescu. Optimization-based simulation of nonsmooth rigid multibody
dynamics. Mathematical Programming, 105(1):113–143, 2006.

[44] Tao Pang and Russ Tedrake. A convex quasistatic time-stepping scheme for
rigid multibody systems with contact and friction. In 2021 IEEE International
Conference on Robotics and Automation (ICRA), pages 6614–6620. IEEE, 2021.

[45] Alejandro M Castro, Frank N Permenter, and Xuchen Han. An unconstrained
convex formulation of compliant contact. IEEE Transactions on Robotics, 2022.

[46] Akshay Agrawal, Shane Barratt, Stephen Boyd, Enzo Busseti, and
Walaa M Moursi. Differentiating through a cone program. arXiv preprint
arXiv:1904.09043, 2019.

[47] Matthew T Mason. Mechanics of robotic manipulation. MIT press, 2001.

[48] Nikhil Chavan-Dafle, Rachel Holladay, and Alberto Rodriguez. In-hand manip-
ulation via motion cones, 2019.

[49] Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge
university press, 2004.

[50] Taylor A Howell, Simon Le Cleac’h, J Zico Kolter, Mac Schwager, and Zachary
Manchester. Dojo: A differentiable simulator for robotics. arXiv preprint
arXiv:2203.00806, 2022.

150

[51] Tao Pang and Russ Tedrake. Easing reliance on collision-free planning with
contact-aware control. arXiv preprint arXiv:2109.09846, 2021.

[52] Matthew T Mason. Mechanics and planning of manipulator pushing operations.
The International Journal of Robotics Research, 5(3):53–71, 1986.

[53] Kevin M Lynch and Matthew T Mason. Stable pushing: Mechanics, controlla-
bility, and planning. The international journal of robotics research, 15(6):533–
556, 1996.

[54] Suresh Goyal, Andy Ruina, and Jim Papadopoulos. Planar sliding with dry
friction part 1. limit surface and moment function. Wear, 143(2):307–330, 1991.

[55] Robert D Howe and Mark R Cutkosky. Practical force-motion models for sliding
manipulation. The International Journal of Robotics Research, 15(6):557–572,
1996.

[56] Jiaji Zhou, J Andrew Bagnell, and Matthew T Mason. A fast stochastic contact
model for planar pushing and grasping: Theory and experimental validation.
In Robotics: Science and systems XIII, 2017.

[57] Jeffrey C Trinkle, RC Ram, AO Farahat, and Peter F Stiller. Dexterous manip-
ulation planning and execution of an enveloped slippery workpiece. In [1993]
Proceedings IEEE International Conference on Robotics and Automation, pages
442–448. IEEE, 1993.

[58] Jong-Shi Pang, Jeffrey C Trinkle, and Grace Lo. A complementarity approach
to a quasistatic multi-rigid-body contact problem. Computational Optimization
and Applications, 5(2):139–154, 1996.

[59] Benoit Landry, Zachary Manchester, and Marco Pavone. A differentiable aug-
mented lagrangian method for bilevel nonlinear optimization. arXiv preprint
arXiv:1902.03319, 2019.

[60] Vince Kurtz and Hai Lin. Contact-implicit trajectory optimization with hy-
droelastic contact and ilqr. arXiv preprint arXiv:2202.13986, 2022.

[61] Alp Aydinoglu, Victor M Preciado, and Michael Posa. Contact-aware controller
design for complementarity systems. In 2020 IEEE International Conference
on Robotics and Automation (ICRA), pages 1525–1531. IEEE, 2020.

[62] Mathew Halm and Michael Posa. A quasi-static model and simulation approach
for pushing, grasping, and jamming. In International Workshop on the Algo-
rithmic Foundations of Robotics, pages 491–507. Springer, 2018.

[63] Tao Pang and Russ Tedrake. A robust time-stepping scheme for quasistatic rigid
multibody systems. In 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 5640–5647. IEEE, 2018.

151

[64] MOSEK ApS. Mosek Modeling Cookbook, 2021.

[65] Emanuel Todorov. Convex and analytically-invertible dynamics with contacts
and constraints: Theory and implementation in mujoco. In 2014 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pages 6054–6061.
IEEE, 2014.

[66] Russ Tedrake and the Drake Development Team. Drake: Model-based design
and verification for robotics, 2019.

[67] Neville Hogan. Impedance control: An approach to manipulation: Part
i—theory. 1985.

[68] Mihai Anitescu, James F Cremer, and Florian A Potra. Formulating three-
dimensional contact dynamics problems. Journal of Structural Mechanics,
24(4):405–437, 1996.

[69] Brendan O’Donoghue, Eric Chu, Neal Parikh, and Stephen Boyd. SCS: Splitting
conic solver, version 3.2.1. https://github.com/cvxgrp/scs, November 2021.

[70] Jie Li, Gilles Daviet, Rahul Narain, Florence Bertails-Descoubes, Matthew
Overby, George E Brown, and Laurence Boissieux. An implicit frictional contact
solver for adaptive cloth simulation. ACM Transactions on Graphics (TOG),
37(4):1–15, 2018.

[71] Keenon Werling, Dalton Omens, Jeongseok Lee, Ioannis Exarchos, and C Karen
Liu. Fast and feature-complete differentiable physics for articulated rigid bodies
with contact. arXiv preprint arXiv:2103.16021, 2021.

[72] Justin Carpentier and Nicolas Mansard. Analytical derivatives of rigid body
dynamics algorithms. In Robotics: Science and systems (RSS 2018), 2018.

[73] Gaël Guennebaud, Benoît Jacob, et al. Eigen v3. http://eigen.tuxfamily.org,
2010.

[74] Simon Le Cleac’h, Mac Schwager, Zachary Manchester, Vikas Sindhwani, Pete
Florence, and Sumeet Singh. Single-level differentiable contact simulation, 2022.

[75] Louis Montaut, Quentin Le Lidec, Antoine Bambade, Vladimir Petrik, Josef
Sivic, and Justin Carpentier. Differentiable collision detection: a randomized
smoothing approach, 2022.

[76] Christian Ott, Alin Albu-Schaffer, Andreas Kugi, and Gerd Hirzinger. On the
passivity-based impedance control of flexible joint robots. IEEE Transactions
on Robotics, 24(2):416–429, 2008.

[77] Arun Samantaray. About bond graphs, 2001.

[78] Neville Hogan. Impedance control: An approach to manipulation. In 1984
American control conference, pages 304–313. IEEE, 1984.

152

https://github.com/cvxgrp/scs

[79] David E Stewart and Jeffrey C Trinkle. An implicit time-stepping scheme for
rigid body dynamics with inelastic collisions and coulomb friction. International
Journal for Numerical Methods in Engineering, 39(15):2673–2691, 1996.

[80] Gurobi Optimization, LLC. Gurobi optimizer reference manual, 2019.

[81] Patrick Varin and Scott Kuindersma. A Constrained Kalman Filter for Rigid
Body Systems with Frictional Contact, pages 474–490. 05 2020.

[82] Sertac Karaman and Emilio Frazzoli. Optimal kinodynamic motion planning
using incremental sampling-based methods. In 49th IEEE Conference on Deci-
sion and Control (CDC), pages 7681–7687, 2010.

[83] Claire Chen, Preston Culbertson, Marion Lepert, Mac Schwager, and Jean-
nette Bohg. Trajectotree: Trajectory optimization meets tree search for plan-
ning multi-contact dexterous manipulation. In 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 8262–8268. IEEE,
2021.

[84] H. J. T. Suh, Xiaobin Xiong, Andrew Singletary, Aaron D. Ames, and Joel W.
Burdick. Energy-efficient motion planning for multi-modal hybrid locomotion.
In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 7027–7033, 2020.

[85] Alexander Shkolnik, Matthew Walter, and Russ Tedrake. Reachability-guided
sampling for planning under differential constraints. In 2009 IEEE International
Conference on Robotics and Automation, pages 2859–2865. IEEE, 2009.

[86] Shadi Haddad and Abhishek Halder. Anytime ellipsoidal over-approximation
of forward reach sets of uncertain linear systems, 2021.

[87] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John
Schulman, Emanuel Todorov, and Sergey Levine. Learning complex dexterous
manipulation with deep reinforcement learning and demonstrations, 2018.

[88] Nikhil Chavan Dafle, Alberto Rodriguez, Robert Paolini, Bowei Tang, Sid-
dhartha S. Srinivasa, Michael Erdmann, Matthew T. Mason, Ivan Lundberg,
Harald Staab, and Thomas Fuhlbrigge. Extrinsic dexterity: In-hand manipula-
tion with external forces. In 2014 IEEE International Conference on Robotics
and Automation (ICRA), pages 1578–1585, 2014.

[89] Taylor Howell, Simon Le Cleac’h, Sumeet Singh, Peter Florence, Zachary
Manchester, and Vikas Sindhwani. Trajectory optimization with optimization-
based dynamics. IEEE Robotics and Automation Letters, 2022.

[90] Eric Huang, Xianyi Cheng, and Matthew T Mason. Efficient contact mode
enumeration in 3d. In International Workshop on the Algorithmic Foundations
of Robotics, pages 485–501. Springer, 2020.

153

[91] Richard M Murray, Zexiang Li, and S Shankar Sastry. A mathematical intro-
duction to robotic manipulation. CRC press, 2017.

[92] Matei T. Ciocarlie, Corey Goldfeder, and Peter K. Allen. Dexterous grasping
via eigengrasps : A low-dimensional approach to a high-complexity problem.
2007.

[93] Marc Toussaint. Logic-geometric programming: An optimization-based ap-
proach to combined task and motion planning. In IJCAI, pages 1930–1936,
2015.

[94] Roland Geraerts and Mark H. Overmars. Creating high-quality paths for motion
planning. The International Journal of Robotics Research, 26(8):845–863, 2007.

[95] Tao Chen, Jie Xu, and Pulkit Agrawal. A system for general in-hand object
re-orientation. In Conference on Robot Learning, pages 297–307. PMLR, 2022.

[96] Alejandro M. Castro, Ante Qu, Naveen Kuppuswamy, Alex Alspach, and
Michael Sherman. A transition-aware method for the simulation of compli-
ant contact with regularized friction. IEEE Robotics and Automation Letters,
5(2):1859–1866, apr 2020.

[97] Giorgio Cannata, Marco Maggiali, Giorgio Metta, and Giulio Sandini. An em-
bedded artificial skin for humanoid robots. In 2008 IEEE International confer-
ence on multisensor fusion and integration for intelligent systems, pages 434–
438. IEEE, 2008.

[98] Advait Jain, Marc D Killpack, Aaron Edsinger, and Charles C Kemp. Reaching
in clutter with whole-arm tactile sensing. The International Journal of Robotics
Research, 32(4):458–482, 2013.

[99] Clive Loughlin, A Albu-Schäffer, S Haddadin, Ch Ott, A Stemmer, T Wimböck,
and G Hirzinger. The dlr lightweight robot: design and control concepts for
robots in human environments. Industrial Robot: an international journal,
2007.

[100] Franka Emika GmbH. Franka control interface documentation, 2019.

[101] Sami Haddadin, Alessandro De Luca, and Alin Albu-Schäffer. Robot collisions:
A survey on detection, isolation, and identification. IEEE Transactions on
Robotics, 33(6):1292–1312, 2017.

[102] Lucas Manuelli and Russ Tedrake. Localizing external contact using proprio-
ceptive sensors: The contact particle filter. In 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 5062–5069. IEEE,
2016.

154

[103] Adrian Zwiener, Christian Geckeler, and Andreas Zell. Contact point local-
ization for articulated manipulators with proprioceptive sensors and machine
learning. In 2018 IEEE International Conference on Robotics and Automation
(ICRA), pages 323–329. IEEE, 2018.

[104] Adrian Zwiener, Richard Hanten, Cornelia Schulz, and Andreas Zell. Armcl:
Arm contact point localization via monte carlo localization. In IROS, pages
7105–7111, 2019.

[105] Lucas Manuelli. Localizing external contact using proprioceptive sensors: the
contact particle filter. PhD thesis, Massachusetts Institute of Technology, 2018.

[106] David Stewart and Jeffrey C Trinkle. An implicit time-stepping scheme for
rigid body dynamics with coulomb friction. In Proceedings 2000 ICRA. Millen-
nium Conference. IEEE International Conference on Robotics and Automation.
Symposia Proceedings (Cat. No. 00CH37065), volume 1, pages 162–169. IEEE,
2000.

[107] Andreas Griewank et al. On automatic differentiation. Mathematical Program-
ming: recent developments and applications, 6(6):83–107, 1989.

[108] John CG Boot. On sensitivity analysis in convex quadratic programming prob-
lems. Operations Research, 11(5):771–786, 1963.

[109] Bartolomeo Stellato, Goran Banjac, Paul Goulart, Alberto Bemporad, and
Stephen Boyd. Osqp: An operator splitting solver for quadratic programs.
Mathematical Programming Computation, pages 1–36, 2020.

[110] Jia Pan, Sachin Chitta, and Dinesh Manocha. Fcl: A general purpose library
for collision and proximity queries. In 2012 IEEE International Conference on
Robotics and Automation, pages 3859–3866. IEEE, 2012.

[111] Nathan Ratliff, Matt Zucker, J Andrew Bagnell, and Siddhartha Srinivasa.
Chomp: Gradient optimization techniques for efficient motion planning. In
2009 IEEE International Conference on Robotics and Automation, pages 489–
494. IEEE, 2009.

[112] Matthew T Mason. Toward robotic manipulation. Annual Review of Control,
Robotics, and Autonomous Systems, 1:1–28, 2018.

[113] Yoshihiko Nakamura, Hideo Hanafusa, and Tsuneo Yoshikawa. Task-priority
based redundancy control of robot manipulators. The International Journal of
Robotics Research, 6(2):3–15, 1987.

[114] Bruno Siciliano and J-JE Slotine. A general framework for managing multiple
tasks in highly redundant robotic systems. In Fifth International Conference
on Advanced Robotics’ Robots in Unstructured Environments, pages 1211–1216.
IEEE, 1991.

155

[115] Farhad Aghili. A unified approach for inverse and direct dynamics of constrained
multibody systems based on linear projection operator: applications to control
and simulation. IEEE Transactions on Robotics, 21(5):834–849, 2005.

[116] Niels Dehio, Joshua Smith, Dennis Leroy Wigand, Guiyang Xin, Hsiu-Chin Lin,
Jochen J Steil, and Michael Mistry. Modeling and control of multi-arm and
multi-leg robots: Compensating for object dynamics during grasping. In 2018
IEEE International Conference on Robotics and Automation (ICRA), pages
294–301. IEEE, 2018.

[117] Mikael Jorda, Elena Galbally Herrero, and Oussama Khatib. Contact-driven
posture behavior for safe and interactive robot operation. In 2019 International
Conference on Robotics and Automation (ICRA), pages 9243–9249. IEEE, 2019.

[118] Scott Kuindersma, Frank Permenter, and Russ Tedrake. An efficiently solvable
quadratic program for stabilizing dynamic locomotion. In 2014 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pages 2589–2594.
IEEE, 2014.

[119] Twan Koolen, Sylvain Bertrand, Gray Thomas, Tomas De Boer, Tingfan Wu,
Jesper Smith, Johannes Englsberger, and Jerry Pratt. Design of a momentum-
based control framework and application to the humanoid robot atlas. Inter-
national Journal of Humanoid Robotics, 13(01):1650007, 2016.

[120] Matthew T Mason. Compliance and force control for computer controlled ma-
nipulators. IEEE Transactions on Systems, Man, and Cybernetics, 11(6):418–
432, 1981.

[121] Oussama Khatib. A unified approach for motion and force control of robot
manipulators: The operational space formulation. IEEE Journal on Robotics
and Automation, 3(1):43–53, 1987.

[122] Marc H Raibert, John J Craig, et al. Hybrid position/force control of manipula-
tors. Journal of Dynamic Systems, Measurement, and Control, 103(2):126–133,
1981.

[123] KUKA Roboter GmbH. Code based documentation of kuka fast robot interface
c++ sdk, 2019.

[124] J Kenneth Salisbury. Active stiffness control of a manipulator in cartesian
coordinates. In 1980 19th IEEE conference on decision and control including
the symposium on adaptive processes, pages 95–100. IEEE, 1980.

[125] Alexander Dietrich, Christian Ott, and Alin Albu-Schäffer. An overview of null
space projections for redundant, torque-controlled robots. The International
Journal of Robotics Research, 34(11):1385–1400, 2015.

156

[126] Advait Jain, Marc D Killpack, Aaron Edsinger, and Charles C Kemp. Manipula-
tion in clutter with whole-arm tactile sensing. arXiv preprint arXiv:1304.6146,
2013.

[127] Yuquan Wang and Abderrahmane Kheddar. Impact-friendly robust control de-
sign with task-space quadratic optimization. In Robotics: Science and Systems
(RSS), 2019.

[128] Roy Featherstone and Oussama Khatib. Load independence of the dynamically
consistent inverse of the jacobian matrix. The International Journal of Robotics
Research, 16(2):168–170, 1997.

[129] Alin Albu-Schäffer, Christian Ott, and Gerd Hirzinger. A unified passivity-
based control framework for position, torque and impedance control of flexible
joint robots. The international journal of robotics research, 26(1):23–39, 2007.

[130] Russ Tedrake. Robot manipulation: Perception, planning, and control (course
notes for mit 6.881), 2021.

[131] Tao Pang, Jack Umenberger, and Russ Tedrake. Identifying external con-
tacts from joint torque measurements on serial robotic arms and its limitations.
In 2021 IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2021.

[132] Yiyue Luo, Yunzhu Li, Pratyusha Sharma, Wan Shou, Kui Wu, Michael Foshey,
Beichen Li, Tomás Palacios, Antonio Torralba, and Wojciech Matusik. Learn-
ing human–environment interactions using conformal tactile textiles. Nature
Electronics, 4(3):193–201, 2021.

157

	Introduction
	Difficulty of Pushing a Box with a Ball
	Related Work
	Modeling Contact with Complementarity Constraints
	Nonlinear Optimization
	Contact Mode Transitions
	Reinforcement Learning

	Contributions and Thesis Structure

	An Effective Contact Dynamics Model for Contact-rich Planning
	Introduction
	Background
	Quasi-static Models in Robotic Manipulation
	Convex Rigid-body Contact Dynamics

	A Convex, Quasi-static and Differentiable Contact Model
	Forward Dynamics
	Differentiability
	Implementation
	Interpreting Anitescu's Convex Relaxation
	Flaws of Prescribed Robot Motions as Control Input
	Experimental Evaluation

	Smoothing of Contact Dynamics
	Smoothing Schemes for Dynamical Systems
	Randomized Smoothing of Contact Dynamics
	A Smoothed Contact Dynamics Model
	The Smooth Contact Model as ``Analytic Smoothing''

	Contact-Rich Manipulation Planning using Quasi-static Models
	Introduction
	Trajectory Optimization through Contact
	Iterative MPC with Smoothing
	Experiment Setup
	Results & Discussion

	Local Mahalanobis Metric for RRT
	The Local Mahalanobis Metric
	Metric on Smoothed Dynamics and Unactuated Objects

	RRT through Contact
	Nearest Node using Local Mahalanobis Metric
	Dynamically Consistent Extension
	Contact Sampling
	Effectiveness of Proposed Enhancements
	Final Path Refinement

	Results & Discussion
	Experiment Setup
	Results & Discussion

	Sim2Real Transfer & Hardware Results
	Experiment Setup
	Results & Discussion

	External Contact Detection from Joint Torque Measurements
	Introduction
	Related Work
	Problem Formulation
	Detectability of contacts
	Detectability
	Quantifying ``undetectability''
	Implications

	Contact estimation from external torque measurements
	Rejection sampling
	Rejection sampling + gradient descent (RSGD)

	Active contact discrimination
	Implementation
	Conclusion

	Contact-aware Control with Quasi-static Models
	Introduction
	Related Work
	Interaction Control
	Null-space Projection

	Background and Notations
	Constrained Inverse Dynamics Control
	Contact and Multibody Notations

	Quasi-static Dynamics
	Dynamics as Transitions between Equilibria
	Relationship to Null-space Projection

	QP Controller with Quasi-static Dynamics
	Frictionless Contacts
	Frictional Contacts

	Experiments
	Mug Placement Task (Fig. 5-4a)
	Mug Moving Task (Fig. 5-4b)

	Conclusion

	Conclusion

