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Global Planning for Contact-Rich Manipulation via
Local Smoothing of Quasi-dynamic Contact Models

Tao Pang∗, H.J. Terry Suh∗, Lujie Yang and Russ Tedrake

Abstract—The empirical success of Reinforcement Learning
(RL) in contact-rich manipulation leaves much to be understood
from a model-based perspective, where the key difficulties are
often attributed to (i) the explosion of contact modes, (ii)
stiff, non-smooth contact dynamics and the resulting exploding
/ discontinuous gradients, and (iii) the non-convexity of the
planning problem. The stochastic nature of RL addresses (i) and
(ii) by effectively sampling and averaging the contact modes.
On the other hand, model-based methods have tackled the same
challenges by smoothing contact dynamics analytically. Our first
contribution is to establish the theoretical equivalence of the two
smoothing schemes for simple systems, and provide qualitative
and empirical equivalence on several complex examples. In
order to further alleviate (ii), our second contribution is a
convex, differentiable and quasi-dynamic formulation of contact
dynamics, which is amenable to both smoothing schemes, and
has proven to be highly effective for contact-rich planning. Our
final contribution resolves (iii), where we show that classical
sampling-based motion planning algorithms can be effective
in global planning when contact modes are abstracted via
smoothing. Applying our method on several challenging contact-
rich manipulation tasks, we demonstrate that efficient model-
based motion planning can achieve results comparable to RL,
but with dramatically less computation.
https://sites.google.com/view/global-planning-contact/home

Index Terms—Manipulation Planning, Dexterous Manipula-
tion, Motion and Path Planning, Contact Modeling.

I. INTRODUCTION

RECENT advances in RL have shown impressive results
in manipulation through contact-rich dynamics that were

difficult to achieve with previous model-based methods [1]–
[3]. However, it is yet unclear what made these methods suc-
cessful where model-based methods have struggled. Our high-
level goal is to understand these reasons and interpret them
from a model-based point of view. From such interpretations,
we seek to apply the ingredients behind the empirical success
of RL with the generalizability and efficiency of models.

From a model-based perspective, the most significant ob-
stacle for planning through contact lies in the hybrid nature
of contact dynamics (i.e. numerous modes of smooth dynam-
ics separated by guard surfaces). The non-smooth nature of
the resulting dynamics implies that Taylor approximation no
longer holds locally; thus, the locally linear model constructed
with the gradient quickly becomes invalid. This invalidity
of the local model presents significant challenges for both
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Fig. 1: Examples of contact-rich plans generated by our method.
Each row corresponds to a time-snapshot of five different tasks: (a)
3D in-hand manipulation, (b) plate pickup using extrinsic dexterity,
(c) door opening with a hinge and (d) pen placement, (e) bucket
rotation with two iiwa arms on hardware. Each plan is generated
online in the order of a minute of wall-clock time.

iterative gradient-based optimization [4], [5], and sampling-
based planning that rely on local distance metrics [6]–[8].

Faced with such challenges, many existing works have
sought to explicitly consider contact modes by either enu-
merating or sampling them. With model-based knowledge of
the dynamic modes, these planners typically alternate between
continuous-state planning in the current contact mode and a
discrete search for the next mode, resulting in trajectories
punctuated by a handful of mode changes [7], [9], [10].
Another example of such approaches comes from transcribing
the modes into binary variables, resulting in Mixed-Integer
Programs [11]–[13]. However, both of these methods suffer
from poor scalability: complex systems such as 3D in-hand
manipulation can have trillions of contact modes [14]. The
explosion of contact modes indicates that a viable planning
strategy in the regime of rich contacts needs to somehow avoid
considering all possible contact sequences [15].

Indeed, recent works have attributed the success of RL to its
stochastic nature, where the contact modes are stochastically
abstracted [16]–[18] by a process of sampling and averaging.
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This procedure, termed randomized smoothing, stochastically
smooths the underlying landscape [19]. These works show
that randomized smoothing can locally abstract neighboring
contact modes into a single average linear model, implicitly
creating a stochastic force field where contact is applied from
a distance by means of randomization. This average model can
give more informative gradients that are useful for planning.

However, the idea of smoothing contact modes for planning
is hardly new in model-based literature. Many of the previous
works in planning through contact have employed schemes
to iteratively smooth contact dynamics in order to improve
convergence of the solvers [15], [20]–[23], which leads to sim-
ilar force-from-a-distance interpretations. Importantly, these
methods differ from randomized smoothing as they consider
the structure of the underlying equations to produce smooth
approximations. We term this process analytic smoothing.
The presence of the two smoothing schemes, randomized
and analytic, begs an important question: what differences,
both in terms of theoretical characterizations and empirical
performance, can we expect from both smoothing schemes?

Our first contribution is to establish the theoretical equiva-
lence of the two smoothing schemes for simple systems under
our framework (Sec.II,IV-C). Using this framework, we further
show how to efficiently compute the locally linear models
(i.e. gradients) of the smoothed dynamics online (Sec.II-C),
and show that both smoothing schemes result in comparable
qualitative characteristics, as well as empirical performance on
a number of complex examples (Sec.V,VIII)

Furthermore, at the heart of the model-based planning
approach we take lies the question: what is the right model
for gradient-based contact-rich manipulation planning? We
believe this model needs to be (i) numerically robust and (ii)
differentiable, so that local linearizations can be efficiently
computed for planning. Most importantly, the model should
be able to (iii) predict long-term behavior, so that the planner
can look far ahead while taking few steps. Lastly, the model
should be (iv) amenable to smoothing in order to provide more
informative gradients across contact modes.

Our second contribution (Sec.III) is a contact dynamics
model that satisfies all requirements. Specifically, we propose
a convex implicit time-stepping contact model (Sec.III-B).
Convexity is achieved by Anitescu’s relaxation of frictional
contact constraints [24], which in practice only introduces
mild non-physical behavior [25], [26]. The convexity provides
a clear numerical advantage over the traditional Linear Com-
plementarity Problem (LCP) formulation [27], [28]. Moreover,
the derivatives of the dynamics with respect to the current state
and control action can be readily computed using sensitivity
analysis for convex conic programs [29] (Sec.III-C).

For long-term predictability, we adopt the quasi-dynamic
assumption widely used in robotic manipulation [10], [11],
[30], [31]. A quasi-dynamic model “sees” further than its
second-order counterpart by ignoring transient dynamics and
focuses on transitions between steady-states. Furthermore,
by throwing away kinetic energy at every time step, quasi-
dynamic models are also simpler as they do not need variables
for velocity, nor parameters to describe damping.

We validate and test our quasi-dynamic contact model by
running the same input trajectories in a high-fidelity second-

order simulator Drake [32], as well as on hardware (Sec.IX).
Our results show that our model is able to approximate the
second-order dynamics well if the system considered is highly
damped and truly dominated by frictional forces.

Our contact model can also be analytically smoothed out
using a log-barrier relaxation (Sec.IV-B). In this relaxation
scheme, the hard contact constraints are softly enforced by a
log-barrier function, a common technique used in the interior-
point method for convex programs [33, §11] [23]. We further
show that the gradients of the smoothed contact model can be
easily computed with the implicit function theorem.

Finally, we believe that another key factor behind the em-
pirical success of RL lies in its goal of performing global op-
timization with stochasticity. In contrast, deterministic model-
based optimization for planning through nonlinear dynamics
generally results in non-convex optimization problems, where
the quality of different local minima can be a make-or-break
factor. Solving such problems requires non-trivial initialization
and tuning [34], both of which can be highly problem specific
and notoriously hard to debug. This motivates us to search
further for a more global approach.

In robotics, sampling-based motion planning (SBMP) al-
gorithms such as the Rapidly-Exploring Random Tree (RRT)
[35] are widely used for global search problems, including
those with kinodynamic constraints [36]. However, the suc-
cess of such planners has rarely extended to contact-rich
settings. We find that while optimization-based methods for
planning through contact have employed smoothing schemes,
all existing SBMP methods for contact planning explicitly
consider modes instead of smoothing them [7], [9], [10],
[31], [37], as SBMP methods do not inherently require local
characterizations of dynamics (i.e. gradients). Yet, previous
works have shown that such local models are highly relevant
for designing more efficient distance metrics during the nearest
neighbor queries that respects dynamic reachability [6]–[8].

Our final contribution is to fill in this gap by combining
smoothing-based contact mode abstraction and the global
search capabilities of RRT. We enable RRT to search through
contact dynamics constraints by utilizing a novel distance
metric derived from the local smoothed models (Sec.VI). In
addition, we propose an efficient extension step by computing
actions that expand the tree using the local models (Sec.VII).
With a variety of contact-rich tasks inspired by [38] that
involve both intrinsic and extrinsic dexterity [39], we show that
combining smoothing with RRT achieves tractable global mo-
tion planning for highly contact-rich manipulation (Sec.VIII).
To the best of our knowledge, our work appears to be the first
to successfully combine SBMP with contact mode smoothing.

Summary of Contributions. (i) We establish the theoretical
equivalence of methods for randomized and analytic smooth-
ing on simple systems, and qualitative / empirical equivalence
on complex systems. (ii) We present a convex, differentiable
formulation of quasi-dynamic contact dynamics and its an-
alytic smoothing, which we show to be highly effective for
contact-rich manipulation planning. (iii) We combine contact
mode smoothing with sampling-based motion planning, filling
in a gap in the spectrum of existing methods and achieving
efficient global planning through highly-rich contact dynamics.



3

II. LOCAL THEORY OF SMOOTHING

Before discussing complex systems with contact, we formalize
mathematically what it means to smooth a function, as well
as different algorithms to compute their local approximations.
We aim to provide a coherent view of the different smoothing
schemes and their equivalence relations.

Consider a locally-Lipschitz (but potentially non-smooth)
function f : Rn → Rm. We consider a class of iterative
algorithms that rely on finding a locally-affine approximation
to f at every iteration, around the current operating point x̄.
We denote this affine model as g(·; x̄),

g(x; x̄) := J(x̄) (x− x̄)︸ ︷︷ ︸
=:δx

+µ(x̄). (1)

which consists of the sensitivity term J(x̄) ∈ Rm×n, and a
bias term µ(x̄) ∈ Rm, which we refer to as model parameters
(J (x̄) , µ (x̄)).

If f ∈ C1 (i.e. smooth), then a natural candidate to use for
the model parameters is the first-order Taylor expansion of f
around x̄, also known as the linearization of the function. The
linearization requires obtaining the gradient of f .

Definition 1. We define the linearization of f around the
nominal point x̄ as f̄ ,

f̄(x; x̄) :=
∂f

∂x

∣∣∣∣
x=x̄

(x− x̄) + f(x̄). (2)

Note that f̄ is a locally-affine model with parameters
(∂f/∂x|x=x̄, f(x̄)).

However, when f is non-smooth with fast-changing discon-
tinuous gradients, the Taylor expansion (2) quickly deviates
from f . Therefore, approaches that utilize (2) (e.g. approaches
that use the gradient) often suffer greatly. In this section, we
investigate a set of smoothing methods that can give more
informative locally-affine approximations to f .

A. Smooth Surrogate of a Function

We first formalize the process of smoothing a function f by
introducing the smooth surrogate, which is a modification of
f that closely resembles the original function, yet is smooth.

1) The Smooth Surrogate: We define a smooth surrogate
using the process of convolution.

Definition 2. Given a probability distribution ρ character-
ized by a smooth density function, we define fρ as the
smooth surrogate of f ,

fρ(x) := Ew∼ρ[f(x+ w)], (3)

The smooth surrogate provides us with a natural formal-
ism of common smooth approximations that are made to
non-smooth functions. We give some examples of smooth
surrogates that are commonly used in machine learning and
robotics, as well as their corresponding densities, in Table I.

Note that the expectation (3) is applied pointwise. Given a
single point x, it is desirable to average points from a neigh-
borhood that is centered at x. Thus, we make the following
assumption on the distribution ρ, which we further assume to
be smooth and elliptical to enforce regularity.

f ρ fρ

ReLU Logistic SoftPlus
Heaviside Cauchy ArcTan
Heaviside Logistic Sigmoid

TABLE I: Examples of smooth surrogates of non-smooth functions.

Assumption 1. We assume ρ is a zero-mean elliptical distri-
bution with an integrable and smooth density: ρ ∈ L1, ρ ∈ C1.

The smoothness of fρ, despite the non-smoothness of f ,
is formalized as the following lemma which follows from
properties of convolution.

Lemma 1. If ρ ∈ C1, then fρ ∈ C1.

Proof. We show that the gradients are well-defined using
Leibniz integral rule,

d

dx
fρ(x) = d

dx

∫
f(x+ w)ρ(w)dw

= d
dx

∫
f(y)ρ(y − x)dy

=
∫
f(y)

(
d
dxρ(y − x)

)
dy,

(4)

where we make the reparametrization y = x+w, and d
dxρ(y−

x) is well-defined since ρ ∈ C1.

2) Linearization of the Smooth Surrogate: Since fρ ∈ C1,
first-order Taylor approximation now holds for fρ and we can
successfully use the linearization of fρ as an affine model that
best represents fρ at an operating point of x̄.

Definition 3. We apply the definition of linearization on fρ
to define the linearization of the smooth surrogate,

Jρ(x̄) := ∂
∂xfρ(x̄) = ∂

∂xEw∼ρ[f(x+ w)]|x=x̄

µρ(x̄) := fρ(x̄) = Ew∼ρ[f(x̄+ w)].
(5)

We note that there are two alternative ways to characterize
Jρ. First, the following lemma establishes the validity of the
reparametrization gradient of fρ [40], which requires access
to gradients of f .

Lemma 2. Jρ can be obtained by taking the expectation of
gradients,

Jρ(x̄) = Ew∼ρ
[
∂
∂xf(x)

∣∣
x=x̄+w

]
. (6)

Proof. The exchange of derivative and expectation follows
from Leibniz integral rule.

The next lemma establishes the validity of the score function
gradient of fρ, which does not requires access to gradients of
f . This gradient, commonly used in RL, is also referred to as
the likelihood ratio, or the REINFORCE gradient [41].

Lemma 3. (Stein’s Lemma) For any choice of b that does
not depend on w, Jρ can be obtained as follows,

Jρ(x̄) = Ew∼ρ
[

[f(x̄+ w)− b]
[
−∇ρ(w)

ρ(w)

]ᵀ
︸ ︷︷ ︸

=:S(w)

]
. (7)

Proof. We refer to [42], [43] for detailed proof for the case
that b = 0. If b is non-zero, we use the fact that the expectation
of the score function S(w) is zero, EwS(w) = 0 to show that
the choice of b has no impact on the equality.

https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
https://en.wikipedia.org/wiki/Logistic_distribution
https://pytorch.org/docs/stable/generated/torch.nn.Softplus.html
https://en.wikipedia.org/wiki/Heaviside_step_function
https://en.wikipedia.org/wiki/Cauchy_distribution
https://en.wikipedia.org/wiki/Inverse_trigonometric_functions
https://en.wikipedia.org/wiki/Heaviside_step_function
https://en.wikipedia.org/wiki/Logistic_distribution
https://en.wikipedia.org/wiki/Sigmoid_function
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B. Rethinking Linearization as a Minimizer
We also provide an alternative motivation of smoothing.

Instead of interpreting smoothing as modifying f directly,
we can provide an alternative interpretation of linearization:
what is the best affine approximation of f around a nominal
point x̄, and according to which metric? We propose a natural
objective of the residual between the original function f
and the linear model g, weighted by some distribution ρ.
Since fρ is an affine model that has to minimize the residual
from a distribution rather than a single point, we expect the
affine model to be more informative compared to the exact
linearization, especially when f is non-smooth. We formalize
this through the following theorem.

Theorem 1. Let ρ be a zero-mean Gaussian with covariance
Σ, ρ(w) = N (w; 0,Σ). Consider the problem of choosing the
best affine model with parameters (J, µ) such that the residual
distributed according to ρ is minimized,

min.
J,µ

1

2
Ew∼ρ

[
‖f(x̄+ w)− Jw − µ‖22

]
. (8)

Then, the solution to the problem is given by the exact
linearization of the smooth surrogate,

J∗ = Jρ(x̄), µ∗ = µρ(x̄). (9)

Proof. (8) is a linear regression problem and convex in the
arguments, and thus, the first-order stationarity condition im-
plies optimality. Letting F (J, µ) denote the objective function,
the gradients are

∂F/∂µ = Ew[f(x̄+ w)]− µ∗, (10a)
∂F/∂J = Ew[wwᵀ]J∗ − Ew[f(x̄+ w)wᵀ]. (10b)

Setting them to zero, (10a) directly leads to the solution for
µ∗. In addition, J∗ can be obtained from (10b):

J∗ = Ew∼ρ[wwᵀ]−1Ew∼ρ[f(x̄+ w)wᵀ]

= ∂
∂xEw∼ρ[f(x+ w)]|x=x̄,

(11)

which comes from using Stein’s lemma, where the score
function of the Gaussian is S(w) = Σ−1w.

Theorem 1 offers another insight of why smoothing is
necessary if we generalize the objective around a distribu-
tion. A slightly technical modification of this theorem, which
replaces Jw in (8) with JF−1(w)S(w) where F(w) is the
Fisher information matrix F(w) := Ew∼ρ[S(w)S(w)ᵀ], also
applies for general elliptical distributions with identical proof.
However, we document the Gaussian case for intuition.

Example 1. To illustrate the different smoothing schemes and
the implication of Theorem 1, we plot a simple example for a
polynomial f in Fig. 2. The example shows that when least-
squares fit is performed on the samples of f(x̄+wi), the linear
model that minimizes (8) converges to the exact linearization
of the smooth surrogate fρ.

C. Computation of the Locally Linear Model
The equivalence between different characterizations of

(Jρ, µρ) implies different methods to compute them with
access to f . We investigate three major methods to compute
these quantities.

Fig. 2: Polynomial f (black) and its smooth surrogate fρ (red), for
the case where ρ is a Gaussian (green). The plotted fρ is obtained
using Monte-Carlo estimation. When f(x̄+wi) (green) are sampled
around x̄ and the least squares fit is performed (blue line, f̄ρ), it
converges to the exact linearization of the smooth surrogate fρ.

1) Analytical Smoothing : If f and ρ are sufficiently
structured, one can analytically compute the convolution fρ
and its derivative Jρ, similar to the analytic derivatives of fρ
on simple functions from Table I.

2) Randomized Smoothing, First-Order : If ρ is a distribu-
tion that is easy to sample from, one can compute a Monte-
Carlo estimate of µρ by averaging the samples.

Lemma 4. The sample mean of f(x + wi), where wi are
drawn i.i.d. from ρ, is an unbiased estimator of µρ,

E
wi

i.i.d.∼ ρ

[
1

N

N∑
i=1

f(x̄+ wi)

]
= µρ(x̄). (12)

Proof. Law of large numbers.

Furthermore, Lemma 2 implies that Jρ can be estimated
by sampling the gradients. We note that crucially, use of this
method requires f to be locally-Lipschitz (i.e. continuous).
The failure mode of first-order randomized smoothing is
documented in [16], [17], [44] and also briefly illustrated in
Example 2.

Lemma 5. Under locally Lipschitz f , the sample mean of
∂f
∂x (x + wi)|x=x̄, where wi are drawn i.i.d. from ρ, is an
unbiased estimator of Jρ,

E
wi

i.i.d.∼ ρ

[
1

N

N∑
i=1

∂f

∂x
(x̄+ wi)

]
= Jρ(x̄). (13)

Proof. We use Law of large numbers then Lemma 2.

3) Randomized Smoothing, Zeroth-Order: Finally, Lemma
3 implies that we can estimate Jρ in zeroth-order, which is
analogous to how gradients are computed in RL [17], [41].

Lemma 6. For any choice of b that does not depend on w,
we have

E
wi

i.i.d.∼ ρ

[
1

N

N∑
i=1

[f(x̄+ wi)− b]S(wi)

]
= Jρ(x̄). (14)

Proof. We use Law of large numbers then Lemma 3.
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A typical choice of b is the zero-noise evaluation of f , b =
f(x̄). Note that if ρ is Gaussian, we can also take a finite-
sample approximation to the least-squares problem:

min.
Jρ,µρ

1

N

N∑
i=1

‖f(x̄+ wi)− Jρwi − µρ‖22 . (15)

Unlike the first-order estimator, the zeroth-order estimator is
still unbiased for discontinuous functions [17]. However, the
variance of this estimator is often higher than that of the first-
order estimator used in Lemma 2. This effect is also illustrated
in Example 2.

Example 2. (ReLU, Heaviside, Delta). To better illustrate dif-
ferent computational methods and their properties, we revisit
an example from Table I, where f is the ReLU function and
ρ is a logistic distribution, for which the smooth surrogagte
fρ is the Softplus.

We illustrate the three different methods, introduced in
Sec.II-C, to compute the gradient of fρ. In the analytic scheme,
we simply differentiate softplus to obtain a sigmoid function.
The first-order randomized version averages the gradients
∂f/∂x (a Heaviside) with the samples drawn from ρ. Finally,
the zeroth-order version uses Stein’s lemma for the logistic
distribution, which has the score function S(w) = tanh(w).
The results are plotted in Fig.3. Note that both quantities
converge to the analytic gradient on average, with the zeroth-
order gradient having more variance than the first-order one.

Lastly, given g := ∂f/∂x as the Heaviside, the smooth
surrogate gρ becomes the Sigmoid. We illustrate the three
methods of computing the gradient of gρ, which is equivalent
to d2fρ/dx

2. Using the analytic scheme, we recover the
density function for the logistic distribution, and the zeroth-
order estimator is also successful in recovering the gradient.
However, as the gradients of the Heaviside (i.e. dirac-delta)
is almost-surely zero, the first-order estimator becomes biased
and fails to estimate the gradient of gρ.

Fig. 3: A. analytic, R.F. randomized first, R.Z. randomized zero. Left:
ReLU f (black), its smooth surrogate fρ, the softplus (red), and the
Monte-Carlo approximation of fρ (green). Middle: Gradients of fρ
computed using different methods. Right: Gradient of gρ, which we
denote as d2fρ/dx2, computed by different computation methods.
Color scheme is identical.

Finally, we note that in the context of randomized smooth-
ing, the first-order and the zeroth-order gradient estimators can
be combined and interpolated, leading to a α-ordered gradient
estimator where α ∈ [0, 1] [17]. Such interpolation smoothly
trades off the bias and variance characteristics of the first and
zeroth-order gradients.

D. Smoothing of Dynamical Systems

Our theorems in the setting of functions readily extends to
dynamical systems. We overload the notation on the variables
for convention, and say the system has state x ∈ Rn, input
u ∈ Rm, and map f : Rn × Rm → Rn,

x+ = f(x, u). (16)

where we use (A(x̄, ū),B(x̄, ū), c(x̄, ū)) to parameterize the
linear system f̄ that best describes f around some nominal
point (x̄, ū),

f̄(x, u) = A(x̄, ū) (x− x̄)︸ ︷︷ ︸
=:δx

+B(x̄, ū) (u− ū)︸ ︷︷ ︸
=:δu

+c(x̄, ū).
(17)

For dynamical systems, the Taylor expansion requires the
system Jacobian,

A(x̄, ū) =
∂

∂x
f(x, u)|x=x̄,u=ū

B(x̄, ū) =
∂

∂u
f(x, u)|x=x̄,u=ū

c(x̄, ū) = f(x̄, ū).

(18)

Similarly in this setting, the smooth surrogate can be defined
as the surrogate dynamics

fρ(x, u) = Ew∼ρ[f(x+ wx, u+ wu)], (19)

where wx is the component of w that corresponds to x, and
wu is defined similarly. The model parameters of the locally
linear model f̄ρ are given as follows:

Aρ(x̄, ū) =
∂

∂x
Ew∼ρ[f(x+ wx, u+ wu)]|x=x̄,u=ū

Bρ(x̄, ū) =
∂

∂u
Ew∼ρ[f(x+ wx, u+ wu)]|x=x̄,u=ū

cρ(x̄, ū) = Ew∼ρ[f(x̄+ wx, ū+ wu)].

(20)

The previous theorems (Lemma 2, Lemma 3, Theorem 1)
also extend to this setting with slight changes in notation. In
the remaining sections, we shorthand the notation and refer
to the model parameters as a matrix instead of a function for
compactness (e.g. Aρ instead of Aρ(x̄, ū)).

1) Analytic Smoothing: If f is sufficiently structured, we
can analytically obtain fρ as well as the parameters for its
linearization (Aρ,Bρ, cρ) without a sampling procedure.

2) First-Order Randomized Smoothing: We use the fol-
lowing estimators for first-order randomized smoothing of
dynamical systems,

Aρ ≈ 1
N

∑N
i=1

[
∂
∂xf(x̄+ wxi , ū+ wui

]
wi ∼ ρ (21a)

Bρ ≈ 1
N

∑N
i=1

[
∂
∂uf(x̄+ wxi , ū+ wui )]

]
wi ∼ ρ (21b)

cρ ≈ 1
N

∑N
i=1 [f(x̄+ wxi , ū+ wui )]] wi ∼ ρ (21c)

where ∂f/∂x, and ∂f/∂u are Jacobians of the dynamics.
3) Zeroth-Order Randomized Smoothing: Similar to (15),

we can estimate the gradients using least-squares when ρ is
Gaussian:

Aρ,Bρ = argmin
A,B

∑N
i=1

‖f(x̄+ wxi , ū+ wui )−Awxi −Bwui − cρ‖22
(22)

where cρ is computed with (21c).
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III. CONVEX QUASI-DYNAMIC DIFFERENTIABLE
CONTACT DYNAMICS

In this section, we present the Convex, Quasi-dynamic, Dif-
ferentiable Contact (CQDC) model which is used for the
contact-rich planning tasks in the rest of this paper. We start
by elaborating on the advantages of planning with quasi-
dynamic models. We then detail the convex1 forward dynamics
formulation and how to take its derivatives, and conclude with
remarks on implementation.

A. Why Plan with Quasi-dynamic Models?

Quasi-dynamic models, which previous works have used
extensively for robotic manipulation [10], [11], [30], [31],
[45], simplify Newtonian dynamics by removing terms related
to velocity and acceleration, and focusing on contact forces
at the core of robot-object interactions. Although the model
cannot describe highly-dynamics behaviors such as spinning
a pen between fingers [20], it holds up for a wide variety
of manipulation tasks, including many that involve dexterous
hands [1].

Halving the number of states by removing velocity is one
of the most recognized advantages of quasi-dynamic systems
[30, §10.1]. However, by focusing on transitions between
static equilibria and ignoring transients induced by damping
and acceleration, a quasi-dynamic model can predict further
into the future while taking fewer steps than its second-
order counterpart, thereby reducing the number of steps it
requires to reach the goal. We believe this temporal aspect
of quasi-dynamic models’ advantage is important but often
overlooked in the literature. In practice, many trajectory op-
timization formulations for manipulation enforce the second-
order Newtonian dynamics [46], [47]. Although modeling the
transients allows the discovery of more dynamic behaviors, we
believe, especially in the manipulation setting, that the added
computational complexity due to taking many steps for long
planning horizons oftentimes outweighs the benefits.

B. Forward Dynamics

Despite the numerical advantage of convex contact dy-
namics formulations [24], [26], [48], some formulations can
produce highly inaccurate contact forces with poorly-chosen
hyperparameters [49]. In this work, we adopt Anitescu’s
convex relaxation of the Coulomb friction constraints [24].
Anitescu’s convex relaxation is equivalent to common LCP
formulations [28] in non-sliding contacts or in separation, and
introduces a non-physical yet mild “boundary layer” effect
between relatively-sliding objects [25], [26]. Not only does
Anitescu’s convex friction model have the simulation step
size h as the only hyperparameter, the “boundary layer” also
disappears as h → 0. The step size therefore can serve as a
knob that allows the planner to trade the dynamics model’s
predictive power for physical accuracy.

In the robotic manipulation setting, a system can be di-
vided into na actuated Degree of Freedoms (DOFs), which

1By calling the forward dynamics x+ = f(x, u) convex, we mean that
a convex optimization program is solved when computing x+ from a given
(x, u) pair. It does not mean that f(x, u) is a convex function in (x, u).

correspond to the robots, and nu unactuated DOFs, which
correspond to the objects. The configurations of objects and
robots are denoted respectively by qu ∈ Rnu and qa ∈ Rna .
For quasi-dynamic systems, the system state is defined by
x := q := (qu, qa). Similar to [25], we model the robots as
impedances [50], which in the quasi-dynamic setting reduces
to springs with a diagonal stiffness matrix Ka ∈ Rna×na .
Accordingly, the input u ∈ Rna is defined by the commanded
positions of the robots’ joints, which can also be interpreted
as the equilibrium positions of the springs.

The discretized quasi-dynamic equations of motion are

hKa (qa + δqa − u) = hτa +

nc∑
i=1

(Jai(q))
ᵀ
λi, (23a)

( ε
h

Mu(q)
)
δqu = hτu +

nc∑
i=1

(Jui(q))
ᵀ
λi, (23b)

where h ∈ R++ is the step size in seconds; Mu(q) ∈ Rnu×nu

is the configuration-dependent mass matrix of the objects;
ε ∈ R+ is a small regularization constant; τa ∈ Rna and
τu ∈ Rnu are non-contact external torques (e.g. due to gravity)
for robots and objects; the change in system configuration
from the current to the next step is δq := (δqu, δqa). For
3D systems, it is more common to work with angular velocity
instead of rotational displacement. As our discussion trivially
extends to angular velocity by using a linear map (e.g. [26,
Section II]), we use displacement in this paper for brevity.

There are nc contact pairs at the current time step. For the
i-th contact, λi ∈ R3 is the contact impulse; Jai(q) ∈ R3×na

and Jui(q) ∈ R3×nu are the contact Jacobians [51] of the
robots and the objects, respectively. The contact Jacobians
are functions of q, as they depend on the contact points and
normals at q computed by a collision detector. For brevity, we
will drop the explicit dependency on q from here onward.

Equation (23a) states that the robot joint positions’ deviation
from their commanded values, as a result of external impulses,
is proportional to the stiffness Ka. Equation (23b) can have
different physical interpretations depending on the value of
the regularization constant ε. If ε = 0, (23b) is the force
(impulse) balance of the objects. This corresponds to the exact
quasi-static formulation in [25]. If ε = 1, (23b) corresponds
to Mason’s classical definition of quasi-dynamic systems [30].
Note that for any ε, the momentum gained at every step due to
external impulses is discarded at the next time step, which is
characteristic of the highly damped behavior typical in quasi-
static systems. In our physical experiments in later sections
where objects are light, we find that the dynamics is closer
to being exactly quasi-static (ε = 0) than being classically
quasi-dynamic (ε = 1). Therefore, we pick ε to be as small as
possible without causing numerical issues.

In addition, the Coulomb friction model requires the contact
impulses λi to stay inside the friction cone, and the relative
sliding velocities to satisfy the maximum dissipation principle
[28]. To enforce these constraints, we first introduce some
additional notation. The contact Jacobian for contact i can
be written as

Ji := [Jui ,Jai ] :=

[
Jni

Jti

]
∈ R3×(nu+na), (24)
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where Jni ∈ R1×(nu+na) maps the generalized velocity of the
system to the normal contact velocity, and Jti ∈ R2×(nu+na)

to the tangent velocities. Next, the friction cone at contact i,
Ki, and its dual cone K?i , are denoted by

Ki :=

{
λi = (λni , λti) ∈ R3|µiλni ≥

√
λᵀtiλti

}
, (25a)

K?i :=

{
vi = (vni , vti) ∈ R3|vni ≥ µi

√
vᵀtivti

}
, (25b)

where µi is the friction coefficient; the dual variable vi can
also be interpreted as the relative contact velocity for contact
i; the subscripts (·)n and (·)t indicate respectively the normal
and tangential components.

With this notation, Anitescu’s frictional contact constraints
can be written as:

vi := Jiδq +

[
φi
02

]
∈ K?i , (26a)

λi ∈ Ki, (26b)
vᵀi λi = 0, (26c)

where φi ∈ R is the signed distance for contact i at the current
time step. These constraints enforce the Coulomb friction
model exactly when a contact is sticking (not sliding) and
in separation. In sliding, these constraints enforce maximum
dissipation, but adds a small gap between the two relatively-
sliding objects. Anitescu showed that this gap converges to 0
as h→ 0 [24].

Remarkably, this implies that the quasi-dynamic equations
of motion (23), together with the friction constraints (26), are
the KKT optimality conditions [33, §5.9] of the following
convex Second-Order Cone Program (SOCP) [24]:

min.
δq

1

2
δqᵀQδq + bᵀδq, subject to (27a)

Jiδq +

[
φi
02

]
∈ K?i , ∀i ∈ {1 . . . nc}, where (27b)

Q :=

[
εMu/h 0

0 hKa

]
, b := −h

[
τu

Ka(u− qa) + τa

]
,

(27c)

whose primal and dual solutions, δq? and λ? := (λ?1, . . . , λ
?
nc

),
can be obtained by conic solvers such as [52], [53]. Note
that without regularization (ε = 0), the objective (27a) would
be positive semi-definite, and thus (27) could have multiple
solutions.

The SOCP (27) reduces to a Quadratic Program (QP) when
there is no friction or if the friction cone can be described
by linear constraints. The second-order friction cones (25)
can be equivalently represented as linear constraints in the
planar case, or be approximated with polyhedral cones [28]
in the 3D case. However, this approximation introduces non-
physical anisotropic behaviors [23], [54], which is why (25)
is preferred.

C. Derivatives of Forward Dynamics

We illustrate how to compute the derivatives of the system
configuration at the next step, q+, with respect to the current

q and u. Let us express the forward contact dynamics in the
standard dynamical system form (16):

q+ = f(q, u) = q + δq?(q, u), (28)

where δq? is the solution to (27). Taking the derivatives of
(28) yields

A =
∂f

∂q
= I +

∂δq?

∂q
, B =

∂f

∂u
=
∂δq?

∂u
, (29)

where ∂δq?/∂q and ∂δq?/∂u can be expanded using the chain
rule into:

∂δq?

∂q
=
∂δq?

∂b

∂b

∂q
+
∂δq?

∂Q

∂Q

∂q
+

nc∑
i=1

∂δq?

∂Ji

∂Ji
∂q

+
∂δq?

∂φi

∂φi
∂q

,

(30a)
∂δq?

∂u
=
∂δq?

∂b

∂b

∂u
. (30b)

Similar to other differentiable simulators based on implicit
time-stepping [23], [55], we compute the derivatives of the
solution δq? with respect to the problem data (Q, b,Ji, φi)
by applying the implicit function theorem to the KKT opti-
mality conditions of the convex program (27) [29]. Then, the
derivatives of (Q, b,Ji, φi) with respect to q and u can be
straightforwardly computed using either automatic differentia-
tion or a more specialized method that takes advantage of the
structure of rigid body systems [56].

As the derivatives (30) are discontinuous functions of (q, u)
[16], they are not a good local approximation of the CQDC
dynamics unless multiple gradients are computed for different
state-action pairs and averaged using the first-order random-
ized smoothing scheme (Sec. II-C2).

D. Implementation

As all existing rigid-body differentiable simulators, to the
best of our knowledge, assume second-order Newtonian dy-
namics, it is difficult and inefficient to modify them to support
our CQDC dynamics formulation. Therefore, we implemented
the proposed dynamics formulation using the Drake robotics
toolbox [32]. Although our implementation is not heavily
optimized, it is adequate for computing contact-rich plans
within a reasonable amount of wall-clock time (a few minutes).

For the forward dynamics (Sec. III-B), we use Drake’s
MultibodyPlant and SceneGraph for collision detection and
the computation of the object mass matrix Mu, contact Ja-
cobians Ji and signed distances φi. The SOCP (27) can then
be constructed with MathematicalProgram and solved with a
third-party solver of our choice.

For the dynamics derivatives (Sec.III-C), we have a custom
implementation for differentiating through the KKT optimality
conditions of an SOCP using Eigen’s [57] linear solvers,
allowing us to efficiently compute the partial derivatives of
δq? with respect to (Q, b,Ji, φi) from primal-dual solutions
(δq?, λ?) given by third-party conic solvers. As for the partials
of (Q, b,Ji, φi) with respect to q, we note that b is a linear
function of q; ∂φi/∂q = Jni ; ∂Ji/∂q and ∂Q/∂q are com-
puted with Drake’s forward-mode automatic differentiation.

Finally, in order to avoid discontinuities coming from col-
lision detection, we curate our system models so that every
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contact pair is either sphere-sphere, sphere-box, or sphere-
cylinder, which means the contact points and normals change
smoothly with the system configuration q [58]. For example,
both the box-shaped fingers of the Allegro hand in Fig. 1a-
d and the box-shaped manipuland in Fig. 1b are represented
as arrays of inscribing spheres for the purpose of collision
detection. We note that this limitation can be alleviated with
smoothing over collision geometries [59], [60].

IV. SMOOTHING OF CONTACT DYNAMICS

In this section, we combine our formalism and the computation
methods of smoothing in Sec.II and the CQDC dynamics in
Sec.III, resulting in a class of methods that efficiently make
local approximations to the smooth surrogate of our convex
quasi-dynamic contact model. Throughout this section, we
assume we compute a local model of the smooth surrogate
around some nominal state-input pair (q̄, ū).

A. Randomized Smoothing of Contact Dynamics

We follow the method in Sec.II-D in order to perform
randomized smoothing of the contact dynamics. For first-order
randomized smoothing, we utilize (21) with access to gradients
of the contact dynamics obtained in Sec.III-C. We similarly
do zero-order randomized smoothing using (22).

However, there is a caveat in the randomized smoothing
scheme: if the sampling distribution ρ has infinite support,
the sampled state q̄ + wqi could violate the non-penetration
constraint for rigid-bodies, i.e. φ(q̄ + wqi ) < 0 for some i.

Although reasoning about the dynamics f(q, u) with an
infeasible (penetrating) q may seem ill-posed [61], we can
define the dynamics from an infeasible q as the projection of
q to the “nearest” point in the feasible (non-penetrating) set.
The notion of nearest can be defined in terms of the work
required to move the system configuration by δq, which is
precisely the quadratic cost (27a) (divided by the step size h).
This projection problem can then be written as

min.
δq

1

2
δqᵀQδq + bᵀδq, subject to (31a)

φi(q + δq) ≥ 0, i ∈ {1 . . . nc}, (31b)

where (31b) is the non-linear non-penetration constraint.
While the projection in (31) is difficult to solve in general,

we can linearize the constraint (31b) in order to locally
approximate the problem as a QP. When the constraint is
linearized, the problem remarkably becomes equivalent to the
frictionless special case of the CQDC dynamics (27). In other
words, projection is simply another interpretation of what the
CQDC dynamics does within the penetrating regime, and no
other explicit treatment is required for projection other than
the evaluation of CQDC dynamics. In practice, due to the local
nature of linearization, we use a low-variance distribution ρ to
sample states, though higher variance can be used for inputs.

When samples within the penetrating regime are projected
onto the boundary of the feasible set and then averaged, the
expected value of such a distribution creates a stochastic force
field that pushes the object away from feasible set’s boundary.
We illustrate this phenomenon through a simple example.

Fig. 4: Figure for Example 3, where quasi-dynamics of motion is
interpreted as a projection operator. (a) Illustration of the system. (b)
Distribution of q+w (green) and f(q+w) (pink). Note that the sam-
ples for which q+wi < 0 have been projected onto the surface into
a delta function, and the expectation of the pink distribution lies on
the right side of q, creating a stochastic force field effect. (c) CQDC
dynamics and its randomized smoothed version. (d) Gradients of the
CQDC dynamics obtained with first-order randomized smoothing.

Example 3. (The Stochastic Force Field) Consider the
dynamics of an unactuated 1D block with a wall occupying
q ≤ 0 (Fig. 4a), such that the physical dynamics is identity
if the block is in a non-penetrating configuration, f(q) = q if
q ≥ 0. The dynamics within the penetrating regime is not well-
defined physically; yet, applying the quasi-dynamic equations
of motions (31) to this system gives

min.
δq

1

2
m(δq)2, subject to (32a)

q + δq ≥ 0. (32b)

which has the following solution,

f(q) = q + δq =

{
q if q ≥ 0 (no penetration)
0 else (penetration)

(33)

One interpretation of (33) is that configurations inside the
wall gets projected onto the wall. By taking an average
according to such dynamics, the expectation pushes the box
away from the wall as illustrated in Fig. 4, which creates
a stochastic force field. Note that with this interpretation,
the gradients are also well-defined within the penetrating
regime - an infinitesimal change of position in the penetrating
configuration does not have any effect on the location of
projection in this example, thus ∂f(q)/∂q = 0 if q < 0 (But
note that after smoothing, ∂fρ(q)/∂q > 0). For more complex
geometries, the location of projection changes due to changes
in the surface, which we connect back to the presence of the
∂J/∂q and ∂φ/∂q terms in (30a).

B. Analytic Smoothing of Contact Dynamics

Randomized smoothing simply involves solving (27) repeat-
edly and averaging the resulting q+, A, and B. In contrast,
analytic smoothing (Sec.II-C1) of the CQDC dynamics (27)
is not as straightforward, since the solution to an optimization
problem does not give easy access to explicit forms from
which we can analytically design smooth surrogates.

To perform analytic smoothing, we can convert the hard
constraints in a convex program into costs using a penalty
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method. Specifically, we convert the constrained program (27)
into an unconstrained convex program using the log-barrier
function, a common technique in the interior-point method
for convex conic programs, with weight κ:

min.
δq

1

2
δqᵀQδq + bᵀδq

− 1

κ

nc∑
i=1

log

[
(Jniδq + φi)

2

µ2
i

− (Jtiδq)
ᵀJtiδq

]
,

(34)

whose solution converges to the solution of (27) as κ → ∞
[33, §11.3 and §11.6].

The log-barrier term in (34) can also be interpreted as
the potential of a force field whose strength is inversely
proportional to the distance to the boundary of the constraint
[33, p.567]. For moderate values of κ, constraints can exert
forces even though they are not active, achieving a smoothing
effect similar to the “force-at-a-distance” relaxation of comple-
mentarity constraints, which are commonly used in planning
through contact methods such as [15], [23]. We will further
illustrate this similarity in Example 4.

From δq?, the solution to the smoothed dynamics (34), we
can directly compute the smoothed gradient Aρ and Bρ in
the same way as (29). Once again, the derivatives of δq? with
respect to q and u are computed by applying the implicit
function theorem to the optimality condition of (34), which
only consists of the stationarity condition due to the absence
of conic constraints.

To solve (34), we implemented an in-house solver using
Newton’s method [33, §9.5], and find that our out-of-the-
textbook implementation works robustly and reliably for all
numerical experiments in Sec. V and VIII.

C. Equivalence of Smoothing Schemes
In Sec.II, we saw that randomized and analytic smoothing

can be interpreted as different methods of computing the same
quantity. Here, we show with examples that (i) for simple
systems, we can derive the sampling distribution ρ needed to
obtain the smoothing given by the log-barrier-based analytic
smoothing scheme; (ii) for more complex systems, randomized
smoothing schemes using a Gaussian ρ and the log-barrier-
based analytic smoothing scheme result in qualitatively-similar
smoothed dynamics.

Example 4. (Equivalence of Smoothing Schemes) We start
with the 1D frictionless system in Fig. 5a, whose dynamics is
an instance of the frictionless CQDC dynamics (27):

min.
δqa

1

2
hka(δqa)2 − hka(u− qa)δqa, subject to

qa + δqa ≥ 0,
(35)

The KKT conditions of (35) are also the equations of motion
of the system:

hka (qa + δqa − u) = λ, (36a)
0 ≤ qa + δqa ⊥ λ ≥ 0, (36b)

which has the explicit solution

qa
+ = qa + δqa =

{
u if u ≥ 0 (no contact)
0 else (contact)

. (37)

Fig. 5: (a) A system consisting of an actuated cart constrained to
slide on a frictionless surface, and a wall occupying qa ≤ 0. The
actuator has stiffness ka. (b) A system consisting of an unactuated
cart constrained to slide on a frictionless surface, and a ball actuated
along both the x and y axes. The ball can touch the top surface of the
cart with a frictional contact. (c) Randomized and analytic smoothing
of (a). Randomized smoothing, shown in green, is done with a
Gaussian kernel with different variances σ. Analytic smoothing,
shown in magenta, is done with different log-barrier weights κ. (d)
Density functions of the Gaussian kernels (green) and the elliptical
distributions used for analytic smoothing (magenta). (e) Randomized
and analytic smoothing of (b). We plot qu+ against ux for a fixed uy
that is inside the cart. The linear region in the plot corresponds to
sticking contact, and the flat regions to sliding.

Also as an instance of (34), (35) can be smoothed analyt-
ically by converting the constraint into a cost using the log-
barrier function:

min.
δqa

1

2
hka(δqa)2−hka(u−qa)δqa− 1

κ
log (qa + δqa) , (38)

whose optimality condition is obtained by setting the gradient
of the smoothed cost to 0, yielding the equations of motion
of the smoothed system:

hka(qa + δqa − u) =
1

κ

(
1

qa + δqa

)
. (39)

The right-hand side of (39) can be interpreted as an impulse
whose magnitude is inversely proportional to the distance to
the wall. Calling this impulse β, we note that

β(qa + δqa) = κ−1, (40)

which is analogous to the common bilinear relaxation to the
complementarity constraint for contact [15], [23].

The solution to (39) is given by

qa
+ =

1

2

(
u+

√
u2 +

4

κh2k2
a

)
(41)
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which is equivalent to randomized smoothing of the original
dynamics under the following elliptical distribution

ρ(w) =

√
4σ

(wᵀσw + 4)3
, (42)

where σ := hkκ. We note that as opposed to the Gaussian,
this distribution has a heavy tail.

For more complex examples involving friction, such as the
system in Fig. 5b, obtaining an analytic expression for ρ
that corresponds to (34) is difficult. Instead, we numerically
illustrate the performance of the two smoothing schemes in
Fig. 5e. (See [16] for more details). We note that with a
different relaxation of complementary slackness, Howell et
al. showed a similar trend for the smoothed dynamics as the
relaxation is tightened [23, Fig. 7].

For more general settings beyond our simple examples, we
expect there to be subtle mathematical differences between
analytic and randomized smoothing, though they demonstrate
similar empirical behavior in our work.

V. CASE STUDY: TRAJECTORY OPTIMIZATION

Throughout the previous sections, we have developed the the-
ory and computational methods to obtain local linear models
of the smooth surrogate of the proposed CQDC dynamics.
These tools are not specific to any planning algorithm: they can
improve the performance of most iterative planning algorithms
that rely on gradients.

In this section, we demonstrate the efficacy of smoothed
CQDC dynamics on trajectory optimization for systems with
contacts. Although smoothing of hard contact constraints has
been widely utilized to improve convergence [15], [23], [62],
existing methods still struggle with complex problems such as
dexterous manipulation. In particular, the quality of solutions
can be very sensitive to initial guesses [34]. In this context, we
show that a variant of trajectory optimization, with the help
of smoothed CQDC dynamics and only a trivial initial guess,
can perform well even on dexterous manipulation tasks.

A. Iterative MPC with Smoothing

The variant of trajectory optimization algorithm used in this
section, which we call iterative MPC (iMPC), is an iLQR-
inspired algorithm proposed in [16]. We briefly summarize
iMPC here for completeness, and illustrate how smoothing
can be easily integrated into iMPC.

Consider the problem of finding an optimal sequence of
inputs to track some desired state trajectory {xdt }Tt=0. We need
an initial guess for the nominal input trajectory {ūt}T−1

t=0 , from
which the nominal state trajectory {x̄t}Tt=0 can be obtained by
rolling out {ūt}T−1

t=0 from the initial state x0. For every time t
(i.e. in a time-varying manner), we can create a locally linear
model that approximates the dynamics, with model parameters
{At,Bt, ct}T−1

t=0 (18). Then, finding the optimal {ūt}T−1
t=0 ,

subject to the locally linear model of the dynamics, can be
written as a QP. We present the MPC variant of this problem
that receives the initial state x̄j at time t = j and computes
the optimal action for the remaining time steps,

MPC(x̄j) = u?j ,where (43a)

min
xt,ut

∥∥∥xT − xdT∥∥∥2
QT

+

T−1∑
t=j

(
‖xt − xdt ‖2Qt + ‖ut‖2Rt

)
(43b)

s.t. xt+1 = At(xt − x̄t) + Bt(ut − ūt) + ct, (43c)
Cx
t xt ≤ dxt , Cu

t ut ≤ dut , ∀t ∈ {j · · ·T − 1}, (43d)
xj = x̄j . (43e)

Here, {Qt,Rt} are the quadratic weights for state and input,
respectively; QT is the weight on the terminal state; {Cx

t , d
x
t }

and {Cu
t , d

u
t } are inequality parameters on the state and input,

respectively. The linear constraints (43d) can enforce, for
instance, joint and actuation limits.

The iMPC algorithm is summarized in Alg. 1. In every outer
iteration (body of the while loop starting at Line 4), iMPC
solves truncated versions of (43) for T −1 times. Specifically,
at inner iteration j (body of the for loop starting at Line 6),
we solve MPC (43) for the sub-problem starting at t = j (Line
7), and apply u?j from the solution to update x̄j+1 (Line 8).
During MPC, we also enforce a trust region by using (43d) to
constrain xt and ut to stay close to x̄t and ūt, respectively.

Algorithm 1: iMPC
1 Input: Initial state x0, input trajectory guess {ūt}T−1

t=0 ;
2 Output: Optimized input trajectory {ūt}T−1

t=0 ;
3 {x̄t}Tt=0 ← Rollout f from x0 with{ūt}T−1

t=0 ;
4 while not converged do
5 Compute system matrices {At,Bt, ct}T−1

t=0 ;
6 for 0 ≤ j < T do
7 ūj ←MPC(x̄j) ;
8 x̄j+1 ← f(x̄j , ūj) ;

9 return {ūt}T−1
t=0

To apply smoothing to iMPC, we substitute the lineariza-
tions of smooth surrogates {At,ρ,Bt,ρ, ct,ρ}T−1

t=0 (20) for the
first-order Taylor expansions {At,Bt, ct}T−1

t=0 (18). After ev-
ery outer iteration, we reduce the variance of ρ, allowing the
smooth surrogates fρ to converge to true dynamics f . For
analytic smoothing, we initially set κ using physical intuition
from (40), and increase it every iteration.

B. Experiment Setup
1) Systems Description : We test iMPC with different

smoothing schemes on two planar systems from [16] and a 3D
system for in-hand rotation. We describe our systems below,
and their visualization can be seen in Fig. 11. The three tuple
after the name of each system indicates (nu, na, ncg), where
nu is the number of unactuated DOFs, na the number of
actuated DOFs, and ncg the number of collision geometries.

1) Planar Pushing, (3,2,2). A classical example of non-
prehensile manipulation [63]. The goal is specified as
some 2D configuration of the box.

2) Planar Hand Reorientation, (3,4,13). We use a planar
hand with two fingers, each with two DOFs. The goal
is to change the position and orientation of the ball in a
2D plane.
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(a) PlanarPushing.
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(b) PlanarHand Re-orientation.
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(c) AllegroHand Rotation.

Fig. 6: Performance of iMPC with different smoothing schemes: analytic, randomized (first-order), randomized zero-order, and exact (no
smoothing). For each method, the solid line represents the mean over five runs, and the shaded region represents the standard deviation.

3) Allegro In-Hand Rotation, (6,16,20). 3D In-hand rota-
tion of the ball with the full model of the Allegro hand
[14]. The goal is specified as a rotated configuration of
the ball.

2) Initialization: As mentioned in Sec. V-A, given an initial
state x0, we need to initialize the nominal input trajectory
{ūt}T−1

t=0 , where ūt is the commanded positions of the robots
at step t under the CQDC dynamics. Empirically, we find that
good convergence can be achieved with a constant initializa-
tion, i.e. ū0 = ū1 = . . . ūT−1.

For the numerical experiments in this section, we need a
ū0 that makes contact with the object. Otherwise the baseline
which does not use smoothing would have zero gradients and
make no progress at all.

In contrast, for iMPC with smoothing, it is sufficient to
set ū0 = qa

0 , as long as qa
0 is not “too far away” from

making contact with the objects (the reason is explained in
Example 6). In many practical problems, the object’s initial
configuration qu

0 is fixed, but we are free to choose the initial
robot configuration qa

0 . In this case, we can simply calculate
a qa

0 that is “close” to making contact using, for example,
methods that compute grasps [64].

3) Hardware & Implementation Details: The numerical
experiments are run on a desktop with one AMD Threadrip-
per 2950 CPU (16 cores, 32 threads) and 32GB of RAM.
The code for iMPC using different smoothing schemes is
identical except for the computation of the linearizations. For
analytic smoothing and the baseline, we solve respectively
the smoothed (34) and original (27) dynamics once and then
apply the chain rule to get the linearization. For first-order
randomized smoothing, we solve the original dynamics (27)
and apply the chain rule for 100 samples (N = 100), which
is parallelized on all available threads, and then average the
gradients of the samples. Zeroth-order randomized smoothing
simply requires parallel evaluation of the dynamics.

C. Results & Discussion

In Fig. 6, we plot the performance of iMPC with a baseline
that does not use smoothing, and the three different smoothing
schemes in Sec. II-C, namely analytic, randomized first-order,
and randomized zeroth-order. We also summarize the running
time of each method, as well as the minimum cost achieved

(a) Initial configurations and goals. Each system is shown in its
initial configuration q0. The thicker frame denotes the goal while
the thinner frame denotes the initial configuration of the object.

(b) Final object configuration achieved by the best runs within each
of the four methods. Pink shaded denotes the goal configuration
for the first two examples, while the goal configuration in the last
example is marked by the pink line protruding out of the object.
Colors correspond to the plots in Fig. 6.

Fig. 7: Tasks and results for the trajectory optimization case study.

Problem PlanarPushing PlanarHand AllegroHand
Method Cost Time(s) Cost Time(s) Cost Time(s)

A. 11.74 2.17 26.55 5.20 5.78 19.59
RF. 11.73 4.64 17.87 23.09 8.42 40.07
RZ. 12.86 4.61 18.29 11.93 28.21 34.05

Exact 31.64 1.88 18.49 5.91 44.68 12.92

TABLE II: Average of minimum cost and running time achieved
by different methods. All methods are ran for 20 iterations across
5 trials. Method abbreviations: A(Analytic), RF(Randomized First),
RZ(Randomized Zero).

across the iterations, in Table II. Illustrations of the tasks and
the results achieved by different methods are shown in Fig.
7. We interpret the results and discuss the relevant findings in
this section.

1) Exact vs. Smoothing: For PlanarPushing and Allegro-
Rotation, the various smoothing schemes achieve much lower
costs than using exact gradients. However, for PlanarHand,
using the exact linearization is performant as well. This
difference may be explained by the observation that the planar
hand example does not go through many mode changes, while
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the planar pusher and the Allegro hand require several mode
changes to converge to the optimal trajectory.

2) Analytic vs. Randomized Smoothing: Comparing the
performance of the three smoothing schemes, the analytic and
the first-order randomized smoothing perform similarly, while
the zeroth-order version does not perform as well. We believe
the cause lies in the high variance characteristic of the zeroth-
order estimator in higher dimensions.

3) Running (wall-clock) Time: While analytic smoothing
only requires one evaluation of the smoothed dynamics (34)
in order to compute (Aρ,Bρ, cρ), randomized smoothing
requires taking N samples and averaging them, which costs
N times more compute-time. After parallelization, we expect
randomized smoothing to be roughly N/ξ times slower than
analytic smoothing where ξ is the number of threads. Indeed,
with N = 100 and ξ = 32, our results show that randomized
smoothing is 2 to 3 times slower than analytic smoothing.

VI. LOCAL MAHALANOBIS METRIC FOR RRT
While trajectory optimization can find trajectories reaching
goals that are close to the initial configuration, it is highly
prone to local minima when the goal is further away (e.g.
moving the box back in PlanarPushing, rotating the ball by
180 degrees in PlanarHand, AllegroHand). To solve these
tasks, the planning algorithm needs to be more global. When
faced with such problems, the RRT algorithm [35] has proven
to be a classical and effective method for global planning.

However, extending RRT to dynamical systems (i.e. kino-
dynamic RRT) has been difficult, as a distance metric between
two states is hard to define. In [6], it was argued that a good
distance metric for RRT would need to explicitly consider
dynamic reachability in order to efficiently grow the tree.
The authors further proposed Reachability-Guided RRT (RG-
RRT), which had system-specific reachability metrics that was
shown to be effective for smooth systems. To alleviate the
limitation of being system-specific, later works have consid-
ered building such metrics based on local characteristics of
the dynamics such as local linearizations [7], [8].

However, when the dynamics involves contact, such lo-
cal linearizations are no longer informative, and existing
approaches often tackle dynamic reachability by explicitly
considering contact modes [9], [10]. This has led to planners
that scale poorly with the number of contacts. In contrast, we
propose to handle the challenges brought about by contact with
smoothing. We show that when combined with smoothing, the
locally linear model can be used to construct an informative
distance metric that is consistent with notions of reachability.

A. The Local Mahalanobis Metric
Consider the following problem: given the current config-

uration q̄, and some queried configuration q, how can we
formulate a distance metric d(q; q̄) that is consistent with
reachability characteristics of the system? We propose to uti-
lize the locally linear model around the nominal configuration
q̄, that characterizes the local response of the next system
configuration q+ with respect to the movement of the actuated
configurations u. This local model can be written as

q+ = B(q̄, q̄a) (u− q̄a)︸ ︷︷ ︸
δu

+c(q̄, q̄a) (44)

where the notation is consistent with the CQDC dynamics
formulation in Sec.III-B; the input u is the position command
to the system, and B, c are defined as (18). We note that the
contribution of A term is zero since δx = 0. Also note that
we set the nominal action to be ū = q̄a.

Given such a local characterization, and a queried state q,
we define the Mahalanobis metric as follows.

Definition 4. Local Mahalanobis Metric. Given a nominal
configuration q̄, and queried configuration q, we define the
Mahalanobis distance dγ of q from q̄ as follows:

dγ(q; q̄) := ‖q − µ‖Σ−1
γ

= 1
2 (q − µ)ᵀΣ−1

γ (q − µ)

Σγ := B(q̄, q̄a)B(q̄, q̄a)ᵀ + γIn, µ := c(q̄, q̄a).
(45)

The regularization γIn is added to ensure that Σγ is positive
definite and the inverse Σ−1

γ is well-defined. Note that the
ε-sublevel set of this metric dγ(q; q̄), which we denote by
Rε,γ(q̄), describes an ellipsoid that is centered at µ and has
a shape matrix Σ−1

γ . We further motivate our construction of
the metric by noting that this ellipsoid can be alternatively
characterized (equivalent up to regularization) by the set

Rε(q̄) := {B(q̄, q̄a)δu+ c(q̄, q̄a) | ‖δu‖ ≤ ε} . (46)

This equivalence relation is exact when B has full row rank
(i.e. the system is one-step controllable) and γ = 0. On the
other hand, if B loses rank, one of the principle axis of Rε
has a length of zero and the set becomes degenerate.

Finally, note that when q−µ /∈ Range(B), i.e. there is no
actuation u that can take the state q̄ to the queried state q, the
distance dγ(q; q̄) is a large number dominated by the inverse
of the regularization term γ−1, which is consistent with the
intuition that states that are harder to reach are further away.

B. Metric on Smoothed Dynamics and Unactuated Objects

As explained in the previous sections, the local model
constructed using B may not be a very informative one for
non-smooth systems with contact. In light of the various
smoothing schemes introduced in Sec.II to alleviate this issue,
we propose a metric by utilizing the linearization of the smooth
surrogate (Bρ, cρ) as described in (20), as opposed to those
of the original contact dynamics, (B, c).

Furthermore, for systems where robots interact with unac-
tuated objects through contact, we focus on the reachability of
the objects, as the robots are actuated and can easily move to a
desired configuration without contact. We combine smoothing
and the object-centric reachability in the following variant of
the Mahalanobis metric du

ρ,γ ,

du
ρ,γ(q; q̄) := ‖qu − µu

ρ‖Σu−1
ρ,γ

,

Σu
ρ,γ := Bu

ρ(q̄, q̄a)Bu
ρ(q̄, q̄a)ᵀ + γInu ,

µu
ρ := cuρ(q̄, q̄a).

(47)

where Bu
ρ is formed by the rows of Bρ corresponding to

the unactuated DOFs, and cuρ is defined similarly. Finally, we
define Ru

ρ,ε,γ(q̄) as the ε-sublevel set of du
ρ,γ(q; q̄).

In the rest of this section, we give several examples that
provide intuition into the local Mahalanobis metric du

ρ,γ and
its sublevel set Ru

ρ,ε,γ .
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Fig. 8: (a) Two different sublevel sets Ru
ρ,ε,γ , represented as ellipsoids, shown in the space of qu, with ε = 1, and γ = 10−6. The ellipsoid

centers are shifted to the origin for easy comparison. Red ellipsoid: Ru
ρ,ε,γ for the system configuration in Fig. 8b; blue ellipsoid: Ru

ρ,ε,γ

for the configuration in Fig. 8c. Points b1, c1 are where ellipsoids’ major axes intersect their boundaries. Points b2, c2 are points along the
minor axes of the ellipsoids, and satisfy ‖b1‖ = ‖b2‖ and ‖c1‖ = ‖c2‖, where the norm is based on the standard Euclidean metric. (b) The
solid robots and objects represent the q̄ at which the red Ru

ρ,ε,γ in (a) is computed. The straight line on the puck indicates its orientation.
The dashed dark red puck corresponds to the configuration b1, and pink to b2. Note that b1 is easier to each than b2. (c) Similar to Fig. 8b,
the dashed dark blue puck correspond to c1, and light blue to c2. It is also easier to reach c1 than c2. (d) The volume of Ru

ρ,ε,γ shrinks as
the fingers get further away from the puck. The ellipsoids on the right are color-coded to match the robot configurations on the left. Note
that the blue ellipsoid is barely visible.

Example 5. (Understanding B for Planar Systems) When
both the robots and objects are constrained in a plane (e.g.
the planar systems in Sec. V-B1), the CQDC dynamics (27)
simplifies to the following QP:

min.
δq

1

2
δqᵀQδq + bᵀδq, subject to (48a)

(Jni + µiJti)δq + φi ≥ 0, i ∈ {1 . . . nc}, (48b)
(Jni − µiJti)δq + φi ≥ 0, i ∈ {1 . . . nc}, (48c)

where the contact Jacobian Jti has only one row instead of
two, and the conic contact constraint (27b) reduces to two in-
equality constraints (48b) and (48c). We define J ∈ R(2nc)×nq

by stacking the Jni + µiJti and Jni − µiJti from (48b) and
(48c) into a single matrix, and partition J into Ju and Ja in
a similar way as in (24).

More structure behind the B matrix (as defined in (29)) can
be revealed with a bit of linear algebra. We can work out by
hand the application of the implicit function theorem to the
KKT conditions of (48), and the chain rule in (30b), to obtain
an explicit expression for B:

B =

[
Ba

Bu

]
=

[
I− (h2Ka)−1(J̃a)ᵀPJ̃a

M−1
u (J̃u)ᵀPJ̃a

]
, with (49a)

P =
[
J̃uM−1

u (J̃u)ᵀ + J̃a(h2Ka)−1(J̃a)ᵀ
]−1

. (49b)

where we assume J̃u and J̃a have full row rank. The tilde
over a Jacobian indicates the sub-matrix formed by rows of
the original matrix corresponding to the active constraints, i.e.
contacts with non-zero contact forces.

The structure in Bu explains why Bu
ρ is a good measure of

the object’s reachability when there is contact. We can interpret
Range(J̃ᵀ

u) as achievable object motions under the specific
subset of active contacts. By averaging Bu computed from
different contacts which can be activated from the nominal
(q̄, ū), Bu

ρ summarizes possible object motions due to contact,
in the form of Range(J̃ᵀ

u) weighted by Mu and P.
Furthermore, for a configuration with no active contacts,

(49) implies that Ba = I and Bu = 0, as both J̃a and J̃u

are empty matrices in the absence of active contacts. This has

the intuitive interpretation that under a u that does not lead to
contacts, the robot will move to where it is commanded to,
and the object will remain still.

As Bu
ρ is the expected value of Bu, it follows naturally

from the above observation that the local distance metric
du
ρ,γ tends to be dominated by the regularization γInu

for a
nominal configuration q̄ where robots and objects are far from
making contact. In such cases, the probability that an action
u sampled from a distribution ρ centered at q̄a leads to active
contacts is low. As a result, in the Monte-Carlo estimation
of Bu

ρ , such samples simply introduce 0 into the average,
dragging the distance metric du

ρ,γ towards being dominated
by the regularization.

Example 6. (Metric on Planar Hand) We illustrate how the
Mahalanobis metric can guide planning using the PlanarHand
system first introduced in Sec. V-B. As shown in Fig. 8, the
system lives in the xy plane, with gravity pointing into the
paper along the negative z direction. The system consists of
two actuated 2-link robotic fingers and an unactuated puck
which is free to translate and rotate. Each finger can interact
with the ball through frictional contacts along both links.

For a given qu, the difficulty of reaching qu from (q̄, ū)
can be measured by the local Mahalanobis metric du

ρ,γ , whose
1-sublevel sets are shown in Fig. 8a as ellipsoids. Although
object configurations b1 and b2 are equidistant to the origin
under the globally-uniform Euclidean metric, b1 is considered
much closer than b2 under the local Mahalanobis metric (red
ellipsoid). Indeed, in Fig. 8b, reaching b1 from the current
puck configuration seems easier than reaching b2. A similar
observation can be made for the configuration in Fig. 8c.

In addition, the local Mahalanobis metric also varies greatly
from one configuration another, as evidenced by the difference
between the blue and red ellipsoids in Fig. 8a. This implies
that a globally-uniform metric is rarely a good measure of
reachability characteristics.

Lastly, the ellipsoid that corresponds to the 1-sublevel set
shrinks as the nominal state gets further away from the
contact manifold, as shown in Fig. 8d. This signifies that
the configurations where the object is less accessible by the
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robot are naturally considered “further away” and can thus be
avoided by the planner.

VII. RRT THROUGH CONTACT

We are now ready to present our smoothing-based enhance-
ments to the vanilla RRT algorithm, which we reproduce
in Alg. 2 to establish notations for our discussion. Our
method enhances RRT by incorporating (i) a reachability-
aware Nearest operation based on the smoothed Mahalanobis
metric on the unactuated objects du

ρ,γ , (ii) a fast Extend

operation based on the projection of the subgoal to the range
of Bρ; and (iii) a contact sampling procedure which improves
the reachability of nodes added to the tree.

We denote the RRT tree as T = (V, E) with vertex set V
and edge set E . Each node q ∈ V is simply a point in the
configuration space of the system.

Algorithm 2: RRT
1 Input: qinit, qgoal,K;
2 Output: T ;
3 T = {qinit};
4 for k = 1, . . . ,K do
5 qsubgoal = SampleSubgoal(p);
6 qnearest = Nearest(qsubgoal);
7 qnew = Extend(qnearest, qsubgoal);
8 AddNode(qnew) ;
9 if GoalReached then

10 break;

A. Nearest Node using Local Mahalanobis Metric

As illustrated in Sec.VI, in particular by Example 6, a
globally-uniform metric used by the vanilla RRT is usually
a poor measure of reachability. Given a subgoal qsubgoal, if
the nearest node qnearest is chosen under a globally-uniform
metric, reaching qsubgoal from qnearest may require large u
or even be dynamically infeasible. This will compromise
RRT’s ability to explore the configuration space, as trying to
Extend towards a hard-to-reach qsubgoal typically returns a
child node that is close to the parent node qnearest. In order
to retain RRT’s ability to efficiently explore under dynamics
constraints, we use the smoothed Mahalanobis metric (47)
instead of the usual Euclidean metric in the Nearest step:

qnearest = argminq∈V d
u
ρ,γ(qsubgoal; q). (50)

B. Dynamically Consistent Extension

After choosing qnearest from the tree T , we need an action
or a sequence of actions that moves the system from qnearest

to qsubgoal subject to the dynamics constraint. One feasible
strategy to connect qnearest to qsubgoal is to solve for an input
sequence {ut}T−1

t=0 using a trajectory optimization algorithm
such as Alg. 1 [36]. However, the high computational cost of
trajectory optimization motivates us to seek a simpler solution.

Fortunately, as a result of the farsightedness of quasi-
dynamic models, even an input sequence with T = 1 (i.e. a
single time step) can steer the system fairly far away from
qnearest. Although trajectory optimization with T > 1 can

explore a larger region around qnearest, we find in practice
that a single time step is sufficient for Extend to effectively
grow the RRT tree T .

We present the modified Extend that uses a single time step
in Alg. 3. The input u is computed by projecting (qu

subgoal−µu
ρ)

to Range(Bu
ρ) (20), (47) using least-squares (Line 3). After-

wards, we normalize the input and multiply it by some stepsize
ε. The scaled input is then passed to the forward dynamics to
obtain a new node. Crucially, we use the actual dynamics f
as opposed to the smooth surrogate dynamics fρ (Line 4).
This ensures that while the search for the next action relies on
the smoothed model, the actual path is dynamically consistent
under the original non-smooth contact dynamics (i.e. CQDC).

Algorithm 3: Extend
1 Input: qnearest, qsubgoal;
2 Output: qnew;
3 δu? = argminδu‖Bu

ρδu+ cuρ − qu
subgoal‖ ;

4 return f(qnearest, q
a
nearest + ε · δu?/‖δu?‖) ;

C. Contact Sampling
A node q where robots and objects are far from making

contacts hinders the growth of the RRT tree for two reasons.
First, such nodes are considered far away from most sampled
subgoals under the local Mahalanobis distance metric (Fig.
8d). As a result, adding such nodes to the tree hardly improves
coverage of the state space. Moreover, in the event that such a
node is chosen by Nearest, the Extend operation that follows
often results in other unfavorable configurations.

To reduce the number of such nodes in T and encour-
age exploration during tree growth, the Extend operation is
replaced, with some probability, by a new operation called
ContactSample. ContactSample takes qnearest as input, and
creates another node with a better local metric by fixing
qu
nearest and finding an informative qa

nearest that makes contact.
The ContactSample operation is essential for adequate

exploration of the robot’s state space, and needs to be designed
differently for different robots. Here we summarize our im-
plementation of the contact samplers for the systems in Fig.
10, which are used in our experiments in later sections. In
PlanarPusher and PlanarHand, we can sample contact points
on the object surface and solve for robot joint angles using
inverse kinematics. For systems with the Allegro hand, we
pick a random direction in the hand configuration space using
EigenGrasps [65], and simulate closing the hand along that
direction until contact is established.

Contact sampling introduces non-physical behavior where
the robot teleports from one configuration to another. This is
not a problem when the object can sustain static equilibrium
without the actuated DOFs that need to teleport. For instance,
in AllegroHand, when the ball is supported by the palm, the
fingers are free to move around to regrasp the ball. In contrast,
if AllegroHand were facing downwards, the ball would fall
under gravity if it were not secured by some of the fingers.
Although this is a limitation of our current implementation
of contact sampling, we believe this can be resolved by a
more sophisticated contact sampler which moves some of the
actuated DOFs while keeping the object in static equilibrium
with the rest.
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Fig. 9: (a-d) RRT trees, shown in the space of qu, at different iterations of a complete run of the enhanced RRT for the PlanarHandFixedY
system. The contours are the sub-level sets of the local Mahalanobis metric of the nodes. The path from start (qinit) to goal (qgoal) is
highlighted in red in the final tree of (d). (e-h) Visualization of RRT trees with the same number of nodes (50) but grown with different
methods. (e) Tree grown with our algorithm; (f) without contact sampling; (g) using a globally uniform weighted Euclidean metric; (h) using
exact gradients without smoothing. Note that our method achieves the best coverage of the space of qu.

D. Effectiveness of Proposed Enhancements
We introduce a new system with a 2-dimensional object con-

figuration space to illustrate the effectiveness of the proposed
RRT enhancements:
• Planar Hand with fixed y, (2,4,13). A simplified version

of the PlanarHand system in Sec. V-B. We fix the y-
coordinate of the object, so that qu = (x, θ) ∈ R2 can be
easily plotted on paper.

As shown in Fig. 9e, the vanilla RRT enhanced with the
proposed Nearest, Extend and ContactSample achieves
good coverage of the space of qu, which is crucial for RRT to
adequately explore the configuration space and find a path to
qgoal. In contrast, tree growth is significantly hindered without
contact sampling (Fig. 9f) or the local metric (Fig. 9g).

We also illustrate how the tree grows throughout a complete
run of the enhanced RRT in Fig. 9a-d. Even with the proposed
enhancements, tree growth can get stuck at times. This is
characterized by a specific type of subgraph of the tree which
we call a “broom”. A broom consists of one parent node with
many child nodes, and is formed by repeated unsuccessful
attempts to grow towards different subgoals from the same
parent node. The occasional appearance of brooms is a sign
that the proposed enhancements are not perfect. Nevertheless,
the enhanced RRT is able to quickly branch out into empty
part of the configuration space, and sufficiently cover the space
as the tree grows.

E. Final Path Refinement
The final path returned by the RRT algorithm is visually

plausible, yet suffers from two minor drawbacks: (i) RRT tends
to produce randomized paths that can be shortened, and (ii)
the big step size used in the Extend operation creates some
non-physical artifacts due to Anitescu’s convex relaxation of
the Coulomb friction model (Sec.III-B).

To mitigate these issues, we refine the RRT plan us-
ing trajectory optimization [37], [66] and short-cutting [67].
We first divide the RRT path into segments punctuated by
ContactSample operations. We call these segments contact-
rich as they involve contact-based interactions between the
object and the robot. We shortcut the sequence of trajectories
by (i) removing consecutive ContactSample steps, and (ii)
truncating each segment if there is no movement in qu. Then,
for each contact-rich segment, we run trajectory optimization
(Alg.1) with a smaller time step h, using the RRT path segment
as the initial guess. This not only smooths the final path, but
also ensures that each trajectory segment is more physically
realistic. Finally, we connect adjacent contact-rich segments
with a collision-free robot trajectory created by a collision-
free RRT. We assume that the object configuration remains
unchanged during the collision-free segment.

We find that combining these two strategies is effective in
creating shorter and more physically realistic trajectories.

VIII. PLANNING RESULTS & DISCUSSION

In this section, we apply our algorithm on difficult 3D contact-
rich manipulation problems previously only tackled by heavy
offline approaches in RL [2], [38], and illustrate that we can
generate plans on the order of a minute of online compute
time, all on the CPU, which shows the efficacy of our method.
The experiments in this section are designed to validate the
following four hypotheses.

1) Using smooth surrogate greatly improves the perfor-
mance over using the exact dynamics.

2) The equivalence of smoothing schemes establishes that
analytic and randomized smoothing will have similar
levels of performance empirically, with analytic smooth-
ing showing superior computation time.

3) Using the Mahalanobis distance metric improves perfor-
mance over a globally uniform distance metric.
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Fig. 10: Tasks for RRT. Similar to Fig. 7b, the thicker frame denotes the goal, and the thinner frame the initial configuration of the object.

4) Contact sampling greatly aids sample efficiency.

A. Experiment Setup

To test the efficacy of our algorithm and our hypotheses,
we run our algorithm to reach more challenging goals than
the trajectory optimization examples in Sec. V-B1, as well as
on 3 more contact-rich tasks on 3 new systems defined below.

1) Pen Placement (6,19,24). The robot hand move the pen
[38] to the desired configuration.

2) Plate Pickup (6,19,42). The robot has to exploit the
external contact between the plate and the wall [10],
showing extrinsic dexterity [39].

3) Door Opening (2,19,22) [38] involves reasoning about
a constrained system, where the handle must be rotated
first before the door can be pushed open.

The definition of the number tuples is identical to Sec.V-B1.
The contact-rich planning tasks are illustrated in Fig. 10.

We design the tasks so that solving any of them with a single
run of trajectory optimization is expected to fail due to the
non-convexity of the problem.

To compare our algorithm with different baselines, we rate
the quality of planners using two metrics:

1) Iteration vs. Minimum distance to goal. we measure
the distance between the goal and the tree, defined by
minq∈V ‖qu − qu

goal‖ for every iteration. A successful
planning algorithm would eventually reach the vicinity
of the goal asymptotically, driving this metric to zero.

2) Iteration vs. Packing Ratio. To characterize the ex-
ploration performance of RRT, we do a Monte-Carlo
estimation of the packing ratio, which is defined as
the volume of the space occupied by the reachability
ellipses, divided by the total volume of some workspace
limit for the unactuated objects. The workspace limit is
the set from which subgoals are sampled when running
RRT. More formally, we define the numerator as

Vreachable = vol
(
{qu|min

q̄∈V
du
ρ,γ(q; q̄) ≤ η}

)
(51)

where η is some threshold on the distance metric. The
Monte-Carlo estimate of Vreachable/Vworkspace can be
computed by drawing N samples within the workspace
and counting how many of them belong to Vreachable. A
good planner should asymptotically reach a ratio of 1 if
the system can reach all points in the object’s workspace
from which qu

subgoal are sampled.
For both metrics, the performance of our RRT algorithms

averaged over 5 runs is plotted in Fig. 11 for different smooth-
ing schemes, as well as ablations of different choices we made

for the algorithm. In particular, we run three variations of our
algorithm while ablating a crucial ingredient.

1) Exact. We replace the linearization of the smooth sur-
rogate Bρ with the exact linearization B of CQDC dy-
namics, used for both extension and metric computation.

2) NoContact. We do not allow contact sampling
(Sec.VII-C) in this variant of the algorithm.

3) Global. Instead of the local Mahalanobis metric, we use
a globally-uniform metric during the Nearest step of
the algorithm. For our experiments, we use a carefully-
chosen weighted Euclidean norm.

B. Results & Discussion
We plot the results of our experiments in Fig. 11, and

display the running time of our algorithm using the three
different smoothing schemes in Table III. We discuss some
of our findings from the experiment, in the context of our
hypotheses in the beginning of this section.

Method PPushing PHand AHand APlate APen ADoor
A. 3.25 10.32 31.01 117.16 24.84 12.42
RF. 7.50 21.34 80.12 161.64 86.12 34.55
RZ. 7.40 21.00 82.00 168.11 81.23 33.80

TABLE III: Running time achieved by different methods in seconds.
Every trial was run for 1000 iterations. We choose to not display
running time for the ablation options since they are slight variations
of Analytic with comparable running times.

1) Smoothing vs. Exact: Throughout all experiments, we
saw that using the exact linearization to compute the distance
metric and extension results in much worse performance
compared to any of the smoothing schemes, which supports
our hypothesis that mode smoothing is necessary in order to
solve many of the tasks.

2) Analytic vs. Randomized Smoothing: For most of the
tasks, we saw no meaningful difference between analytic and
randomized smoothing schemes in terms of both how fast
the goal is reached and the packing ratio. This empirically
supports our theory that the two smoothing schemes are
equivalent methods to compute local models of surrogate
dynamics. The running time in Table III, however, shows that
analytic smoothing results in faster computation time as it does
not require taking multiple samples.

3) Global vs. Mahalanobis Metric: Despite reasonable ef-
forts to choose good weights for the weighted Euclidean norm,
we consistently observed that the globally uniform weighted
Euclidean metric resulted in much worse performance com-
pared to the local Mahalanobis metric. This supports our
hypothesis, and the findings of [6] that kino-dynamic RRT
in general greatly benefits from guiding tree growth with
reachability information.
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(a) Planar Pushing.
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(b) Allegro Plate.
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(c) Planar Hand.
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(d) Allegro Pen.
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(e) Allegro Hand.
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(f) Allegro Door.

Fig. 11: Planning performance for the tasks in Fig. 10. Results include running RRT with the enhancements proposed in Sec. VII using the
three smoothing schemes from Sec. II-C, as well as the three ablation studies proposed in Sec. VIII-A.

4) Effect of Contact Sampling: For some of the tasks (e.g.
AllegroPlate, AllegroPen), contact sampling was not neces-
sary. However, for examples that require resetting the actuator
into a completely different configuration to make progress (e.g.
PlanarPushing, AllegroHand, PlanarHand), contact sampling
greatly improves the planner’s performance. Although our
contact samplers are simple and can benefit from more so-
phisticated implementations, the experiments show that contact
sampling is essential for RRT to efficiently explore through
contact dynamics constraints.

IX. SIM2REAL TRANSFER & HARDWARE RESULTS

Although our planner successfully plans through our CQDC
dynamics model, we further investigate if the plans can
successfully transfer to real experiments. For this purpose, we
run the obtained plans from Sec.VIII in open-loop on a higher
fidelity simulator Drake [32], as well as an actual hardware
setting. These experiments further shed light on the efficacy
and the limitations of our proposed method.

A. Experiment Setup

1) Open-Loop Plan Transfer: Our plan consists of state
and action sequences, i.e. lists of “knot” points, that are
consistent with the CQDC dynamics. We first divide this plan

into individual segments ({qk,sim}Kk=0, {uk}K−1
k=0 ), punctuated

by the ContactSample operation.
Next, we convert the knot points ({qk,sim}Kk=0, {uk}K−1

k=0 )
into state and action trajectories qsim : [0, T ] → Rnu+na and
u : [0, T ] → Rna using first-order hold2. Here T denotes
the duration of the trajectories in seconds. Rolling out u(·)
on the real dynamics gives qreal : [0, T ]→ Rnu+na , which is
compared against qsim(·) to evaluate the sim2real performance.

2) Evaluation Metrics: To evaluate the performance of
sim2real transfer, we first define the mean error ∆(·, ·) be-
tween the two trajectories qu

sim(·) and qu
real(·) as

∆(qu
sim, q

u
real) :=

1

T

∫ T

0

d (qu
sim(t), qu

real(t)) dt (52)

where d(·, ·) is the Euclidean 2-norm for position (in meters),
and the absolute change in angle for orientation (in radians).
For 3D, this change of angle comes from axis-angle rotations.

In addition, we expect that the metric ∆ will depend on how
much movement is inside the reference trajectory of the plan.
To account for this scaling, we normalize ∆ by dividing it by

2we connect adjacent knot points with linear interpolation for positions and
joint angles, or spherical linear interpolation (Slerp) for 3D orientations.
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Fig. 12: Plots for sim2real performance of our CQDC dynamics, evaluated on the plans of Sec.VIII. First Two Columns: Scatter plot
of mean error ∆ vs. path length for position (first column) and orientation (second column). Each dot in the plot represents one segment
trajectory. Last Two Columns: Box plot for the normalized error ∆̄ for positions (third column) and orientation (fourth column). Note that
the mean in orange corresponds to the slope of the graph in the first two columns. Finally, we note that the AllegroHandDoor (AHD) example
only consists of orientation, and has no position plot. Readers are highly encouraged to watch the accompanying video for the qualitative
behavior of the actual segment trajectories in this plot. System abbreviations: AH(AllegroHand), AHPe(AllegroPen), AHPl (AllegroPlate),
PP(PlanarPushing), PH(PlanarHand), AHD (AllegroDoor), IB(IiwaBimanual)

the length of the trajectory in the original plan, and denote the
normalized error as ∆̄:

∆̄(qu
sim, q

u
real) :=

∆(qu
sim, q

u
real)

L(qu
sim)

, (53)

where the denominator computes the path length of qu
sim:

L(qu
sim) :=

∫ T

0

‖q̇u
sim(t)‖2 dt =

K−1∑
k=0

d(qu
k+1,sim, q

u
k,sim).

(54)
This normalization also takes into account the inherent

scales of the system, and makes ∆̄(·, ·) a dimensionless
quantity. For each system in Fig. 10, we obtain at least 10
segments and evaluate our error metrics.

3) Simulation Setup: We transfer the examples of Fig.10
into Drake [32], which utilizes a full second-order dynamics
model with a sophisticated and accurate contact solver [68].
The collision geometries, robot controller stiffness and co-
efficients of friction are kept consistent between the CQDC
dynamics and Drake.

Fig. 13: Hardware for the IiwaBimanual setup, where the goal is to
rotate the bucket by 180◦. The left and right pictures correspond to
the initial state and the final state after the open-loop plan execution.
The lines between motion capture markers are connected to illustrate
the change of pose in the bucket. Readers are encouraged to watch
the accompanying video for the full execution.

4) Hardware Setup: To verify results on actual hardware,
we create a variant of the PlanarHand environment, where the
object is replaced by a bucket, and 2 Kuka iiwa arms are used
for the actuators. We name this environment IiwaBimanual.
We utilize a motion capture system to estimate the state of

the bucket in order to compare the two trajectories of qu
sim(·)

and qu
real(·). Our setup is illustrated in Fig. 13.

B. Results & Discussion
We plot the results of our experiments in Fig.12. While

2D systems such as PlanarPushing, PlanarHand, and Ii-
waBimanual display low error and good sim2real transfer,
3D systems such as AllegroHand, AllegroPlate, AllegroPen
and AllegroDoor show larger error. To better understand the
discrepancy of sim2real performance on different systems, we
visualized trajectories from all systems by overlaying qu

real on
top of qsim (see accompanying video).

From the visualizations, it is clear that on all systems,
there exists a persistent phase difference between qu

real and
qu
sim: qu

real tends to lag qu
sim when the robot accelerates,

and lead when the robot decelerates. This is not surprising,
as the CQDC dynamics that generates qu

sim is inherently a
first-order system, whereas qu

real is generated from second-
order dynamics. On trajectory segments with good sim2real
performance, this only results in harmless oscillations of qu

real

around qu
sim. In these cases, we believe that the good sim2real

performance validates our contact model. We now discuss
other cases where sim2real is not as effective.

1) Violation of Quasi-dynamic Assumption: The quasi-
dynamic assumption implies that objects are quickly stopped
by damping when they are not “pushed around” by the robot.
This is true on 2D systems, as the friction patch between
the object and its supporting surface is persistent and always
provides enough damping to bring the object to still.

However, the necessary damping to uphold the quasi-
dynamic assumption does not always exist on 3D systems.
For instance, in AllegroHand and AllegroHandPen, the point
contact between the object and the palm provides very little
damping. Most of the damping comes from the finger joints
when the fingers are opposing the object’s motion. Therefore,
when the grasp on the object is not tight, the object can roll
quite far from the planned trajectory or even off the palm.

2) Missed Contacts: Due to the non-smooth nature of con-
tact dynamics, small discrepancies in object trajectory caused
by the phase gap can lead to the robot completely missing
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contacts with the object. For example, we observed that in
AllegroHandPlate or AllegroHandDoor, some grasps that were
valid under the CQDC dynamics no longer succeeded in
holding the object in place in Drake. The consequence of these
failed grasps is that plates are dropped on the table in Allegro-
HandPlate, and door handles are missed in AllegroHandDoor.

3) Necessity of Stabilization & Robustification: These re-
sults tell us that plans suggested by the CQDC dynamics can
give high-level directions, but its open-loop execution may
not succeed under second-order dynamics with high velocities
and low amount of damping. We believe that tracking this
high-level plan requires low-level feedback controllers that
can stabilize to the plan, and actively enforce the closed-loop
system to be quasi-dynamic. We also believe that the high-
level planer can benefit from robustness objectives such as
encouraging grasps that are considered good under classical
grasping metrics. Such grasps will increase the control author-
ity of the robot over the object, thereby providing sufficient
damping and decreasing the chances of dropping the object.
We leave these as promising directions for future work.

X. CONCLUSION

We motivated our work by noting the stark contrast between
the empirical effectiveness of RL for contact-rich settings and
the struggle of the model-based methods. By identifying the
pitfalls in the existing model-based methods for planning,
understanding how RL was able to alleviate such pitfalls, and
resolving them with model-based techniques, we have shown
that traditional model-based approaches can be effective in
tackling planning for contact-rich manipulation. Compared to
existing tools in RL which use heavy offline computation
in the order of hours or days, our contribution offers a
powerful alternative in the spectrum of solutions by enabling
efficient online planning in the order of a minute while being
generalizable with respect to environments and tasks. We recap
some of our contributions that enabled this process.

We first pointed out the pitfall of explicit enumeration and
consideration of modes in model-based methods, whereas RL
has smoothed them out stochastically. Through Sec. II, we for-
malized the process of smoothing for functions. This allowed
us to view randomized smoothing in RL as a computational
alternative to analytic smoothing used in existing model-based
literature that both approximate local models of the smooth
surrogate. This connection was made more concrete in the
setting of contact dynamics in Sec. IV-C.

Next, we have pointed out another weakness in model-
based approaches where transients of second-order dynamics
lead to myopic linearizations which are uninformative about
long-term planning. As a solution to this weakness, we have
presented CQDC, a novel formulation of contact model that is
convex, differentiable, and quasi-dynamic. Through a number
of theoretical arguments and empirical studies, we have shown
the efficacy of our contact model. We have further shown
that by inspecting the structure in our proposed model, we
can analytically smooth out the contact dynamics with a log-
barrier relaxation. With experiments, we have shown that our
method of analytic smoothing has computational benefits over
randomized smoothing.

Finally, we observed that existing model-based methods
that rely on smoothing have been tied to local trajectory
optimization. Due to their weakness to local minima, they
have been less effective in difficult problems compared to RL-
based approaches that attempt to perform global search. On the
other hand, the SBMP methods for contact-rich systems have
explicitly considered contact modes which fall into the pitfall
of mode enumeration. Our contribution fills in a gap in existing
methods by combining mode smoothing with RRT, where local
approximation to the smooth surrogate was used to guide the
exploration process of RRT via the local Mahalanobis metric.

By combining these three contributions, we have enabled
efficient global motion planning for highly contact-rich and
high-dimensional systems that were previously not achievable
by existing model-based or RL-based methods. We believe that
in the future, a highly optimized version of our planner can
be used to perform real-time motion planning, or be used to
guide policy search. With this capability, we hope to enable
robots to find contact-rich plans online in previously unseen
environments within seconds of planning time.
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