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Abstract— Pneumatic actuators have many attributes such as
natural compliance and high peak power capabilities that make
them attractive for research in dynamic legged locomotion.
However, the effects of nonlinear flow through the pneumatic
components limit the bandwidth of actuators, thus restricting
their use in a high-performance control system. We believe that
a model-based control design can overcome these bandwidth
limitations. In this study, we demonstrate that black-box system
identification of actuator dynamics can be effectively combined
with nonlinear trajectory optimization and stabilization to
accomplish dynamic tasks on underactuated robots. We present
two case studies: an underactuated cart-pole system with the
cart driven by a pneumatic actuator and a compass gait walking
robot with pneumatic toes.

I. INTRODUCTION

Dynamic legged locomotion requires actuators that are
lightweight, high-power, and able to withstand impact forces.
Fluid actuators outperform electric actuators in this regard,
and have been used in legged locomotion research and
applications; for example, hydraulic actuators are used in
the rough-terrain quadruped robot[1] and force-controlled
humanoid robot[2][3]. Pneumatic actuators, especially pneu-
matic muscles, are used in the bio-inspired humanoid
robot[4], walking biped robot[5], passive-based walking
robot[6], and running bipedal robot[7].

Pneumatic actuators have some advantages over hydraulic
actuators, such as clean operation, easy handling, natural
compliance, and the ability to carry power onboard in
compressed air tanks. A number of studies have reported on
the modeling and control of pneumatic systems to overcome
nonlinear properties resulting from the compressibility of the
air and effects of friction. Detailed nonlinear mathematical
models have been proposed[8], [9][10], [11]. The primary
disadvantage of pneumatic actuators is their low bandwidth
when compared to hydraulic actuators. However, humans can
perform highly dynamic athletic movements despite being
equipped with actuators (human muscles) that have band-
width limitations similar to those of pneumatic actuators[12].
This fact suggests that low bandwidth does not necessarily
imply poor performance; it implies that an actuator cannot
be treated as a perfect torque source and the dynamics of the
actuator should be considered in motion planning solutions.

In this paper, we propose a control method with model-
based trajectory planning that consider the actuator dynam-
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ics. Motion planning has been successfully applied to a
number of dynamic legged robots [13][14]. In particular, we
solve the motion planning problem by performing trajectory
optimization using a direct collocation method[15][16]. A
few studies have explored trajectory optimization for the
dynamic task using robotic systems with actuator dynamics.
Our observation is similar to that reported in [17]. Model-
based trajectory optimization based on the iterative linear
quadratic Gaussian (iLQG) method was used in [17] for
a pneumatic humanoid. On the other hand, we use black-
box identification of the pneumatic actuator and a different
trajectory optimization algorithm and experiment with an
underactuated control task; we believe that the results support
the growing body of evidence that suggests that model-based
design can partially overcome the perceived limitations of
pneumatic actuators.

II. MODEL-BASED OPTIMAL CONTROL ENHANCED BY

SYSTEM IDENTIFICATION

A. Overview

To realize motion planning for a robot system employing
actuator dynamics and nonlinear constraints, we propose
a combination of model-based trajectory optimization and
system identification techniques.

Complex actuator dynamics are usually neglected because
servo motors can act as nearly ideal torque sources in a
rated operation. On the other hand, the dynamics of a fluid
actuator used in the highly-dynamic legged robot cannot
be ignored. Furthermore, it is essential to consider the
surrounding phenomena associated with a real system for
successful performance(Fig.1).
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Fig. 1. Robot system surrounded by real-world constraints

Trajectory optimization with plain rigid body dynamics
can produce good-looking but infeasible motions. To mini-
mize the modeling error between numerical simulation and
reality, we employ system identification techniques that use
black-box and gray-box models.



B. Actuator Dynamics

Detailed mathematical models of the pneumatic actuator
have been proposed in previous studies. These analytical
models use a combination of fluid dynamics equations and
the states of valves and cylinder chambers. However, these
models have a large number of related parameters that require
appropriate identification but lack identifiability. Further-
more, a commercial pressure control valve is equipped with
a built-in controller with a number of parameters which are
impractical to model.

As an alternative approach, we identify the actuator dy-
namics using a black-box model that includes both fluid
dynamics and valve dynamics. The black-box model can be
applied not only to pneumatic actuators but also various types
of actuators. In addition, the general structure of the black-
box model allows the use of general techniques for both
parameter estimation and optimization. We can choose an
appropriate model complexity by selecting the order of the
model. The computational cost involved in the structure of
the model is critical because it will impact the performance
of our motion planning approach; it is desirable to achieve
a fast evaluation of the system dynamics.

C. Mechanical System and Friction model

The equations of motion for the mechanical system can be
described using the following general form of manipulator
dynamics:

H(q)q̈ + C(q, q̇)q̇ +G(q) = B(q)u (1)

where q is the vector containing the joint positions/angles,
u the control input, H the generalized mass matrix, C the
coefficient matrix of the Coriolis and centrifugal forces, and
G the gravity force.

There are various friction models that can be used for
different conditions [18]. From our experimental analysis, we
found that the pneumatic cylinder does not exhibit Stribeck
effect (decreasing friction with increasing velocity). We use
the Coulomb-viscous friction model with the tanh function,
which is simple and numerically stable (eq.(2)).

f = c1 tanh (c2(ẋ− c3)) + c4ẋ+ c5 (2)

The friction model contains a bias term c5 that represents
an asymmetry property, which depends on the direction of
the movement.

D. Trajectory Optimization

We consider motion planning for trajectory optimization to
obtain an optimal trajectory satisfying the start configuration,
the goal configuration, and all sets of constraints. We use
a direct collocation method, which is implemented using
the Matlab interface of the SNOPT solver. SNOPT [19] is
employs the sparse sequential quadratic programming (SQP)
method and is effective for solving nonlinear optimization
problems. We provide analytical first derivatives (gradients)
of the systems as input to the SNOPT solver.

III. ROBOT MODELS

A. Pneumatic Actuator

We use two types of systems which are driven by a
pneumatic actuator. The actuator module shown in Fig.2 is
the basis of the systems.
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Fig. 2. Experimental setup of the pneumatic actuator

To minimize the nonlinear features of the input/output
signal, we employ a differential pressure control method to
generate a symmetric pressure command for each chamber of
the air cylinder. On the basis of differential force generation,
the desired pressure can be determined using the following
equation.

p1 = (Feq + u/2)/S1, p2 = (Feq − u/2)/S2 (3)

where S1 and S2 represent the sectional area of the
cylinder chambers and p1 and p2 the pressure of the cylinder
chambers. The bias pressure Feq is given as the medial
value of the supply pressure. The bias pressure allows
continuous change of the pressure profile and avoidance of
saturation caused by limited supply pressure. The Feq does
not affect the compliance of the air cylinder because of the
counterbalancing action of the double chambers.

B. Pneumatic Cart-Pole

A pneumatic cart-pole (Fig.3) exhibits nonlinear dynam-
ics. We employ a decomposition approach for modeling the
system to make it suitable for system identification. The
system can be divided into a pneumatic part and a mechanical
part. The subsystems are described with fluid dynamics and
rigid-body dynamics respectively. Moreover, we add friction
models to take into account the Coulomb force and viscous
force, which are considered to perform force control in
practice.

Because the cart-pole system (also known as inverted
pendulum) is the basic control platform in the field of control
theory, the cart-pole system model(eq.(4)) is mentioned in
many previous studies.

H(q) =

[
mc +mp mpl cos θ
mpl cos θ mpl

2

]
, B =

[
1
0

]

C(q, q̇) =

[
0 −mplθ̇ sin θ
0 bp

]
G(q) =

[
0

mpgl sin θ

]
(4)
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Fig. 3. Pneumatic cart-pole (inverted pendulum) system

The states represented by q = [x, θ]T consists of the
position of the cart and the angle of the pole. The parameters
of our experimental system are as follows: mc = 0.399 kg,
mp = 0.1 kg, l = 0.2 m, g = 9.81 m/s2, and bp =
0.0006 Nms/rad.

C. Compass Gait Walking Robot

A compass gait walking robot is a simple legged robot
with pneumatic toes (Fig.4). The robot is modeled as a hybrid
system that involves discrete transitions of the dynamics. For
the realistic simulation, each segment has its own mass and
moment of inertia. The robot has a bisect body to reduce the
number of actuators, which means that the angle of the body
segment is determined as θ3 = θ1+θ2
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Fig. 4. Compass gait walking robot

IV. EXPERIMENTAL RESULTS

A. System ID of the Pneumatic Actuator

1) Fluid Dynamics: To capture the system dynamics,
we use two kinds of excitation signal: chirp signals with
various amplitudes, and random step sequences. During the
measurement, the piston rod is fixed in the middle position.
The range of the supply pressure is 0.0–0.5MPa.

In black-box modeling, we investigate a polynomial model
and a linear state space model, both of which are linear, time-
discrete, and time invariant. The input u is a force command,
and the output y is defined by eq.(5).

y = [F̂p, Fp]
T , F̂p = S1p1 − S2p2 (5)

The force Fp is measured by a load cell. The differential
pressure force F̂p is calculated from the pressure sensor
measurements.

We use the autoregressive with exogenous terms (ARX)
structure represented by eq.(6) as a polynomial model for
the modeling of the pneumatic actuator.

A(z)y(k) = B(z)u(k − nk) + e(k) (6)

where nk is an input delay, z is a delay operator, and
e(k) is the noise term. The ARX model has advantages,
such as a simple model structure, efficient estimation of
the parameters, capability to handle a multiple-input and
multiple-output (MIMO) system, and the ability to model
a noise term. The second-order ARX model (eq.(7)) is
selected on the basis of an evaluation of the fitting error and
computational cost. Fig.5 shows a comparison of the models.
Although a higher-order state space model is comparable
with the polynomial model, the result shows that the lower
order ARX structure achieves higher fitness for modeling
pneumatic dynamics.
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Fig. 5. Comparison of fitness for the ARX model and state space models

A(z) = I +A1z
−1, B(z) = B0 +B1z

−1

nk = 0 (7)

The Matlab System Identification Toolbox is used for
parameter estimation. eq.(8) shows the result of parameter
estimation based on the least-squares method.

A1 =

[−1.0144 0.0216
−0.0527 −0.9537

]

B0 =

[
0.6619
0.0764

]
, B1 =

[−0.6557
−0.0847

]
(8)

Fig.6 and Fig.7 shows validation result of estimated
pneumatic model. The obtained model fit is 89.85%. The
normalized root mean square (NRMSE) fit (%) can be
calculated using the following equation.

fit = 100

(
1− ||y − ŷ||

||y − ȳ||
)

(9)

where y is the data, ŷ is the model estimation, and ȳ
is the mean value of y. The results show that the model
captures step response and frequency-dependent attenuation
of the pneumatic dynamics.
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Fig. 6. Validation result using chirp signal.
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Fig. 7. Validation result using random stairs.

B. Pneumatic Cart-Pole

1) System Overview: We constructed an underactuated
cart-pole system driven by the pneumatic actuator shown
in Fig.8. In this system, the pneumatic system (eq.(8)),
mechanical system (eq.(4)), and friction models (eq.(10) and
eq.(11)) are connected in series. An air cylinder with a stroke
of 300mm, and diameter of φ20mm is used for the system.

Fig. 8. Pneumatic cart-pole (inverted pendulum) experimental setup

2) Friction: Force data for system identification of the
piston friction are measured by the load cell. eq.(10) shows
the estimated parameters. The prediction error method is

used to estimate the parameters of the gray-box friction
model.

Ffp = 1.5145 tanh (40.8926ẋ) + 49.2734ẋ (10)

The force data pertaining to the cart friction present in
both linear potentiometer and linear guide are measured by
the driving piston side of the load cell. The eq.(11) shows
the estimated parameters.

Ffc = 5.7910 tanh (63.7045(ẋ− 0.0064))− 2.3170 (11)

Fig.9 shows the given data and obtained friction models.
The result shows that the pneumatic cylinder has a con-
siderable scale of frictional force, and the viscous force is
dominant. The friction model for the cart has zero viscous
friction and asymmetric Coulomb force.
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Fig. 9. Friction model for the piston (left) and for the cart (right)

3) Force Trajectory Control: A smooth trajectory was
successfully derived from trajectory optimization. We used a
swing-up task for the system. The nonlinear dynamics should
be considered to achieve the task. The initial state and final
state are set to x0 = [0, 0, 0, 0]T and xf = [0, π, 0, 0]T ,
where x = [q, q̇]T = [x, θ, ẋ, θ̇]T .

Fig.10 shows the comparison between the simulated po-
sition/angle and the measured position/angle. The results
show that this method can perform realistic motion planning
for the system using the pneumatic dynamics and friction
models. The small variation of the trajectories in the ten
trials indicates good repeat accuracy of the experiment.
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Fig. 10. Angle of the pole and position of the cart during swing-up with
openloop force command. The overlapping red lines show 10 trials on real
system.

Fig.11 shows the output force in both the simulation
and the real experiment. The actual output force of the air
cylinder exerted on the cart is reduced by the friction of the
piston. The result shows that the proposed control method is
able to produce a compensated force in practical situation. In
the support phase of legged robots, force control is essential
rather than the position/angle servo control.
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Fig. 11. The output force of the piston and the post-piston force reduced
by frictions during swing-up

C. Compass Gait Walking Robot

1) System Overview: The waling robot is a planar walker
that has three legs and four pneumatic toes. The hip joint is
driven by an electric motor using harmonic gear. The robot
consists of three components: two leg assemblies and a trunk

with a bisection mechanism. The use of pneumatic actuators
in the distal part of a legged robot can lead to low-inertia
legs. The total mass of the robot is approximately 15kg. The
leg length 1.05m which is almost human-sized.

Fig. 12. A compass gait walking robot with pneumatic toes

2) Pneumatic Dynamics: eq.(12) shows the estimated
parameters pertaining to the model of the pneumatic toes.
The air cylinders used in the toes have a diameter of φ40mm
and a stroke of 150mm.

A1 =

[−1.0081 0.0240
−0.0447 −0.9502

]

B0 =

[
0.6297
0.0503

]
, B1 =

[−0.6141
−0.0460

]
(12)

3) Trajectory Optimization: We perform trajectory opti-
mization of half step walking for the compass gait walking
robot (Fig.12). This robot is an underactuated system and is
also a hybrid system, which includes collision dynamics. The
initial state is x0 = [0, 0, 1.045, 1.0, 0, 0, 0, 0]T , and the final
state is xf = [0, 0, 1.0, 1.045, 0, 0, 0, 0]T , where x = [q, q̇]T ,
q = [θ1, θ2, l1, l2]. The desired step length is 0.25m.

To accelerate the searching of trajectories, we adopted a
two-stage optimization approach for the walking robot. In
the first stage, we perform trajectory optimization for the
robot without pneumatic dynamics. The trajectory optimiza-
tion considers constraints such as limitation of the actuator
capacity and range of motion of the joint. Fig.13 is a stick
figure representing the trajectory obtained.

In the second stage, we optimize the control input for the
pneumatic actuator, which provides the required force for the
walking motion. Fig.14 shows the optimized control input for
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Fig. 13. Stick figure for an optimized trajectory of the half step walking

the pneumatic toes during the walking motion. The planned
control input to the pneumatic system, which provides the
desired output force, exhibits a complex profile. In contrast,
a controller without the pneumatic model fails to produce
required force output.
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step walking

V. CONCLUSION

In this paper, we proposed a motion planning method for
complex systems driven by pneumatic actuators. Method,
which employs a model-based approach, was enhanced by
the system identification technique. The obtained model of
pneumatic dynamics realizes an 89.85% fit when compared
to a measurement of real system. We demonstrated that
planned trajectories are applicable to the real systems of
pneumatic cart-pole and compass gait walking robot with

pneumatic toes. The proposed method is potentially effective
for the general motion planning of the robotic systems with
highly-nonlinear dynamics. Our future study will focus on
the development of a time-variant feedback controller for
the obtained trajectory and verification of its effectiveness
using a real robot.
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