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A Parallel Autonomy Research Platform

Felix Naser1, David Dorhout1, Stephen Proulx1, Scott Drew Pendleton2,
Hans Andersen2, Wilko Schwarting1, Liam Paull1, Javier Alonso-Mora1,

Marcelo H. Ang Jr.2, Sertac Karaman1, Russ Tedrake1, John Leonard1, Daniela Rus1

Abstract— We present the development of a full-scale “par-
allel autonomy” research platform including software and
hardware. In the parallel autonomy paradigm, the control of
the vehicle is shared; the human is still in control of the vehicle,
but the autonomy system is always running in the background
to prevent accidents. Our holistic approach includes: (1) a drive-
by-wire conversion method only based on reverse engineering,
(2) mounting of relatively inexpensive sensors onto the vehicle,
(3) implementation of a localization and mapping system, (4)
obstacle detection and (5) a shared controller as well as (6)
integration with an advanced autonomy simulation system
(Drake) for rapid development and testing. The system can
operate in three modes: (a) manual driving, (b) full autonomy,
where the system is in complete control of the vehicle and (c)
parallel autonomy, where the shared controller is implemented.
We present results from extensive testing of a full-scale vehicle
on closed tracks that demonstrate these capabilities.

I. INTRODUCTION

Autonomous driving systems offer higher safety, fuel
economy, mobility and comfort. The US National High-
way Traffic Safety Administration (NHTSA) has classified
vehicles into one of five levels (0-4) of automation [1].
The autonomous driving problem can be considered solved
once we have developed a vehicle at level 4, since that
would require no input or oversight from the user. However,
opinions diverge on the best path to arrive at this level. For
example, Google Inc. [2], deemed that level 3 (human takes
over control from the autonomous systems when the situation
is too difficult) is not feasible since the driver is responsible
to oversee the system, however may become complacent.
Humans are proficient in active control tasks, but are not
well-suited to monitoring tasks. Once the system works fairly
reliably the user quickly begins to trust that it will always
work. As a result, Google is developing a car directly for
level 4. Tesla Motors, on the other hand, has released to
market a system capable of level 3 autonomy and we have

*This work was supported in part by the Singapore-MIT Alliance for
Research and Technology (SMART) Future Urban Mobility Group (FM).
The Toyota Research Institute (TRI) provided funds to assist the authors with
their research, but this article solely reflects the opinions and conclusions
of its authors and not TRI or any other Toyota entity.

1F. Naser, D. Dorhout, S. Proulx, W. Schwarting, L. Paull, J.
Alonso-Mora, S. Karaman, R. Tedrake, J. Leonard and D. Rus are
with the Computer Science and Artificial Intelligence Laboratory
(CSAIL), Massachusetts Institute of Technology (MIT), Cambridge, MA
02139, USA. {fnaser, ddorhout, wilkos, sertac,
jleonard}@mit.edu, {steve, lpaull, jalonsom,
russt, rus}@csail.mit.edu

2S. Pendleton, H. Andersen and Marcelo H. Ang Jr. are with the
National University of Singapore (NUS). {scott.pendleton01,
hans.andersen, mpeangh}@u.nus.edu

Fig. 1. The converted Toyota 2015 Prius V, a parallel autonomy research
platform. The car is outfitted with sensors to enable fully autonomous
driving, a drive-by-wire conversion and low-level controllers which are
designed to fuse the desired input from the human with the autonomy
software control output to provide safe acceleration and speed.

seen the first fatal accident resulting from complacency of
the driver [3]. We propose an alternative approach to arrive
at level 4, which is focused primarily on solving the safety
problem associated with autonomous driving first. We have
termed this level of autonomy “parallel autonomy”, or “level
2.99”, or “guardian angel”. In this case, the human is still in
control of the vehicle, but a full autonomy system is always
running in the background and is responsible for preventing
the human from causing an accident by minimally adjusting
the commanded acceleration and speed. This approach has
the added advantage that, if the system becomes unsure of the
correct course of action, it can always choose to do nothing
and consequently should be no worse than the human driver
alone.

Existing work in both the academic and private sectors
have attempted related approaches.

In the academic setting, the work of Anderson et. al. [4]
demonstrated a constraint-based approach to shared control
on an all-terrain vehicle. In [5], the shared control prob-
lem is formulated through envelopes and model predictive
control, demonstrated on a research buggy. These works
impressively presented shared control between the human
and the autonomy system, but are not demonstrated on full-
scale commercial vehicle hardware. The work of Gray et.
al. also demonstrates a shared control [6], [7], with a focus
on explicitly modeling the driver, but the hardware platform
requires proprietary CAN bus information for actuation.
Carnegie Mellon University’s (CMU) autonomous driving
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Fig. 2. Parallel autonomy research platform overview.

platform presented in [8] is capable of a wide range of
autonomous and intelligent behaviors, but our drive-by-wire
conversion method enables parallel autonomy and requires
less modifications to control the vehicle. Although the work
presented from ETH in [9] is using close-to-market sensors,
but its actuation system depends on proprietary CAN bus
information. The Autoware project by Kato et. al. [10]
released an open autonomy software stack that relies on a
third party converted car.

In the consumer realm, car manufactures such as BMW
[11], Mercedes [12] and Tesla [13] have all designed systems
for level 3. Google even started to build prototypes on their
own for level 4 [2]. We built a full-scale research platform
for level 2.99.

The main contributions of this paper are:
• a holistic approach to build a full-scale parallel auton-

omy research platform (Fig. 2),
• a detailed description of a reliable, fast, flexible and

parallel autonomy enabling drive-by-wire conversion
method based only on reverse engineering and without
added external actuators,

• an experimental demonstration of the parallel autonomy
framework on a full-scale vehicle.

Fig. 2 shows the overall system architecture. In Section III
we explain each module of the parallel autonomy software
stack. We have integrated our previous work as the level 4
system which always runs in the background, implemented a
shared controller and interfaced the control output with the
car. In section II and IV we present our vehicle platform
and how we converted it. In Section V we show parallel
autonomy experimental results. Finally we conclude the
paper and propose future works in Section VI.

II. DRIVE-BY-WIRE-CONVERSION

We define a drive-by-wire conversion as a retrofit for an
off-the-shelf car which enables control of steering, acceler-
ation, gear selection and braking with software commands.
There are four main drive-by-wire conversion approaches:

• CAN bus write access (e.g. Nvidia [14], BMW [11],
ETH [9]): Requires propriety information about the
CAN messages and/or modified Electronic Control

Units (ECUs) from the Original Equipment Manufac-
turer (OEM).

• Sensor-signal-spoofing (e.g. DARPA Urban Challenge
2007: Princeton [15], Stanford Junior [16], VictorTango
Odin [17]): After finding the primary control sensors the
signals are spoofed.

• Motor-actuation (e.g. DARPA Urban Challenge 2007:
CMU Boss [18], MIT [19], SMART SCOT): There are
companies that provide motor based solutions to actuate
a car e.g. Electronic Mobility Controls, the risk of low
actuation speed is high.

• Hybrid approach (e.g. CMU [8]): Motors and sensor-
signal-spoofing are used to actuate the vehicle.

We extended the sensor-signal-spoofing approach to en-
able not only full, but also parallel autonomy and present
a reliable, fast and flexible method to add parallel and full
autonomy functionality to an off-the-shelf car.

The Toyota 2015 Prius V, such as many other modern
vehicles, is enabling this approach, because it uses extensive
driver assistance and drive-by-wire systems for steering,
braking, acceleration and transmission. These systems use
sensors to detect the driver’s inputs which are then read
and interpreted by ECUs throughout the vehicle. The spe-
cific ECU then directly communicates with the appropriate
actuation system. In normal operation, the vehicle’s braking,
acceleration and transmission systems are controlled purely
by electronic signals and do not use any of the driver’s force.
Likewise, the majority of the effort to actuate the steering
wheel is accomplished using a DC motor mounted to the
steering column shaft and controlled by the ECU, not the
driver. For this project, the preexisting drive-by-wire systems
were reverse engineered and used to create a testing platform
for parallel autonomy.

The parallel autonomy paradigm requires seamless transi-
tion between human and computer control of the vehicle.
This can be achieved when the car operates and appears
like a normal car to the human driver while the on-board
computer system is able to read the driver’s inputs and
override, either to support or prevent unsafe action via a
shared controller. The physical modifications are limited to
splicing on extensions to the cables connecting the sensors



to their associated ECUs so that they could connect to our
interface board. No hardware was attached to the pedals,
steering wheel, or transmission lever.

A. Switching modes to enable parallel autonomy
A system of mechanical relays was designed to allow

the car to switch between the three operating modes shown
in Fig. 3: (a) manual, (b) observational and (c) computer
control. When the car is in “manual” operation, the relays
are not energized and are in their normally closed position,
allowing the signals from each sensor to pass through its
relay and to the corresponding ECU. In this position, the
circuit connecting the sensor to its ECU is identical to that
of an unmodified car (Fig. 3-(a)). In “observational” mode,
a relay is energized to pass the signals through, allowing the
interface board to observe the communication between the
sensors and the ECUs (Fig. 3-(b)). This allows the system
to witness what the driver is communicating to the car. In
“computer control” mode, the interface board communicates
directly with the car’s ECU while also receiving the signals
from the different system’s sensors (Fig. 3-(c)). This is
accomplished by energizing the set of relays that redirect the
car’s sensors to the interface board and allow the interface
board to masquerade as each sensor to the appropriate ECU.
To the ECUs it appears that there is a driver turning the
wheel, applying the brake, pressing the accelerator, or shift-
ing the transmission lever when in reality it is the interface
board spoofing those signals.

computer control (c)observational (b)manual (a)

Fig. 3. Three modes of actuation: (a) manual, (b) observational and
(c) computer control. Once operations are in computer control, we have
again three options: (i) passing human readings unmodified through, (ii)
passing autonomous system outputs through disregarding human readings
and (iii) conditionally passing human readings through managed by the
shared controller (Section III-E).

B. Steering
The 2015 Prius V Electric Power Steering (EPS) system

uses a torque sensor and DC motor located within the
steering column assembly to assist the driver with turning
the steering wheel (Fig. 4). The torque sensor contains two
sensors (T1 and T2) that indirectly detect the twist of a
torsion bar within the steering column. These sensors then
output two voltages (VT1 and VT2) to the EPS ECU which
communicates the direction and speed of rotation of the
steering wheel. The EPS ECU then uses that information
along with the speed of the vehicle to determine how much
effort the DC motor should apply to the steering wheel
column to make it turn the correct amount at the appropriate
speed.

Fig. 4. Steering column setup to read torque sensor signals. We used
salvaged parts from an identical vehicle to test the actuation method first.

For example, when the steering wheel is turned to the
left, VT2 increases and VT1 decreases proportionally to each
other (Fig. 5), then when the steering wheel is turned to
the right, VT1 increases and VT2 decreases proportionally
(Fig. 5). The manner in which VT1 and VT2 reflect each
other is used by the EPS ECU to detect if there is a fault
in the circuit such as if VT1 increased to 3.5V while VT2
remained at 2.5V. This event would cause the EPS ECU
to reduce or eliminate the power steering motor output,
allowing the driver to continue safely maneuvering the car
manually (albeit with greater effort) via the direct mechanical
linkage of the steering wheel column to the rest of the
vehicle.
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Fig. 5. This figure shows how the torque sensor readings are related to
each other when steering wheel is turned left or right.

C. Braking

The braking system of the 2015 Prius V is collectively
known as the “driver assisted braking system” and during
normal operation it supplies all of the braking force applied
to the wheels. It consists of several subsystems related
to braking including the Anti-lock Brake System (ABS),
Electronic Brake Force Distribution (EBD), Traction Control
(TR(A)C), etc.. The vehicle receives braking information
input from the driver through three sets of sensors, the master
cylinder pressure sensor, the brake pedal stroke sensor and
the brake light sensor.



1) Master Cylinder Pressure Sensor: In the 2015 Prius V,
the master cylinder pressure sensor is located within the actu-
ator portion which is in between the Skid Control (SK) ECU
and the hydraulic brake booster. When the driver presses the
brake pedal, the pressure of the hydraulic fluid within the
hydraulic brake booster increases, which is detected by the
master cylinder pressure sensor. It is then converted to a
single electrical voltage between 0-5V which is sent to the
SK ECU.

2) Brake Pedal Stroke Sensor: The brake pedal stroke
sensor is attached to the pivot shaft of the brake pedal and
communicates its rotational position to the SK ECU using
two voltages (SK1 and SK2) between 0-5V. SK1 and SK2
both increase and decreases proportionally. This feature is
again used by the SK ECU to detect if there is a fault in the
circuit in the same way that the two sensor values from the
steering torque sensor are compared to detect a fault.

3) Brake Light Sensor: The brake light sensor is a nor-
mally closed switch attached to the brake pedal assembly
near the pivot point. In its normal state, the brake pedal
assembly depresses the switch interrupting the circuit. The
brake light switch assembly varies between models depend-
ing on if the Prius is equipped with dynamic cruise control
or not. The switch appears to operate as a simple, binary
switch that when released, powers the brake lights and
communicates with the ignition and transmission system,
letting them know when the brake pedal is being depressed.

4) Master Cylinder Pressure and Brake Pedal Stroke Sen-
sor Dependencies: Both the master cylinder pressure sensor
and the brake pedal stroke sensor are required for actuating
the brakes. Those sensor values are related to each other
and monitored by the pre-collision system. We recorded data
points with Techstream [20] to approximate the underlying
function. A value mismatch will result in a malfunction
being detected and the braking system will switch to manual
control.

D. Acceleration

The accelerator pedal uses two identical sensors located
at the pedal’s pivot point that detect the rotational angle of
the pedal and outputs two 0-5V signals (VPA1 and VPA2)
to the Power Management Control (PMC) ECU. VPA1 and
VPA2 increase and decrease in a parallel fashion with VPA1
always being 0.8V greater than VPA2. This is different
than what was observed in the steering and stroke sensor
systems. A mismatch between VPA1 and VPA2 will result
in a malfunction being detected by the PMC ECU.

E. Automatic Transmission

The Power Management Control (PMC) ECU uses a
“select” and a “shift” sensor to determine the position of
the shift lever (Fig. 6). Each sensor contains a main and
sub circuit that are identical and when operating properly,
they output nearly identical voltages as redundancy for safety
checks.

1) Select Sensor: The “select sensor” is composed of two
magneto resistive sensors, which output voltages (VSX3,
VSX4) between 0-5V that the PMC ECU uses to determine
the shift lever’s horizontal position in the panel. As the shift
lever is moved from the right to the left, VSX3 and VSX4
both increase from around 1.4V to 3.5V at the same time.
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Fig. 6. Schematic of how the shift and select sensor reflect shift lever
movements.

2) Shift Sensor: The “shift” sensor uses two hall sensors
that output a voltage (VSX1, VSX2) between 0-5V that
the PMC ECU uses to determine the shift lever’s vertical
position in the panel. As the shift lever vertically moves
up, the voltage that VSX1 and VSX2 output decreases from
around 2.5V to 0.5V. The ECU places the voltage inside three
buckets to determine if the lever is in “drive” (high voltage),
“neutral” (middle voltage), or “reverse” (low voltage).

F. Override Systems

There are three systems that act as layers to prevent
unintended actions by the vehicle: The vehicle’s native
fault detection system, an external watch dog circuit and
manual overrides. These three systems work together using
independent and unique methods for error detection that
each results in the vehicle being placed in a “safe” mode
and allows the safety drive to regain control of the vehicle
preventing a single point of failure.

1) Native Fault Detection System: The 2015 Prius V is
equipped with fault detection circuits and programs that
monitor the driver assistance programs including the systems
mentioned above. The driver assistance systems have each
been designed so that when there is a fault, the systems fails
into a safe mode that allows the driver to safely maneuver
the vehicle, e.g. make use of the mechanical linkage for the
steering wheel or the hydraulic brake system.

2) Watch Dog: The Watch Dog circuit monitors the cable
connections and the heartbeat of both the interface board
micro-controller and the on-board vehicle control computer.
It has its own independent micro-controller and is completely
electrically isolated from the vehicle until it starts to monitor
the cables. During power-up the watch dog circuit checks to



see if all of the cables connecting the interface board to
the car are connected. If the cables are all present, the watch
dog then turns on the power to the interface board and begins
monitoring both the interface board and the on-board control
computer to ensure that the programs are operating correctly
by observing a “heartbeat” from each system. If the watch
dog determines an error, it cuts the power to the interface
board. This places the vehicle into manual mode, allowing
the safety driver to safely control the vehicle and sends an
error message to the vehicle’s control computer. The watch
dog also communicates with the driver via a dashboard light
to indicate in which mode the vehicle is.

3) Manual Override: There are three types of manual
override that return the vehicle to manual operation. The first
override system is only used when the car is driving fully
autonomously. It monitors the sensors from the vehicle’s
steering wheel, brake and accelerator pedals. If the system
detects an input from the driver, such as pressing the brake,
the software then switches the vehicle back to manual
control. This allows the driver to naturally and intuitively
assume control of the vehicle as needed. The second manual
override system functions in a similar software-based method
but uses a button as input instead of the steering wheel or
pedals. The third manual override system uses a button that
physically turns off the power to the interface board, resulting
in the vehicle returning to manual mode.

III. PARALLEL AUTONOMY
Enabling parallel autonomy requires a fully functional

autonomous system to act as one of the two inputs to the
shared controller as shown in Fig. 7. In this section, we will
briefly describe the existing autonomy system that we use,
which is based on our previous work as part of the Singapore-
MIT Alliance for Research and Technology (SMART) [21]
and open source tools such as those built into the Robotic
Operating System (ROS) [22].

Toyota Prius
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Serial Interface
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Odometry
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Fig. 7. The parallel autonomy system uses the core libraries developed
as part of the SMART project. The software is architected to be easily
configurable between real vehicle hardware and the Drake simulation
environment for rapid development and testing.

A. Mapping and Localization
The localization and mapping system is based on our

previous work. First, the vehicle is manually driven around

the environment and sensor readings are recorded. Then
pose Simultaneous Localization And Mapping (SLAM) is
used to build a consistent map of the environment [23]. The
localization is performed based on this built map. Synthetic
LiDAR, a specific sensor model, is used to perform Adaptive
Monte-Carlo Localization [24]. The synthetic LiDAR makes
use of the normals in a 3D rolling window as the main
features that provide a unique fingerprint of the environment.

B. Moving Object Detection

To ensure safe navigation of the autonomous vehicle, a
moving object recognition algorithm was developed to detect
and recognize other human agents in the shared environment
[25]. The algorithm utilizes the spatial-temporal features of
object clusters extracted from a planar LiDAR and performs
object recognition using a supervised learning method of
Support Vector Machine (SVM). Once moving pedestrians
are recognized, their motion information (speed and direc-
tion) is calculated based on their centroid positions from
consecutive measurements in the spatial-temporal clusters.
The positions and the speeds of the recognized pedestrians
are then passed on to the Dynamic Virtual Bumper module
for vehicle speed control.

C. Dynamic Virtual Bumper

A Dynamic Virtual Bumper (DVB) [21] is used to generate
the advisory speed for the vehicle’s safe navigation in the
presence of both static and moving obstacles. The DVB is
defined as a tube zone with its center line as the vehicles
local path and its width wt and height ht as linear functions
to the vehicle’s speed vt at time t:

wt = w0 + α ∗ v2t (1)

ht = h0 + β ∗ v2t
where w0 and h0 are the static buffers and α and β are
the coefficients that the side lengths grow together with the
vehicle’s speed, which reflects the bumper’s dynamic nature.
LiDARs are used to detect obstacles in the vicinity. When an
obstacle oi enters DVB, the vehicle will generate an advisory
speed of the new desired DVB, whose boundary is marked
by the position of the obstacle.

D. Simulation

In order to test new algorithms first in a simulator and
then in the real car to ensure safety and reduce development
time, we integrated our software stack in Drake [26]. Drake
is a very advanced and flexible planning, control and analysis
toolbox for nonlinear systems that has been released under
open source license. As shown in Fig. 7 we have standardized
the interface between the simulator and the real vehicle
hardware to ease switching between the two.

The car localizing itself and driving autonomously in the
simulator is shown in Fig. 8. To further homogenize the
user interface between the steering wheel and the car we
have interfaced a gaming steering wheel and pedals to the
simulator (Fig. 9).



Fig. 8. Software stack running in Drake: Grey map in background, red
arrow line visualizes odometry messages over time, red points on obstacles
are the LiDAR output, the blue line is the control path from the pure-
pursuit controller, the curved blue rectangle is the DVB and the green line
the predefined path.

Fig. 9. A steering wheel and pedals (not shown) are interfaced to provide
a standard and uniform user interface to test parallel autonomy with human
inputs in Drake.

E. Shared Controller

In autonomous mode, we have a pure-pursuit steering
controller [27] to follow a predefined path. In the presence
of a road blockage, e.g. by pedestrians, the vehicle waits
until the path is clear before proceeding. We extended our
previous work with a basic shared controller for speed and
steering. The shared controller takes human driver inputs
such as steering wheel angle and pedal statuses and compares
them to the autonomous system output. If the speed for the
current path is above the DVB advised speed vmax or if
the user’s selected steering wheel angle deviates from the
autonomous system recommendation by more than a certain
threshold, the system takes over until it is again steering
towards the path and below the calculated safe speed. This
works when the system is in computer control mode (Fig.
3-(c)).

F. Low-Level-Control

We decided to minimize logic and computing tasks on
the micro-controller level because it is hard to debug and
error-prone. We integrated a standard ROS PID controller
that takes control set points and current system states as
inputs and outputs voltage values to spoof the sensor signals.

This enables us to send a steering angle and speed in order to
control the vehicle. A serial interface communicates between
the micro-controller and ROS, publishing the sensor readings
as custom messages (encoder clicks, brake position, steering
wheel angle and accelerator voltages).

Autonomy 
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Setpoint Steering 
Wheel Angle

Setpoint Speed

Encoder Clicks 
per Second

CAN Bus 
Steering Angle Serial Interface to 

Drive-By-Wire-
Conversion

Speed PID

Steering Wheel 
PID

Car Sensor 
Interface

Fig. 10. Low-Level-Control Interface Overview: One PID controller
regulates the speed and the other one the steering wheel angle.

To close the control loop for the steering wheel angle
we read the CAN bus message, which contains the current
steering wheel angle. For that we integrated an open source
library for communicating with the vehicle network tools
developed by Intrepid Control System in ROS and used the
only reverse engineering based work presented in [28] to
decode the CAN bus steering wheel angle message (Fig.
11).

φ =


(b0 ∗ 162 + b1 − σ) ∗ 360

240
if b0 ∗ 162 + b1 − σ < 2048

(b0 ∗ 162 + b1 − σ − 4096) ∗ 360
240

if b0 ∗ 162 + b1 − σ ≥ 2048

(2)

Fig. 11. Equation to compute the steering wheel angle, where b0 and b1
are the values of the first two bytes of the CAN message with the ID 0x25
and σ is the offset from the zero position.

On the micro-controller level we only read and write the
sensor signals depending on the mode the car is in (Fig. 3).
A multi-core architecture enables fast reading of the sensor
signals and publishing in to the remainder of the software
system.

IV. HARDWARE OVERVIEW
The Toyota 2015 Prius V is our vehicle base platform

and we retrofitted necessary sensing, computing and power
systems to enable parallel and autonomous driving. Fig. 12
shows the mounted sensors and Section IV-A the power
system.

A. Power System
All system electronics utilize the vehicle’s auxiliary

12VDC battery as the source of power. This low voltage bat-
tery sources its power from the vehicle’s high voltage source
via a DC-DC voltage converter. Using DC-DC converters
and a DC-AC inverter, the low voltage battery’s 12VDC
is converted to a range of voltages appropriate to power
requirements of the system’s components. Each leg of the
power system has overcurrent protection and power distri-
bution. Additionally, sensitive components have individual
overcurrent protection, per manufacturer specification.



B. Sensor Setup
Table I lists the sensors we integrated. We leveraged from

open source drivers from the ROS community to interface
with our software system.

Two incremental encoders are mounted on the vehicle, one
at each rear wheel. An Inertial Measurement Unit (IMU)
is mounted inside the car along the center axis to provide
attitude and heading of the vehicle. A Global Positioning
System (GPS) unit is mounted on the roof. Encoder, GPS and
IMU readings are fused to provide the vehicle’s odometry
information in six degrees-of-freedom using an unscented
Kalman filter [29].

Four 2D LiDARs and a webcam are used to sense the
environment, where we use the webcam currently only for
a better scene understanding after recording data sets. One
SICK LMS151 LiDAR is mounted at a tilted down angle
onto the front of the vehicle roof (ca. 15 deg) for map-
ping and localization. A second SICK LMS151 is mounted
horizontally in the lower front of the vehicle for obstacle
detection. Two SICK TiM551 LiDARs are mounted at the
rear corners of the vehicle to provide all around obstacle
detection. The sensor setup is shown in Fig. 12.

As with the drive-by-wire conversion method, we em-
ployed a minimally invasive and lean mounting of the sensors
to the car. We achieved this by using for rear and front
LiDAR mountings the existing towing holes and for the GPS
and top LiDAR an off-the-shelf roof-rack as a mounting base.
Only for the two encoders we had to drill holes in the chassis.

TABLE I
TOYOTA 2015 PRIUS V SENSOR PART LIST

Sensor Part Number
2 Front LiDARs SICK-LMS151
2 Rear LiDARs SICK-TiM551
2 Wheel Encoders TR1-U1R4-100NV1RHV-F00
IMU MicroStrain 3DM-GX4-25
USB Camera Logitech HD Pro Webcam C920
GPS Garmin-18x-GPS-Navigator-Unit
CAN bus Reader neoVI RED
Computer ThinkPad P50

LiDAR

Laptop

Ethernet Switch USB Hub

IMU

Encoder

Micro-
Controller

LiDAR

LiDAR

USB 
Cam

GPS

Fig. 12. We equipped the parallel autonomy research platform with
relatively inexpensive sensors (Table I).

V. EXPERIMENTAL RESULTS
We have shown the flexibility and modularity of our

software stack by reproducing the SMART autonomous

driving capabilities [21] on a new hardware platform and
with a different drive-by-wire conversion method1. We have
ensured high reliability and safety with intensive test drives
on closed loop test fields. We also extended our previous
work by implementing a basic shared controller as explained
in Section III-E, enabling shared control for speed and
steering wheel angle at the same time. This video shows
that the driver can’t leave the path and can’t go above the
safe speed calculated by the parallel autonomy system2.

A. Shared controller applied to speed

As a first step towards parallel autonomy functionality,
we tested a “safe speed function.” This system is more ad-
vanced than a standard “emergency brake assistant” since the
autonomous system is using the dynamics of the vehicle and
the current reference path to determine the safe maximum
speed. If the human driver goes faster than the control output
is suggesting, the systems takes over until the speed is again
in the safe speed zone and then gives back control to the
driver (see Fig 13). This works similarly when an obstacle is
obstructing the path and the human does not pay attention,
because then the control output would be either 0 m/s or
close to 0 m/s depending on how the obstacle enters the
DVB explained in Section III-C.

In the attached video the clicking sound from the micro-
controller relay marks the takeover points in the plot. In
future work, to reduce the number of takeovers we will
implement a hysteresis filter. Nevertheless, we have demon-
strated that with our chosen drive-by-wire conversion method
we can read the human input at all times and can if needed
seamlessly takeover control. The inertia of the system slows
control effects down, e.g. after the first takeover point the
autonomy systems applies brakes, but it takes around 0.5
secs to reduce the speed to vmax.

B. Shared controller applied to steering wheel angle

Using the shared controller for the steering wheel angle
operates similarly as applied to the speed. If the human driver
steers the car too far from the suggested control output, the
parallel autonomy systems takes over control until the vehicle
is within the safe zone (Fig. 14).

VI. CONCLUSIONS

A full-scale parallel autonomy research platform was
developed based on our holistic approach and extensively
tested. We demonstrated that our research platform enables
parallel and full autonomy. The proposed drive-by-wire con-
version method is allowing fast actuation, seamless takeover
between human and autonomous system and operates in three
modes without requiring proprietary CAN bus information or
external motors. In combination with the relatively inexpen-
sive sensor setup, it provides a lean and minimally invasive
setup for an autonomous driving research platform.

As future work, we will integrate a more advanced shared
controller [30] and run user studies. We will extend the

1Please see part 1 of the media attachment.
2Please see part 2 of the media attachment.
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sensor setup and improve localization in non-urban environ-
ments. We will also test the system more on closed test fields
and analyze the vehicles behavior statistically.
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