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Abstract

As robotic manipulation research becomes more prevalent, it is crucial to develop
clean, modular, and testable systems for researchers to make advances in their fields
of expertise without sacrificing usability for others. It is also important to introduce
those methods to beginners as they are entering the field, so they can build upon
them in novel research. This thesis introduces a framework, informally called the
Manipulation System, built using Drake Systems based on work done for the Fall 2018
MIT class Intelligent Robot Manipulation. This thesis also presents the groundwork
for performing full-stack robot manipulation tasks and proposes extensions to make
the system more usable and accessible to all.
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Chapter 1

Problem Statement and Motivation

Imagine your kitchen after cooking a complicated meal. The counter is probably full

of leftover ingredients, cooking utensils, and spilled food. While cleaning up may seem

like an annoying task, it’s not very difficult. You just put the unused ingredients back

in the cabinets, put the dirty dishes in the dishwasher, and wipe down the counter

once it has been cleared. Simple.

Now imagine trying to program a robot to do the same task. All it must do is put

the unused ingredients back in the cabinets, put the dirty dishes in the dishwasher,

and wipe down the counter once it has been cleared. But in order to do that, it has

to know what all of the ingredients are, where they go, the difference between a clean

dish and a dirty dish, how to put a dish in a dishwasher, how to wet a rag to wipe

down the counter, and many other pieces of information that you as a human didn’t

consciously think about when doing your own cleaning. Suddenly this simple task of

cleaning up doesn’t seem so simple.

The field of robotic manipulation is full of hard, unsolved problems. Perception

challenges arise when trying to identify and reason about objects, such as deciding

if a carton of milk should go into the fridge or cupboard. Tasks such as loading a

dishwasher or wiping down a counter require many - possibly expensive - planning and

control computations. Additionally, trying to combine smaller tasks into completing

a common goal requires huge system integration efforts.

Because all the subtasks in areas such as perception and planning that go into a full
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manipulation task are difficult problems on their own, most researchers independently

develop algorithms to solve them on very different robot setups. While one group can

show an accurate way to identify milk cartons with a particular camera, and another

group could write a fast planner to shelve different sizes of cartons, combining the two

innovations to make a robot put a carton of milk in a fridge is still a hard problem,

especially if the algorithms were not specifically designed to integrate with other

researchers’ algorithms. This process has become much better in the past decade

with the widespread adoption of the Robot Operating System (ROS). However, there

are some major disadvantages of ROS which make robust system design difficult.

This thesis presents a model-based systems framework to program full-stack robot

manipulation tasks. This work, informally referred to as the Manipulation System,

is a clean, deterministic environment where people can develop algorithms related

to manipulation to perform real tasks. With working implementations of simple

algorithms, researchers can focus on one particular challenge, plug their algorithm

into the rest of the system, and immediately run a shelving task without having to

do much system integration work.

The structure of the rest of the thesis is as follows. A general overview of systems

theory and how it relates to robot manipulation can be found in Chapter 2. Chapter

3 introduces the hardware and simulation setup used throughout the project. Chap-

ters 4 and 5 detail the challenges and system components related to perception and

planning, respectively. Chapter 6 discusses using the system as a whole. Finally,

Chapter 7 summarizes the work.

14



Chapter 2

Systems Theory and Model-Based

Design

Systems theory is a very broad field that can apply to many different areas in engineer-

ing, science, and society [21]. It generally includes strategies to design large, working

systems. While there are general principles that apply to all systems, each subfield

has its own unique set of challenges. This chapter will discuss a broad overview of

systems theory and how it applies to robotics. Then the general framework for the

rest of this work will be introduced.

2.1 Systems Theory

Any type of system can grow to be very complex due to interacting requirements,

desire for generality, and to maintain high utilization. Trying to design for any one of

these sources of complexity often raises multiple problems, such as difficulties scaling

up the system, or effects from one part of the system propagating to another seemingly

unrelated part of the system. In order to manage these problems, there are many

design principles to guide the design process. Some of these include using safety

margins, avoiding over generalizing the system, and simplifying subsystems whenever

possible [21].

Besides specific design principles, there are some higher level strategies in building
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large systems, namely modularity and abstraction, layers, and hierarchy. A modular

system is one that is split up into discrete components, called modules, that all fit

together to accomplish the desired task. These modules can often be exchanged for

one another, so the overall system does not depend on the specific implementations

of subsystems. For example, often computer parts can be swapped out, so one can

upgrade the graphics processing card without replacing any other parts. Abstraction

makes modularity formal by specifying the inputs and outputs of each module, and

how much communication happens between the modules [21].

Layered and hierarchical systems are both different organizational structures of

modules. In layered systems, certain modules are connected to each other in a single

layer. They can communicate with other layers only directly above or below them.

A hierarchical system has a tree-like structure, and modules can only communicate

with their parents and children [21].

2.1.1 Robotics Systems Theory

Robotic systems are required to perform many concurrent calculations while inter-

acting with the real world. Unlike pure software systems, where complexity is mostly

limited by human ideas [21], robotic software systems need to be connected with the

real world and obey the laws of physics.

Asynchronous Message Passing

A common paradigm for designing robotic software systems is asynchronous message

passing, often by using Robot Operating System (ROS). ROS is more of a collection

of tools and libraries than an operating system [34].

Using ROS leads to modular systems by writing nodes, which are independent

programs. Nodes can be designed to do many different things, such as parsing sensor

data or sending commands to a robot. The abstraction comes from specifying a set

of topics, or communication channels between nodes. Each topic stores a single data

type, which can be as simple as an integer or as complicated as an entire color image.
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Users can organize nodes however they want, including in a layered or hierarchical

matter by restricting which nodes communicate with each other.

The topic communication system is all asynchronous, so nodes can send and re-

ceive messages through these channels at their own rates. This is good in that it

makes it easy for nodes to be independent and easily parallelizable at run time, but it

also means the system is not easily testable. In asynchronous message passing, there

are no guarantees on messages being sent or received [3]. This makes the system very

non-deterministic, because nodes will not necessarily receive the expected input or

send the expected output successfully. When working with the real world there will

always be an aspect of non-determinism, but if the system is completely simulated,

it should be as deterministic as possible. For this same reason, testing nodes can be

hard if they all rely on sending and receiving messages, which is expensive to run

for testing purposes to ensure basic functionality that does not depend directly on

sending or receiving messages.

Model-Based Design

In order to eliminate the non-determinism in simulation and to make systems easier to

understand and test, people often use a paradigm called Model-Based Design (MBD)

[39]. MBD is about using numerical software models in place of hardware models

in order to test individual components much more cheaply than on hardware. MBD

often specifically applies to control theory. The block diagram shown in Figure 2-1 is

a classic diagram of feedback control. The goal is for the output signal 𝑦 to match the

reference input 𝑟. The difference signal 𝑒, or the error, between the two signals is fed

into a controller, which calculates the appropriate command 𝑢 to send to the robot.

The robot is usually called a plant, which is a more general term for a dynamical

system. The plant is composed of the actuators which do the work to affect the

physical state of the system, which in turn is measured by the sensors. This plant

is always an approximation of how the real system behaves. It is important to note

that the signals 𝑟, 𝑢, and 𝑦 can be vectors representing multiple aspects of the plant,

such as both position and velocity.
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Figure 2-1: A standard block diagram for a feedback control system. The output 𝑦
is subtracted from the input 𝑟 to make an error signal 𝑒. The error is fed into the
controller, which produces a command 𝑢 to send to the plant.

2.2 Drake Systems View

A popular piece of software for implementing systems with MBD is Simulink by Math-

Works [29]. However, this software is proprietary and not accessible to all users. This

project uses a free and open-source software stack called Drake instead of Simulink to

implement MBD. Drake is a software library with tools for modeling and designing

advanced dynamical systems [42]. It was originally developed in Prof. Russ Tedrake’s

Robot Locomotion Group at MIT, but is now being developed by a team at the Toyota

Research Institute.

A Drake System is a module that has typed input ports and output ports that can

be wired to other Systems and/or accessed in surrounding code. Combining Systems

creates a Diagram, which can be thought of as a single, large System, which also has

input and output ports. A Diagram can also contain other Diagrams. The input and

output ports are strongly typed. Evaluating ports is very fast due to the underlying

caching system, whose implementation details are not important to understand when

working at the high level in this thesis. Additionally, Systems, like any other C++

or Python class, can accept arguments in their constructors, separate from input

ports. This project makes heavy use of Drake Systems for designing modular and

deterministic robotic systems.

Figure 2-2 shows a system port diagram, which will sometimes be referred to as

a full system diagram, for a generic System. The name of the system is in the center

box, which represents the internal code of the module. On the left are the input

ports, which are arrows going into the block. The arrows on the right coming out

of the system are the output ports. This generic DrakeSystem has 𝑛 input ports
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and 𝑚 output ports. There is no rule on how many input and output ports systems

have, so any of the following relationships could hold: 𝑛 < 𝑚, 𝑛 = 𝑚, 𝑛 > 𝑚. A

System can also have no input or outputs ports. Figures 3-5, 3-6, and 3-7 show

examples of systems with only input ports and no output ports. Different instances

of a certain System can also have different numbers of inputs and/or output ports.

Every instance of the PointCloudConcatenation System shown in Figure 4-4 has a

different number of input ports depending on a constructor parameter.

Figure 2-2: The input-output port diagram of a generic Drake System. The arrows
on the left are the typed input ports of the DrakeSystem. The arrows on the right
are its output ports

2.2.1 Benefits of the Systems View

Writing the software in the Drake Systems framework is an intentional design decision.

Although it is very different from what many people may be used to, it has clear

pedagogical benefits. First, it is very clean and easy to reason about with MBD.

Block diagrams such as the one in Figure 2-3 can be constructed, which looks almost

identical to the classic feedback control diagram in Figure 2-1. When used, more

complicated diagrams such as the one in Figure 6-1 are constructed to give users a

good idea of what is going on and how data is being passed around. It also separates

pieces of code into specific chunks with only one or two tasks, resulting in very modular

pieces that can be reused in other places. This is very similar to the idea of ROS

nodes, which people may be more familiar with. However, using Drake Systems

eliminates the dangers of asynchronous message passing. The advantage of this is

that the system is now deterministic for specific inputs, which means it is testable

and reproducible.
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Figure 2-3: A feedback control block diagram as constructed in the Drake Systems
framework. PlanRunner and ManipulationStation are Systems that will be dis-
cussed in detail in later chapters.

Having testable code allows a Continuous Integration system to run on a GitHub

repository. Continuous Integration allows developers to write tests the software should

always pass. These tests ensure that future updates to the repository do not break

important features. Since the Systems code is deterministic, it can be tested reliably

without relying on external factors such as network communications.

Reproducible code also means users can expect code to run for them exactly as

the documentation describes, which reduces the amount of debugging they have to

do. It also reduces the number of questions the users ask the original developers,

making the system much easier to maintain.

Chapters 3, 4, and 5 will go into detail about many Drake Systems useful for robot

manipulation, and Chapter 6 will describe ways of putting them all together.
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Chapter 3

The Manipulation Station

3.1 6.881

During the Fall 2018 semester at MIT, Prof. Russ Tedrake and Prof. Tomàs Lozano-

Pèrez offered a new course titled Intelligent Robot Manipulation, numbered 6.881 [45].

During this course, students explored different aspect of robotic manipulation both

in simulation and on real hardware. The assignments revolved around working on the

Manipulation Station, a hardware setup provided by Amazon Robotics. Pictures of

the software visualization and the real Manipulation Station and are shown in Figures

3-1 and 3-2. The station contains a KUKA IIWA arm with a Schunk WSG-50 parallel

jaw gripper across from a three-shelf cabinet. The cage structure around the robot

has three Intel RealSense D415 RGB-D cameras mounted at different angles to get a

complete view of the table and the cabinet. Assignments given to students using the

Manipulation Station included picking up an object and putting it inside the cabinet,

locating an object on the table, and opening the cabinet doors.

The software used to interact with the robot was mostly written in Python using

Drake. Code was distributed to students in Docker containers, which enabled everyone

to run the simulation code without having to install many libraries on their own

machines. The code was also set up so switching between controlling the simulated

robot for problem sets and the real robot during labs only required changing a Boolean

flag.
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Figure 3-1: The simulated Manipula-
tion Station viewed in MeshCat.

Figure 3-2: The real Manipulation
Station in a department teaching lab.

3.2 The ManipulationStation Drake Diagram

The real Manipulation Station has a software counterpart, ManipulationStation

which is a Drake Diagram. Originally created in Fall 2018 for 6.881, it has since been

updated to be more modular and support a second physical workstation setup better

suited for clutter-clearing applications.

A ManipulationStation has four real-valued vector input ports: the 7 com-

manded joint positions of the IIWA arm, the 7 commanded joint torques of the arm,

the single commanded joint position of the WSG gripper, and the single maximum

force threshold of the gripper. The Diagram has many output ports, and the exact

number depends on how many cameras are added in the software. Each camera has

one depth image output port and one color image output port. The complete list of

input and output ports is shown in Figure 3-3. The orange ports are only available

in simulation for testing purposes, and are not available when running on a physical

workstation.

The original ManipulationStation was specific to the 6.881 class workstation

setup, shown in Figures 3-1 and 3-2. It included the robot, the gripper, the table, the
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Figure 3-3: The input-output port diagram of a ManipulationStation.
Image from https://drake.mit.edu/doxygen_cxx/classdrake_1_1examples_1_
1manipulation__station_1_1_manipulation_station.html, retrieved in March
2019.

cabinet, the surrounding frame, and a single manipuland. This was the only supported

setup, and the manipuland had to be added outside of constructing the Diagram using

an unrelated Drake function. The new ManipulationStation is much more modular.

There are now two supported physical setups: the original 6.881 workstation, and a

cleaner environment with the robot, the gripper, and two bins. Any number of ma-

nipulands can be added with a method specific to ManipulationStation. This new

clutter clearing setup with six objects from the YCB dataset is shown in Figure 3-4.

The C++ implementation can be found at https://github.com/RobotLocomotion/

drake/blob/master/examples/manipulation_station/manipulation_station.cc,
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and its Python bindings can be found at https://github.com/RobotLocomotion/

drake/blob/master/bindings/pydrake/examples/manipulation_station_py.cc.

Figure 3-4: The ManipulationStation clutter clearing setup with a cracker box,
sugar box, mustard bottle, tomato soup can, gelatin box, and a potted meat can.

3.3 Visualization

An important part of running robotic simulations is visualizing relevant data. Most

of the visualizations used during 6.881 and throughout the rest of this project are

done with MeshCat. MeshCat is a lightweight, JavaScript-based 3D visualizer that

runs in web browsers [37]. MeshCat was first incorporated into Drake in the fall

for 6.881. It supported viewing the setup, motions of the robot and gripper, and

contact forces between two bodies. During Spring 2019, it was extended to visu-

alize point clouds. Each of these pieces is another Drake System with only input

ports, as shown in Figures 3-5, 3-6, and 3-7. These Systems can be inserted into

in a large Diagram to visualize certain quantities without interfering with other

processes. Figure 3-8 shows examples of visualizing the robot workstation, con-

tact forces, and point clouds. The code for all of the MeshCat Systems is native
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Python that lives at https://github.com/RobotLocomotion/drake/blob/master/

bindings/pydrake/systems/meshcat_visualizer.py.

Figure 3-5: The input-output port diagram of a MeschatVisualizer

Figure 3-6: The input-output port diagram of a MeschatContactVisualizer

Figure 3-7: The input-output port diagram of a MeschatPointCloudVisualizer

25

https://github.com/RobotLocomotion/drake/blob/master/bindings/pydrake/systems/meshcat_visualizer.py
https://github.com/RobotLocomotion/drake/blob/master/bindings/pydrake/systems/meshcat_visualizer.py


Figure 3-8: The ManipulationStation visualized in MeshCat in three ways: (left)
the station alone, (middle) the station with contact forces in red arrows, and (right)
a point cloud representation of the station.
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Chapter 4

Perception

Perception lies at the heart of almost every manipulation task. Take the example

from the introduction about cleaning up a dirty kitchen. How would you, as a sighted

human, approach the smaller subtask of putting a carton of milk back in the fridge?

Chances are, the first step you would take is to look at the kitchen counter for the

carton. Without much conscious thought, you would quickly recognize the carton,

understand where it is in space, and know how to pick it up. After perceiving the

milk carton, the act of moving to pick it up and put it back in the fridge becomes

much easier. However, if you had to perform the task blindfolded, it would probably

take you much longer to find the milk carton before you could attempt to put it away.

In order for robots to autonomously manipulate objects, they first must be able

to perceive them. Perception can refer to a variety of topics, including object class

segmentation, object instance segmentation, object recognition, pose estimation, and

scene understanding. These topics can be achieved in many different ways utiliz-

ing many different sensors. This chapter will focus on object recognition and pose

estimation.
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4.1 Background and Related Work

4.1.1 The Yale-CMU-Berkeley Object and Model Set

In order to develop perception algorithms, there first must be objects to perceive.

Researchers at Yale, Carnegie Mellon, and Berkeley put together a large set of com-

mon household objects for other researchers to use in manipulation research, called

the YCB Object and Model Set. [8] [7] [6]. The 75 total objects are further classified

as food items, kitchen items, tool items, shape items, and task items. The dataset

contains the size and weight of each object, as well as various visual representations

of all of them. For every object, there are multiple RGB images, depth images, and

3D mesh models. The data is freely distributed, and most of the objects can be easily

obtained at grocery stores.

4.1.2 Pose Estimation

The pose of an object is its position and orientation in space. In a 2D world, a pose

is 3-dimensional, containing the object’s 𝑥-position, 𝑦-position, and rotation about

an imaginary 𝑧-axis. In a 3D world, a pose is 6-dimensional, containing the object’s

𝑥-, 𝑦-, and 𝑧-positions, as well as their rotations about each of those axes, called roll,

pitch, and yaw.

One way to estimate object poses is to use geometry. If there exists a 3D model of

the object of interest at some known pose, one can find a transform between that and

the actual data. This is often done between two point clouds, which are collections

of (𝑥, 𝑦) in 2D space, or (𝑥, 𝑦, 𝑧) points in 3D space.

A popular algorithm for finding the transform is called iterative closest point (ICP)

[36]. Given an input point cloud, the goal is to find the best transformation that,

when applied to the input, results in some known model point cloud. The algorithm

is composed of two main steps. The first step finds what are called correspondences

between points. This is usually done by finding the nearest neighbor in the model

point cloud to the input point cloud. It is assumed that these correspondences should
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be close together when the two point clouds line up. When individual points are

used for correspondences, the algorithm is referred to as point-to-point ICP. The

second step estimates the best fit transform between the two point clouds to minimize

the distance between all corresponding points. This can be done by calculating the

singular value decomposition of the covariance matrix between the input and model

point clouds. Once step two is complete and a transform has been estimated, the

input point cloud is transformed and both steps are repeated again.

By iterating over these two steps until the error between the input and known

point clouds is small, it is possible to get very accurate pose estimates. However, ICP

is particularly prone to noise. Because the algorithm is trying to minimize the total

distance between all of the points, if the input point cloud has a few points that are

very far away from most of the point cloud, the total alignment will be off in order

to close the distance between the few outliers and the model point cloud. For this

reason ICP is often combined with algorithms for outlier rejection, such as RANSAC.

[49]. There are also other variations of ICP that calculate correspondences differently,

such as point-to-plane ICP [27].

4.1.3 Object Recognition

Object recognition is identifying a certain set of objects in an image. NVIDIA com-

bined pose estimation with object recognition in one framework. Deep Object Pose

Estimation, or DOPE, uses a neural network to both identify objects in images and

estimate their poses [25]. The network was trained on a mix of real and synthetic

RGB images of YCB objects. The synthetic images were generated with a strategy

called domain randomization. By combining photorealistic models and their non-

photorealistic counterparts against various backgrounds, they were able to generate

a lot of training data with known object categories and 6D poses. This allowed them

to train a network to get good classification and pose estimation accuracy without

having to generate ground truth pose labels by hand and without the need for depth

images.

NVIDIA has provided open-source code for running the network, as well as the
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final weights they calculated for six YCB objects: the cracker box, the sugar box, the

soup can, the mustard bottle, the gelatin box, and the potted meat can [24]. Running

their code on an RGB image produces bounding box estimates for all recognized YCB

objects in the picture, as well as an estimate of their poses.

4.2 Systems

There are four Drake Systems related to manipulation that are dedicated to percep-

tion: DepthImageToPointCloud, PointCloudConcatenation, DopeSystem, and

PoseRefinement. DepthImageToPointCloud and PointCloudConcatenation are

both generic utilities that can be used with many different perception techniques.

DopeSystem is an adaption of a specific state of the art object recognition and pose

estimation algorithm. PoseRefinement is a flexible system that lets users experiment

with different algorithms that accomplish the same goal.

4.2.1 DepthImageToPointCloud

As its name suggests, DepthImageToPointCloud takes an input depth image and

outputs a point cloud. Its full port diagram is shown in Figure 4-1. By using

knowledge about the intrinsic properties of the camera that captured the depth

image, such as its width, height, and distortion factors, the depth value at each

pixel can be converted into a point in 3D space. The system can optionally take

in a color image from the same camera to add color to the point cloud. By de-

fault, the output point cloud will be in the camera’s coordinate frame, but can be

moved by supplying a homogeneous transformation to the system. Each system

can only convert one depth image and its corresponding color image into a point

cloud. Example color and depth image inputs are shown in Figure 4-2. The C++

implementation of DepthImageToPointCloud can be found at https://github.com/

RobotLocomotion/drake/blob/master/perception/depth_image_to_point_cloud.

h. Its Python bindings can be found at https://github.com/RobotLocomotion/

drake/blob/master/bindings/pydrake/perception_py.cc.
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Figure 4-1: The input-output port diagram of a DepthImageToPointCloud. Im-
age from https://drake.mit.edu/doxygen_cxx/classdrake_1_1perception_1_
1_depth_image_to_point_cloud.html retrieved in May 2019.

Example Usage

The Manipulation Station used in 6.881 had three cameras surrounding the robot,

one on its left side, one on its right side, and one above the cabinet structure. Figure

4-2 shows the color and depth images from each of these cameras. The depth images

are displayed as grayscale images. Darker areas appear closer to the camera, and pure

white areas extend beyond the maximum distance read by the camera. Each pair of

color and depth images can be fed into a DepthImageToPointCloud, which produces

the point clouds in Figure 4-3 for the left camera, middle camera, and right camera

respectively.

Figure 4-2: The color and depth images from the Manipulation Station’s left camera
(left), middle camera (center), and right camera (right). Darker shades in the depth
images indicate points closer to the camera, and completely white pixels indicate
areas beyond the maximum distance measured by the camera.
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Figure 4-3: The point clouds produced by running each pair of images in 4-2 through a
DepthImageToPointCloud System. The left, middle, and right images in this figure
corresponding to the point clouds from the left, middle, and right cameras on the
Manipulation Station respectively.

4.2.2 PointCloudConcatenation

PointCloudConcatenation is a newly created System that makes working with point

clouds from multiple sources easier. Its constructor takes in a list of point cloud

IDs, which are often the serial numbers of the cameras the point clouds come from.

The System has an input ports for each of the listed point clouds and their ho-

mogeneous transformations to a common frame. It has a single output port con-

taining one point cloud composed of the transformed input point clouds. Figure

4-4 shows its system diagram. The code for this System is on the Drake master

branch at https://github.com/RobotLocomotion/drake/blob/master/bindings/

pydrake/systems/perception.py.

Figure 4-4: The input-output port diagram of a PointCloudConcatenation. Ci is
the frame of point cloud 𝑖 and F is the common frame of the final combined point
cloud.
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Example Usage

A common use of this System is to align point clouds from multiple cameras into the

world frame. Figure 4-5 shows the resulting point cloud when the three point clouds

in Figure 4-3 are combined using the external camera calibration parameters of the

Manipulation Station. This also is an example of how combining different Systems

leads to more useful results than using a System on its own, since the point clouds in

Figure 4-3 were all originally produced by DepthImageToPointCloud Systems.

Figure 4-5: A point cloud in the world frame constructing by combining the individual
camera point clouds from the Manipulation Station, shown in Figure 4-3.

4.2.3 DOPE

A DopeSystem (sometimes stylized as DOPE) is a Drake System that runs the infer-

ence step of NVIDIA’s DOPE [25]. The code provided by NVIDIA that runs as

a ROS process was adapted to run within a Drake System without asynchronous

message passing. Each DopeSystem takes in a path to weights for each object, and

a path to a configuration file. It also has a single color image input port. It has
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two output ports: a pose bundle and another color image. A pose bundle is a set

of poses, which can have names. The output port contains the estimated pose of

each of the objects listed in the given configuration file. The color image output

port contains an annotated version of the input color image with bounding boxes

surrounding each identified object. See Figure 4-6 for the full port diagram. The

DopeSystem class can be found at https://github.com/RobotLocomotion/6-881-

examples/blob/km_thesis_work/perception/dope_system.py.

Figure 4-6: The input-output port diagram of a DopeSystem.

Example Usage

Figure 4-7 shows an image taken by one of the RealSense D415s on the real Manip-

ulation Station annotated by the original ROS implementation of DOPE. Figure 4-8

shows similar results applied to simulation produced using the DopeSystem. Figure

4-9 shows the full 6D pose estimates overlaid on the ground truth objects in two dif-

ferent scenarios. All objects between the two images are in the same location except

the potted meat can. Note that DOPE’s estimate of the potted meat can’s pose is

much better in the left image than in the right image. The next System presents a

way of improving these poses.

4.2.4 PoseRefinement

PoseRefinement is a new System that was based on a similar System the author

created for 6.881. It is a flexible System meant for refining a pose of a single object

with a point cloud. The two input ports take in a pose bundle and a point cloud.

The constructor requires a model point cloud of the object and a .png of the object

texture. The constructor also accepts an optional data structure containing a scene

segmentation function and a pose alignment function for a specific object, which
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Figure 4-7: An annotated image from one of the Manipulation Station’s physical
cameras annotated by the original ROS implementation of DOPE.

will be clarified shortly. A PoseRefinement has a single output port containing a

pose bundle of the calculated poses of all of the objects in the original pose bun-

dle. The input-output port diagram is shown in Figure 4-10. The Python code for

PoseRefinement can be found at https://github.com/RobotLocomotion/6-881-

examples/blob/km_thesis_work/perception/pose_refinement.py.

To calculate a refined pose for a single object, first the object is segmented out

of the input point cloud, which is usually the point cloud of the entire scene, using

either the provided or default implementation of the segmentation function. Then

the segmented point cloud is aligned with the model point cloud to estimate the pose

of the object using the alignment function. This process is repeated for every object

represented in the input pose bundle to form a pose bundle of refined poses to publish

on the output port.

The scene segmentation and pose alignment functions have the same method

signature. They both take in the scene point cloud, the model point cloud, the object

texture image, and an initial pose guess. The scene segmentation function is supposed

to remove all points from the scene point cloud that do not belong to the object of

interest. The pose alignment function aligns the segmented object with the model
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Figure 4-8: RGB images from the simulated Manipulation Station’s right camera that
have been processed and annotated by DOPE.

object.

Users can write their own segmentation and alignment functions, however the

PoseRefinement System contains default implementations of them both. The de-

fault scene segmentation function removes all points that are farther than the size of

the largest model dimension away from the initial pose guess. For example, if the

dimensions of the model are (1, 2, 1) and the initial pose is located at (0, 3, 4), all

points included in the segmented point cloud have 𝑥-values between [-2, 2], 𝑦-values

between [1, 5], and 𝑧-values between [2, 6]. The default pose alignment function runs

standard point-to-point ICP starting from the initial pose guess.

Example Usage

The best way to use the PoseRefinement System is by combining it with all the

previously discussed Systems as in Figure 6-2. This setup can be used to evaluate

different object segmentation and pose alignment functions. The following examples

will walk through comparing custom object segmentation functions to the default

ones presented above, while using the default pose alignment function.
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Figure 4-9: The pose estimates of objects computed by DOPE overlaid on the ground
truth locations. Note the estimate of the potted meat can’s pose is much worse in
the right image than in the left image.

Figure 4-10: The input-output port diagram of a PoseRefinement.

Mustard Bottle Segmentation

DOPE’s estimate of the mustard bottle shown in the left image in Figure 4-9 is fairly

accurate, but has obvious room for improvement. Figure 4-11 below shows a zoomed

in version. The PoseRefinement System was used to produce a more accurate pose

of the mustard bottle using two different object segmentation functions. The first

function was the default implementation described above, which includes every point

in a box around the initial pose guess. The second function expanded on the default

implementation by filtering out points that are not yellow and removing points that

are far away from many other points.

Each of these segmented point clouds is shown in the top two images in Figure

4-12. While both clouds are very different, it is not immediately clear which one is

a better candidate for ICP. Figure 4-12 illustrates the full process of segmenting the
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point cloud, running DOPE to get an initial pose estimate, running ICP to obtain a

better pose estimate, and checking the refined estimate with the ground truth data.

The default segmentation method resulted in a better final alignment, because the

bottom part of the mustard bottle was not included in the segmented point cloud

with the custom segmentation function.

Figure 4-11: DOPE’s estimate of the mustard bottle’s pose.

Potted Meat Can Segmentation

The two images in Figure 4-9 show the potted meat can in very different locations.

DOPE also produces very different pose estimates for each of these locations. The

one in the left image is much closer to the ground truth than the one in the right

image. Looking back at Figure 4-8, the potted meat can is accurately outlined in

images DOPE annotated for each scenario, so the pose discrepancy is not due to poor

visibility. In the case of the right image where the can is farther away from the camera

and DOPE’s initial guess of the can’s pose is very far off from the actual object, the

default object segmentation function utilized by PoseRefinement does not work at

all, since the initial guess is too far away from the object to isolate any points. In

order to use the PoseRefinement System here, a custom segmentation function must

be implemented.

The potted meat can was purposefully moved from the first location to the second

location by the robot. The segmentation function takes advantage of that knowledge,

as well as knowledge about how DOPE behaves for objects farther away from the
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Figure 4-12: A comparison of the default object segmentation function (left) to a
custom object segmentation function (right) of the mustard bottle. From top to
bottom the images illustrate: the segmented point clouds, DOPE’s pose estimate with
the segmented point cloud, the refined pose after running ICP against the segmented
point cloud, and the final refined pose overlaid on top of the ground truth pose.

camera. First, the segmentation function looks for points in a box 2.5 sizes larger

around the initial pose guess than normal, since DOPE is less accurate for objects

farther away from the camera. An 𝑥-𝑦-𝑧 filter is then used on that box of points

to isolate points on the bottom shelf, since that is where the robot just placed the

object.

Figure 4-13 shows the resulting point cloud from applying this segmentation func-

tion (top right) compared to the default segmentation function applied to the original

location of the potted meat can (top left). The bottom two images show the final

poses produced by PoseRefinement after running the default ICP alignment func-

tion on the segmented point clouds. The final pose estimates are both very accurate,
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showing that the specific choice of segmentation function was appropriate in each

scenario.

Figure 4-13: A comparison of the default object segmentation function (left) to a
custom object segmentation function (right) of the potted meat can in two different
locations. The top two images show the segmented point clouds, and the bottom two
images show the final refined poses on top of the ground truth data.

Refining Poses from Real Point Clouds

While PoseRefinement has not yet been tested on point clouds from the real cameras,

there are more expected challenges in getting accurate poses than when running it

on simulated point clouds. Figure 4-14 shows one limitation that exists even in the

simulation. Although the final aligned pose fits the point cloud well, since the back

of the can was invisible to the cameras, the pose was not a perfect fit to the ground

truth data. With real point clouds, there is a higher chance of not being able to

see parts of objects due to occlusions caused by objects in the world not modeled in

simulation (such as the USB cord of the camera). The point clouds in simulation are

also noise free, whereas real point clouds have lots of noise. Figure 4-15 shows a point

cloud taken with one of the RealSense D415 cameras on the Manipulation Station,

which is much noisier than any of the simulated point clouds. To handle the noise,

a more sophisticated outlier rejection algorithm such as RANSAC would most likely

produce better results than running ICP on a point cloud obtained directly from the
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cameras.

Figure 4-14: Because the back of the
potted meat can was not visible to any
of the cameras, the final refined pose
does not perfectly align with the ob-
ject, as evidenced when looking at the
estimated pose from behind.

Figure 4-15: A point cloud obtained
by a RealSense D415 camera of the
Manipulation Station setup shown in
Figure 3-2.
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Chapter 5

Planning and Control

Now that you’ve identified and located the carton of milk on your counter, you need

to put it back in the fridge. Logically, you would go over to the counter, pick up the

milk, walk over to the fridge, open the door, put the milk on a shelf, and then close

the fridge door. But just in that seemingly simple sequence, you are making many

judgements and are constantly adjusting your actions to match reality. Maybe the

milk was heavier than you anticipated and you had to grip it tighter before moving

it. Or maybe the fridge was already open so you didn’t have to open the door. If

there were other things out on the counter, such as a box of sugar or a stack of dirty

dishes, you most likely reached around them and didn’t hit them at all.

A robot needs to be capable of making all of those small judgements, as well as

figuring out how to move its arm through space to get to where it wants. Even if the

problem is simplified such that an arm on an immobile base can reach the milk and

the fridge, figuring out how to move around in that space is not trivial. Planning and

control revolve around allowing a robot to perform these sorts of tasks.
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5.1 Background and Related Work

5.1.1 Planning

STRIPS Planning and PDDL

The STanford Research Institute Problem Solver (STRIPS) was developed by Richard

Fikes and Nils Nilsson in 1971 to control Shakey the robot [38]. In this formulation,

the world is represented by a set of true or false statements, called predicates. The

truth values of these statements are changed by performing named atomic actions.

Each action has a name, a cost, a set of preconditions, and a set of postconditions.

The current state of the world must satisfy all preconditions in order to perform

the action. Once the action is finished, the world then contains the values from the

postconditions. The truth values of predicates in the world not included in an ac-

tion’s postconditions are not changed after performing that action. The goal in using

STRIPS is to find a sequence of actions that turns an initial set of predicates into a

desired set of predicates.

One of the most common ways to use STRIPS is through the Planning Domain

Definition Language (PDDL, pronounced pid-id-al) [15]. Heuristic forward search

algorithms such as A* are often used to generate plans. Planning is usually done

using a relaxed version of the problem by ignoring predicates that are removed by

performing each action. Different heuristics to inform the search have been developed,

including ones called h_max, h_add, and h_FF. h_max returns the maximum cost

of performing an action to satisfy a goal condition, h_add takes the total cost of

satisfying every goal condition independently, and h_FF uses a greedy backwards-

search to bound the cost-to-go [11].

PDDL in 6.881

In the Fall 2018 semester of 6.881, a specific implementation of PDDL, called PDDL-

Stream [13], was used to generate plans to pick up a can of soup and place it in a

cabinet, referred to as the stowing task. PDDLStream was developed by MIT grad-
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uate student Caelan Garrett, who worked on integrating his work with Drake to be

used for the class. A video of the KUKA IIWA performing the stowing task using a

plan found by PDDLStream can be found at https://youtu.be/fMBon3IGmeI.

Behavior Trees

The plans produced by PDDLStream are sent to the robot in a feedforward way. An

alternative structure of sending plans to the robot is a behavior tree (BT). BTs are ex-

pressive, hierarchical way to control systems, similar to state machines. Although they

were originally developed by the computer games industry to control non-playable

characters, they have since been adopted by other fields, including robotics, due to

their reactiveness and modularity [31]. A simple behavior tree that allows a robot to

pick up a can of soup and put it in a shelf in a cabinet is shown in Figure 5-1. Figure

5-2 shows a key explaining the symbols.

Figure 5-1: A behavior tree that a robot uses to pick up a can of soup and place it
inside a cabinet.

Execution starts at the root of the tree, which is the top Selector node in Figure 5-

1. The root is the first node to receive a tick, which tells the node to run its behavior.

Different types of nodes have different responses to ticks, but they will all return a

status of RUNNING, SUCCESS, or FAILURE when finished.
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Figure 5-2: An explanation of the nodes and arrows in the behavior tree in Figure
5-1. Selector nodes are also sometimes referred to as Fallback nodes.

Selector nodes (also called Fallback nodes) and Sequence nodes are both types

of control flow nodes. The behaviors they run when ticked consist of ticking their

children and returning a status. When a Selector node gets ticked, it ticks its children

from left to right and stops once any of them returns SUCCESS or RUNNING, upon which

it returns that same status. If none of its children return SUCCESS or RUNNING, then

the Selector node returns FAILURE. Sequence nodes exhibit the opposite behavior.

While they still tick their children from left to right, they instead stop and assume

the status of the first child that returns FAILURE or RUNNING. They will only return

SUCCESS if all of their children return SUCCESS.

Condition and Action nodes run behaviors that depend on and affect the envi-

ronment. Condition nodes check conditions and return SUCCESS if the conditions are

true. Otherwise they return FAILURE. When an Action node is ticked, it starts a

process and returns the status of that process without blocking the rest of the tree

from ticking. If that Action is ticked again, it checks on the process and returns a

new status depending on the progress of the process. If the process is running, the

node RUNNING. Similarly, the node returns SUCCESS once the process is finished and

FAILURE if the process stops without finishing.

BTs are reactive because the root of the tree is ticked on every timestep. Explicit

sequences of actions are not generated before executing the task. Instead, the robot

performs the appropriate STRIPS action in real time based on different conditions.

This also means there is no need to replan if the state of the world changes in an un-
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expected way, such as if the robot accidentally drops the soup can before placing it in

the cabinet. If similar behavior is desired when using a feedforward planning frame-

work such as PDDLStream, a new plan has to be generated every time something

unexpected occurs.

Because BTs do not generate feedforward plans, the structure of the tree must be

designed. There are a few ways to generate this structure. The first one is designing

the tree by hand, such as the one in Figure 5-1. For small tasks, hand-designed

trees can be simple yet effective. An alternative is to generate them while running

the system using an algorithm such as Planning and Acting Using Behavior Trees

(PA-BT) [30]. The key idea of PA-BT is when starting with a set of desired goal

conditions, failing conditions are replaced with subtrees that will perform actions to

satisfy them. These subtrees are based around STRIPS actions. A BT produced by

running PA-BT to accomplish the stowing task is shown in Figure 5-3

Figure 5-3: A behavior tree produced by running the PA-BT algorithm on the stowing
task.
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5.1.2 Control

A very broad overview of control theory was given in 2.1.1. The following sections

describe more specific controllers

Joint Space Control

A joint space controller is a controller for moving the robot in joint space, which, for

the KUKA IIWA, is 7-dimensional for its 7 joints. Joint space refers to the specific

angles each joint can go to and the torques they can be moved by. Bringing the

current joint positions and torques 𝑦 to a desired position 𝑢 can be done by any sort

of controller, commonly a proportional-derivative (PD) controller or proportional-

integral (PI) controller [17]. For more information about PD and PI controllers,

see [10]. Because this feedback controller is embedded in the plant, the joint space

controller used in this project is a feedforward controller.

Task Space Control

A task space controller is similar to a joint space controller in that it can use PD

or PI controllers to move from the current configuration to a desired configuration,

but instead of working with joints directly, it works with a specific point in 3D space.

Even though the point exists in 𝑥-𝑦-𝑧 space, the input and output vectors are actually

6-dimensional by adding the roll -pitch-yaw orientation of the point in addition to its

location [17]. Unlike the joint space controller, the task space controller that can be

implemented with the Systems described below do use explicit feedback.

Forward and Inverse Kinematics

Forward kinematics (FK) is finding where certain points of a robot are in 6D space

given with known angles for all of its joints. Conversely, inverse kinematics (IK) is

figuring out what joint angles of a robot produce a given 6D pose. This problem

is much more difficult and does not always have a unique solution. Calculating IK

values is usually an optimization problem of trying to match a FK solution of joint
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angles to the known point location. [28] describes one such method of performing

this optimization. For the specific implementation of computing IK in Drake, see the

Drake documentation at [40].

5.2 Systems

The Systems in this section use a data structure called PlanData. Each PlanData

instance can represent either a joint space plan or a task space plan. A joint space

PlanData instance uses a PiecewisePolynomial in 7-dimensional space to send joint

angles to each of the KUKA’s 7 joints. A task space PlanData instance contains a

3D PiecewisePolynomial for the position in 𝑥-𝑦-𝑧 space and a 4D

PiecewiseQuaternionSlerp for orientation of the end-effector. A

PiecewisePolynomial contains a list of polynomials defined over different time seg-

ments. Similarly, a PiecewiseQuaternionSlerp contains a list of quaternions to be

interpolated with piecewise slerp at different times. More information about these

classes can be found in [43] and [44]. Although the PlanData struct supports both

joint space and task space plans, the systems below only use joint space plans. Task

space plans are not supported in Python at this time.

The PlanData data structure as well as the RobotPlanRunner System were im-

plemented in C++ by Pang Tao, a member of the Robot Locomotion Group. Their

Python bindings were written by the author. The C++ code can be found in the

directory on a fork of Drake here https://github.com/pangtao22/drake/tree/

robot_plan_runner/manipulation/robot_plan_runner, and the Python bindings

live on the same fork in the directory at https://github.com/pangtao22/drake/

tree/robot_plan_runner/bindings/pydrake/manipulation.

5.2.1 RobotPlanRunner

RobotPlanRunner takes in one plan at a time and sends it to the robot. It has input

ports for a single PlanData instance and the robot’s current position, velocity, and

external torque. It outputs a position and torque command for the robot. Figure 5-4
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shows its full system diagram.

The output position and torque commands are calculated with a

JointSpaceController System. This System is a subsystem of RobotPlanRunner

and cannot be used directly from Python. Because the IIWA’s internal controller is

estimated as a joint space feedback controller [41], the JointSpaceController simply

sends the joint values from the PiecewisePolynomial at the appropriate time to the

robot.

Figure 5-4: The input-output port diagram of a RobotPlanRunner.

5.2.2 BehaviorTree

The BehaviorTree System was designed to send plans to the robot through a

RobotPlanRunner via an output port for a single PlanData instance. It wraps a

py_trees BehaviourTree object [18] in a Drake System. The system diagram for

a BehaviorTree System is shown in Figure 5-5. The system code can be found at

https://github.com/RobotLocomotion/6-881-examples/blob/km_thesis_work/bt_

planning/behavior_tree.py. To avoid confusing a py_trees

BehaviourTree object with the BehaviorTree Drake System, the py_trees object

will be referred to simply as a Tree. The py_trees library, written by Daniel Stonier,

contains a basic implementation of BTs in Python [18]. In addition to the different

node types described in 5.1.1, there is a data structure called a Blackboard, which is

a key-value store shared by all nodes in a Tree.

The BehaviorTree System has input ports for the current state of the world: the

robot’s current position, velocity, and external torque; the gripper’s position, velocity,

and force; and relevant poses of objects in the world frame. Its constructor takes the
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Figure 5-5: The input-output port diagram of a BehaviorTree.

root node of a Tree, and string names of objects in the world relevant to the stowing

task. It periodically ticks the root of its Tree, but will first update the Blackboard

with the values read in from the input ports. The values are written and stored in

the Blackboard instead of being used directly so that the System’s Tree can be a

native py_trees object instead of needing another Drake wrapper. The Tree passed

into the System should look something like the ones in Figures 5-1 or 5-3, where it

uses the robot’s Blackboard variables to calculate the next plan to send to the robot.

The plan calculated by the Tree gets written to the plan_data output port of

the BehaviorTree. The System also has an output port for the status of the Tree,

which is an integer representing SUCCESS, RUNNING, or FAILURE. The final output

port is the position to set the gripper fingers to, which is not currently included in

RobotPlanRunner.

Example BehaviorTree Use

As described above, the BehaviorTree System has variables related to the stowing

task. This section describes the "Pick Up Object" behavior, named PickDrake, as

one of the subtasks. The Tree that allows the robot to perform this subtask, shown

in Figure 5-6, is a subtree of the one shown in Figure 5-3 with an added Condition

to make sure the robot is not moving just before picking up the object.

When ticked, the py_trees PickDrake Behaviour solves an IK problem to cal-

culate a joint trajectory from the current position to a position where the gripper is

slightly behind the object to pick up. Then the robot holds its position while closing
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Figure 5-6: The Tree given to a BehaviorTree System used to test the PickDrake
Behaviour.

the gripper. A video of the robot performing this task can be found at https://

youtu.be/5cm3LV2dMOo, and the implementation can be found at https://github.

com/RobotLocomotion/6-881-examples/blob/km_thesis_work/bt_planning/behaviors.

py#L105.
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Chapter 6

System Integration

While all of the Systems described in the previous chapters individually perform

important functions for robot manipulation, they are most useful when combined

with other Systems. This chapter describes several ways to integrate work from the

previous chapters and suggests further extensions of the platform.

6.1 Connecting Systems Together

Any two Drake Systems with a compatible input/output port type pair can be wired

together. Once two or more Systems have been wired together, they form a Diagram.

This section shows some of the ways by which the Systems mentioned in the previous

chapters can be connected to perform useful manipulation tasks.

6.1.1 Running a Full-Stack Manipulation Task

A Diagram such as the one in Figure 6-1 could be used to run a complete manipulation

task, including perception, planning, and control. Each block represents a single

System or Diagram, and the arrows indicate port wirings. Each color corresponds

to a different type of port. The dark blue ports contain depth images, the green

ports contain color images, the yellow ports contain point clouds, the light blue ports

contain pose bundles, and the purple ports contain real-valued vectors. Only the
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names of the real-valued vector output ports are listed, as the rest are self-explanatory

based on port type. Note that not all input and output ports of each System is

displayed. For a full list of ports for each system, see their descriptions in the previous

chapters.

Figure 6-1: A sample Diagram of a full-stack robot manipulation task. Note that
only the names of the real-valued vector output ports are listed.

This full-stack Diagram could work either fully in simulation or on real hardware,

because it only uses output ports from the ManipulationStation that are avail-

able in both (see Figure 3-3). First, a ManipulationStation is created, and all of

the objects are added to the scene. The depth image and color image output ports

from each camera are wired to a separate DepthImageToPointCloud, which combines

them into a colored point cloud. Separately, a single color image output port of the

ManipulationStation is wired into a DopeSystem. The specific color image port is

also usually used as an input to one of the DepthImageToPointClouds. The outputs

of all of the DepthImageToPointClouds are connected to a single

PointCloudConcatenation, which aligns the individual point clouds into one point

cloud in world frame. That merged point cloud is then passed into a PoseRefinement

system, along with the pose bundle output of the DopeSystem. Then, the refined

pose information is passed into the BehaviorTree, along with the state of the robot
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and the gripper from the ManipulationStation. The BehaviorTree produces joint

space plans and gripper setpoints. It sends the gripper setpoints directly to the

ManipulationStation and the plan data to the PlanRunner. Finally, the PlanRunner

sends joint position and torque commands back to the ManipulationStation to move

the robot. MeshCat Systems can also be inserted after output ports of the appropriate

type without affecting the overall behavior.

6.1.2 Changing Modules

A big advantage of using Drake Systems is being able to replace any individual System

within a Diagram with a new System simply by rewiring the ports. The Diagram in

Figure 6-1 could work for a many different tasks. Although the current BehaviorTree

implementation is specific to the stowing task, making small changes to make it either

more general or more specific to a different task would be relatively straightforward.

Similarly, replacing one of the perception Systems, such as DOPE or PoseRefinement

with a System containing a different algorithm with the same functionality would be

simple. PoseRefinement is already a flexible system that lets the user substitute

different point cloud segmentation and pose alignment functions without changing

the underlying System. However, DOPE could be replaced with a different System for

pose estimation, such as the Stochastic Congruent Sets algorithm described in [12].

Some work would be required to wrap the code in a Drake System, but an example

can be seen from the modified DOPE code that is currently in the DopeSystem.

Testing the Perception Stack

Sub-sections of Figure 6-1 are also useful on their own. For example, to test different

perception capabilities, the user can construct a Diagram such as the one in Figure

6-2. Unlike the one in Figure 6-1, this Diagram does not involve robot motion, so

perception algorithms can be tested on their own with ground truth data. Figure 6-2

shows one example of explicitly inserting a MeshcatVisualizer into the Diagram.

When running in simulation, the same MeshcatVisualizer could instead be inserted
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from the pose bundle output port of the ManipulationStation in addition to a

MeshcatContactVisualizer. A different MeshcatPointCloudVisualizer could also

be placed after all the point cloud output ports on either of the DepthImageToPointClouds

and the

PointCloudConcatenation. This was the setup used to produce the bounding boxes

in https://youtu.be/zUS33rvbRsc. Examples of comparing different object seg-

mentation functions using this setup are described in Section 4.2.4.

Figure 6-2: An alternative to the block diagram shown in Figure 6-1. Instead of
focusing on moving the robot, this setup can be used to easily and quickly test
different perception algorithms.

Testing the Planning Stack

Another useful sub-section of Figure 6-1 is shown in Figure 6-3. This Diagram can

be used to test different planners on ground truth perception data. Note that this

setup can only be used in simulation because it requires ground truth poses from the

ManipulationStation that aren’t available on the real robot. This would be the

Diagram to use when testing a new BehaviorTree implementation or an alternative

planner such as PDDL. Once again, any new planner would have to be wrapped in a

Drake System, but all other parts of the Diagram would keep the same functionality

without any extra work. This is the setup used to debug the existing BehaviorTree

implementation as described in 5.2.2.
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Figure 6-3: An alternative to the block diagram shown in Figure 6-1. Instead of using
a perception pipeline to generate poses the behavior tree uses, the ground truth data
from the simulator can be used to focus on development of only the planning portions
of the problem.

6.2 Possible Extensions

Most of the current algorithms implemented across the various Systems that make

up the Manipulation System are not the most efficient, state-of-the-art algorithms.

The system is meant to be a fully functional start for other users to improve upon.

Presented below are two ideas to make use of the Manipulation Station to aid both

robotics researchers and students.

6.2.1 Manipulation Benchmarks

Clutter clearing is a common manipulation task where a robot must move every object

in front of it into another area, often a bin to the side. A key component to any clutter

clearing system is perception, but it can range from only recognizing that there is a

pile in front of the robot [4] to recognizing each object to pick up individually [14].

There is also a large emphasis on task-diversity, meaning the robot should be able to

pick up many different objects with different colors, shapes, sizes, weights, etc., but
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only needs to be able to place them in a separate bin, as opposed to a more advanced

task such as operating a tool.

With many possible perception systems and objects to manipulate, it is important

to have standard comparisons between algorithms to compare which ones perform

better in different situations. Especially when researchers develop new methods,

being able to compare their results directly against other results can help show the

value of their research.

While various groups and competitions have proposed other tasks to benchmark

manipulation algorithms [1] [19] [35] [33] [50], no one has proposed a full hardware

and software setup to test such algorithms. The Manipulation System could be used

as a benchmarking platform to test different aspects of the clutter clearing task. The

Manipulation Station already has a simulation setup for this purpose, shown in Figure

3-4. The use of this common platform would allow researchers to directly compare

accuracies of algorithms when running on the same hardware. Additionally, many

people already use the YCB dataset in their manipulation research [25] [22] [12],

which is already supported in Drake.

6.2.2 Cloud Simulation

One of the main advantages of using Drake Systems is how easy they are to understand

and test. This makes learning about robot manipulation, which is a very broad field,

easier than it would otherwise be without being able to reference specific applications

of all of the pieces. Besides the complexity of learning all of the different components

of manipulation, it can be difficult to learn a specific topic in depth without access

to hardware to test it on.

In order to be as accessible as possible, the Manipulation System could be hosted

on a cloud platform, such as Amazon Web Services (AWS) [46] or Google Cloud

Platform (GCP) [20]. This would make it easy for people to use and develop manip-

ulation algorithms without needing access to specific hardware in terms of robots or

computers. Both AWS and GCP allow people to use GPUs for training deep neural

networks, which could be used for perception purposes. The result could be similar
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to AWS RoboMaker [2], a service that was announced in late 2018 that lets people

develop ROS code on AWS.
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Chapter 7

Conclusion

As evidenced by the breadth of the topics covered in this thesis with only a limited

amount of depth into each subject, robot manipulation is difficult. Each of the per-

ception, planning, and control components that make up a complete manipulation

task is complicated on its own, and combining them has its own unique set of chal-

lenges. While the project was motivated by cleaning a dirty kitchen, only a very small

subset of that task, stowing a carton of milk back in the fridge, was covered in this

document.

However, the main goal of this project was not to solve all of robot manipulation,

but to set up a framework to make it easier for seasoned researchers and beginners

alike to home in on their area of choice in an already working system. This was

accomplished by using the Drake Systems framework to make a clean, modular, and

deterministic system for full-stack robot manipulation. By building upon this system,

people will be able to collectively program robots to clean your kitchen, possibly faster

than you could.
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