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Abstract

As robotic manipulation research becomes more prevalent, it is crucial to develop
clean, modular, and testable systems for researchers to make advances in their fields
of expertise without sacrificing usability for others. It is also important to introduce
those methods to beginners as they are entering the field, so they can build upon
them in novel research. This thesis introduces a framework, informally called the
Manipulation System, built using Drake Systems based on work done for the Fall 2018
MIT class Intelligent Robot Manipulation. This thesis also presents the groundwork
for performing full-stack robot manipulation tasks and proposes extensions to make
the system more usable and accessible to all.
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Chapter 1

Problem Statement and Motivation

Imagine your kitchen after cooking a complicated meal. The counter is probably full

of leftover ingredients, cooking utensils, and spilled food. While cleaning up may seem

like an annoying task, it's not very di�cult. You just put the unused ingredients back

in the cabinets, put the dirty dishes in the dishwasher, and wipe down the counter

once it has been cleared. Simple.

Now imagine trying to program a robot to do the same task. All it must do is put

the unused ingredients back in the cabinets, put the dirty dishes in the dishwasher,

and wipe down the counter once it has been cleared. But in order to do that, it has

to know what all of the ingredients are, where they go, the di�erence between a clean

dish and a dirty dish, how to put a dish in a dishwasher, how to wet a rag to wipe

down the counter, and many other pieces of information that you as a human didn't

consciously think about when doing your own cleaning. Suddenly this simple task of

cleaning up doesn't seem so simple.

The �eld of robotic manipulation is full of hard, unsolved problems. Perception

challenges arise when trying to identify and reason about objects, such as deciding

if a carton of milk should go into the fridge or cupboard. Tasks such as loading a

dishwasher or wiping down a counter require many - possibly expensive - planning and

control computations. Additionally, trying to combine smaller tasks into completing

a common goal requires huge system integration e�orts.

Because all the subtasks in areas such as perception and planning that go into a full
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manipulation task are di�cult problems on their own, most researchers independently

develop algorithms to solve them on very di�erent robot setups. While one group can

show an accurate way to identify milk cartons with a particular camera, and another

group could write a fast planner to shelve di�erent sizes of cartons, combining the two

innovations to make a robot put a carton of milk in a fridge is still a hard problem,

especially if the algorithms were not speci�cally designed to integrate with other

researchers' algorithms. This process has become much better in the past decade

with the widespread adoption of the Robot Operating System (ROS). However, there

are some major disadvantages of ROS which make robust system design di�cult.

This thesis presents a model-based systems framework to program full-stack robot

manipulation tasks. This work, informally referred to as the Manipulation System,

is a clean, deterministic environment where people can develop algorithms related

to manipulation to perform real tasks. With working implementations of simple

algorithms, researchers can focus on one particular challenge, plug their algorithm

into the rest of the system, and immediately run a shelving task without having to

do much system integration work.

The structure of the rest of the thesis is as follows. A general overview of systems

theory and how it relates to robot manipulation can be found in Chapter 2. Chapter

3 introduces the hardware and simulation setup used throughout the project. Chap-

ters 4 and 5 detail the challenges and system components related to perception and

planning, respectively. Chapter 6 discusses using the system as a whole. Finally,

Chapter 7 summarizes the work.
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Chapter 2

Systems Theory and Model-Based

Design

Systems theory is a very broad �eld that can apply to many di�erent areas in engineer-

ing, science, and society [21]. It generally includes strategies to design large, working

systems. While there are general principles that apply to all systems, each sub�eld

has its own unique set of challenges. This chapter will discuss a broad overview of

systems theory and how it applies to robotics. Then the general framework for the

rest of this work will be introduced.

2.1 Systems Theory

Any type of system can grow to be very complex due to interacting requirements,

desire for generality, and to maintain high utilization. Trying to design for any one of

these sources of complexity often raises multiple problems, such as di�culties scaling

up the system, or e�ects from one part of the system propagating to another seemingly

unrelated part of the system. In order to manage these problems, there are many

design principles to guide the design process. Some of these include using safety

margins, avoiding over generalizing the system, and simplifying subsystems whenever

possible [21].

Besides speci�c design principles, there are some higher level strategies in building
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large systems, namely modularity and abstraction, layers, and hierarchy. A modular

system is one that is split up into discrete components, called modules, that all �t

together to accomplish the desired task. These modules can often be exchanged for

one another, so the overall system does not depend on the speci�c implementations

of subsystems. For example, often computer parts can be swapped out, so one can

upgrade the graphics processing card without replacing any other parts. Abstraction

makes modularity formal by specifying the inputs and outputs of each module, and

how much communication happens between the modules [21].

Layered and hierarchical systems are both di�erent organizational structures of

modules. In layered systems, certain modules are connected to each other in a single

layer. They can communicate with other layers only directly above or below them.

A hierarchical system has a tree-like structure, and modules can only communicate

with their parents and children [21].

2.1.1 Robotics Systems Theory

Robotic systems are required to perform many concurrent calculations while inter-

acting with the real world. Unlike pure software systems, where complexity is mostly

limited by human ideas [21], robotic software systems need to be connected with the

real world and obey the laws of physics.

Asynchronous Message Passing

A common paradigm for designing robotic software systems is asynchronous message

passing, often by using Robot Operating System (ROS). ROS is more of a collection

of tools and libraries than an operating system [34].

Using ROS leads to modular systems by writingnodes, which are independent

programs. Nodes can be designed to do many di�erent things, such as parsing sensor

data or sending commands to a robot. The abstraction comes from specifying a set

of topics, or communication channels between nodes. Each topic stores a single data

type, which can be as simple as an integer or as complicated as an entire color image.
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Users can organize nodes however they want, including in a layered or hierarchical

matter by restricting which nodes communicate with each other.

The topic communication system is all asynchronous, so nodes can send and re-

ceive messages through these channels at their own rates. This is good in that it

makes it easy for nodes to be independent and easily parallelizable at run time, but it

also means the system is not easily testable. In asynchronous message passing, there

are no guarantees on messages being sent or received [3]. This makes the system very

non-deterministic, because nodes will not necessarily receive the expected input or

send the expected output successfully. When working with the real world there will

always be an aspect of non-determinism, but if the system is completely simulated,

it should be as deterministic as possible. For this same reason, testing nodes can be

hard if they all rely on sending and receiving messages, which is expensive to run

for testing purposes to ensure basic functionality that does not depend directly on

sending or receiving messages.

Model-Based Design

In order to eliminate the non-determinism in simulation and to make systems easier to

understand and test, people often use a paradigm called Model-Based Design (MBD)

[39]. MBD is about using numerical software models in place of hardware models

in order to test individual components much more cheaply than on hardware. MBD

often speci�cally applies to control theory. The block diagram shown in Figure 2-1 is

a classic diagram of feedback control. The goal is for theoutput signal y to match the

reference input r . The di�erence signale, or the error, between the two signals is fed

into a controller, which calculates the appropriate commandu to send to the robot.

The robot is usually called aplant, which is a more general term for a dynamical

system. The plant is composed of the actuators which do the work to a�ect the

physical state of the system, which in turn is measured by the sensors. This plant

is always an approximation of how the real system behaves. It is important to note

that the signals r , u, and y can be vectors representing multiple aspects of the plant,

such as both position and velocity.
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Figure 2-1: A standard block diagram for a feedback control system. The outputy
is subtracted from the input r to make an error signale. The error is fed into the
controller, which produces a commandu to send to the plant.

2.2 Drake Systems View

A popular piece of software for implementing systems with MBD is Simulink by Math-

Works [29]. However, this software is proprietary and not accessible to all users. This

project uses a free and open-source software stack called Drake instead of Simulink to

implement MBD. Drake is a software library with tools for modeling and designing

advanced dynamical systems [42]. It was originally developed in Prof. Russ Tedrake's

Robot Locomotion Group at MIT, but is now being developed by a team at the Toyota

Research Institute.

A Drake Systemis a module that has typedinput ports and output ports that can

be wired to otherSystems and/or accessed in surrounding code. CombiningSystems

creates aDiagram, which can be thought of as a single, largeSystem, which also has

input and output ports. A Diagramcan also contain otherDiagrams. The input and

output ports are strongly typed. Evaluating ports is very fast due to the underlying

caching system, whose implementation details are not important to understand when

working at the high level in this thesis. Additionally, Systems, like any other C++

or Python class, can accept arguments in their constructors, separate from input

ports. This project makes heavy use of DrakeSystems for designing modular and

deterministic robotic systems.

Figure 2-2 shows a system port diagram, which will sometimes be referred to as

a full system diagram, for a genericSystem. The name of the system is in the center

box, which represents the internal code of the module. On the left are the input

ports, which are arrows going into the block. The arrows on the right coming out

of the system are the output ports. This genericDrakeSystemhas n input ports
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and m output ports. There is no rule on how many input and output ports systems

have, so any of the following relationships could hold:n < m , n = m, n > m . A

System can also have no input or outputs ports. Figures 3-5, 3-6, and 3-7 show

examples of systems with only input ports and no output ports. Di�erent instances

of a certain Systemcan also have di�erent numbers of inputs and/or output ports.

Every instance of thePointCloudConcatenation System shown in Figure 4-4 has a

di�erent number of input ports depending on a constructor parameter.

Figure 2-2: The input-output port diagram of a generic DrakeSystem. The arrows
on the left are the typed input ports of theDrakeSystem. The arrows on the right
are its output ports

2.2.1 Bene�ts of the Systems View

Writing the software in the DrakeSystems framework is an intentional design decision.

Although it is very di�erent from what many people may be used to, it has clear

pedagogical bene�ts. First, it is very clean and easy to reason about with MBD.

Block diagrams such as the one in Figure 2-3 can be constructed, which looks almost

identical to the classic feedback control diagram in Figure 2-1. When used, more

complicated diagrams such as the one in Figure 6-1 are constructed to give users a

good idea of what is going on and how data is being passed around. It also separates

pieces of code into speci�c chunks with only one or two tasks, resulting in very modular

pieces that can be reused in other places. This is very similar to the idea of ROS

nodes, which people may be more familiar with. However, using DrakeSystems

eliminates the dangers of asynchronous message passing. The advantage of this is

that the system is now deterministic for speci�c inputs, which means it is testable

and reproducible.
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Figure 2-3: A feedback control block diagram as constructed in the DrakeSystems
framework. PlanRunner and ManipulationStation are Systems that will be dis-
cussed in detail in later chapters.

Having testable code allows a Continuous Integration system to run on a GitHub

repository. Continuous Integration allows developers to write tests the software should

always pass. These tests ensure that future updates to the repository do not break

important features. Since theSystems code is deterministic, it can be tested reliably

without relying on external factors such as network communications.

Reproducible code also means users can expect code to run for them exactly as

the documentation describes, which reduces the amount of debugging they have to

do. It also reduces the number of questions the users ask the original developers,

making the system much easier to maintain.

Chapters 3, 4, and 5 will go into detail about many DrakeSystems useful for robot

manipulation, and Chapter 6 will describe ways of putting them all together.
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Chapter 3

The Manipulation Station

3.1 6.881

During the Fall 2018 semester at MIT, Prof. Russ Tedrake and Prof. Tomàs Lozano-

Pèrez o�ered a new course titled Intelligent Robot Manipulation, numbered 6.881 [45].

During this course, students explored di�erent aspect of robotic manipulation both

in simulation and on real hardware. The assignments revolved around working on the

Manipulation Station, a hardware setup provided by Amazon Robotics. Pictures of

the software visualization and the real Manipulation Station and are shown in Figures

3-1 and 3-2. The station contains a KUKA IIWA arm with a Schunk WSG-50 parallel

jaw gripper across from a three-shelf cabinet. The cage structure around the robot

has three Intel RealSense D415 RGB-D cameras mounted at di�erent angles to get a

complete view of the table and the cabinet. Assignments given to students using the

Manipulation Station included picking up an object and putting it inside the cabinet,

locating an object on the table, and opening the cabinet doors.

The software used to interact with the robot was mostly written in Python using

Drake. Code was distributed to students in Docker containers, which enabled everyone

to run the simulation code without having to install many libraries on their own

machines. The code was also set up so switching between controlling the simulated

robot for problem sets and the real robot during labs only required changing a Boolean

�ag.
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