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Abstract. The Shortest-Path Problem in Graph of Convex Sets (SPP
in GCS) is a recently developed optimization framework that blends
discrete and continuous decision making. Many relevant problems in
robotics, such as collision-free motion planning, can be cast and solved
as an SPP in GCS, yielding lower-cost solutions and faster runtimes than
state-of-the-art algorithms. In this paper, we are motivated by motion
planning of robot arms that must operate swiftly in static environments.
We consider a multi-query extension of the SPP in GCS, where the goal
is to efficiently precompute optimal paths between given sets of initial
and target conditions. Our solution consists of two stages. Offline, we
use semidefinite programming to compute a coarse lower bound on the
problem’s cost-to-go function. Then, online, this lower bound is used
to incrementally generate feasible paths by solving short-horizon convex
programs. For a robot arm with seven joints, our method designs higher
quality trajectories up to two orders of magnitude faster than existing
motion planners.

Keywords: Control Theory and Optimization · Motion and Path Plan-
ning · Collision Avoidance

1 Introduction

A Graph of Convex Sets (GCS) [24] is a graph where each vertex is paired with
a convex set and an optimization variable inside this set, while each edge couples
adjacent vertex variables through additional convex costs and constraints. In the
Shortest-Path Problem (SPP) in GCS [26], we simultaneously seek a discrete
path through this graph and optimize the continuous variables associated with
the vertices along the path, while minimizing the cumulative edge costs.

Though the SPP in GCS is NP-hard [26, Section 9.2], effective solution meth-
ods have been proposed in [26,8]. This technique has shown remarkable success
in various robotics applications, such as optimal control [26], planning through
contact [13], and other robotics problems [30,19,9]. In real-world hardware de-
ployment, it has been especially effective in collision-free motion planning [25],
addressing the challenges of non-convex obstacle avoidance constraints. However,
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2 S. Morozov et al.

Fig. 1: Robotic arm in a simulated environment, tasked with moving items be-
tween shelves and bins. Shown are four queries for collision-free motion planning.

solving the SPP in GCS can sometimes be too slow for real-time applications
on high-dimensional robotic systems. Consider a 7-DoF KUKA iiwa robot arm
repeatedly performing online motion planning in a static environment. When the
environment is simple, the GCS is small, and the shortest path queries can be
solved quickly, in under 50ms [25]. However, when the environment is complex
and the configuration space must be covered thoroughly, as in Fig. 1, the GCS
becomes large, and the shortest path queries can take up to of 600ms. This is not
practical for high-productivity applications, such as robot arms in warehouses,
where the company’s income is nearly proportional to the operational speed.

In an effort to reduce solve times for online shortest path queries in GCS, we
seek an efficient way of precomputing optimal paths between given sets of source
and target conditions in the GCS. We formulate this problem as a generalization
of the SPP in GCS that is akin to the all-pairs generalization of the classical
SPP. Our solution contains two phases, illustrated in Fig. 2. Offline, we solve a
semidefinite program that produces convex quadratic lower bounds to the cost-
to-go function over the convex sets associated with GCS vertices. Pictured in
Fig. 2a are the contour plots of these lower bounds at every vertex. Then, online,
we use a greedy multi-step lookahead policy with the cost-to-go lower bounds
to determine the next vertex to visit. Thus, as shown in Fig. 2b, the path is
obtained incrementally, one vertex at a time. Though the quadratic cost-to-go
lower bounds can be coarse, using the lookahead policy is equivalent to producing
piecewise-quadratic lower bounds, which can be very expressive. As a result, the
obtained paths are nearly optimal in practice. Convexity of the quadratic cost-
to-go lower bounds allows us to evaluate the greedy policy by solving a set of
small convex programs in parallel, which can be done quickly at runtime. Applied
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(a) Offline: synthe-
size cost-to-go over
the GCS. Contour
plots are shown.
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(b) Online: at each iteration, we evaluate all n-step paths from
the current vertex (n=1 shown) and greedily select the deci-
sion that minimizes the n-step lookahead cost-to-go. The first
three iterations are shown, as the path is built incrementally.

Fig. 2: Illustration of our approach. The GCS instance is embedded in R2, with
the source vertex at the top and the target vertex at the bottom. The edges are
shown as red arrows, and the edge length is the squared Euclidean distance.

to the complex scenario shown in Fig. 1, our method requires just 6s of offline
computation to produce the cost-to-go lower bounds. Subsequent online queries
take 2-11ms, which is up to two orders of magnitude faster than solving the SPP
in GCS from scratch.

1.1 Literature review

Graph search plays a central role in both modelling and solving a wide variety
of planning problems in robotics. In this section we briefly connect our work to
some notable examples in this literature.

A common approach to motion planning is to construct a graph where nodes
correspond to collision-free configurations and edges correspond to collision-free
motions. The most popular approaches based on this idea are the Rapidly ex-
ploring Random Trees (RRT) [22], Probabilistic Roadmap (PRM) [17], and their
many variants [18,6,14,16]. The GCS approach to motion planning is similar to
the PRM one, but collision-free configurations are replaced with large collision-
free sets [25]. GCS avoids two major drawbacks of planning with a PRM: the
need to densely sample in high-dimensional spaces and post-process the motion
plan to obtain a smooth trajectory. However, generating these collision-free sets
can be computationally challenging and expensive. Furthermore, SPP in GCS
queries can still be very expensive, motivating this current work.

The importance of the SPP has led to a breadth of literature on its solution,
with Bellman’s dynamic programming approach illustrating the central role of
the cost-to-go function [2,4]. Given the cost-to-go, a shortest path can be ex-
tracted using a simple greedy strategy: given a vertex v, the next vertex in the
path is the one which minimizes the cost-to-go among all the neighbors of v.
This is captured by the famous Bellman’s equation[2].
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Multi-query SPP setting has also been thoroughly investigated. The All-Pairs
Shortest Paths (APSP) is the problem of finding shortest paths between every
pair of vertices in a discrete graph [10, Ch. 23]. One method for solving this
problem, from which we draw particular inspiration, first computes the cost-to-
go function between every pair of vertices in the graph (also known as a distance
oracle). This cost-to-go is used to produce a successor along the shortest path
between every pair of vertices, which is stored into the successor matrix. The
optimal paths are retrieved by sequentially querying this matrix.

Explicit solutions to the Bellman equation exist only in a handful of con-
texts. In the case of purely discrete graphs, a number of efficient methods ex-
ist [12,35,15], where the cost-to-go function can be encoded using a simple ma-
trix. Another notable example from control is Explicit Model Predictive Control
(MPC) where the cost-to-go is a piecewise quadratic [3]. However, even in these
settings, storing the cost-to-go can be prohibitively expensive for large graphs,
particularly in the APSP setting. In the purely discrete setting, the description
of the APSP cost-to-go function grows quadratically in the size of the graph,
while in the MPC setting it grows exponentially.

In most cases, solving the Bellman equation is known to be intractable. This
has motivated a breadth of literature for computing approximations for the cost-
to-go in various setting [11,32,21,4,23,34]. Similarly, in this paper we seek a
computationally tractable way to approximate the cost-to-go function to solve
the APSP in GCS. The generalization in the particular context of GCS is not
straightforward and constitutes one of the contributions of this work.

2 All-Pairs Shortest Paths in a Graph of Convex Sets

We seek to efficiently precompute optimal solutions to the SPP in GCS between
given sets of source and target conditions. Section 2.1 presents the classical
APSP, which is the corresponding problem in an ordinary graph. In Section 2.2,
we describe the single-query SPP in GCS. We then formulate the APSP in GCS
in Section 2.3, and outline our approximate solution method in Section 2.4.

2.1 All-Pairs Shortest Paths

Graphs and paths. Let G = (V, E) be a directed graph with vertex set V and
edge set E . Given a source vertex s and target vertex t, an s-t path is a sequence
of distinct vertices p = (s = v0, v1, . . . , vK = t), where each consecutive pair
of vertices is connected by an edge in E and no vertex is revisited. We define
Ep = {(v0, v1), . . . , (vK−1, vK)} as the set of edges traversed by the path p, and
denote the set of all s-t paths in G as Ps,t.

Shortest Path Problem (SPP). Let us associate with every edge e ∈ E a non-
negative edge cost ce ∈ R+. A shortest path p between the vertices s and t
minimizes the sum of the edge costs along the path:

min
p

∑
e∈Ep

ce s.t. p ∈ Ps,t.
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The optimal value of this program is called the cost-to-go between s and t, and
is denoted by J∗

s,t. The principle of optimality [2] holds in this context, stating
that every subpath of a shortest path is itself a shortest path. This forms the
foundation for many efficient solution algorithms to this problem.

All-Pairs Shortest Paths (APSP). The APSP is the multi-query generalization
of the SPP, where we seek a shortest path between all pairs of vertices in a graph.
Efficient solutions to the APSP leverage the principle of optimality. Instead of
computing the full path for each pair of vertices, it suffices to compute only
the immediate successor along this path. The full path can thus be attained
incrementally, one vertex at the time.

This solution to the APSP can be implicitly encoded via the cost-to-go func-
tion J∗

v,t for every pair of vertices v and t, computed via dynamic program-
ming [10, Ch. 23] [12,35,15]. The successor is then computed by greedily picking
a vertex that minimizes the one-step lookahead with respect to the cost-to-go:

π(v, t) = argmin
w

ce + J∗
w,t (1a)

s.t. e = (v, w) ∈ E . (1b)

The solution π is a decision policy that, given the current and target vertices
v and t, selects the next vertex on the shortest v-t path. We refer to π as the
successor policy.

2.2 Shortest-Path Problem in a Graph of Convex Sets

Graph of Convex Sets. A GCS is a directed graph G = (V, E), where each vertex
v ∈ V is paired with a bounded convex set Xv and a continuous variable xv ∈ Xv.
Each edge e = (v, w) ∈ E is then paired with a convex set Xe ⊆ Xv × Xw and a
convex non-negative edge length function le : Xe → R+, such that the adjacent
vertex variables satisfy the constraint (xv, xw) ∈ Xe, while minimizing the length
le(xv, xw) [24].

The Shortest Path Problem in a Graph of Convex Sets. The SPP in GCS between
point x̄s ∈ Xs of vertex s and x̄t ∈ Xt of vertex t is defined as follows:

min
p, {xv}v∈p

∑
e=(v,w)∈Ep

le(xv, xw) (2a)

s.t. p ∈ Ps,t, (2b)
xs = x̄s, xt = x̄t, (2c)
xv ∈ Xv, ∀v ∈ p, (2d)
(xv, xw) ∈ Xe, ∀e = (v, w) ∈ Ep. (2e)

Similar to the classical SPP, the SPP in GCS searches for an s-t path p =
(v0, v1, . . . , vK) though a graph, which is a sequence of distinct vertices. In ad-
dition to that, it also searches for a sequence of corresponding vertex variables
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(a) The optimal policy at vertex v depends
on previous decisions. If w has been visited
already, the optimal decision is to go to t
(orange), otherwise it is to go to w (blue).
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(b) If we allow vertex revisits, the opti-
mal policy is independent of past decisions.
Shown are the optimal s-t (green) and v-t
(blue) solutions to the relaxed problem.

Fig. 3: The two-dimensional GCS from Example 1. The convex sets paired with
s, v, t are points and the one paired with w is a segment. The GCS is fully
connected, and the edge lengths are the squared Euclidean distance.

(x̄s=xv0 , xv1 , . . . , xvK = x̄t), referred to as a trajectory. This trajectory satis-
fies the vertex and edge constraints (2c), (2d), (2e), while minimizing the edge
costs (2a). The optimal solution to (2) is thus a tuple (path and trajectory). We
denote the optimal value of (2) as J∗

s,t(x̄s, x̄t) and refer to it as the cost-to-go
from point x̄s of vertex s to point x̄t of vertex t.

Unlike the classical SPP, the SPP in GCS is NP-hard [24, Section 9.2], and
thus unlikely to have a polynomial-time solution. However, it can be reformu-
lated as a Mixed-Integer Convex Program (MICP) with a strong convex re-
laxation [26]: using a rounding strategy from [25], this relaxation often yields
near-optimal solutions in practice.

For the classical SPP, the principle of optimality holds and the optimal policy
is independent of past decisions, which simplifies the problem and enables many
efficient solution algorithms. As demonstrated in the following example, these
properties break down in the SPP in GCS.

Example 1. Consider the GCS in Fig. 3, which is embedded in R2. This GCS
has four vertices V = {s, v, w, t}, where the convex sets Xs,Xv,Xt are points,
and the convex set Xw is a segment. Every vertex is connected to every other
vertex with an edge, and the edge lengths le are the squared Euclidean distance
(e.g., l(v,w) = ||xv − xw||22).

Due to the constraint that vertices cannot be revisited, the optimal policy
is a function of the set of previously visited vertices. This is demonstrated in
Fig. 3a, where we plot the optimal s-t path in orange and the optimal v-t path
in blue. The optimal decision at vertex v depends on previously visited vertices:
if w was visited before, the optimal decision is to go to t (orange), otherwise the
optimal decision is to go to w (blue).

Observe also that the principle of optimality does not hold for this problem:
the v-t subpath of the optimal s-t path (orange) is not the optimal v-t path
(blue). We cannot substitute the optimal v-t path (blue) in place of the original
v-t subpath, since the resulting vertex sequence (s, w, v, w, t) (Fig. 3b, green)
visits vertex w twice, and is therefore not a path.
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The constraint that vertices cannot be revisited is a key challenge of the SPP
in GCS. This is unlike the classical SPP with non-negative edge lengths, where
this constraint does not increase problem complexity. It can be shown that if
we allow vertex revisits, then the principle of optimality holds, and the optimal
decision policy is independent of past decisions. This is illustrated in Fig. 3b,
where the optimal s-t and v-t solutions to the relaxed problem are shown in
green and blue respectively.

2.3 All-Pairs Shortest Paths in a Graph of Convex Sets

The APSP in GCS extends the classical APSP in a natural way. We are given
a set of source vertices S ⊂ V and a set of target vertices T ⊂ V. The goal is to
solve the SPP in GCS between every pair of source and target points x̄s ∈ Xs

and x̄t ∈ Xt, and every pair of source and target vertices s ∈ S and t ∈ T . Since
the SPP in GCS is NP-hard, the APSP in GCS is at least NP-hard as well.

2.4 Method outline

Our approach generalizes the solution to the classical APSP outlined in Sec-
tion 2.1. We proceed in two phases. Offline, we compute a coarse quadratic
lower bound on the cost-to-go between relevant pairs of GCS vertices. Then on-
line, we extend the greedy policy (1) to the GCS setting. At runtime, we rollout
this policy to obtain the solution path incrementally, one vertex at a time.

Unlike the classical APSP, a greedy policy with the cost-to-go J∗
s,t is not

an optimal policy for the APSP in GCS. This is because the optimal policy
for paths in GCS depends on previously visited vertices, which is not captured
by the cost-to-go J∗

s,t(xs, xt). Thus, our approach is bound to yield approximate
solutions, further limited by the coarseness of quadratic cost-to-go lower bounds.

To incorporate the challenging “no-vertex-revisit constraint” into the cost-to-
go function, we relax this constraint by introducing penalties for vertex revisits.
These penalties are applied to the edge lengths, producing a biased cost-to-go
lower bound that discourages revisits. When rolling out a greedy policy online,
we also explicitly prohibit vertex revisits. To mitigate the coarseness of quadratic
cost-to-go lower bounds and better approximate the optimal policy, we employ
a multi-step lookahead generalization of the greedy policy (1), optimizing over
n-step decision sequences at each iteration.

3 Offline phase: synthesis of cost-to-go lower bounds

In Section 3.1, we present the optimization problem that produces cost-to-go
lower bounds for the APSP in GCS. This program is infinite-dimensional, so in
Section 3.2 we present a tractable numerical approximation for it.

For clarity of presentation, we make some simplifying assumptions. First, we
assume that we have just one source vertex and one target vertex, i.e., S = {s}
and T = {t}. Second, we assume that the set Xt corresponding to the target
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vertex t is a singleton: Xt = {xt}. Since the target vertex t and point xt are fixed,
we also simplify the notation and refer to J∗

v,t(xv, xt) as J∗
v (xv). The extensions

of our method when these assumptions do not hold are straightforward and
discussed in Appendix A.

3.1 Cost-to-go lower bounds via infinite-dimensional LP

The cost-to-go lower bounds are synthesized with the following optimization
problem:

max
{Jv,hv}v∈V

∫
Xs

Js(x)dϕs(x) (3a)

s.t. Jv : Xv → R, ∀v ∈ V, (3b)
hw ≥ 0 ∀w ∈ V, (3c)
Jv(xv) ≤ le(xv, xw) + hw + Jw(xw), ∀e = (v, w) ∈ E , (3d)

∀(xv, xw) ∈ Xe,

Jt(xt) = −
∑
w∈V

hw. (3e)

We now give a detailed line-by-line explanation of this program, and prove the
validity of the lower bounds it produces in Lemma 1 below.

In constraint (3b), we associate with every vertex v ∈ V a (possibly non-
convex) function Jv defined over the set Xv. These functions serve as the lower
bounds on the cost-to-go J∗

v , as will be shown later. We emphasize that we are
searching over the space of functions Jv, not over the individual points xv.

In the objective function (3a), ϕs is a probability distribution of anticipated
source conditions over the set Xs. Thus, the integral in (3a) maximizes the
weighted average of Js over the source set Xs, effectively “pushing up” on the
cost-to-go lower bound at the source vertex.

In (3c), we introduce a non-negative penalty hw for every vertex w ∈ V. This
penalty is meant to discourage revisits to vertex w, which is a way to relax the
constraint that a path must not visit any vertex more than once.

To implement the penalty hw, we increment the edge length le for every edge
e ∈ E that enters vertex w. This is formalized in (3d), which states that for every
edge e = (v, w) and a feasible transition (xv, xw) ∈ Xe, the value Jv(xv) is a lower
bound on the sum of the penalty-incremented edge length le(xv, xw)+hw and the
subsequent cost-to-go lower bound Jw(xw). As written, the non-negative penalty
hw increases the cost of the edges leading into vertex w, thereby discouraging
visits to w. However, since our goal is to only discourage vertex revisits, we
need to waive the penalty hw once. This is achieved by setting the cost-to-go
lower bound Jt(xt) to −

∑
w∈V hw in constraint (3e). Upon reaching the target

vertex, we subtract the sum of all vertex penalties from the cost-to-go lower
bound, effectively waiving the penalties once per vertex. We now show that
these constraints produce lower bounds on the cost-to-go function.
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Lemma 1. Let Jv and hv for v ∈ V be a feasible solution of problem (3). Then

Jv(xv) ≤ J∗
v (xv) for all v ∈ V.

Proof. Consider the optimal solution to program (3), and let v be some vertex.
Let p be an optimal path from a point xv ∈ Xv to the target point xt. Since p
is a path, it contains no repeated vertices. Adding the constraint (3d) along the
edges Ep of this optimal path, we have:

Jv(xv) ≤
∑

e=(u,w)∈Ep

le(xu, xw)
∑
w∈p

hw + Jt(xt), (4)

where xu, xw are the vertex variables of the optimal trajectory corresponding to
p. Constraint (3e) states that Jt(xt) = −

∑
w∈V hw, while the sum of the edge

lengths le(xu, xw) along the optimal path p is by definition the cost-to-go J∗
v (xv).

Substituting and rearranging terms, we obtain:

Jv(xv) +
∑
w/∈p

hw ≤ J∗
v (xv). (5)

Since the penalties hw are non-negative by (3c), the conclusion follows. ⊓⊔

By maximizing the weighted average of Js in the objective function (3a), the
program (3) seeks the best possible lower bound Js on the cost-to-go J∗

s , up to
the relaxation gap introduced by the vertex penalties. This gap is clear from (5):
for xs ∈ Xs, the sum of the off-the-optimal-path penalty terms

∑
w/∈p hw need not

to be zero, so Js(xs) need not be a tight lower bound on J∗
s (xs). In other words,

recall that, upon reaching the target, we waive the penalties hw for every vertex
w ∈ V. As a result, we do not just waive the first-time penalties on vertices
along the optimal path p, we also waive the off-the-path penalties

∑
w/∈p hw,

which were never accrued in the first place. Waiving these off-the-path penalties
introduces the gap between Js and J∗

s .

Example 1, continued. Consider the solution to program (3) for the GCS in-
stance in Fig. 3. Setting the revisit penalty hw = 0 results in Js = 14, which is
the cost of the vertex sequence that visits w twice (green in Fig. 3b). By jointly
optimizing over the penalties and the cost-to-go lower bounds, program (3) se-
lects the penalty hw = 2. Revisiting vertex w is no longer advantageous, and the
cost of the shortest s-t path (orange in Fig. 3a) is achieved: Js = J∗

s = 16.

We note that program (3) naturally generalizes the cost-to-go synthesis LP
for the classical SPP [11]. When each convex set Xv is a singleton, the problem
reduces to the classical SPP, where functions Jv are defined at single points
and represented by a single decision variable. Setting vertex penalties hw = 0
recovers the standard cost-to-go synthesis LP for the classical SPP:

max
{Jv}v∈V

Js

s.t. Jv ≤ le + Jw, ∀e = (v, w) ∈ E ,
Jt = 0.

(6)
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Compared to the purely discrete setting of (6), optimization program (3) is
also an LP; however, it searches over the space of functions and is therefore
infinite-dimensional. Next, we develop a tractable finite-dimensional approxima-
tion to (3) that is conducive to numerical methods.

3.2 Numerical approximation via semidefinite programming

We now produce an approximate solution to the cost-to-go synthesis program (3).
We restrict each function Jv to be convex quadratic, which allows us to cast (3)
as a tractable Semidefinite Program (SDP). SDPs are mathematical programs
where the objective function is linear and the constraints are either linear or
linear matrix inequalities (LMIs). To help with the presentation, we first state
without proof three well-known facts.

Lemma 2 (e.g., [5, App. A.1]). A quadratic function f : Rn → R is
non-negative if and only if it is representable as a Positive-Semidefinite (PSD)
quadratic form:

f(x) =

[
1
x

]⊤
Q

[
1
x

]
for some Q ⪰ 0.

Lemma 3 ([5, Section 3.2.4]). Let X = {x ∈ Rn | gi(x) ≥ 0, ∀i = 1, . . . ,m}.
The function f : Rn → R is non-negative on the set X if there exists λ ∈ Rm

+ ,
such that f(x)−

∑m
i=0 λigi(x) is non-negative for every x ∈ Rn.

Corollary 1. Suppose that in Lemma 3, the function f is quadratic, and all gi
functions are affine or convex quadratic. Then we can apply Lemma 2 to verify
Lemma 3 via an LMI, i.e., we can verify if f is non-negative over X by searching
for a PSD matrix in an affine subspace.

Using these facts, we proceed to cast program (3) as an SDP.

Defining cost-to-go lower bounds in (3b). We restrict lower bounds Jv per vertex
v ∈ V to be convex quadratic functions. By Lemma 2, searching for such func-
tions is equivalent to searching for appropriate PSD matrices Qv. The decision
variables are thus the coefficients of the quadratic polynomials. As a result, we
produce coarse quadratic lower bounds on the optimal J∗

v ; this coarseness will
be mitigated via the multi-step lookahead policies.

Constraint (3c) is already linear, and constraint (3e) is linear in the coef-
ficients of the quadratic polynomial Jt and the decision variables hw. These
constraints are thus already suitable for the SDP.

Enforcing the lower-bound constraint (3d). To apply Corollary 1 to enforce this
constraint, we impose additional restrictions. First, we restrict vertex and edge
sets Xv and Xe to be intersections of ellipsoids and polyhedra. We also restrict
edge lengths le to be quadratic, ensuring that the expression in (3d) is quadratic.
For non-quadratic le, such as the Euclidean distance, we use a quadratic approx-
imation instead. Applying Corollary 1, we verify constraint (3d) with an LMI.
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The objective function (3a). Since Js is a quadratic polynomial, the integral
in (3a) is linear in the coefficients of Js, which are the decision variables of the
program. Therefore, the objective function (3a) is linear in the decision variables,
as required for the SDP.

Empirically, we found quadratic lower bounds to be a good balance between
computational complexity and expressive power. Note that higher-degree poly-
nomial lower bounds Jv can be synthesized via the Sums-of-Squares (SOS) hi-
erarchy [27,28,20]. However, in practice, the resulting programs tend to be pro-
hibitively expensive. On the other hand, restricting Jv to be affine yields a pro-
gram that almost exactly matches the dual to the convex relaxation of the SPP
in GCS, discussed in [26, App. B]. In other words, solving the SPP in GCS
already gives a coarse affine cost-to-go lower bound that can be used to solve
the APSP in GCS. In Section 5.3, we show that empirically, these affine lower
bounds have significantly less expressive power than the quadratic lower bounds.

4 Online phase: greedy multi-step lookahead policy

We now generalize the greedy successor policy (1) from the classical APSP to
the GCS setting. Suppose that at runtime, we are given a source vertex v0 ∈ S
and a source point x0 ∈ Xv0 . At iteration k of the policy rollout, let (vk, xk)
be the current vertex and vertex variable, and let pk = (v0, v1, . . . , vk−1) be
the path so far. The successor policy π(vk, xk, pk) = (vk+1, xk+1), which we
will define shortly, produces the next vertex vk+1 and the corresponding vertex
variable xk+1. We then advance to the next iteration. The rollout terminates
when we reach the target vertex t, where we must select the target point xt.
Upon termination, we extract the vertex path p = (v0, v1, . . . , vt) and re-optimize
for the continuous vertex variables (x0, x1, . . . , xt), so as to produce a trajectory
that is optimal within this path.

At each iteration of the policy rollout, we solve a greedy lookahead optimiza-
tion problem with the coarse quadratic lower bounds obtained in Section 3.2.
For simplicity, here we present just the 1-step lookahead program:

π(vk, xk, pk) = argmin
(w,xw)

le(xk, xw) + Jw(xw) (7a)

s.t. e = (vk, w) ∈ E , w /∈ pk, (7b)
(xk, xw) ∈ Xe. (7c)

Note that we do not use the penalty-incremented edge cost le(xk, xw) + hw in
(7a), since the penalty hw is waived the first time that w is visited. Vertex revisits
are then also explicitly prohibited in (7b).

In a multi-step lookahead formulation, we instead solve for an n-step opti-
mal decision sequence, take just the first step, and repeat at next iteration. The
multi-step lookahead is key for mitigating the coarseness of the quadratic lower
bounds. This is because an n-step lookahead from vertex v effectively produces
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a piecewise-quadratic lower bound on the cost-to-go J∗
v over Xv, which has sig-

nificantly more expressive power. While these lower bounds can still be loose in
theory, the multi-step lookahead enables effective decision-making in practice.

Convexity of Jw is crucial, as it allows us to solve the program (7) efficiently
at run-time. To find the minimizer to (7), we solve multiple convex programs in
parallel, one for every n-step lookahead sequence.

Finally, we note that the lookahead program (7) is not guaranteed to be
recursively feasible. If we end up in a vertex where (7) has no solution, we
backtrack to a previous vertex that has a different feasible outgoing edge, and
retry from there. Generally, our planner is sound but not complete: it is not
guaranteed to produce a solution, but every solution it produces is feasible.

5 Experimental evaluation

We evaluate our approach through multiple numerical experiments. Section 5.1
presents a simple two-dimensional problem that provides visual intuition to our
method. In Section 5.2, we apply our approach to a complex high-dimensional
scenario, the robot arm in Fig. 1. Finally, Section 5.3 shows that our approach
scales well to large graphs. We also discuss how the coarseness of the cost-to-go
lower bounds and the multi-step lookahead horizon impact the performance.

All of the experiments are run on a desktop computer with a 4.5Ghz 16-core
AMD Ryzen 9 processor and 64GB 4800MHz DDR5 memory. We use Mosek
10.2.1 [1] to solve all the convex programs in this section.

5.1 Two-dimensional example

We first consider a two-dimensional GCS problem in Fig. 2. We have a graph G
with |V| = 9 vertices, |E| = 25 edges, including multiple cycles. The geometry of
the convex sets Xv can be deduced from Fig. 2a; no edge constraints Xe are used.
The edge costs le(xv, xw) = ∥xv −xw∥22 are the squared Euclidean distance. The
source vertex s is a box, and the target vertex t is a singleton.

We compute the convex quadratic lower bounds on the cost-to-go function at
every vertex and visualize their contour plots in Fig. 2a. In Fig. 2b, we depict the
first three iterations of the 1-step lookahead rollout of the successor policy (7).
At each iteration, we expand the neighbours of the current vertex and greedily
select the next vertex w and the vertex point xw that minimize the objective (7a).
The rollout proceeds until the target vertex t is reached.

We evaluate the quality of the cost-to-go lower bounds and the resulting so-
lutions in Fig. 4. The optimal shortest path cost-to-go function J∗

s (green) is
piecewise-quadratic. Naturally, the convex quadratic lower bound Js (purple) is
a poor lower bound to J∗

s . The quality of the lower bound is greatly improved via
multi-step lookaheads (solid lines, orange for 1-step, blue for 2-step). A horizon-
n lookahead produces a piecewise-quadratic lower bound to J∗

s , with up to as
many quadratic pieces as there are different n-step paths from the source ver-
tex s. Though neither 1-step nor 2-step lookahead lower bounds are tight, they
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Fig. 4: Comparison of lower and upper bounds on the cost-to-go over a horizon-
tal slice of the source set Xs from Fig. 2a. The cost-to-go function J∗

s (green)
is piecewise-quadratic. Convex quadratic lower bound Js (purple) is naturally
a poor lower-bound. Multi-step lookaheads (solid orange, blue) produce tighter
piecewise-quadratic lower bounds. Upper bounds on the cost-to-go are obtained
by rolling out the multi-step lookahead policy (dashed orange, blue), which pro-
duces near-optimal solutions.

are sufficient for near-optimal decision making. The costs of the rollouts of the
successor policy are plotted as dashed lines; 2-step lookahead rollouts (blue)
attain optimal solutions nearly always.

5.2 Collision-free motion planning for a robot arm

We now demonstrate that our approach scales well to high-dimensional hardware
systems. We study multi-query collision-free motion planning for the KUKA
iiwa robotic arm (Fig. 1), tasked with moving virtual items between shelves and
bins. Our methodology requires minimal additional offline computation, while
delivering significant online speed up with negligible solution quality reduction.

We first produce an approximate polytopic decomposition of the 7-dimen-
sional collision-free configuration space of the arm. This is done via the IRIS-NP
algorithm [29], and we use IRIS clique seeding [36] to obtain polytopes inside the
shelves and bins. We assign a GCS vertex v per polytope in this decomposition.
The convex set Xv is the set of linear segments contained within the region, with
the segment represented by its endpoints. Two GCS vertices are connected by
an edge if the corresponding regions overlap. The resulting graph contains 23
vertices and 68 edges. For each edge e=(v, w), we constrain the linear segments
at v and w to form a continuous path. The path length is the sum of the Euclidean
distances of the linear segments. We define 12 source vertices (6 shelves, 2 vertices
per shelf) and 3 target vertices (inside the left, front, and right bins). To generate
the quadratic lower bounds on the cost-to-go function, we use the generalization
of (3) discussed in Appendix A.

We evaluate our algorithm in a multi-query scenario: at runtime, the arm is
given a random next position to go to, alternating between shelves and bins. We
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Fig. 5: For the robot arm scenario in Section 5.2, we compare path length and
solve time performance between the APSP in GCS, single-query SPP in GCS,
and shortcut PRM over 120 queries. The offline phases take 106s, 100s, and 0.9s
respectively. The APSP in GCS is on average 40 times faster than the SPP in
GCS, with minimal reduction in solution quality. Compared to sPRM, the APSP
in GCS is on average 110 times faster.

rollout a 1-step lookahead policy to generate paths from shelves to bins, and re-
verse them to obtain paths from bins to shelves. We evaluate our approach on a
total of 120 queries. We compare our algorithm against solving the SPP in GCS
from scratch, as well as against the shortcut PRM (sPRM) algorithm, which is
its natural sampling based multi-query competitor. We use a high-performance
implementation of sPRM based on [31], producing a large roadmap with 10,000
vertices. Our solutions are visualized in Fig. 1; performance comparison is pro-
vided in Fig. 5. Similar to how the quality of the PRM solutions depends on the
density of the PRM, the quality of solutions obtained with GCS depends on the
quality of the polytopic decomposition of the collision-free configuration space.
We thus make no claims about the optimality of the solutions in this section.

Offline, generating cost-to-go lower bounds takes only 6 seconds, which is just
6% of the time that it takes to generate the polytopic decomposition necessary
to use GCS. Then online, our policy rollouts are very fast, with a median solve
time of 5ms and a maximum of 11ms (we report the parallelized solver time).
Our method is on average 40 time faster than the SPP in GCS, producing paths
that are only 7% longer on average. Compared to sPRM, our method is on
average 110 times faster and produces paths that are 5% shorter on average.
We achieve consistent performance in both solve time and path length, unlike
sPRM, which shows high variance in both. Overall, compared to these state-of-
the-art baselines, the APSP in GCS reduces the online solve times significantly,
with minimal compromise in solution quality.

5.3 Scalability and ablation on lower bounds and lookahead horizon

In this section, we demonstrate the scalability of our approach and analyze how
the coarseness of the cost-to-go lower bounds and the lookahead horizon im-
pact solution quality. First, we show that multi-step lookaheads with quadratic
Jv yield near-optimal solutions in large graphs. Second, we demonstrate that
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Fig. 6: A 3-step lookahead policy with quadratic Jv (blue) yields diverse vertex
paths resembling the optimal solutions (green). A 3-step lookahead with affine Jv
(orange) follows a single vertex sequence regardless of the target point, accruing
much higher cost.

quadratic lower bounds significantly outperform the affine ones, which are avail-
able from the dual of the convex relaxation of the SPP in GCS [26, App. B].

We consider a randomly generated environment depicted in Fig. 6. We assign
a GCS vertex v for each teal box. Each convex set Xv is the set of control points
of a cubic Bézier curve within the box (see [25]). The GCS vertices are connected
by a pair of edges if the corresponding teal boxes overlap. The resulting graph
has 190 vertices and 540 edges. For each edge, we constrain the vertex Bézier
curves to be differentiable at the transition point. The path cost is the sum of
squared Euclidean distances between the consecutive control points of the Bézier
curves. The source vertex s is at the top, and the target vertex t is at the bottom.

We synthesize the quadratic and affine lower bounds over the GCS, which
takes 6s and 2s respectively. We then uniformly sample 120 pairs of source and
target conditions, and rollout the greedy policy using different lower bounds
and lookahead horizons. Optimal solutions are obtained by solving the MICP
formulation of the SPP in GCS. Numerical results are reported in Table 1.

Table 1 shows that our approach scales well to large problem instances, yield-
ing better solve times than the SPP in GCS. A 2-3 step lookahead policy with a
quadratic cost-to-go lower bound produces near-optimal solutions (8-9% median
suboptimality) in under 10ms. The SPP in GCS produces slightly better solu-
tions (7% median suboptimality), but due to the size of the graph, the solve-time
increases to over 1000ms. For large graph instances, incremental search through
the graph via the APSP in GCS achieves competitive solution quality while
reducing solve times by up to two-three orders of magnitude.

Finally, Table 1 shows that quadratic lower bounds with short-horizon looka-
heads offer a good balance between expressive power and solve times. A 3-step
lookahead policy with affine lower bounds has a median suboptimality of 80.2%,
compared to 8.8% with quadratic lower bounds. Achieving similar solution qual-
ity with affine lower bounds requires a lookahead horizon of 8-9 steps, but the
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Solution method Optimality gap, % Solve time, ms Failure rate, %
Quadratic Jv, 1-step 20.0 (62.1) 3 (3) 0.0
Quadratic Jv, 2-step 9.4 (22.3) 4 (4) 0.0
Quadratic Jv, 3-step 8.8 (15.7) 5 (6) 0.0

Affine Jv, 1-step 157.1 (N/A) 2 (657) 27.2
Affine Jv, 2-step 142.4 (418.8) 3 (914) 14.0
Affine Jv, 3-step 80.2 (348.3) 5 (808) 9.9
Affine Jv, 8-step 11.9 (37.4) 169 (1996) 3.3
Affine Jv, 9-step 7.0 (26.2) 388 (2454) 0.0

SPP in GCS 6.9 (12.0) 716 (1051) 0.0

Table 1: Impact of the degree of Jv and lookahead horizon on performance, over
120 queries for the GCS in Fig. 6. We report optimality gaps (ratio between
solution cost and optimal cost), solve times, and failure rates (rollout policy is
terminated after 10,000 iterations). We report median values, with the 75th per-
centile in the parenthesis. Low-horizon lookahead policies with quadratic lower
bounds yield near optimal solutions, perform much better than the affine bounds.

resulting rollouts take significantly more time. Fig. 6 shows that 3-step lookahead
rollouts with affine lower bounds fail to capture the diversity of optimal solutions.
Additionally, low-horizon lookahead policies with affine lower bounds often fail
to produce solutions within a reasonable number of iterations, as demonstrated
by the failure rate statistics. Overall, we observe that the lookahead policies with
quadratic lower bounds perform much better than those with affine ones.

6 Conclusion and future work

In this work, we generalized the classical All-Pairs Shortest-Paths problem to the
Graphs of Convex Sets, and developed practical approximate numerical meth-
ods for solving this problem. We demonstrated that a coarse lower bound on the
cost-to-go with a greedy multi-step lookahead policy produce near-optimal paths,
while significantly reducing solve times. Our methodology effectively scales to
high-dimensional set scenarios and large graph instances, enabling practical
robotics applications in multi-query settings. We plan to provide an efficient
implementation of our approach within the Drake library [33].

For hardware applications in non-static environments, we are interested in
ways to tackle changes to the robot’s configuration space, like those arising in
object manipulation, as well as addition and removal of obstacles. Assuming the
changes are minor, the online search via the multi-step lookahead policy provides
natural local adaptation. Changes to the environment can be incorporated into
the online policy rollout program (7) via non-convex constraints, similar to [37].

Finally, we are interested in exploring alternative incremental search policies
beyond the multi-step lookahead policy. We expect randomized rollouts inspired
by MCTS [7] and A*-based approaches like [8] to be effective.
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A Extensions and variations

We briefly remark on various natural generalizations to program (3).

1. Suppose the set of source vertices S has more than one vertex. To simulta-
neously “push up” lower bounds Js per vertex s ∈ S, we add extra integral
terms to the objective function (3a).

2. Suppose the target set Xt is not a singleton, but a compact convex set. First,
we modify the constraint (3b) to search for Jv,t : Xv×Xt → R. The function
Jv,t(xv, xt) is a lower bound on the cost-to-go of the shortest path from xv

of vertex v to xt of vertex t. Similarly, the probability distribution ϕs,t is
now supported on Xs × Xt, so as to push up on Js,t(xs, xt) over all source-
target pairs (xs, xt). The lower-bound constraint (3d) is adjusted to include
xt ∈ Xt:

Jv,t(xv, xt) ≤ le(xv, xw) + hw + Jw,t(xw, xt),

for all edges e = (v, w) ∈ E , and all points (xv, xw) ∈ Xe and xt ∈ Xt. Finally,
the target constraint (3e) is adjusted to be Jt,t(xt, xt) = −

∑
w∈V hw, for all

xt ∈ Xt.
3. The scalar vertex penalty hw is generalized to be a non-negative function

of the target state xt, that is: hw,t : Xt → R+. We thus replace hw with
hw,t(xt) and update the constraint (3e) as follows:

Jt,t(xt, xt) = −
∑
w∈V

hw(xt),

further tightening the resulting lower-bounds.
4. Suppose the set of target vertices T has more than one vertex. To obtain

the cost-to-go lower bounds for every pair of vertices v ∈ V and t ∈ T , we
solve multiple programs (3) in parallel, one per target vertex t ∈ T .

5. In general, the successor policy (7) is also a function of terminal vertex t and
terminal point xt. The generalized 1-step lookahead program is as follows:

π(vk, xk, pk, t, xt) = argmin
(w,xw)

le(xk, xw) + Jw,t(xw, xt)

s.t. e = (vk, w) ∈ Eout
vk

, w /∈ pk,

(xk, xw) ∈ Xe.

6. Other penalties, similar to the vertex visitation penalties hv, can be added
to improve the quality of the lower bounds. For instance, consider a 2-cycle
with edges (v, w) and (w, v). We can add edge penalties hv,w = hw,v for
traversing either edge. By subtracting hv,w from the cost-to-go lower bound
at the target, we effectively ensure that no penalty is incurred for traversing
just one (but not both) of the edges. This can be extended to cycles of
arbitrary length.
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