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Abstract—Few methods have been proposed for designing
adaptive controllers for underactuated systems with constant,
unknown parameters. This is primarily because nonlinear
underactuated systems are typically not feedback linearizable;
most model-reference adaptive control approaches for nonlinear
systems, especially those involving Lyapunov analysis, rely
heavily on feedback linearization to guarantee stability. Self-
tuning regulators do not have this limitation, but these more
flexible methods are often computationally intractable and
usually lack a proof of stability.

Here, we propose an alternative adaptive control design
procedure which can handle underactuated systems of moderate
dimension (< 12). By making use of recent advances in sums-of-
squares optimization, we build upon the work done in [31] and
[10], to design adaptive controllers with verified robustness to
parameter uncertainty, and time-varying adaptive controllers
with guaranteed finite-time performance along system tra-
jectories. We demonstrate our algorithm on three simulated
underactuated systems - the Acrobot and cart-pole systems with
unknown viscous friction terms and the perching glider with
unknown aerodynamic coefficients.

I. INTRODUCTION

Designing controllers which can reason about parametric
uncertainty has long been a major challenge for control
systems engineers. Model-based control design techniques
which promise higher performance than manually tuned
controllers often require very accurate models of the plant
dynamics which can be difficult or time-consuming to obtain.
For this reason, methods such as robust control and adaptive
control have emerged as powerful solutions for handling
parameter uncertainty. However, as the system under con-
sideration becomes more complex, it becomes increasingly
difficult to design controllers which ensure stability when the
parameters are unknown a priori.

It is a particularly challenging task to design adaptive
controllers for the class of systems known as underactuated
systems. Not only are these systems usually nonlinear, but
they are also not feedback linearizable, preventing one from
applying standard model reference adaptive control methods
for nonlinear systems, as has been done for many fully
actuated robotic systems in the past[20]. Instead, for under-
actuated systems, one is often restricted to self-tuning ap-
proaches, where parameter estimation and controller design
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Fig. 1. The cartpole system: a well-known example of an underactuated
system. Note that there is no actuation at the pendulum’s pivot point.

are separated. Usually, this involves using a recursive estima-
tion process to determine the system parameters and a model-
based control design algorithm, such as the linear quadratic
regulator or pole-placement, to update the controller design
based on the most recent parameter estimates[1]. However,
while these self-tuning methods are possible to construct,
they have a number of significant drawbacks. First of all, the
control design algorithms used to generate the control laws
for these nonlinear systems (i.e. optimal trajectory design
and local linear feedback) are often very computationally
intensive, and therefore not amenable to real-time implemen-
tation. Secondly, it is well known that self-tuning methods
for arbitrary nonlinear systems are difficult, if not impossible
to analyze, and mostly lack formal proofs of stability[1].

A third adaptive control design method which has been
proposed recently is the adaptive control Lyapunov function
approach as described in [7]. This method provides a means
of finding an adaptive controller for a particular nonlinear
system when provided with a special form of Lyapunov
function for that system.

In this paper, we use this notion of adaptive control Lya-
punov functions as well as recent advances in semi-definite
programming to automate adaptive controller design. To this
end, we construct a sums-of-squares (SOS) optimization
routine and search over a parameterized set of controllers
and Lyapunov functions. From this optimization, we are then
able find both an adaptive controller for a given nonlinear
system as well as its formal certificate of regional stability.

To present the details of this method, we organize our
paper as follows. In section II, we summarize some of
the work related to the adaptive control of underactuated
systems. Then, in section III, we clearly define underactuated
systems and what it means for an underactuated system to
achieve trajectory following. In section IV, we summarize
our approach for time-invariant systems, and present some



results on the Acrobot system balancing about the upright.
Then, in section V, we extend our results to time-varying
systems, and apply our methods to the cart-pole system and
the perching glider system. In section VI we describe a
method of formulating the SOS optimization problem so that
our method can handle dynamics which are non-affine in the
unknown parameters.

II. RELATED WORK

In recent years, underactuated systems have become the
focus of many research initiatives, since underactuation is a
prominent feature in many practical systems. Walking robots,
where the contact between the foot and the ground is an un-
actuated joint, and fixed-wing aerial vehicles in complicated
flow regimes, are two clear examples of where reasoning
about underactuation is essential[28]. A wide variety of
control methods have been applied to these underactuated
systems, from optimal trajectory design[2], [3], to energy
methods [25], to real-time planning[8], [6], to sliding mode
control[15], [14], and partial feedback linearization[24], [23],
[22]. More recently, sums-of-squares verification has been
applied to these underactuated systems to provide certifi-
cates of stability or finite-time performance for local con-
trollers designed based on a linearization around the nominal
solution[29], [30]. In the time-varying case, these certifi-
cates take the form of time-varying Lyapunov functions, or
“funnels”, which certify a set of initial conditions that is
guaranteed to arrive at the goal in finite-time. In [11], these
funnels were extended to the case where the goal region is
variable, and in [26], the funnels were extended to the case
where stochastic uncertainty is present. In [29], [13], these
funnels were combined to cover a larger region of state space
by forming a LQR-Tree.

There are relatively fewer methods for handling under-
actuated systems in adaptive control design. In [18], the
authors address adaptive control of underactuated systems by
applying partial feedback linearization to the collocated joint
and carrying out region of attraction (ROA) analysis on the
non-collocated joint. In [19], the authors apply backstepping
to find a suitable Lyapunov function with which they can
design an adaptive controller for their autonomous underwa-
ter vehicle. Similarly, in [4], the authors develop an adaptive
controller for an underactuated quadrotor UAV capable of
compensating for uncertain mass.

Here we follow the approach described in [7], which
introduces the adaptive control Lyapunov function and an
approach to designing these functions using back-stepping.
Using this Lyapunov function, the authors are then able to
derive a nonlinear adaptive controller in a manner similar to
[21]. In this paper we replace the back-stepping approach
by automating the search for the controller and Lyapunov
functions using SOS optimization.

III. METRICS FOR ROBUST PERFORMANCE IN
UNDERACTUATED SYSTEMS

Our focus in this paper is on underactuated mechanical
systems, defined as[28]:

Definition 1: Consider the control affine system X =
F1(,%) + fo(x,%)u. We define this system to be underactu-
ated in state (x,x) if rank[f>(x,%)] < dim[x]. We say that the
system is underactuated if it is underactuated in any state.

Two well-known examples of underactuated mechanical
systems include the cart-pole and Acrobot systems[25],
which are simple two degree-of-freedom robotic manipula-
tors each with only a single actuator. The rank condition
which defines the underactuated systems implies that the
standard approach to feedback linearization, which requires
f5 '(x,%), cannot be applied. Furthermore, the standard ap-
proaches to model-reference adaptive control for mechanical
systems (c.f., [20]) which use error-driven feedback to over-
come model errors and ensure stability before the parameters
are identified are no longer valid.

Without feedback linearization, designing adaptive con-
trollers with provable stability properties becomes more com-
plex. Given a desired trajectory, x4(t), defined for ¢ € [fy, ],
and unknown model parameters, a natural goal is to design
an adaptive control law for which we can prove that the
closed-loop system converges asymptotically to this desired
trajectory for all possible parameters in some family. How-
ever, with no guaranteed ability to directly cancel parameteric
uncertainty using feedback, for some systems it may be
difficult or impossible to achieve asymptotic convergence to a
desired trajectory. Furthermore, we would argue that for most
real-world tasks this level of performance is not necessary.

Alternatively, we can define the goal of control as con-
verging to a bounded invariant region in the vicinity of the
desired trajectory, and attempt to maximize the set of initial
conditions from which the controller provably achieves this
goal. Following [30], we call these bounded invariant regions
“funnels” and define them formally as follows:

Definition 2: Given the closed-loop dynamics x = f(¢,x)
with x € R", a set .# C [to,ty] x R" is a funnel if for each
(T,x7) in .Z, the solution to x = f(¢,x) with x(7) = x; exists
on [7,7f] and for each r € [1,17] we have (7,x(r)) € Z.

Note that these funnels can be defined over either a finite
horizon or an infinite horizon, ¢y = co. For finite-duration
desired trajectories, we often find it useful to demand even
less of the controller, requiring only that it arrives in a
goal region, G C R", at the final time, t7. In the case of
unknown model parameters with bounded uncertainty, we
will require that under the closed-loop dynamics given by
the adaptive controller, this funnel into the goal is achieved
for all parameters of interest.

We examine both formulations in the following two sec-
tions.

IV. CONTROL DESIGN FOR ASYMPTOTIC CONVERGENCE

We first consider the problem of designing an adaptive
controller which is guaranteed to drive the system asymp-
totically to a desired trajectory. For clarity, we restrict the
presentation in this section to regulating a time-invariant sys-
tem to the origin; the extension to time-varying systems and
desired trajectories is straight-forward and will be presented
in the next sections.



A. Adaptive control Lyapunov functions
Following [7], we consider the system
i = f(x)+ F(x)0+g(x)u, (1)

with x e R", u € R™, and 6 € R?, and search for an adaptive
controller with the form

u=a(x,0) (2)

0 =1(x,0), 3)
where 0 is an estimate of the parameter 6.

Now consider a candidate Lyapunov function for this
system

V@aaé):»z@»+%éTFé, “)

where V, is a smooth, positive-definite, scalar function, 6=
6—6andT=TI">0.

Taking the time derivative of this candidate Lyapunov
function, we have

V= &VaLix)er 6'T6
- &‘giX) (f(x)+ F(x)0 + g(x)at(x,0)) + 8"t (x, 6).
If we then let
b= t(x,0) = <a‘;“ix>F(x))T7 5)
we have
V= 2 (10 1 P06 + g ar(x.0)).

Thus, if we can find a V,(x), T, and a(x,é) such that
Nald) (£(x) + F(x)0 + g(x)ax(x,0)) < 0, ¥x,6,6, then we
have a global adaptive controller which guarantees that x —
0 as t — o by Barbalat’s Lemma. Furthermore, if these
conditions are met over an invariant region, (x,6,0) € B C
R" x R? x RP, then we obtain asymptotic convergence to the
origin for all initial conditions in B. Note that any 6 in B is
trivially invariant (0 is assumed stationary by definition), but
verifying the Lyapunov conditions for 6 in a subset of R”
provides a means to guarantee the controller’s performance
over a set of possible (unknown) parameters for the system.
For this reason, we will consider adaptive control Lyapunov
functions of the form:

Lar =~ 1
V= Va(x)—kEGTl"G—i- Eelee
with ¥ = ¥7 » 0.

B. Sums-of-squares optimization

In recent years, sums-of-squares (SOS) optimization
routines[16] have provided a means for automating the
search for Lyapunov functions. For dynamical systems with
polynomial vector fields, SOS makes it possible to verify
the Lyapunov conditions (V > 0,V < 0) for a candidate
Lyapunov function as a convex optimization[16]. It is also
possible to search for a Lyapunov function which satisfies

the conditions, to search for a Lyapunov function which
proves stability in a bounded invariant region, and/or to
simultaneously optimize a controller in order to maximize
a the verified invariant region by solving a series of convex
optimizations[9], [17], [27], [33]. Typically it is difficult to
find globally valid controllers for interesting control prob-
lems, so in this section we illustrate the application of SOS
optimization to the problem of verifying the stability of our
affine control Lyapunov function approach over an invariant
region.

We restrict our search to positive-definite Lyapunov func-
tions, V(xﬁ,é), and define the region of interest, B, as a
sub-level set of this positive function:

B = {(x,O,é)\V(x,G, é) < P}7

for some positive scalar p. Note that if the Lyapunov
conditions are satisfied, then this B is an invariant region of
the closed-loop system. It is therefore sufficient for regional
stability to verify Vx, 6, 6 € B that:

V(x,0,6)>0 (6)
IV, (x)
ox

(f(x)+F(x)0 +g(x)a(x,0)) <O  (7)

If f(x), F(x), and g(x) are polynomials, then one observes
that all of these constraints are polynomial. In practice, many
systems of interest have polynomial (or rational polynomial)
vector fields, including most robotic manipulators after a
change of variables, or can be efficiently approximated using
polynomials.

In SOS optimization, we attempt to prove positivity over
B by applying the S-procedure and replacing the test for
positivity with the condition that the polynomial is a sum-of-
squares. Using X to denote the sums-of-squares polynomials
over x,0, and 6, we write

V+so(V—p)ex (8)
—V4s(V—p)eX 9)
50,51 € X (10)

where so, and s; are additional polynomials which serve as
multipliers for the S-procedure. We seek to maximize the
size of B in order to provide a controller that works for the
largest possible range of parameters and initial conditions;
here we approximate this volume by enforcing a scale on
V and maximizing p. In order to optimize these polynomial
constraints over the decision variables, V,, a,p, s1, I" and W,
we must carry out three steps of bilinear alternations.

If we let V, = xS x, for some S, = ST = 0, and we let
I'=I7>0and ¥ =¥" 0, then the constraint in equation 8
is satisfied trivially. Note that higher-degree Lyapunov func-
tions could provide more richness, but at the cost of requiring
extra SOS constraints to confirm the positivity of V,,. Using
V = 2 (£(x) + F(x)g(x)at(x,8)), we can perform the
optimization in the following steps:



STEP 1:

maximize Y

S1Y
subject to ¥ >0,
—V+s1(V—p)—7yeX (11)
s EX
STEP 2:
e p
subject to p >0,
—V+s1(V—p)€EX. (12)
STEP 3:
maximize p
a,p
subject to p >0,
—V+s1(V—p)eX (13)

These steps then repeat until convergence is observed in p.

C. Results

Once developed, this controller design algorithm was
tested on the Acrobot (see figure 2) for the balancing task.

Fig. 2. The Acrobot system: The only actuation is at the elbow joint.

The equations of motion of the Acrobot have trigonometric
terms in them; since these appear simply it is possible to
either perform an exact change of coordinates to a polyno-
mial vectorfield, or to approximate the dynamics using Taylor
expansion. We use a Taylor expansion to third order in the
results reported here. For this problem, we parameterized the
controller as Oc(x,é) = Krorx + 6Kpx, where Kror comes
from the solution for the linear quadratic regulator for the
nominal system when g = gg. 6 was specifically chosen to be
the (scalar) unknown damping coefficient on noncollocated
(unactuated) shoulder joint.

To initialize our iterations, we choose S, = S, where §
comes from the LQR Riccati equation. We also choose p to
be very small and det(I") and det(P) to be very large. This is
a reasonable initialization procedure because V = x” Sx is a
valid Lyapunov function with some robustness in a small
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Fig. 3. Slice of four dimensional Acrobot region of attraction in the g;-¢>.
Notice that there is little difference between the size of the ROA for the
LQR controller (green) and the adaptive controller (blue)

neighborhood around the nominal point. The multipliers
were chosen to be up to 4th order.

The results for searching for the controller can be observed
in Figure 3, plotted as a slice of the 4 dimensional ellipsoidal
level-set V = p. While non-negligible gains Ky were found
by the optimization procedure, these gains had little affect
on the size of the region of attraction. We believe that this
is due to the favorable robustness properties of LQR for a
time-invariant system.

This being said, there are cases where unknown constant
parameters can cause LQR to fail to achieve asymptotic
stability. In these cases, we claim that our methods can design
an adaptive controller which enables a region of attraction
to exist. Consider the case of a constant, unknown offset
appearing in the measurements provided to a LQR Controller.
We can write these closed loop dynamics as

X =f(x)+g(x)(K(x+9)). (14)
Since K is a constant matrix, we can rewrite this as
£ = f(x)+g(x)a(x,0) +g(x)K6 (15)

which is identical to equation 1 when F(x) = g(x)K. To
test our approach, we again implemented this case using
the Acrobot. We applied a single measurement offset to
the Acrobot’s shoulder joint and designed and verified our
adaptive controller using SOS. The results can be seen in
figures 4, 5, and 6. The ROA for the this adaptive controller
is comparable to the ROAs shown in figure 3 above while
the ROA for the system using the LQR Controller does not
exist.

V. CONTROL DESIGN TO A TRAJECTORY

In this section, we revisit the control experiment for the
cart-pole where the goal of control is specified by a nom-
inal trajectory which swings the robot from the downward
configuration to the upright configuration. While asymptotic
convergence and convergence to an invariant funnel around
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Fig. 4. A plot of g; with time. Notice how the LQR Controller (green)
fails to converge to 7, while the adaptive controller (blue) does.
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Fig. 6. A plot of 6 with time. Even though it is not guaranteed to converge,
the estimated parameter (blue) does converge to the true parameter (black).

the trajectory are both possible, due to space limitation
we limit our presentation to the formulation that is unique

to finite-time trajectories - designing/verifying a controller
which provably drives the system to a goal region, G, at a
specified final time.

A. Trajectory Design for the Nominal System

Before we carry out the adaptive control design process,
we first must find a suitable trajectory for the nominal system
by which to parameterize the state-space of interest. Despite
the relative complexity of our models with the nonlinear and
highly underactuated dynamics, standard tools for trajectory
optimization work well for designing a nominal, locally
optimal trajectory. To find an optimal trajectory for our
systems, we chose to use a direct collocation method [32]
implemented using SNOPT [5], which allows us to efficiently
encode hard constraints on the states and inputs.

B. Trajectory Stabilization for the Nominal System

To stabilize our nominal trajectory, we use a time-varying
linear quadratic regulator (LQR). To apply this control
methodology, we linearize our nonlinear system about the
nominal trajectory to obtain a time-varying linear system
which can be represented as:

x(t) = A(t)x(¢) + B(t)a(r), (16)

where x(1) = x(t) —xo(¢) and i(t) = u(t) —up(t). Let us define
the following cost function for the maneuver:

J=x(t)TQx(ty) + /0 " 0T oR() a0 Rak). (A7)

LQR design yields the control law

i(t) = —R'BTS(1)x(1), (18)
and the cost-to-go
J=xS(1)%, (19)
where
S(t)=Q—S(t1)BR'BTS(t) + S(t) A+ ATS(r),  (20)
S(tr) = Q- 2N

C. Sums of Squares Optimization

For time-varying systems, we are required to slightly
modify our sums of squares formulation. Our SOS inequality
becomes

aV,(t,x R R
- %)(f(x) +F(x)0g(x)a(t,x,0))+...

- P i — 710+ () .

R 1~ ~ 1
s51(1,x,0,0)(V,(t,x) + 5eTr(t)e + 5eTlP(t)e —p(t)) >0
To handle the dependence in time, we sample in time along

the trajectory as is done in [30] and carry out the same three
part bilinear optimization scheme as described previously.



D. Controller Parametrization

From simulation, we noticed that the offset between
the desired trajectory for the true system and the nominal
trajectory seemed to impact the controller performance to
a much greater degree than the difference between the
ideal time-varying LQR gains and those obtained from the
nominal system. Because our control requirement is not exact
trajectory following but staying in the funnel while moving
between two regions of state space, we found it advantageous

to allow for a 6-dependent shift of the nominal trajectory,
xg =x0+w(0), ug=uo+v(H),

where w(6) and v(8) are a function that we can potentially
design along with the controller.
Consider, as before, the system

X =f(x)+gxu
If ¥=x—x,, il =u—uy, and ii = KX, then we can write
F(x) +g(x) (KX +uq) —xa
S(x) +8(x) (K (x—x0 = w(6)) +uo+v(D)).
Now, if ¥ = x — xp, then

S0+ (K (&= w(0) +10-++(0)

) —Xo
X = f(x) +g(x) (K¥+uo — Kw(0) +v(8)) — Xo.

X
X

=
Il

For simplicity, here we fix w(6) = ¥ and v(8) = w6 and
let K9 = Ky — y, then we have

%= f(x) +g(x)(Ki+uo — Kg0) — %o.

and thus achieve the controller parametrization u = KX+ ug —
Ky é, where K = Kjgg. This allows us to adjust the nominal
trajectory using 6 and thus provide the controller with a more
reasonable x; to follow.

E. Results

TQR
LQR-PV

Fig. 7. Slice of four dimensional cartpole funnel in the x-0 plane. The
gray region is the controller which makes use of gain-scheduling.

To test our algorithm, we applied it to the cart-pole system
(see figure 1) swing up task. Once again, we chose the
viscous friction on the non-collocated joint as our uncertain
parameter. The resulting funnels for this nominal system
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Fig. 8. Slice of four dimensional cartpole funnel in the -8 plane. The
gray region is the controller which makes use of gain-scheduling.

and gain scheduled system can be see in figures 7 and
8. Note that the gain scheduled funnel is slightly larger
than the funnel for the nominal system. In figure 9, we
demonstrate the improved performance of the gain-scheduled
and adaptive controllers for the cart-pole swing up task.
Both the gain-scheduled (known 6) and adaptive (unknown
0) controllers reach the goal region for a greater range of
parameter variation than the time-varying LQR controller.
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Fig. 9. Plot showing the cartpole system simulated from a range of initial
trajectories and parameter values. Both the gain-scheduling controller and
the adaptive controller provide an advantage of the TV-LQR design.

We also tested our adaptive control design algorithm on
a more advanced, perching glider system (see figure 10), by
making the aerodynamic lift coefficient unknown. Figures 11
and 12 demonstrate the clear improvement in performance.

VI. NON-AFFINE IN THE PARAMETERS

In many instances, an unknown constant parameter will
enter in to a system’s dynamics in a non-affine manner. For
example, consider the case of a constant speed wind gust
which enters into an aircraft’s aerodynamic forces quadrati-
cally. The previously described approach, as it is restricted to



Fig. 10. The perching glider system: the elevator is the only actuator and
flat plate lift and drag coefficients are used to compute the aerodynamic
forces.
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Fig. 11. Plot showing the perching glider system simulated from a range of
initial trajectories and parameter values. Both the gain-scheduling controller
(red) and the adaptive controller provide an advantage over the TV-LQR
design (blue).
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Fig. 12. Plot showing the perching glider system simulated from a range
of initial trajectories and parameter values. This plot shows trajectories
evaluated along the funnel over time when the 6 = 0.034. It is interesting to
note that the LQR controller (blue) leaves the funnel around ¢ ~ 0.2s while
the adaptive controller (red) does not.

dynamics which are affine in the unknown parameters, can
not be applied to this more complex uncertainty structure.

For this reason, we propose an alternative law for 6 which
allows the unknown parameter to be estimated even when it
enters the dynamics nonlinearly. We achieve this by requiring
that a(x, 9) is affine in 6.

Consider the system

i= f(x,0) +g(x)o(x,6)
and the Lyapunov function
V=V, + %éTréJr%eTtye
where 6 = 6 — 6. Taking the derivative, we then have
V =x"S,(f(x,0)+g(x)a(x,0))+67TH.
If we choose a(x,8) = K;prx+2(x)8, we can then write

V =xTS,f(x,0)+x" Sug(x)(Krorx + 2(x)0) + 67T
=xTS,f(x,0) +x" Sug(x)Krorx +xT Sug(x)z(x)6 + 0’Té

Choosing 07 = —xTS,g(x)z(x)T! and remembering that
67 = 67 we have

V =xTS,f(x,0) +xTS,g(x)Krorx +x" Sug(x)z(x)8 <O0.

An inspection of V reveals that SOS verifcation will
produce an adaptation law which can be derived even when
0 enters the dynamics nonlinearly. Although we do not
explore this formulation any further here, we note the result’s
importance in demonstrating that the SOS methods described
here can be applied to a wide class of adaptive control
problems.

VII. CONCLUSION

In this paper, we have presented a method for designing
adaptive controllers for underactuated systems. By using the
notion of a “funnel” we were able to use sums of squares
optimization techniques to design adaptive controllers which
are able to transition an underactuated system between an
initial and final condition set for a larger range of uncer-
tain parameter values than standard time-varying LQR. To
confirm this performance improvement, the control design
technique was applied to both the classical cart-pole system
as well as the perching glider system and tested successfully
in simulation.

In the future, one of our first tasks will be applying this
algorithm to systems with multiple uncertain parameters.
Although in theory the algorithm extends naturally to such
systems, the impact of additional parameters on numerical
conditioning is unclear. Another potential area of future
work involves exploring how bounded disturbances impact
the control law. The adaptive control algorithm presented
here assumes that the the only thing unknown about the
system is its constant parameters. There is no question that
bounded uncertainty will exist in any real system. Thus, it
will be important to understand how this phenomena impacts
performance. To help mitigate the effects of uncertainty,
we propose incorporating robustness bounds into the SOS
verification procedure, as was done in [12] for non-adaptive



systems. Similarly, there is a great deal of room for improv-
ing the trajectory design process. Nominal trajectories could
be designed so that they maximize system excitation or so
that they maximize robustness to uncertainty in a particular
parameter. Last of all, we hope to explore combining these
funnels into an adaptive LQR-Tree.

While there are still many aspects of the algorithm which
need to be explored further, the algorithm itself provides
a sufficiently general approach for designing adaptive con-
trollers for the important case of underactuated systems. In
the near future, we plan to test the adaptive control laws
which emerge from this design method on actual hardware,
since only then will the utility of the method be able to be
truly ascertained.
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