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Abstract— We consider the problem of designing a feedback
controller for a fixed-wing unmanned aerial vehicle (UAV) to
execute a dynamic post-stall maneuver and land accurately on
a perch. This controller must deal with the nonlinearity of the
post-stall dynamics and inherently limited control authority
of the actuators. Using a recently proposed algorithm called
“LQR-Trees”, here we demonstrate that we can generate formal
guarantees (using time-varying Lyapunov functions) which ver-
ify that a controller generated with trajectory optimization and
local linear feedback can achieve the desired perching tolerance
from a range of initial conditions. These locally valid controllers
are then combined into an library of controllers which cover a
space of initial conditions with verified controllers. We describe
some of the details of the implementation, which requires for-
mulating and solving large semidefinite programs, and compare
the verified regions with numerical samples of the system’s
true performance. This perching problem represents the most
high-dimensional and numerically challenging application of
the LQR-Trees algorithm reported to date.

I. INTRODUCTION

Over the past several years, there has been considerable
interest in developing fixed-wing unmanned aerial vehicles
(UAVs) capable of executing dynamic, high precision landing
maneuvers. Such maneuvers, although beyond the reach of
modern control systems, have the potential to provide fixed-
wing UAVs with several new capabilities such as landing
on aircraft carriers, landing on narrow ledges to conduct
perch and stare surveillance, and landing on powerlines to
inductively recharge [19], [20]. Birds regularly execute these
high precision maneuvers and it is our hope to be able to
attain, and perhaps even exceed, their flight performance.

In this paper, we develop a closed-loop controller for a
fixed-wing perching maneuver, building on previous work
on system identification and optimal trajectory design [2],
[3], [22], [10], [1]. Using a simple flat-plate approximation of
the aerodynamic coefficients which is surprisingly faithful to
our experimental data [2], we create locally optimal perching
trajectories using a direct collocation method and use time-
varying linear quadratic regulator (LQR) design to locally
stabilize those trajectories. Then, we use semidefinite opti-
mization to compute a Lyapunov function which certifies for
the nonlinear model that a region of initial conditions around
the nominal trajectory will achieve the perching target with
the desired accuracy in finite time. The level sets of the time-
varying Lyapunov function have a graphical interpretation as
a funnel, which brings many initial conditions down into a
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small set of final conditions near the perch. These verified
local controllers can then be combined into a LQR-Tree
controller [25] that guarantees convergence over a range of
flight conditions.

The LQR-Trees algorithm was proposed as a general
tool for controller synthesis [25]. The perching application
described here, however, is far beyond the complexity of
previous systems to which this method was applied. Not
only does the perching problem require a higher dimensional
model, but its limited controllability makes it numerically
challenging for our methods. In this paper we demonstrate
that, not only is conducting controller verification and for-
mulating LQR-Trees feasible, but that the resulting funnels
are large enough to make LQR-Trees a useful approach.

Fig. 1. Illustration of a Post-Stall Perching Trajectory

II. BACKGROUND

The fixed-wing perching problem has been considered
by several researchers over the last five or six years. At
Cornell, an effort was made to develop a morphing aircraft
which achieves fixed-wing perching by rotating only its
fuselage upward but keeping the wings at a low angle-of-
attack [29]. At Stanford, a perching aircraft was equipped
with arrays of microspines which are able to attach to a wall
[5], [6]. The aircraft flies towards the wall, senses the landing
surface through ultrasonic range finding, and pitches up into
a near vertical orientation before contacting the wall. At MIT,
greater emphasis has been placed on nonlinear control design
to solve the perching problem. In [2], [10], the authors built a
nonlinear, post-stall model for a flat plat glider, designed an
optimal open-loop trajectory for that glider, and verified the
system in simulation. Since then, the authors have designed a
linear time-varying LQR controller about this trajectory and
successfully demonstrated their approach experimentally [1].

In addition to fixed-wing UAV perching, substantial work
has gone into developing control algorithms for perching
quadrotors. In addition to their work in developing tech-
niques for allowing quadrotors to carry out aggressive ma-
neuvers [15], [14], [16], these authors have demonstrated
experimentally robust approaches for landing and perching
with quadrotors [17].



Recently, there has been collaboration between MIT and
Stanford on the wall perching aircraft project. In [9], an effort
has been made to find a region of attraction for the micro-
spine equipped aircraft during the vehicle’s landing phase.
Because the wall-spine interaction dynamics are very differ-
ent than the vehicle’s flight dynamics, this “landing” funnel
was found with the intention of it serving as an invariant set
into which other “flight” funnels could terminate. It is our
hope that the work discussed here will be able to provide
these “flight” funnels.

The basis for the controller design comes from the ideas
initially proposed in [25]. In this paper, the author describes
the LQR-Tree algorithm approach which seeks to cover
the state space of a dynamical system using a “tree” of
time-varying trajectories which have been verified via sums
of squares programming. Because the verified regions or
“funnels” associated with these trajectory-dependent LQR
controllers cover a finite region of state space, they can be
combined together to create a certificate which verifies that
a large range of initial conditions will eventually arrive at
the goal. The details of the computational approach used to
verify finite-time invariance around the trajectories (e.g., the
funnels) were revisited in [26], where it was demonstrated
that methods based on bilinear alternations could increase
the size (by reducing the conservatism) of the resulting
funnels. We use a similar bilinear alternation in this paper
to find the time-invariant funnels for our perching glider.
A few extensions to this work have also emerged. In [23],
the regions of stability, which are based on deterministic
systems, are extended to stochastic systems. Furthermore, in
[12], a method of verifying regions of attraction is described
where the goal region is allowed to vary during online
controller execution.

In addition to the methods described above, which utilize
sums of squares programming, the controls community has
produced a number of other approaches for verifying the
behavior of complex dynamical systems. In [18], the authors
make use of game theory and solve a Hamilton-Jacobi-Isaacs
partial differential equation to compute the set of reachable
states for a continuous dynamical system. In [27], this
approach is extended to handle hybrid systems. Besides set-
based methods, some researchers have explored methods of
approximating reachable sets through combining numerical
simulation with sensitivity analysis [7]. In [4], the authors
merge this technique with rapidly exploring random trees to
explore the state space of a dynamical system. It is our belief,
as described in section XI, that the LQR-Trees approach
provides a number important advantages over these other
methods.

III. PROBLEM FORMULATION

We formulate the perching problem in the same manner as
described in [2], [1]. Our experimental aircraft is a glider (no
propellor) with slightly tapered flat-plate wings with a 98mm
mean chord and an 8:3 aspect ratio. The only actuator we
control during a perching maneuver is the elevator, actuated
by a HS-55 Hitech servo. Using a crossbow, we launch our

glider at 7 m/s (Re ≈ 50,000) at about 3.5 meters from the
perch (a 0.25 cm diameter string). These initial conditions
were selected so that the aircraft was required to execute a
post-stall maneuver as cartooned in Fig. 1 in order to slow
down and land on the perch. A perching maneuver is deemed
to be successful if the aircraft perching talon lands within a
5 cm radius of the perch with a horizontal velocity between
0 and 2 m/s and vertical velocity between -1 m/s and -3 m/s;
these are approximately the conditions for which our simple
talon can hook the string. In our perching experiments, we
use a Vicon Motion Capture system and reflective infrared
markers on the glider’s fuselage to obtain the state of the
aircraft as it approaches the perch.

IV. AIRCRAFT MODEL

From prior system identification work [2], a quasi-steady
flat plate model was shown to be a reasonable approximation
of the aircraft’s post-stall aerodynamics, even during the
rapid pitch-up maneuver involved in perching where the
aircraft experiences a rapidly changing angle-of-attack. In
the literature [24], these coefficients are given as

CL = 2sin(α)cos(α) (1)

CD = 2sin2(α). (2)

For this reason, we use a flat-plate approximation of the post-
stall lift and drag coefficients for the rest of the paper as
we carry out our control synthesis. To further simplify our
model, we restrict our maneuver to two dimensions, ignoring
contributions from yaw or three dimensional aerodynamics.
This leads to a seven dimensional model, where the states
are x-position (m), z-position (m), pitch (rad), elevator an-
gle (rad), x-velocity (m/s), z-velocity (m/s), and pitch rate
(rad/s), as illustrated in Fig. 2. These states are represented
by x= [x,z,θ ,φ , ẋ, ż, θ̇ ] respectively. We assume that we have
direct control over the angular rate of the elevator, u = φ̇ .

To build our model, we first define unit vectors normal
to the control surfaces in the directions of the force vectors
illustrated in Fig. 2 as

nw =

[
−sθ

cθ

]
, ne =

[
−sθ+φ

cθ+φ

]
,

where sγ = sin(γ) and cγ = cos(γ). Next, we solve for the
kinematics of the geometric centroid of the aerodynamic
surfaces. For our flat plate model, this is equivalent to the
the mean aerodynamic chord. We have

xw =

[
x− lwcθ

z− lwsθ

]
, xe =

[
x− lcθ − lecθ+φ

z− lsθ − lesθ+φ

]
, (3)

ẋw =

[
ẋ+ lwθ̇sθ

ż− lwθ̇cθ

]
, ẋe =

[
ẋ+ lθ̇sθ + le(θ̇ + φ̇)sθ+φ

ż− lθ̇cθ − le(θ̇ + φ̇)cθ+φ

]
.

(4)

Using flat plate theory, the resulting aerodynamic forces on
the vehicle can be approximated by

αw =θ − tan−1(żw, ẋw), αe = θ +φ − tan−1(że, ẋe) (5)

Fw =ρSw|ẋw|2 sinαwnw = fwnw, (6)

Fe =ρSe|ẋe|2 sinαene = fene (7)



where αw and αe are the angles-of-attack of the wing and
elevator, respectively, ρ is the density of air, and Sw and Se
are the surface areas of the wing and tail control surfaces,
respectively. Finally, the dynamics are given by

mẍ =− fwsθ − fesθ+φ (8)
mz̈ = fwcθ + fecθ+φ −mg (9)

Iθ̈ =− fwlw− fe(lcφ + le) (10)

which can be rewritten in state-space form as

ẋ = f(x,u). (11)
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Fig. 2. Aircraft Model. x and z denote the positions of the center of mass,
θ denotes the pitch angle, and φ denotes the elevator angle.

V. TRAJECTORY OPTIMIZATION

Despite the relative complexity of our aircraft model with
the nonlinear and highly underactuated dynamics, standard
tools for trajectory optimization work well for designing
a nominal, locally optimal trajectory. To find an optimal
trajectory for the glider, we chose to use a direct collocation
method [28] implemented using SNOPT [8], which allows
us to efficiently encode hard constraints on the elevator
velocity and position as well as on the final conditions of
the trajectory.

We optimize our trajectory using an initial state vector
x(t0) = [3.5,0.1,0,0,7,0,0, ]. Our final value constraints are
represented by upper and lower bounds on the final state,
x(t f ). They are xu(t f ) = [0,0, π

2 ,
π

8 ,2,0,∞] and xl(t f ) =
[0,0, π

8 ,−
π

3 ,0,−2,−∞] respectively. The constraints on φ are
φ ∈ [−π

3 ,
π

8 ] and the constraints on φ̇ are φ̇ ∈ [−13,13]. For
the cost function, we use

∫ t f
t0 u2dt. The resulting nominal

trajectory is shown in Fig. 3.

VI. TRAJECTORY STABILIZATION

To stabilize our nominal trajectory, we use a time-varying
linear quadratic regulator (LQR). To apply this control
methodology, we linearize our nonlinear system about the
nominal trajectory to obtain a time-varying linear system
which can be represented as:

˙̄x(t) = A(t)x̄(t)+B(t)ū(t), (12)
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Fig. 3. Optimized nominal perching trajectory.

where x̄(t) = x(t)− x0(t) and ū(t) = u(t)− u0(t). Let us
define the following cost function for the maneuver:

J = x̄(t f )
T Q f x̄(t f )+

∫ T

0
x̄(t)T Qx̄(t)+ ū(t)T Rū(t), (13)

with Q = diag([10,10,10,1,1,1,1]), R = .1, and Q f =
diag([400,400, 1

9 ,
1
9 ,1,1,

1
9 ]). The cost on R was chosen so

that over a reasonable range of initial conditions, control
saturations were limited. The entries of Q f were selected
by approximating the desired goal region as an ellipsoid,
G = x̄T Q f x̄, so that the maximum distances are defined by
x̄ f ,max = [0.05,0.05,3,3,1,1,3] where Q f = diag(x̄ f ,max)

−2.
Finally, the entries for Q were chosen with respect to Q f
so that the solutions to the Riccati equation remained well
conditioned. LQR design yields the control law

ū(t) =−R−1BT S(t)x̄(t), (14)

and the cost-to-go
J = x̄T S(t)x̄, (15)

where

Ṡ(t) = Q−S(t)BR−1BT S(t)+S(t)A+AT S(t), (16)
S(t f ) = Q f . (17)

The closed-loop system can now be written as

˙̄x = f(t, x̄)− ẋ0. (18)

VII. FINITE-TIME VERIFICATION

Once the aircraft trajectory has been successfully stabi-
lized, recent advances in sums of squares (SOS) analysis
can be used to find an inner approximation of the region
of state space about that stabilized trajectory for which the
system is guaranteed to achieve the goal (e.g., land on the
perch) with some tolerance. Following [26], we define this
region as a “funnel” in to the goal region G.

To find a funnel for the glider, we first define the time-
varying Lyapunov function W (t, x̄) over the interval [t0, t f ].
We parameterize this function as

W (t, x̄) =
V (t, x̄)

ρ(t)
, (19)

where V (t, x̄) is the cost-to-go function, x̄T S(t)x̄, from LQR
and ρ(t) is the class time varying functions such that ρ(t)> 0
and ρ(t f ) ≤ 1. By defining ρ(t) in this way, we are able



to guarantee positive definiteness of W (t, x̄) and that the
outlet of the funnel is contained in goal region G= x̄T S(t f )x̄.
To ensure that W (t, x̄) guarantees set invariance over some
region, we impose the constraint

V (t, x̄) = ρ(t) =⇒ V̇ (t, x̄)− ρ̇(t)≤ 0, (20)

where

V̇ (t, x̄) =
∂V (t, x̄)

∂ x̄
˙̄x+

∂V (t, x̄)
∂ t

. (21)

Using the generalized S-Procedure, we can now write

−V̇ (t, x̄)+ ρ̇(t)−µ(t, x̄)(V (t, x̄)−ρ(t))≥ 0, (22)

where µ(t, x̄) is a polynomial Lagrange multiplier. To further
simplify the problem, we sample in time to eliminate t from
the above expression. This results in N positivity constraints

−V̇i(x̄)+ ρ̇i−µ(x̄)i(Vi(x̄)−ρi)≥ 0, (23)

where N is the total number of sample points and the
subscript i denotes the given function evaluated at t = ti,
where i = 1,2,3...N. To evaluate ρ(t) at t = ti, we choose
ρ(t) to be a piecewise linear polynomial such that

ρ(t) = ρi +(t− ti)ρ̇i, i = floor
(

t− t0
∆t

)
(24)

ρ̇i =
ρi+1−ρi

∆t
. (25)

To search for ρi, we replace the test for positivity with the
test for sums of squares positivity[21].

In order to make use of existing software tools for sums
of squares [11], [13], we make a polynomial approximation
of the nonlinear dynamics ˙̄x = f(x̄)− ẋ0 using a third-order
Taylor series. Letting Σ[x̄] be the set of all sums of squares
polynomials, we search for ρi by setting up the optimization
problem

maximize
ρi,µi

N

∑
i

ρi

subject to ρN = 1
∀i ∈ [1,N−1] :
ρi > 0,
−V̇i(x̄)+ ρ̇i−µi(x̄)(Vi(x̄)−ρi) ∈ Σ[x̄]. (26)

Unfortunately, this optimization problem is not jointly
convex in the decision parameters ρi and (the coefficients
of) µi(x). Following [26], we apply a bilinear alternation to
approximate the maximum. We begin the bilinear alternation
by first searching for the Lagrange multipliers using an initial
guess of ρ(t). For our initial guess, we use the function
suggested in [26] where

ρ(t) = e
c

t−t f
t f−ti . (27)

We steadily increased c from c = 5 until the search for the
Lagrange multipliers became feasible at c = 13.5.

The funnels resulting from this method are depicted in
Figs. 4 and 5. The optimization converged after 7 iterations,
each of which took approximately 36 seconds (see Table I).
Our verification sampled the system at 38 knot points.
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Fig. 4. Slice of the high-dimensional funnel x,z plane obtained by
optimizing over ρ(t). The nominal trajectory for the plane begins at x=-
3.5m and proceeds to the perch location x=0m, z=0m.
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Fig. 5. Slice of the high-dimensional funnel in the ẋ, ż plane obtained by
optimizing over ρ(t). Note that the nominal trajectory begins on the right
with a positive velocity, and ends on the left with near zero velocity.

VIII. S-PARAMETERIZATION

We found the funnels estimated using the ρ(t) parame-
terization to be overly conservative when compared against
a simulation-based analysis. To improve these results, we
optimized over S(t), where V (t, x̄) = x̄T S(t)x̄ and V̇ (t, x̄) =
2x̄T S(t) ˙̄x+ x̄T Ṡ(t)x̄, instead of simply searching for level sets
of our initial Lyapunov candidate.

Consider the sums of squares constraints from the previous
optimization procedure given in 26. To find an initial set
of Lagrange multipliers, we use the initial ρ(t) from the
previous section. However, in the next step of the opti-
mization procedure, instead of searching over a piecewise
linear polynomial representation of ρ(t), we search over a
parameterization of S(t).

A. S-matrix Representation

To parameterize our S-matrix, we consider a point-wise
rescaling of the elements in the original S0(t) matrix obtained
from the Riccati equation. This can be represented using the
Hadamard product as,

S(t) = S0(t)�Φ(t), (28)

where Φ(t)≥ 0. Ṡ(t) can then be written as

Ṡ(t) = Ṡ0(t)�Φ(t)+S0(t)� Φ̇(t) (29)



where Ṡ0 comes from the solution to the Riccati equation
and Φ(t) is a piecewise linear polynomial function such that

Φ(t) = Φi +(t− ti)Φ̇i, i = floor
(

t− t0
∆t

)
(30)

Φ̇i =
Φi+1−Φi

∆t
. (31)

Our proposed representation for S(t) possesses a number
of advantages over searching directly for S(t), where S(t)
is some piecewise polynomial. First of all, our formulation
guarantees positive definiteness of S(t) between individual
knot points, since Φ(t) and S0(t) are both positive def-
inite and the Hadamard product of two positive definite
matrices is always positive definite. While this would be
also guaranteed for a piecewise linear representation of
S(t), it would not be guaranteed for higher order piecewise
polynomials. Secondly, our formulation also guarantees that,
when Φ(t) is some small enough scalar multiple of the
all ones matrix, a feasible solution will exist for our SOS
optimization. This feature is important if we are to use the
initial ρ(t) from our previous approach as a starting point
for the bilinear alternations. Last of all, using S0(t) as a
baseline whose value can be evaluated with high precision
at any time sample between [ti, t f ] enables us to obtain a
more dynamic representation for S(t) than could be achieved
using a piecewise linear formulation with the same number
of decision parameters and sample points. Initially, we were
concerned that our representation for S(t) could suffer from
numerical problems since as Φ(t) approaches the all ones
matrix, the solution will lie on the edge of the semi-definite
cone if Φ(t) is constrained to be positive definite. However,
in practice, we have not found numerical conditioning to be
a problem.

We also explored searching directly over a piecewise linear
representation of S(t) as well as searching over the form
S(t) = Σ(t)T Φ(t)Σ(t) where S0(t) = Σ(t)T Σ(t). However, in
both cases, the optimization routine produced much smaller
final funnel volumes. Furthermore, in the case of the piece-
wise linear representation, the funnel was not conservative
when compared to numerical simulations.

B. Cost Function

To use our S-matrix parameterization in a SOS optimiza-
tion routine, we used a cost function to guide our search.
Ideally, we would prefer our cost function to be proportional
to funnel volume. Unfortunately, however, the volume of
an ellipsoid is nonlinear in the matrix decision parameters
and therefore not amenable to our SOS optimization routine.
Therefore, we explored a linearizion of this cost function
about a nominal P(t), where P(t) = S(t)/ρ(t) and updated
this operation point during each iteration of the optimization
routine by using P(t) from the previous iteration.

Knowing that

vol(F ) ∝

∫ t

0

√
det(P(t)−1)dt =

∫ t

0

1√
det(P(t))

dt, (32)

we can approximate this funnel volume by linearizing the
nonlinear part of the function by some operating point P0(t).
Dropping the dependence on t we have:

det(P)−
1
2 ≈ det(P0)

− 1
2 +(− 1

2 )det(P)−
3
2

d det(P)
dP

∣∣∣∣
P=P0

∆P.

(33)

Using the identity,

d det(P) = tr(adj(P)dP) = tr(det(S)S−1dP) (34)

and letting dP = (P−P0), we have

det(P)−
1
2 ≈ det(P0)

− 1
2 (1− 1

2 tr(P−1
0 P)+ 1

2 tr(P−1
0 P0)). (35)

We can now replace our initial cost function J with

J = tr(P−1
0 P), (36)

where P0 is the P-matrix from the previous iteration step.

IX. RESULTS

The funnels resulting from using the fully parameterized
S-matrix are considerably larger, as shown in Figs. 7 and
8. A quantitative comparison of the resulting volume is
given in Fig. 6, which reveals the improvement from using
both the additional parameters and the linearized-volume cost
function. Table I compares other details, such as computation
time and number of iterations.
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Fig. 6. Comparison of the volumes of the funnels obtained from optimizing
over ρ(t) compared with optimizing over Φ(t).
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Fig. 7. Slice of the high-dimensional funnel in the x,z plane obtained
by optimizing over ρ(t) (cyan), compared with the funnel obtained by
optimizing over Φ(t) (gray). The nominal trajectory for the plane begins
at x=-3.5m and proceeds to the perch location x=0m, z=0m.
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Fig. 8. Slice of the high-dimensional funnel in the ẋ,ż plane obtained
by optimizing over ρ(t) (cyan), compared with the funnel obtained by
optimizing over Φ(t) (gray). Note that the nominal trajectory begins on the
right with a positive velocity, and ends on the left with near zero velocity.

A. Comparison with Simulation

To get an idea of how tight these funnels are to the actual
time-varying invariant set, simulations were carried out and
plotted against the invariant regions produced by the convex
bilinear alternations at different sample times. The results
of this simulation can be seen in Figs. 9-12. Given all of
the potential conservatism taken along the length of the
trajectory, we consider the resulting estimate of the funnels to
be surprisingly tight. Note that simulating all relevant initial
conditions from the higher dimensional space, and along
the length of the trajectory, would be effectively intractable,
which is why we limit ourselves to two dimensional slices.

TABLE I
FUNNEL COMPARISON

Method µ-step V-step No. Iter. Total t Vol.
ρ 21.7s 13.9s 7 250 s 3.17×10−4

S 30.3s 40.9s 14 997 s 1.47×10−2

X. LQR-TREES

To improve the performance of the time-varying LQR
controller, it would be desirable to cover the entire range
of initial conditions. However, this can not be achieved
with only one funnel. A possible solution is to use a finite
number of trajectories to cover as much of the desired
initial conditions as possible. An algorithm for achieving
this, known as LQR-Trees, was proposed in [25]. Following
this algorithm, we first initialize the tree with the final goal
region. Then, we sample randomly from our set of initial
conditions. For each sample point that does not fall in a
verified region, we compute a new optimal trajectory to the
goal state. Next, we verify the trajectory by computing a
funnel and add this new verified region to the tree. We then
repeat this process until all sample points from the set of
initial conditions we wish to cover fall in the verified region.

To ensure that all our our funnels end in the desired goal
region, we first search for ρ(t f ) such that

λ (1−G)+(x̄T S(t f )x̄−ρ(t f ))≥ 0 (37)

where λ > 0. In order to make sure that this did not make
the funnels too small, we slightly relaxed the goal region
to Q f = diag([400,400, 1

9 ,
1
9 ,

4
9 ,

4
9 ,

1
9 ]) and we discarded any

funnel where ρ(t f )< 0.6.
The resulting LQR-Trees can be found in Figs. 13 and 14.

We observed that, although the final value constraints for our
optimal trajectories were set to be anywhere along the LQR-
Tree, most of the trajectories connected to the goal region
instead of connecting to a verified region somewhere along
the tree’s other branches. We hypothesize that this is due to
the relatively short flight time of our glider.

XI. DISCUSSION

Our proposed method of controller synthesis and verifi-
cation has a number distinct advantages. First of all, our
approach preserves continuity in state by eliminating the
need to solve a partial differential equation. In addition, when
the Lagrange multipliers are of fixed order, our method scales
polynomially with dimension, thus alleviating the curse of
dimensionality to some extent. In fact, recently funnels for
systems up to R10 have been computed in under a few hours.

One of the greatest shortcomings of our method is that
we must approximate the nonlinear dynamics of our system
as a third-order polynomial system. However, from Figs. 10
and 12, it seems as though the polynomial dynamics are
a very good approximation of the glider dynamics about
the nominal trajectory since for the entire flight, the funnels
exhibit both tightness and conservatism when compared to
the simulated invariant sets. Another disadvantage of this
approach is that, while it can adequately handle variations
in initial conditions, it can not verify systems with model
inaccuracies or process noise. Without a doubt, in outdoor
environments managing stochastic wind gusts will be critical
for achieving a successful perching maneuver. Moreover,
even in deterministic circumstances, it is nearly impossible
to build aerodynamic models capable of representing all of
the different flow regimes which can occur along the wing.
It is interesting to note, however, that if formulated correctly,
the verification procedure can be modified to meet specified
robustness criteria as shown in [12] and [23].

XII. CONCLUSION AND FUTURE WORK

In this paper, we have demonstrated that it is possible to
find regions of attraction for a fixed-wing UAV executing
a post-stall perching maneuver. By parameterizing our Lya-
punov function as the S(t) from the Riccati equation point-
wise multiplied by a positive semi-definite parameter matrix,
Φ(t), larger funnels were able to be computed than what
had been originally computed using the ρ-parameterization.
Using grid-based simulation, we then proceeded to show that,
while not completely covering the invariant set, the time-
varying basins found using SOS were a sufficiently large,
conservative approximation of the true region. Finally, we



Fig. 9. Comparison of SOS funnel’s x-z slice with the invariant set found
by simulating the full non-polynomial, nonlinear system forward from the
relevant initial conditions.

Fig. 10. 2D plots of the x-z funnel slice time cross-sections found in 9. Red
represents simulated trajectories which failed to reach the goal region, blue
represents those that succeeded, and gray represents the final SOS funnel.

Fig. 11. Comparison of SOS funnel’s ẋ-ż slice with the invariant set found
by simulating the full non-polynomial, nonlinear system forward from the
relevant initial conditions.

Fig. 12. 2D plots of the ẋ-ż funnel slice time cross-sections found in 11.
Red represents simulated trajectories which failed to reach the goal region,
blue represents those that succeeded, and gray represents the final SOS
funnel.



Fig. 13. LQR Tree Position Coverage

Fig. 14. LQR Tree Velocity Coverage

showed that our verification method could be used to build
a tree of verified trajectories via the LQR-Trees algorithm,
stabilizing a wider range of initial conditions. In the future,
we hope not only to demonstrate the LQR-Trees algorithm
experimentally on our fixed-wing glider, but to extend our
approach to handle cases of external disturbances and model
uncertainty. It is our belief that the LQR-Trees algorithm
and its associated verification procedures will prove to be a
general solution to a large number of nonlinear aerospace
controls problems and we hope that as the method matures,
it will be a significant step towards developing highly agile
bird-scale UAVs.
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[11] J. Löfberg. YALMIP : A toolbox for modeling and optimization in
MATLAB. In Proceedings of the CACSD Conference, Taipei, Taiwan,
2004.

[12] Anirudha Majumdar, Mark Tobenkin, and Russ Tedrake. Algebraic
verification for parameterized motion planning libraries. In Under
review, 2012.

[13] A. Megretski. Systems polynomial optimization tools (SPOT), avail-
able online: http://web.mit.edu/ameg/www/. 2010.

[14] Mellinger, D., Kumar, and V. Minimum snap trajectory generation
and control for quadrotors. In Robotics and Automation (ICRA), 2011
IEEE International Conference on, pages 2520–2525. IEEE, 2011.

[15] D. Mellinger, N. Michael, and V. Kumar. Trajectory generation
and control for precise aggressive maneuvers with quadrotors. In
Proceedings of the 12th International Symposium on Experimental
Robotics (ISER 2010), 2010.

[16] Daniel Mellinger, Nathan Michael, Michael Shomin, and Vijay Kumar.
Recent advances in quadrotor capabilities. 2011 IEEE International
Conference on Robotics and Automation, May 2011.

[17] Daniel Mellinger, Michael Shomin, and Vijay Kumar. Control of
quadrotors for robust perching and landing. International Powered
Lift Conference, October 5-7 2010.

[18] Mitchell, I.M., Bayen, A.M., Tomlin, and C.J. A time-dependent
hamilton-jacobi formulation of reachable sets for continuous dynamic
games. IEEE Transactions on Automatic Control, 50(7):947–957, July
2005.

[19] Joseph Moore and Russ Tedrake. Powerline perching with a fixed-wing
UAV. In Proceedings of the AIAA Infotech@Aerospace Conference,
Seattle, WA, April 2009. AIAA.

[20] Joseph Moore and Russ Tedrake. Magnetic localization for perching
UAVs on powerlines. IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), September 2011.

[21] Pablo A. Parrilo. Structured Semidefinite Programs and Semialgebraic
Geometry Methods in Robustness and Optimization. PhD thesis,
California Institute of Technology, May 18 2000.

[22] John W. Roberts, Rick Cory, and Russ Tedrake. On the controllability
of fixed-wing perching. In Proceedings of the American Control
Conference (ACC), 2009.

[23] Jacob Steinhardt and Russ Tedrake. Finite-time regional verification
of stochastic nonlinear systems. In Proceedings of Robotics: Science
and Systems (RSS) 2011, January 17 2011.

[24] J. Tangler and J. David Kocurek. Wind turbine post-stall airfoil
performance characteristics guidelines for blade-element momentum
methods. In 43rd AIAA Aerospace Sciences Meeting and Exhibit.
AIAA, 2005.

[25] Russ Tedrake, Ian R. Manchester, Mark M. Tobenkin, and John W.
Roberts. LQR-Trees: Feedback motion planning via sums of squares
verification. International Journal of Robotics Research, 29:1038–
1052, July 2010.

[26] Mark M. Tobenkin, Ian R. Manchester, and Russ Tedrake. Invariant
funnels around trajectories using sum-of-squares programming. Pro-
ceedings of the 18th IFAC World Congress, extended version available
online: arXiv:1010.3013 [math.DS], 2011.

[27] Claire J. Tomlin, Ian M. Mitchell, Alexandre M. Bayen, and Meeko
K. M. Oishi. Computational techniques for the verification and control
of hybrid systems. In Multidisciplinary Methods for Analysis Opti-
mization and Control of Complex Systems, Mathematics in Industry,
pages 151–175. Springer Berlin Heidelberg, 2005.

[28] Oskar von Stryk. Users guide for dircol: A direct collocation method
for the numerical solution of optimal control problems, November
1999.

[29] Adam M. Wickenheiser and Ephrahim Garcia. Longitudinal dynamics
of a perching aircraft. Journal of Aircraft, 43(5):1386–1392, 2006.


