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The ability to land on a powerline to recharge will dramatically enhance the endurance
and therefore mission capabilities for small UAVs. The magnetic fields around these power-
lines have a well known structure. In this paper we evaluate the possibility of using onboard
magnetometers, in combination with an inertial measurement unit and dynamic model of
the aircraft, to localize the vehicle relative to the powerline. Specifically, we investigate
the near-field structure of a dipole magnetic field configuration and demonstrate that state
estimation using particle filters can provide sufficiently accurate, high-bandwidth, and low-
latency estimates to be compatible with aggressive near-field maneuvering by the aircraft
to acquire to perch on the line.

Nomenclature

j imaginary number
ω angular frequency
t time
c carrier signal
m message signal
v modulated message signal
V frequency domain modulated message signal
N frequency domain message signal
W signal immediately after demodulation
π 3.14159...
δ dirac delta function
j imaginary number
ω angular frequency
~B magnetic field vector
Ic current
Bx magnetic field component in x-direction
Bz magnetic field component in z-direction
µ0 permeability of air
d distance between wires
x position along the x-axis
z position along the z-axis
p probability
b̄el belief prediction
η normalization constant
i an individual particle
Ns number of particles
ẋk x-velocity at discrete step k
żk z-velocity at discrete step k
θ̇k pitch at discrete step k
φk elevator angle at discrete step k
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φ̇k angular velocity of elevator
xk x-position at discrete step k
zk z-position at discrete step k
θk pitch at discrete step k
ẋw wing velocity along x-direction
żw wing velocity along z-direction
ẋe elevator velocity along x-direction
że wing velocity along z-direction
αw wing angle of attack
αe elevator angle of attack
Fw aerodynamic force perpendicular to the wing
Fe aerodynamic force perpendicular to the elevator
Sw wing area
Se elevator area
le elevator length (measured from the center of the elevator)
l distance from back of fuselage to the center of mass
lw distance from center of the wing to the center of mass
∆t discrete time step
g acceleration of gravity
wk particle weights at discrete step k
σ standard deviation
I inertia

I. Introduction

Small and micro UAVs have enabled a number of new mission capabilities, including navigating in and
around buildings and performing perch-and-stare surviellance. However, one of the primary limitations in
these small vehicles is endurance, simply because they cannot carry sufficient power for long missions. Recent
advances in fixed-wing perching1–4 have made it possible to consider a new solution to this problem - landing
on a powerline to recharge. In order to pursue this vision, we have teamed with the AFRL’s Power-Line
Urban Sentry (PLUS) team, who have already demonstrated recharge capabilities using a portable inductive
power coupling.

II. Why use magnetic field localization?

With the rise of camera-based vision systems in robotics, one must ask the question why magnetic
field localization is the best method of locating a powerline. Even if sufficient computational resources are
available onboard, even locating a powerline can be a daunting task for computer vision in visually cluttered
environments. Furthermore, it may be complicated to accurately estimate the distance to the powerline
which may appear as only a few pixels in an onboard camera. Thus, because the magnetic beacons are
already provided by powerlines and because the structures are fairly well known, magnetic field localization
seems to emerge as the best solution. Furthermore, magnetic field sensing approaches are typically less
computationally intensive as well as lest costly when compared to camera-based vision approaches.

III. Related Work

In the past a great deal of research has gone into state estimation, especially in the aerospace community.
For many, the Kalman Filter exists as the major milestone in estimation techniques, and has certainly been
used in numerous applications to predict the location of a wide variety of bodies in flight. Similarly, the area
of magnetic field sensing and measurement is also fairly well researched and understood. Often involving
the Kalman Filter, much research effort has gone into using the earth’s magnetic fields to determine the
orientation of an aircraft. One of the more unique applications of magnetic sensors in the aerospace field has
been the use of magnetic dipoles to achieve collision avoidance within a group of UAVs through total field
sensing.5 By far, however, the related work having the greatest relevance to this project is the work done
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the sponsor, the Defense Research Associates, as well as the Robot Locomotion Group iteslf. For the past
several years, the DRA has been working in conjunction with the Airforce Research Laboratory to achieve
power harvesting from electric lines with small UAVs.6 The Power Line Urban Sentry (PLUS) program
which they began has achieved impressive results in both inductive coupling as well as powerline magnetic
field modeling and characterization. At MIT, the Robot Locomotion Group has been working in parallel to
develop advance perching control algorithms1,7 and system identification techniques8 to aide in these power
harvesting tasks. The state estimation project outlined in this paper is meant to bring all these different
subtasks together, with the hopes of eventually developing an autonomous perching and power harvesting
UAV.

IV. Objective and Experimental Approach

The objective of this project was to develop a method of accurately estimating the states of a fixed
wing aircraft as it approaches a powerline on a perching trajectory, using only an on-board combination of
magnetic and inertial sensor measurements. Because both the perching trajectory and the magnetic field
structure are primarily isolated to a single plane in space, it was also decided that the system dynamics
could be more simply represented in two dimensions for the purposes this initial investigation. Early on,
it was determined that the magnetic sensors would be used to obtain the positions and velocities of the
aircraft’s center of mass, while measurements from inertial sensors would provide the aircraft’s orientation
and angular rates, and it has been this concept which has guided much of the design process so far.

V. Indoor Powerline Experimental Set-Up

The very first step in achieving the localization of a fixed-wing aircraft in the presence of the magnetic
field generated by a high-current carrying wire was to develop an electrical system capable of simulating the
conditions that might be found around a real, outdoor powerline. Thus, it becomes important to investigate
what type of magnetic field structure is found in the real-world outdoor environment. In the standard, three
phase electrical systems found in many power delivery networks, three wires carry three currents, all of which
are 120 degrees out of phase with one another. In this case, if all three wires occupied the same space, the
resulting magnetic field would sum to zero. However, because there is a small space between the wires, a
resulting magnetic field, forms around the wire. Interestingly, because of the zero net current condition,
the magnetic field that arises around a powerline possesses a similar structure to that of the more familiar
dipole magnetic field. Thus, instead of adopting the complexity which may be associated with implementing
a three phase system, a two phase system with a similar field structure was selected instead.

Figure 1. Photo of Powerline Perch Figure 2. Close up of Power Electronics

To implement the two phase system, a 4 gage welding wire was selected to carry a current near 40 amps.
This level of current was selected because it would provide just about four times the minimum field strength
capable of being picked up by the magnetic sensors (40 uV). It was also reasoned, that because of the
surrounding 60 Hz noise often found in indoor environments, it would be beneficial to be able to vary the
frequency of the wire’s current to avoid interference. To achieve this functionality, a PWM current controller
DC Motor amplifier from Advanced Motion Devices capable of carrying out sinusoidal commutation and
generating currents around 50 Amps peak-to-peak, was connected in series with a twelve foot loop of 4 gage
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Figure 3. Block Diagram of Powerline Set-up

wire and a 1 mH inductive load. The motor amplifier was then fed by 600 watt DC power supply and driven
by a conventional oscilloscope capable of adjusting the frequency, amplitude, and offset of the current. To
create the dipole configuration, a wooden stand was built to orient the rectangular loop of wire, 2.4 meters
long by 0.3 meters wide in a Vicon Motion Capture Environment, so as to provide dead-reckoning for the
experiments.

VI. Signal Pick-up Methodology

Because the currents flowing through conventional power lines are alternating in nature with an unknown
phase, one has two choices with regard to obtaining the vectors of a magnetic field at a given position in space,
both of which emerge out of conventional amplitude demodulation techniques used in many electromagnetic
receivers. The first choice is known as envelope detection, or asynchronous detection. By far the simpler
method, envelope detection obtains the values of the peaks of a modulating signal, bandpassed at the desired
frequency. In analog circuitry, this method requires incoming signal to be rectified via a diode and lowpass
filtered so as to obtain the envelope of the signal. The same can also be done in software by creating a moving
window which takes the maximum value of the incoming peaks. There are, however, several disadvantages
to using this method. Envelope detectors often exhibit distortion, especially when the carrier frequency is
not strong enough, and they also perform poorly with respect to noise when the signal values are low.

The second choice, and the preferred method of this paper, is synchronous demodulation. In this method,
after the signal is bandpass filtered at the frequency of choice, it is multiplied by a local oscillator having
the same frequency and phase as the incoming signal. This forces the band-limited signal to be centered
around the origin instead of being centered around the original frequency of modulation. The resulting
signal can then be low passed filtered to remove the higher frequency noise injected into the signal during
the demodulation process.

The Derivation Below Corresponds to the Frequency Domain Representation of Amplitude Demodulation
as represented in figures 4 and 5.

The carrier frequency is given by c(t) which, in our case, is 80 Hz.

c(t) = ejωct (1)

v(t) represents the signal after it is modulated with the carrier. A sinusoidal function with the envelope of
the message signal has been created.

v(t) = m(t)ejωct (2)

Use the Fourier Transform to transform v(t) into the frequency domain.

V (jω) =
1

2π
M(jω) ∗ π(δ(ω − ωc) + δ(ω − ωc)) (3)

Because the signal M(j(ω−ωc)) is being convolved with a delta function at a frequency of 80 Hz, the message
signal is shifted by 80 Hz in each direction, and now becomes centered around +/- 80 Hz.

V (jω) =
1
2
M(j(ω − ωc)) +

1
2
M(j(ω + ωc)) (4)

Multiply the signal v(t) in the time domain by a sinusoid at the frequency of the carrier. This becomes
convolution in the time domain

W (jω) =
1
2

(M(j(ω − ωc)) +M(j(ω + ωc))) ∗ π(δ(ω − ωc) + δ(ω − ωc)) (5)
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Figure 4. Classical Frequency Domain Representation of Amplitude Modulation

Figure 5. Classical Frequency Domain Representation of Amplitude Demodulation
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The delta function causes the message signal to move again, this time to the origin and to +/- 160 Hz. A low
pass filter can now be used to remove the high frequency components, leaving the the DC Message signal.

W (jω) =
1
2
M(jω) +

1
4
M(j(ω + 2ωc)) +

1
4
M(j(ω − 2ωc)) (6)

See figures 4 and 5 for a visualization of this process.
The major disadvantage of the synchronous detection method is that it is very difficult to obtain an

exact representation of the modulating sinusoid (phase and amplitude) at the receiver. In many cases,
especially in analog circuit design, a phase-lock loop is used to obtain the local oscillator with the correct
magnitude and phase. These phase locked loops are essentially feedback loops which drive the phase of the
local oscillator to match that of the incoming waveform. There is, however, another method of obtaining
an exact representation of the message signal which does not necessarily require a phase locked loop. This
method is know as Complex Synchronous Detection,or Quadrature Demodulation, and is particularly well
suited to embedded implementation. It is well known that any sinusoidal signal with a given phase can be
decomposed into both a cosine component and sine component. If instead, the incoming signal is multiplied
by both a cosine and a sine, and the independent, resulting signals are low pass filtered, these two filtered
signals can be squared and summed to reproduce resulting magnitude of the message signal. Fortunately,
the complex synchronous demodulation method alleviates many of the disadvantages of envelope detection.
There is, however, one disadvantage which plagues both methods, and that is the notion of phase-amplitude
ambiguity. Because one never has access to the actual carrier frequency, one can never know whether the
incoming signal is out of phase or if the amplitude of the message signal is negative. Homodyne detection
does provide a solution to this problem by getting access to the carrier frequency by bandpass filtering
extremely close to the nominal carrier frequency. In theory, the resulting band-passed signal should allow
the modulated signal to demodulate its self, but in practice, this method still suffers from some robustness
issues, making the demodulated signals somewhat unreliable.

Complex Synchronous Demodulation technique:
If

y(t) = A(t)cos(2πft+ θ) (7)

then one can recover the full signal by multiplying y(t) by sin(2πft) and by cos(2πft). By low-pass filtering
these two signals, one is able to produce two signals which are 90 degrees out of phase with one another
but, together they represent the real and complex components of the message signal. Thus, by taking the
magnitude of these component signals, the true message signal is recovered.

Complex Synchronous Demodulation leaves creates two signals a and b which are equivalent to the
message signal, a+bj:

VII. Magnetic Field Model

Without a doubt, the main benefit of using a dipole magnetic field is its well-studied structure in elec-
tromagnetic theory. Both its far-field and near field characteristics are well known and documented. When
considering a dipole magnetic field it is simplest to think about the field as the superposition of the two
oppositely oriented, circular magnetic fields typically found surrounding a long straight wire. By the adding
the vector equations for a magnetic field around a long straight wire, one can easily obtain the equations of
the x and z coordinates in terms of the magnetic field vector components Bx and Bz.

The equation for the components of a magnetic field around a long straight wire:

~B =

(
Bx

Bz

)
(8)

Bz =
µ0Icx

2π(x2 + z2)
(9)

Bx = − µ0Icz

2π(x2 + z2)
(10)

Using these equations, the dipole equation can be derived through superposition:

Bz = − µ0Ic(x− d)
2π((x− d)2 + z2)

+
µ0Ic(x+ d)

2π((x+ d)2 + z2)
(11)
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Bx =
µ0Icz

2π((x− d)2 + z2)
− µ0Icz

2π((x+ d)2 + z2)
(12)

It is important to note that d represents the distance between the wires. These equations can the be
used to solve for x and z in terms of Bx and Bz.

The equations result in four pairs of equations for each coordinate, two of which yield imaginary roots,
and two of which represent different locations within the magnetic field. Given the direction and magnitude
of both the x and y components of the magnetic field, a point could be identified at one of any two points
in the magnetic field.

Unfortunately, as discussed previously, the synchronous demodulation algorithm prevents one from know-
ing the absolute sign of the magnetic field vectors. The best one can achieve is whether or not both the x and
z vectors have the same sign or have opposite signs. Therefore, to resolve this phase-amplitude ambiguity,
an additional magnetic sensor was added to the aircraft. By knowing the location of two points in space and
the orientation of the aircraft, one can resolve this ambiguity.

VIII. Initial Experimental Results

Before the sensing technology was implemented on the fixed-wing UAV, it was first developed separately
and tested on a platform which could be moved around in the magnetic field by hand. The test-platform
consisted of four pairs of non-inverting amplifiers and corresponding high-pass filters, the magnetometers,
and a Labjack data acquisition system. The purpose of the analog circuitry was to eliminate the DC bias
of the magnetometers and amplify their AC components appropriately. Several trials were conducted in the
presence of a magnetic field oscillating at 10Hz by moving the test-platform through a range of x and z
positions and then processing the data offline.

The off-line data processing consisted of bandpass filtering the signal with a second order Butterworth
filter at bandwidth of 1Hz. The synchronous demodulation techniques were then carried out, and the
equations for the magnetic field were then used to estimate the position of the test-platform from the
demodulated magnetic field vectors. To resolve the phase-amplitude ambiguity, all sets of possible coordinates
were computed using the given magnetic field vectors, and then the correct points were selected using the
known distance between the magnetic sensors and the horizontal orientation of the platform.

IX. On-board Sensing Hardware

Once the initial experimental trials proved the feasibility and potential high-level of accuracy for localizing
a body in the magnetic field, hardware development for the on-board sensing equipment commenced. At
the core of the sensing hardware exists the ATMEGA128 AVR micro-controller, which is responsible for
completing all the analog to digital conversion, low-level control, and signal processing. The micro-controller
is also capable of interfacing via serial at 100Hz with the small scale gumstix linux computers for higher-
level control applications. X and z accelerations as well as rotation rates about the y-axis are sent to the
micro-controller as 0-5 volt voltage levels from the Freescale MMa7260Q accelerometer and the ADXRS300
gyroscope. The analog signals from the HMC2003 three-axis magnetometers are first bandpass filtered with
an analog filter having cutoff frequencies at 20Hz and 100 Hz and then passed through a differential amplifier,
AMP04EP, and amplified by gain of 20. The magnetometer signals are then sent through a multiplexer to
two channels on the micro-controller’s analog to digital converter capable of applying variable gains. Because
the magnetometer voltage levels increase as 1

r2 , variable gains are desirable in order to keep the signals from
saturating the 5 volt region. To drive the elevator a HS-55 Hitech hobby servo at the center of the glider is
controlled via pulse width modulation by the micro-controller. All together, the system runs on a 2 cell 300
maHr Full River Lithium Polymer Cell, and has a total weight of 241 grams.

To examine in-flight data in the presence of the power-line’s magnetic field, the micro-controller was
programmed to deflect the elevator upon sensing a spike in the acceleration. A cross-bow like launcher
featuring a carbon fiber bow was used to launch the glider at the power-line as the aircraft uses its elevator
to execute an open loop trajectory. The noise induced by the launch in the electronics signals has caused
some difficulty in data processing, and is currently being addressed.
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Figure 6. Two Dimensional Plot of Magnetic Field Model

Figure 7. Result of Demodulation Phase Ambiguity
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Figure 8. Initial Estimation Results A: x-coordinate Figure 9. Initial Estimation Results A: z-coordinate

Figure 10. Initial Estimation Results B: x-coordinate Figure 11. Initial Estimation Results B: z-coordinate

Figure 12. Photo of Instrumented Glider Figure 13. Close-up of Glider Electronics
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X. State Estimation via Particle Filter

Recently, with the ever-increasing nature of computational capabilities, Particle Filters have become
more and more prevalent as a practical solution for state estimation. These filters, which rely on a collection
particles to evaluate a given estimate’s probalistic distribution, have the several unique properties. One such
property is their ability to cope with nonlinear and multi-modal probability distributions. Another is their
ability to handle highly nonlinear models with regards to the process and measurement equations. It is these
two properties which make the particle filter the best choice for estimating the state of a glider on a perching
trajectory using magnetic field measurements. As previously mentioned, the ambiguity between the phase
and amplitude of a magnetometer reading allows for four possible locations if a magnetic field measurement
is propagated through equations relating the magnetic field vectors to the x and y coordinates. Because of
its ability to manage multi-modal probability distributions, the particle filter, by using the dynamics of the
system, is able to reason about these possible locations and determine the most probable estimation for the
vehicle’s center of mass. Furthermore, because the post-stall dynamics of a perching maneuver are highly
nonlinear, the particle filter has a distinct advantage over the Extended Kalman Filter since it does not have
to linearize the system equations in order to determine the estimation covariance.

At a fundamental level, particle filters are a method of approximating a recursive Bayesian filter. From
the discrete version of Bayes rule we know that the probability of x given the probability of y is equivalent
to the probability of y given the probability of x multiplied by the probability of x and divided by the
probability of y as shown below:

p(x|y) =
p(y|x)p(x)

p(y)
(13)

This law forms the foundation for the Bayes Filter. However, to properly understand the Bayes filter,
one must also first understand the notion of belief or bel. A belief can be defined as a conditional probability
distribution which takes into consideration all available information at a given point in time, including
measurements. This probability distribution is then able to characterize the likely value of a given state. If
measurements are not included, the belief is reduced to merely a prediction of the belief, denoted here as bel.
Thus we have established the two main components of most continuous time filters, a probability density
corresponding to a prediction, and a probability density corresponding to a measurement. If the belief and
its prediction are implemented recursively, one obtains the general form of Bayes filter.

bel(xt) =
∫
p(xt|ut, xt−1)bel(xt−1)dxt−1 (14)

bel(xt) = ηp(zt|xt)bel(xt) (15)

From the equations above, one can observe how the current inputs and previous states of a system
contribute to the belief’s prediction and then how that prediction and an incoming measurement combine
to form the actual belief. Without a doubt, the ability to keep track of a state’s probability distribution
becomes an incredible tool in estimating the states of a system. And yet, there still is one problem - in order
to make use of this filter, one must be able to take the integral of the predicted belief. Unfortunately, this
can only be done analytically if the distribution is Gaussian, as in the case of the Kalman filter. For other
distributions, such as multi-modal distributions, closed form solutions do not exist. Thus one must resort to
a more computationally intensive approach by using a collection of particles, chosen by sampling randomly
from an approximate distribution, to represent the posterior probability density function in what is known
as a particle filter. The algorithm is as follows:

Step 1: Sample xi
t particles from the distribution p(xt|ut, x

i
t−1)

Step 2: Weight the particles based on the assumed distribution of p(zt|xt) and normalize the weights
Step 3: Estimate the current state as the mean of the particles corresponding to that state
Step 4: Re-sample to eliminate samples with low weights.
The re-sampling section of the algorithm merely draws, with replacement, particles from the current set

of particles with a probability proportional to the weights of the particles. This newly drawn set of particles
then replaces the current set of particles, thus causing the probability density to contract. The weights are
then reset to 1

N .
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In the case of the glider, the states were estimated using a model derived through the application of
flat-plate theory and system identification from previous investigations. This model was then discretized for
the purposes of implementing the particle filter.

The model used was taken from previous Robot Locomotion Group publications and the notation has
remained almost entirely consistent with those works. A illustration of the glider model can be seen below.

To compute the glider’s forward dynamics, several additional variables have been defined. ẋw and żw are
the wing velocities in the x and z directions respectively. ẋe and że are the elevator velocities in the x and
z directions respectively. αw is the angle of attack of the wing, αe is the angle of attack of the elevator, Fw

is the aerodynamic force exerted on the wing, and Fe is the aerodynamic force exerted perpendicular to the
elevator. The elevator is assumed to have first order dynamics with the gain Ks. The equations of motion
are as follows, and are carried out for every particle:

ẋw = ẋk−1 − lwθ̇k−1sin(θk−1) (16)

żw = żk−1 + lwθ̇k−1cos(θk−1) (17)

αw = θk−1 − arctan
żw

ẋw
(18)

Fw = ρSwsin(αw)(ż2
w + dotx2

w) (19)

ẋe = ẋk−1 + lθ̇k−1 sin(θk−1) + le(θ̇k−1 + ks(uk − φk−1)) sin(θk−1 + φk−1) (20)

że = żk−1 − lθ̇k−1 cos(θk−1)− le(θ̇k−1 + ks(uk − φk−1)) cos(θk−1 + φk−1) (21)

αe = θk−1 + φk−1 − arctan
że

ẋe
(22)

Fe = ρSe sinαe(ż2
e + ẋ2

e) (23)

φk = φk−1 + ks(uk − φk−1)∆t (24)

ẋk = (−Fw sin θk−1 + Fe sin θk−1 + φk−1

m
)∆t+ ẋk−1 (25)

żk = (
Fw cos(θ)k−1 + Fe cos θk−1 + φk−1

m
− g)∆t+ żk−1 (26)

θ̇k = (
Fw ∗ lw − Fe(l cosφk−1 + le)

I
)∆t+ θ̇k−1 (27)

xk = xk−1 + ẋk∆t (28)

zk = zk−1 + żk∆t (29)

θk = θk−1 + θ̇k∆t (30)

The measurement equations are:

Figure 14. Glider Model
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Bz = − µ0Ic(x− d)
2π((x− d)2 + z2)

+
µ0Ic(x+ d)

2π((x+ d)2 + z2)
(31)

Bx =
µ0Icz

2π((x− d)2 + z2)
− µ0Icz

2π((x+ d)2 + z2)
(32)

The measurement equations are actually a function of θ due to the required coordinate transform from
the world coordinates to the glider’s coordinate system.

Bxglider = Bxcos(θ)−Bzsin(θ) (33)

Bzglider = Bxsin(θ) +Bzcos(θ) (34)

The above model is then used to propagate forward a specified number of particles, each one acting like
an individual glider. To each new particle state estimate, Gaussian noise is added, which is equivalent to
sampling the predicted states from some Gaussian distribution. Once all the particles have been propagated
forward, the position measurements are incorporated and the particle weights are determined.

It can be easily reasoned that a probability distribution could be represented, as shown in the equation
below, as a large set of points with specified weights.

p(x) =
Ns∑
i=1

wiδ(x− xi) (35)

Thus the weights on those particles can be updated recursively by the equation:

wi
k = wk−1p(zk|xk−1) (36)

wk =
wk

Ns∑
i=1

wi

(37)

It is important to remember that the weights must be normalized in order to represent a true probabilistic
distribution.

To incorporate the position measurements for the glider position estimation, the weights are computed
as a collection of Gaussian functions at the probable points p(zk|xk−1), if position is assumed to be your
measurement.

The Gaussian functions are defined as follows:
Measurement Error Vector y:(

(xmeasurement − xi
k) (zmeasurement − zi

k) (θmeasurement − θi
k) (θ̇measurement − θ̇i

k)
)

Covariance Matrix C: 
C1 0 0 0
0 C2 0 0
0 0 C3 0
0 0 0 C4


Gaussian Function:

1
σ
√

2π
e

(
−yCyT

2σ2

)
(38)

Before being carried out on the actual, instrumented aircraft, the representative data was created to
evaluate the particle filtering algorithm in simulation. The dynamics of the aircraft were simulated in
the presence of a simulated magnetic field, and then the magnetic field measurements were modulated,
demodulated, and subjected to noise. Below are the successful simulation results of the particle filter, where
Ns = 400
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Figure 15. Particle Filter Simulation Execution: Frame 1 Figure 16. Particle Filter Simulation Execution: Frame 2

Figure 17. Particle Filter Simulation Execution: Frame 3 Figure 18. Particle Filter Simulation Execution: Frame 4

Figure 19. Particle Filter Simulation Execution: Frame 5 Figure 20. Particle Filter Simulation Execution: Frame 6

Figure 21. Particle Filter Simulation Execution: Frame 7 Figure 22. Particle Filter Simulation Execution: Frame 8
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Figure 23. Particle Filter Simulation Execution: Frame 9

Figure 24. Particle Filter Simulation X-position Estimation

Figure 25. Particle Filter Simulation Z-position Estimation
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XI. Discussion

In addition to being a significant step forward in the effort to use powerlines for UAV power harvesting,
the investigations outlined in this paper have also demonstrated the incredible power of the particle filter
in its ability to solve extraordinarily difficult state estimation problems. Even now, the full potential of the
particle filter is not being used. One could imagine vastly improving the measurement system by using the
particle filter to take into account zero crossings in the demodulated data. In this way, the particle filter
could almost become a means of estimating a discrete state by using measurement conditions or events to
adjust weights in the probability density. This notion also melds nicely with the nature of the magnetic field,
which increases in magnitude quadratically as the distance decreases By using the particle filter’s versatile
information fusion capabilities, measurements closer to the powerline might be able to be trusted more in the
measurement update since the signal to noise ration increases so dramatically as one moves toward the wire.
In an era where computational resources are becoming less and less costly, it is important to remember that
powerful tools which have been developed by computer scientists in the past and were once too intractable
do to their required computational resources, can now be used to solve some the most difficult problems in
estimation and control.

XII. Conclusions

The initial attempts at localizing a fixed wing aircraft using the magnetic field surrounding a powerline
has demonstrated promising results. Furthermore, all the algorithms used have been causal and will transfer
directly to an microprocessor operating in real-time. Not only does this robotic vision method open up a range
of practical applications for UAV perching maneuvers, but it will also allow for outdoor experimentation in the
near future. Now that the particle filter is working in simulation, the next step is to acquire acceptable data
from on-board the glider during a flight maneuver, and then to process that data using the particle filtering
algorithms. Because we have access to advanced motion capture equipment, it will be an extraordinarily
simple task to evaluate the performance of the estimation algorithm. Then, once the algorithm proves to be
successful in handling the real data, the particle filter and accompanying algorithms will be transferred over
to an embedded unit to run in real-time.
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