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Abstract:1

Deep neural network (DNN) architectures have been shown to outperform tradi-2

tional pipelines for object segmentation and pose estimation using RGBD data,3

but the performance of these DNN pipelines is directly tied to how representative4

the training data is of the true data. Hence a key requirement for employing these5

methods in practice is to have a large set of labeled data for your specific robotic6

manipulation task, a requirement that is not generally satisfied by existing datasets.7

In this paper we develop a pipeline to rapidly generate high quality RGBD data8

with pixelwise labels and object poses. We use an RGBD camera to collect video of9

a scene from multiple viewpoints and leverage existing reconstruction techniques10

to produce a 3D dense reconstruction. We label the 3D reconstruction using a11

human assisted ICP-fitting of object meshes. By reprojecting the results of labeling12

the 3D scene we can produce labels for each RGBD image of the scene. This13

pipeline enabled us to collect over 1,000,000 labeled object instances in just a few14

days. We use this dataset to answer questions related to how much training data is15

required, and of what quality the data must be, to achieve high performance from a16

DNN architecture.17

Keywords: 3D reconstruction, segmentation, labeling, training data generation18

1 Introduction19

Advances in neural network architectures for deep learning have made significant impacts on per-20

ception for robotic manipulation tasks. State of the art networks are able to produce high quality21

pixelwise segmentations of RGB images, which can be used as a key component for 6DOF object pose22

estimation in cluttered environments [1, 2]. However for a network to be useful in practice it must23

be fine tuned on labeled scenes of the specific objects targeted by the manipulation task, and these24

networks can require tens to hundreds of thousands of labeled training examples to achieve adequate25

performance. To acquire sufficient data for each specific robotics application using once-per-image26

human labeling would be prohibitive, either in time or money. While some work has investigated27

closing the gap with simulated data [3, 4, 5, 6], our method can scale to these magnitudes with real28

data.29

In this paper we tackle this problem by developing an open-source pipeline that vastly reduces the30

amount of human annotation time needed to produce labeled RGBD datasets for training image31

segmentation neural networks. The pipeline produces ground truth segmentations and ground truth32

6DOF poses for multiple objects in scenes with clutter, occlusions, and varied lighting conditions.33

The key components of the pipeline are: leveraging dense RGBD reconstruction to fuse together34

RGBD images taken from a variety of viewpoints, labeling with ICP-assisted fitting of object meshes,35

and automatically rendering labels using projected object meshes. These techniques allow us to36

label once per scene, with each scene containing thousands of images, rather than having to annotate37

images individually. This reduces human annotation time by several orders of magnitude over38

traditional techniques. We optimize our pipeline to both collect many views of a scene and to collect39

many scenes with varied object arrangements. Our goal is to enable manipulation researchers and40

practitioners to generate customized datasets, which for example can be used to train any of the41
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available state-of-the-art image segmentation neural network architectures. Using this method we42

have collected over 1,000,000 labeled object instances in multi-object scenes, with only a few days of43

data collection and without using any crowd sourcing platforms for human annotation.44

Our primary contribution is the pipeline to rapidly generate labeled data, which researchers can use to45

build their own datasets, with the only hardware requirement being the RGBD sensor itself. We also46

have made available our own dataset, which is the largest available RGBD dataset with object-pose47

labels (352,000 labeled images, 1,000,000+ object instances). Additionally, we contribute a number48

of empirical results concerning the use of large datasets for practical deep-learning-based pixelwise49

segmentation of manipulation-relevant scenes in clutter – specifically, we empirically quantify the50

generalization value of varying aspects of the training data: (i) multi-object vs single object scenes,51

(ii) the number of background environments, and (iii) the number of views per scene.52

2 Related Work53

We review three areas of related work. First, we review pipelines for generating labeled RGBD data.54

Second, we review applications of this type of labeled data to 6DOF object pose estimation in the55

context of robotic manipulation tasks. Third, we review work related to our empirical evaluations,56

concerning questions of scale and generalization for practical learning in robotics-relevant contexts.57

2.1 Methods for Generating Labeled RGBD Datasets58

Rather than evaluate RGBD datasets based on the specific dataset they provide, we evaluate the59

methods used to generate them, and how well they scale. Firman [7] provides an extensive overview60

of over 100 available RGBD datasets. Only a few of the methods used ([8, 9, 1, 10, 11]) are capable61

of generating labels for 6DOF object poses, and none of these associated datasets also provide62

per-pixel labeling of objects. One of the most related methods to ours is that used to create the63

T-LESS dataset [8], which contains approximately 49K RGBD images of textureless objects labeled64

with the 6DOF pose of each object. Compared to our approach, [8] requires highly calibrated data65

collection equipment. They employ fiducials for camera pose tracking which limits the ability of66

their method to operate in arbitrary environments. Additionally the alignment of the object models67

to the pointcloud is a completely manual process with no algorithmic assistance. Similarly, [1]68

describes a high-precision motion-capture-based approach, which does have the benefit of generating69

high-fidelity ground-truth pose, but its ability to scale to large scale data generation is limited by: the70

confines of the motion capture studio, motion capture markers on objects interfering with the data71

collection, and time-intensive setup for each object.72

Although the approach is not capable of generating the 6 DOF poses of objects, a relevant method73

for per-pixel labeling is described in [2]. They employ an automated data collection pipeline in74

which the key idea is to use background subtraction. Two images are taken with the camera at75

the exact same location – in the first, no object is present, while it is in the second. Background76

subtraction automatically yields a pixelwise segmentation of the object. Using this approach they77

generate 130,000 labeled images for their 39 objects. As a pixelwise labeling method, there are78

a few drawbacks to this approach. The first is that in order to apply the background subtraction79

method, they only have a single object present in each scene. In particular there are no training80

images with occlusions. They could in theory extend their method to support multi-object scenes by81

adding objects to the scene one-by-one, but this presents practical challenges. Secondly the approach82

requires an accurately calibrated robot arm to move the camera in a repeatable way. A benefit of the83

method, however, is that it does enable pixelwise labeling of even deformable objects.84

Although they focus on scene understanding rather than 6DOF pose estimation the SceneNN [12]85

and ScanNet [13] data generation pipelines share some features with our method. In common with86

our approach the only necessary hardware is an RGBD sensor. A dense 3D reconstruction is obtained87

using one of several methods, [14] and Bundle Fusion [15] in [12] and [13] respectively. Like our88

method, their human annotations are done on the 3D reconstruction rather than the the individual89

RGBD images. The key difference is that with our approach, ICP-assisted labeling with known90

meshes enables fast, high-precision object-specific labeling, while a benefit of their methods is that91

they do not require known meshes. Without object meshes, however, their methods do not have92

consistent definitions of pose between scenes.93
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2.2 Object-Specific Pose Estimation in Clutter for Robotic Manipulation94

There have been a wide variety of methods to estimate object poses for manipulation. A challenge95

is object specificity. [1] and [2] are both state of the art pipelines for estimating object poses from96

RGBD images in clutter – both approaches use RGB pixelwise segmentation neural networks (trained97

on their datasets described in the previous section) to crop point clouds which are then fed into98

ICP-based algorithms to estimate object poses by registering against prior known meshes. Another99

approach is to directly learn pose estimation [16]. There is also a trend in manipulation research100

to bypass object pose estimation and work directly with the raw sensor data [17, 18, 19]. Making101

these methods object-specific in clutter could be aided by using the pipeline presented here to train102

segmentation networks.103

2.3 Empirical Evaluations of Data Requirements for Image Segmentation Generalization104

While the research community is more familiar with the scale and variety of data needed for images105

in the style of ImageNet [20], the type of visual data that robots have available is much different than106

ImageNet-style images. Additionally, higher object specificity may be desired. In robotics contexts,107

there has been recent work in trying to identify data requirements for achieving practical performance108

for deep visual models trained on simulation data [3, 4, 5, 6], and specifically augmenting small109

datasets of real data with large datasets of simulation data [3, 4, 5, 6]. We do not know of prior studies110

that have performed generalization experiments with the scale of real data used here.111

3 Data Generation Pipeline112

One of the main contributions of this paper is an efficient pipeline for generating labeled RGBD113

training data. The four main steps of the pipeline are described in the following sections: RGBD data114

collection, dense 3D reconstruction, human assisted annotation, and rendering of labeled images.115

(a) (b) (c)

(d) (e)

(f)

Figure 1: Overview of the data generation pipeline. (a) Xtion RGBD sensor mounted on Kuka IIWA
arm for raw data collection. (b) RGBD data processed by ElasticFusion into reconstructed pointcloud.
(c) User annotation tool that allows for easy alignment using 3 clicks. User clicks are shown as
red and blue spheres. The transform mapping the red spheres to the green spheres is then the user
specified guess. (d) Cropped pointcloud coming from user specified pose estimate is shown in green.
The mesh model shown in grey is then finely aligned using ICP on the cropped pointcloud and starting
from the user provided guess. (e) All the aligned meshes shown in reconstructed pointcloud. (f) The
aligned meshes are rendered as masks in the RGB image, producing pixelwise labeled RGBD images
for each view.

3



3.1 RGBD Data Collection116

A feature of our approach is that the RGBD sensor can either be mounted on an automated arm, as in117

Figure (1a), or the the RGBD sensor can simply be hand-carried. The benefit of the former option is118

a reduced human workload, while the benefit of the latter option is that no sophisticated equipment119

(i.e. motion capture, external markers, heavy robot arm) is required, enabling data collection in a120

wide variety of environments. We captured approximately 60 scenes using the handheld approach.121

For the remaining scenes we mounted the sensor on a Kuka IIWA, as shown in Figure (1a). The122

IIWA was programmed to perform a scanning pattern in both orientation and azimuth. Note that the123

arm-automated method does not require one to know the transform between the robot and the camera;124

everything is done in camera frame. Our typical logs were approximately 120 seconds in duration125

with data captured at 30Hz by the Asus Xtion Pro.126

3.2 Dense 3D Reconstruction127

The next step is to extract a dense 3D reconstruction of the scene, shown in Figure (1b), from the128

raw RGBD data. For this step we used the open source implementation of ElasticFusion [21] with129

the default parameter settings, which runs in realtime on our desktop with an NVIDIA GTX 1080130

GPU. ElasticFusion also provides camera pose tracking relative to the local reconstruction frame,131

a fact that we take advantage of when rendering labeled images. Reconstruction performance can132

be affected by the amount of geometric features and RGB texture in the scene. Most natural indoor133

scenes provide sufficient texture, but large, flat surfaces with no RGB texture incur failure modes.134

Given the results in [13] we believe that BundleFusion [15] would produce an even higher quality135

reconstruction, but the code is not yet publicly available. [12] provides a thorough comparison of136

the different 3D reconstruction methods and shows that there is a tradeoff between runtime and137

reconstruction quality. We believe that ElasticFusion provides a good compromise between these two138

tradeoffs, but our pipeline can use any 3D reconstruction method that provides camera pose tracking.139

3.3 Human Assisted Annotation140

One of the key contributions of the paper is in reducing the amount of human annotation time needed141

to generate labeled object per-pixel and pose data. Our pipeline is designed to handle scenes with142

arbitrary objects in clutter. The method requires pre-scanned meshes of the object, which necessitates143

rigid objects, but imposes no other restrictions on the objects themselves. We evaluated several144

global registration methods [22, 23, 24] to try to automatically align our known objects to the 3D145

reconstruction but none of them came close to providing satisfactory results. This is due to a variety146

of reasons, but a principle one is that many scene points didn’t belong to any of the objects.147

To circumvent this problem we developed a novel user interface that utilizes human input to assist148

traditional registration techniques. The user interface was developed using Director [25], a robotics149

interface and visualization framework. Typically the objects of interest are on a table or another flat150

surface. If this is the case the first step is to segment this table from the scene. The human indicates151

the table of interest by providing a single click; the table is then removed from the reconstructed152

pointcloud using standard plane fitting algorithms. Our insight for the human annotation stage was153

that if the user provides a rough initial pose for the object, then traditional ICP-based techniques154

can successfully provide the fine alignment. The human provides the rough initial alignment by155

clicking three points on the object in the reconstructed pointcloud, and then clicking roughly the same156

three points in the object mesh, see Figure (1c). The transform that best aligns the 3 model points,157

shown in red, with the three scene points, shown in blue, in a least squares sense is found using the158

vtkLandmarkTransform function. The resulting transform then specifies an initial alignment of the159

object mesh to the scene, and a cropped pointcloud is taken from the points within 1cm of the roughly160

aligned model, as shown in green in Figure (1d). Finally, we perform ICP to align this cropped161

pointcloud to the model, using the rough aligment of the model as the initial seed. In practice this162

results in very good alignments even for cluttered scenes such as Figure (1e). More importantly this163

human annotation process takes only approximately 30 seconds per object. In particular this is much164

faster than aligning the full object meshes by hand without using the 3-click technique which can take165

several minutes per object and results in less accurate object poses. We also compared our method166

with human labeling (polygon-drawing) each image, and found intersection over union (IoU) above167

80%, with approximately four orders of magnitude less human effort per image (Supplementary168

Material).169
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3.4 Rendering of Labeled Images and Object Poses170

After the human annotation step of Section 3.3, the rest of the pipeline is automated. Given the171

previous steps it is easy to generate per-pixel object labels by projecting the 3D object poses back into172

the 2D RGB images. Since our reconstruction method, ElasticFusion, provides camera poses relative173

to the local reconstruction frame, and we have already aligned our object models to the reconstructed174

pointcloud, we also have object poses in each camera frame, for each image frame in the log. Given175

object poses in camera frame it is easy to get the pixelwise labels by projecting the object meshes176

into the rendered images. An RGB image with projected object meshes is displayed in Figure (1f).177

3.5 Discussion178

As compared to existsing methods such as [8, 9, 1] our method requires no sophisticated calibration,179

works for arbitrary rigid objects in general environments, and requires only 30 seconds of human180

annotation time per object per scene. The largest limitation of our approach is perhaps its dependence181

on object meshes, but given the ubiquity of hand-held 3D scanners, this is not as limiting as it182

may seem. Since the human annotation is done on the full 3D reconstruction, one labeling effort183

automatically labels thousands of RGBD images of the same scene from different viewpoints.184

4 Results185

We first analyze the effectiveness our data generation pipeline (Section 4.1). We then use data186

generated from our pipeline to perform practical empirical experiments to quantify the generalization187

value of different aspects of training data (Section 4.2).188

(a) (b) 

(c) (d) (e) 

Figure 2: Examples of labeled data generated by our pipeline: (a) heavily cluttered multi-object, (b)
low light conditions, (c) motion blur, (d) distance from object, (e) 25 different environments. All of
these scenes were collected by hand-carrying the RGBD sensor.

4.1 Evaluation of Data Generation Pipeline189

Our pipeline has the capability to rapidly produce large amounts of labeled data, with minimal human190

annotation time. In total we generated over 352,000 labeled RGBD images, of which over 200,000191

were generated in approximately one day by two people. Because many of our images are multi-192

object, this amounts to over 1,000,000 labeled object instances. The pipeline is open-source and193

intended for use. We were able to create training data in a wide variety of scenarios; examples are194

provided in Figure 2. In particular, we highlight the wide diversity of environments enabled by195

hand-carried data collection, the wide variety of lighting conditions, and the heavy clutter both of196

backgrounds and of multi-labeled object scenes.197

For scaling to large scale data collection, the time required to generate data is critical. Our pipeline198

is highly automated and most components run at approximately real-time, as shown in Figure 3.199

5



Figure 3: Time required for each
step of pipeline.

Figure 4: Example segmentation performance
(alpha-blended with RGB image) of network (e)
on a multi-object test scene.

The amount of human time required is approximately 30 seconds per object per scene, which for a200

typical single-object scene is less than real-time. Post-processing runtime is several times greater than201

real-time, but is easily parallelizable – in practice, a small cluster of 2-4 modern desktop machines202

(quad-core Intel i7 and Nvidia GTX 900 series or higher) can be made to post-process the data203

from a single sensor at real-time rates. With a reasonable amount of resources (one to two people204

and a handful of computers), it would be possible to keep up with the real-time rate of the sensor205

(generating labeled data at 30 Hz).206

4.2 Empirical Evaluations: How Much Data Is Needed For Practical Object-Specific207

Segmentation?208

With the capability to rapidly generate a vast sum of labeled real RGBD data, questions of “how209

much data is needed?” and “which types of data are most valuable?” are accessible. We explore210

practical generalization performance while varying three axes of the training data: (i) whether the211

training set includes multi-object scenes with occlusions or only single-object scenes, (ii) the number212

of background environments, and (iii) the number of views used per scene. For each, we train a213

state-of-the-art ResNet segmentation network [26] with different subsets of training data, and evaluate214

each network’s generalization performance on common test sets. Further experimental details are215

provided in our supplementary material; due to space constraints we can only summarize results here.216

Figure 5: Comparisons of training on single-object vs. multi-object scenes and testing on single-object
(left) and multi-object (right) scenes.

First, we investigate whether there is a benefit of using training data with heavily occluded and217

cluttered multi-object scenes, compared to training with only single-object scenes. Although they en-218

counter difficulties with heavy occlusions in multi-object scenes, [2] uses purely single-object scenes219

for training. We trained five different networks to enable comparison of segmentation performance220

on novel scenes (different placements of the objects) for a single background environment. Results of221

segmentation performance on novel scenes (measured using the mean IoU, intersection over union,222

per object) show an advantage given multi-object occluded scenes (b) compared to single-object223

scenes (a) (Figure 5, right). In particular, the average IoU per object increases 190% given training224

set (b) instead of (a) in Figure 5, right, even though (b) has strictly less labeled pixels than (a),225

due to occlusions. This implies that the value of the multi-object training data is more valuable per226
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(b) 

3 multi- 
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(c) 

(a) + (b) 

(d) 

18 multi- 
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(a) + (d) 

 

RGB 

image 

Figure 6: Comparison of segmentation performance on novel multi-object test scenes. Networks are
either trained on (a) single object scenes only, (b,d), multi-object test scenes only, or a mixture (c,e).

pixel than the single-object training data. When the same amount of scenes for the single-object227

scenes are used to train a network with multi-object scenes (d), the increase in IoU performance228

averaged across objects is 369%. Once the network has been trained on 18 multi-object scenes (d),229

an additional 18 single-object training scenes have no noticeable effect on multi-object generalization230

(e). For generalization performance on single-object scenes (Figure 5, left), this effect is not observed;231

single-object training scenes are sufficient for IoU performance above 60%.232

Second, we ask: how does the performance curve grow as more and more training data is added from233

different background environments? To test this, we train different networks respectively on 1, 2,234

5, 10, 25, and 50 scenes each labeled with a single drill object. The smaller datasets are subsets of235

the larger datasets; this directly allows us to measure the value of providing more data. The test set236

is comprised of 11 background environments which none of the networks have seen. We observe237

a steady increase in segmentation performance that is approximately logarithmic with the number238

of training scene backgrounds used (Figure 7, left). We also took our multi-object networks trained239

on a single background and tested them on the 11 novel environments with the drill. We observe an240

advantage of the multi-object training data with occlusions over the single-object training data in241

generalizing to novel background environments (Figure 7, right).242

Figure 7: (left) Generalization performance as a function of the number of environments provided at
training time, for a set of six networks trained on 50 different scenes or some subset ({1, 2, 5, 10, 25})
of those scenes. (right) Performance on the same test set of unknown scenes, but measured for the 5
training configurations for the multi-object, single-environment-only setup described previously.

Third, we investigate whether 30 Hz data is necessary, or whether significantly less data suffices243

(Figure 9). We perform experiments with downsampling the effective sensor rate both for robot-arm-244

mounted multi-object single-background training set (e), and the hand-carried many-environments245

dataset with either 10 or 50 scenes. For each, we train four different networks, where one has all data246
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1 2 5 10 25 50 RGB image 

# training environments 

Figure 8: Comparison of segmentation performance on novel background environments. Networks
were trained on {1, 2, 5, 10, 25, 50} background environments.

available and the others have downsampled data at respectively 0.03, 0.3, and 3 Hz. We observe a247

monotonic increase in segmentation performance as the effective sensor rate is increased, but with248

heavily diminished returns after 0.3 Hz for the slower robot-arm-mounted data (∼0.03 m/s camera249

motion velocity). The hand-carried data (∼0.05 - 0.17 m/s) shows more gains with higher rates.250

(36 scenes) 

Robot-arm-mounted data (~0.03 m/s avg. velocity) 
Tested on same background  

Hand-carried data (~0.05 - 0.17 m/s avg. velocity) 
Tested on novel backgrounds  

Figure 9: Pixelwise segmentation performance as a function of the number of views per scene,
reduced by downsampling the native 30 Hz sensor to {0.03, 0.3, 3.0.} Hz.

5 Conclusion251

This paper introduces our pipeline for efficiently generating RGBD data annotated with per-pixel252

labels and ground truth object poses. Specifically only a few minutes of human time are required for253

labeling a scene containing thousands of RGBD images. The pipeline is open source and available254

for community use, and we also supply an example dataset generated by our pipeline [27].255

The capability to produce a large, labeled dataset enabled us to answer several questions related to256

the type and quantity of training data needed for practical deep learning segmentation networks in a257

robotic manipulation context. Specifically we found that networks trained on multi-object scenes258

performed significantly better than those trained on single object scenes, both on novel multi-object259

scenes with the same background, and on single-object scenes with new backgrounds. Increasing260

the variety of backgrounds in the training data for single-object scenes also improved generalization261

performance for new backgrounds, with approximately 50 different backgrounds breaking into above-262

50% IoU on entirely novel scenes. Our recommendation is to focus on multi-object data collection in263

a variety of backgrounds for the most gains in generalization performance.264

We hope that our pipeline lowers the barrier to entry for using deep learning approaches for perception265

in support of robotic manipulation tasks by reducing the amount of human time needed to generate266

vast quantities of labeled data for your specific environment and set of objects. It is also our hope that267

our analysis of segmentation network performance provides guidance on the type and quantity of268

data that needs to be collected to achieve desired levels of generalization performance.269
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