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Abstract

Mobile robots can safely operate in environments that pose risks to human health,
such as disaster zones and planetary exploration. Robots in these environments may
encounter uneven terrain like debris fields, staircases, and rock ledges that are im-
possible to traverse with wheels or tracks but are surmountable by legged humanoid
platforms through careful selection of footholds. The DARPA Robotics Challenge
demonstrated that today’s field robots are capable of uneven terrain traversal but
they moved slowly and only for short durations. The stretches of walking are sepa-
rated by longer stationary periods consumed by LIDAR data acquisition and human
operator decision making. With the goal of improving autonomy, speed, and relia-
bility, this thesis research investigates new algorithms for continuous locomotion over
uneven terrain through online terrain perception and continuous footstep re-planning.
A new algorithm for planar segmentation of terrain features is presented, along with
a novel approach that integrates stereo depth fusion for terrain perception and on-
line footstep re-planning using mixed-integer quadratic optimization. The approach
is implemented within a novel software framework called Director, and results are
validated on hardware using the Atlas humanoid robot with autonomous laboratory
experiments and semi-autonomous field experiments at the DARPA Robotics Chal-
lenge Finals.

Thesis Supervisor: Russ Tedrake
Title: Professor of Computer Science

2



Acknowledgments

I thank my advisor, Russ Tedrake, for his support, guidance, and encouragement of

my work, and his leadership of the DARPA Robotics Challenge MIT Team. I have

much gratitude for all of the DRC Team MIT members, whose determination and

continual hard work throughout the multi-year challenge allowed my work, and the

team’s work to be demonstrated on grand stage.

I would like to thank the members of the Robot Locomotion Group for many hours

of thoughtful discussion and conversations, they are a brilliant group of people and it

is a fantastic lab atmosphere to work in. I also thank Maurice Fallon and his team in

Edinburgh for their contribution to Director and the OpenHumanoids software stack.

Finally, I would like to thank my friends for their support and many fun times

together in Boston, and express my gratitude for my family and wife Bonnie for their

everlasting love.

3



Contents

1 Introduction 7

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Biped Navigation . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.2 Quadruped Navigation . . . . . . . . . . . . . . . . . . . . . . 13

1.2.3 Dense Mapping and Fusion . . . . . . . . . . . . . . . . . . . 15

1.2.4 Point Cloud Segmentation . . . . . . . . . . . . . . . . . . . . 16

1.3 A New Approach to Continuous Locomotion . . . . . . . . . . . . . . 18

2 Continuous Humanoid Locomotion Over Uneven Terrain 20

2.1 Environment and Models . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.1 Height Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.2 Unorganized Point Cloud . . . . . . . . . . . . . . . . . . . . . 22

2.1.3 Planar Polygon Regions . . . . . . . . . . . . . . . . . . . . . 23

2.1.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.1 Flying Points Filtering . . . . . . . . . . . . . . . . . . . . . . 25

2.2.2 Stereo Depth Filtering . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Fusion and Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.1 Active RGB-D Mapping . . . . . . . . . . . . . . . . . . . . . 30

2.3.2 3D Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Terrain Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.1 Surface Normal Estimation and Filtering . . . . . . . . . . . . 33

4



2.4.2 Planar Region Segmentation . . . . . . . . . . . . . . . . . . . 35

2.4.3 Polygon Shape Fitting and Sorting . . . . . . . . . . . . . . . 37

2.5 Footstep Re-Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.6 Autonomous Execution . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.7 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Director: Robot Interface Framework 47

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 User Interface Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.1 Director main window . . . . . . . . . . . . . . . . . . . . . . 51

3.2.2 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.3 Feature panels . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.4 Teleoperation interface . . . . . . . . . . . . . . . . . . . . . . 54

3.2.5 Task panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Programming Interface Design . . . . . . . . . . . . . . . . . . . . . . 57

3.3.1 Software stack . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.2 Scripting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.3 Affordance model . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.4 Object model . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.5 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4 Perception for search and rescue robots . . . . . . . . . . . . . . . . . 61

3.5 Performance Evaluation at the DRC Finals . . . . . . . . . . . . . . . 64

3.6 Contribution of Shared Autonomy . . . . . . . . . . . . . . . . . . . . 68

3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4 Conclusions and Future Work 75

4.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.1.1 Convex Region Decomposition . . . . . . . . . . . . . . . . . . 75

4.1.2 Dynamic Walking . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.1.3 Segmentation for Grasp Planning . . . . . . . . . . . . . . . . 80

5



4.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6



Chapter 1

Introduction

The DARPA Robotics Challenge (DRC) of 2015 showcased the state of the art of

today’s field ready humanoid platforms designed for search and rescue operations.

The robotics community of researchers and engineers delivered their best designs

for general purpose robot systems and operator interfaces to perform general mobile

manipulation and locomotion tasks with a human in the loop. Though the Challenge

may have been famous for the falls outtakes viral video [1], it produced the best field

demonstration of humanoids to date. Indeed, with the aid of a human operations

team, the prototype platforms featured many locomotion capabilities that will be

required for future bipeds to serve their desired roles in search and rescue, service

and aid, and extra planetary exploration.

The robots at the DRC traversed the uneven terrain with slow and deliberately

placed footsteps. The robots moved only short distances before pausing to collect

stationary LIDAR scans and await human executive decisions on the next course

of action. Though several teams had automated planners and terrain perception

capabilities, none trusted their systems to run autonomously or continuously when it

counted [2].

Leading up to the DRC we were also treated to some short video snippets of an

Atlas robot operating in secret at Boston Dynamics’ private lab space [3]. In this

video, Atlas treks quickly and with great agility over a field of smashed up pieces of

cinder block debris and rocks. No laser scanner or camera is equipped, the robot is
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sensing the terrain only with its feet. Thus, with this video we have another example of

humanoid locomotion over uneven terrain, but it’s on the opposite end of a spectrum

that spans from slow, deliberately placed footsteps like at the DRC, to fast, reactive

walking. The latter is suitable for some terrains, but the terrain at the DRC requires

deliberate footstep placement that critically depends on accurate perception. To fully

realize the utility of these humanoid robots we need locomotion capabilities from the

entire spectrum with better perception to realize increased autonomy and robustness.

1.1 Motivation

A primary motivation for humanoid robotics research is to develop platforms capa-

ble of moving through the same environment as a human being – such as squeezing

through confined spaces and under overhanging obstacles as well as crossing chal-

lenging terrain. While locomotion research spans actuator development, mechanism

development, dynamic planning and control, in this work we focus on terrain estima-

tion and footstep planning.

We take as motivation the recent DARPA Robotics Challenge (DRC) [4], where

robots in outdoor conditions were required to walk over a course of uneven and dis-

continuous terrain. For humanoid robots to be useful, this kind of walking task must

be automated such that the robot can locomote around or over any obstacles without

stopping.

1.2 Related Work

1.2.1 Biped Navigation

Biped Navigation encompasses mapping and localization, collision free path plan-

ning, and walking trajectory generation and execution. Several research groups have

published results integrating such methods on humanoid robot hardware in order

to demonstrate autonomous humanoid locomotion over uneven terrain. Early work
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focuses on footstep planning and walking trajectory generation, and more recent

methods introduce online terrain perception and map localization.

Kuffner et al. describe an A* search method to find a set of feasible footstep

locations to guide a humanoid robot through a flat ground environment with obstacle

regions that must be avoided [5]. A discrete set of feasible footstep placements called

an action set are sampled from a pre-computed feasible region. The authors describe

a heuristic cost function that leads the search to a globally optimal solution for the

action set while minimizing the number of footsteps. Variations and extensions of this

forward search method are used in most of the remaining works described below. The

paper also describes a method for generating statically stable transition trajectories

to allow the robot to move between the planned footstep placements.

The next advance from this group is by Chestnutt et al. which extends the footstep

planning method to handle uneven terrain and incorporates a method to handle non-

statically stable footstep transitions [6]. The cost function encodes many heuristics

based on terrain features such as height change and curvature. A simplified version of

the algorithm that limits the branching of the search is capable of running online and

paper includes a demonstration with an H7 robot using a stereo camera to estimate

the terrain, but does not describe in detail the stereo camera and terrain estimation

methods. In [7] Chestnutt describes refinements of the method and a demonstration

with the Honda ASIMO humanoid. State estimation and localization is performed

with an external motion capture system, the focus is online re-planning of footsteps

toward a global goal with obstacle avoidance.

Chestnutt’s 2009 publication [8] demonstrates biped navigation on the Toyota

Partner humanoid using the previously described footstep planning methods, but now

onboard sensing and odometry is a featured. Scans from a sweeping planar LIDAR

are integrated into a height map- a 2D grid of [x, y, height] cells. In this work,

the footstep planner is capable of stepping up onto small stairs, whereas previous

work treated everything off the ground plane as an obstacle. To accomplish this,

a plane detection algorithm searches the height map for point clusters that belong

to a common horizontal surface using a method called two-point random sampling
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[9]. Height map cells without a valid plane id are treated as obstacles. Notably, the

footstep planner is able to place footsteps that overhang plane boundaries as long as

four of the six foot contact sensors overlap cells with a common plane id. The general

plane detection algorithm is not fast enough to run online, so a heuristic method is

used to limit the sampling locations to prescribed regions where expected footsteps

will be placed.

The most recent work from the group by Nishiwaki et al. integrates the previous

methods onto the HRP2 humanoid platform with a dynamic walking gait generation

and controller capable of stabilizing walking trajectories over terrain estimates with

errors of up to a few centimeters [10] [11]. The system does not run a complete

SLAM algorithm, instead it allows drift and compensates by refreshing the terrain

map. The paper does not claim to be using the plane detection methods from [8],

instead it plans footsteps using heuristic cost functions that operate directly on the

height map, and the accumulator that builds the height map uses filtering to smooth

the heights provided by the raw LIDAR sensor. The onboard computing system

is capable of running the perception, planning, and controller online. The footstep

planner handles uneven terrain such as stairs and ramps, and the walking controller

handles unmodeled terrain features such as walking on gravel. This work is one

of the most impressive and complete to date among all the literature investigating

continuous biped navigation over uneven terrain. In a recent public demonstration,

the SCHAFT company has shown a new commercialized design that walks up and

down stairs, and walks on rough dirt terrain, but at the time of this writing no details

of the perception processing have been published [12].

The Gepetto Team from the Laboratory for Analysis and Architecture of Systems

at the French National Center for Science Research published their integrated biped

navigation methods in Stasse et al. [13]. The paper describes their high-level system

architecture for integrating vision with a footstep planning method and a dynamic

walking pattern generator. The walking pattern generator uses the method proposed

by Kajita in [14]. Stasse demonstrates autonomous walking on flat ground with

obstacle avoidance using a HRP-2 humanoid platform, and builds on his prior work
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in dynamic stepping over an obstacle.

In a series of papers by Perrin et al. the group proposes new motion planning

methods for footsteps based on swept volumes of the feet and upper body [15] [16]

[17] [18]. The footstep planner uses a discrete set of candidate footstep locations,

similar to [5] but integrates it with new methods of collision avoidance and walking

pattern generation. The upper legs and upper body parts of the robot are represented

with a single bounding box that moves as a swept volume, while the feet and lower

legs have a discrete bounding box that can move up, over, and around obstacles.

The paper is interesting because it describes their obstacle representation and how

it is generated from their environment map. However, in this method the robot is

not able to change height, such as the ability to climb stairs, and the swept volume

representation is somewhat conservative. The environment is modeled as flat ground

with obstacles, and the planner does not support footsteps placed on top of obstacles.

The paper [19] describes how the Gepetto Team’s footstep planning strategy is

applied within a 3D environment using an occupancy grid. The paper still focuses

on flat ground environments with obstacle collision avoidance, however it plans in a

full 3D environment rather than projecting the environment to 2.5D like in [10] in

order to handle collision detection of the robot’s upper body. The paper [20] uses a

similar footstep pattern generator, but extends it onto a terrain map model generated

from stereo vision. The terrain map is used to inform the controller of foot-terrain

contact points. The method was demonstrated in simulation but not applied to their

hardware platform.

The Humanoid Robots Lab at Freiburg University has studied biped navigation

using the Nao robot as a test platform. They have built a two level environment

with a staircase, and have an associated CAD model that matches the environment

exactly. Oßwald et al. describe their strategy for autonomous stair climbing in [21].

The work describes the group’s Monte Carlo localization methods which leverage the

OctoMap software package that was developed by the group [22] [23]. Oßwald provides

a summary of plane segmentation algorithms in [9] and describes their approach to

stair climbing by localizing against the front edge of individual steps. The robot
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alternates between flat ground walking and prescribed step climbing behaviors. The

step transition and walking pattern trajectories are designed ahead of time for then

known staircase model. In the survey of plane segmentation methods by Oßwald et al.,

two methods are described and demonstrated with their software. The first method

is called scan line grouping which operates on range images [24]. Scan line grouping

is a fast image-space algorithm, but it was designed to operate on range images

without strong noise, occlusions, or depth outliers. When applied to stereo camera

data it can over segment noisy areas, so it is often run with larger distance thresholds

that result in it missing smaller regions. The second method (which is preferred

by the authors) is an extension of the two point sampling method that was used

by Chestnutt in [8]. The two point sampling method is limited to detecting planes

oriented along the major coordinate axes of the scanned environment (horizontal

ground and stairs, and perpendicular walls), but cannot be applied to fit planes with

arbitrary orientation such as ramps. In the evaluation, the plane segmentation is

used to localize flat staircase elements which are then fit to their known model, so

the orientation limitation is acceptable.

Gutmann et al. have a series of works on biped navigation that use stereo vision

to detect edges, planes, and obstacles, which are represented with a 2.5D grid model

of the environment [25] [26] [27] [28]. In these works, plane segmentation via the

scan line grouping method is used as a preprocessing step to classify terrain types of

individual cells of the environment grid model.

Prior work on biped navigation from the Robot Locomotion Group focuses on

laser scan matching for localization with a prior map [29], dense terrain reconstruction

using stereo cameras and GPU map fusion with truncated signed distance functions

whelan2012kintinuous, and footstep planning on convex free space decompositions

using mixed-integer quadratic optimization and a heuristic cost function [30]. By

integrating the above techniques within an implementation on the Atlas humanoid

platform, our work demonstrated autonomous and continuous locomotion over uneven

terrain using a simple short horizon re-planning framework [31].
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1.2.2 Quadruped Navigation

Although the proposed thesis research is focused on biped applications, there is im-

portant related work on quadrupeds and other multi-legged platforms. This work

often focuses on rough terrain traversal, since the additional legs provide stability

well suited to extreme terrain. Robots for planetary exploration may be required to

traverse and climb terrain that requires more contacts points than are used by bipeds

(without hands). Bretl describes the free-climbing robot problem and provides hard-

ware validation with the LEMUR robot [32]. The work focuses on the motion planning

problem, with particular attention to the frictional contacts required to climb vertical

terrain, and proposes a multi-step planning framework to compute footholds and plan

posture transitions between them. The work does not consider the terrain perception

problem, rather it assumes pre-surveyed terrain contact points are given, nor does

it address the state estimation problem to localize the terrain during execution of

pre-planned motions.

Hauser et al. study the rough terrain motion planning problem with the six

legged robot ATHLETE for extra-terrestrial exploration [33]. The multi-step planning

approach is used, selecting footholds first and then using sampling-based techniques

to find motion plans to transition between footholds. The work succeeds to find novel

motion plans over complex terrain with frictional contact constraints, and is validated

in simulation, but it is stated that the planner is too slow for on-the-fly operation,

nor is terrain perception considered—the planner operates on synthetically generated

height map data.

Krotkov and Simmons describe the software system of the field-tested Ambler

robot which carried sensors and computational resources onboard for perception,

planning, and control of autonomous navigation over rough terrain [34]. The system

integrated a high level task based autonomy system that coordinated the interactions

between the perception, planning, and control components. This early work is sig-

nificant because it highlights the key design considerations of the system integration

required for autonomous operation in real world field tests.
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Whereas the previously cited works focused on quasi-static stability and foothold

transitions, dynamic planning and execution is required to traverse certain terrain

features. The Learning Locomotion project motivated new results in dynamic loco-

motion over rough terrain with the LittleDog quadruped robot. In this project, the

terrain model is given so as to remove the perception problem, and external motion

tracking cameras are used to remove the global state estimation problem. Byl et

al. propose a kinodynamic planning methodology that supports both foothold place-

ments with quasi-static body posture transitions, and dynamic lunges to traverse

large terrain features with consideration of ground reaction forces [35]. Shkolnik et

al. describe a dynamic motion planning algorithm for bounding trajectories over

rough terrain [36]. The authors overcome several challenges of applying RRT motion

planners to systems with dynamic constraints by incorporating motion primitives,

Reachability Guidance, and task space sampling. The authors provide discussion of

the challenges encountered implementing a stabilizing feedback controller to execute

pre-planned dynamic trajectories on the LittleDog hardware using offboard compu-

tation and motion tracking, and show validation in simulation.

Kolter et al. describe their method for integrated LittleDog terrain perception and

footstep planning using a height map representation generated from on-board stereo

camera (attached to LitteDog using a mast to raise the camera above the terrain)

[37, 38]. Terrain features are extracted from the height map and used to inform a cost

map to plan a body path for LittleDog, then a greedy footstep planning algorithm

places footsteps to progress along the body path. In this work, holes in the height

map due to occlusions are filled using an image based texture synthesis algorithm from

the field of computer vision, subject to the constraint that synthesized terrain must

not enter line-of-sight free-space. Terrain occlusion filling is an interesting avenue of

research, but this work does not attempt to segment terrain, so their evaluation does

not assess the benefit of hole filling for segmentation purposes.
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1.2.3 Dense Mapping and Fusion

Simultaneous Localization and Mapping (SLAM) is the problem of building a map of

an unknown environment while simultaneously localizing the robot within the map

[39]. In a 2015 seminar, John Leonard, one of the pioneers of SLAM techniques,

presented the following question and answer series to make a point:

Q: What’s the most important thing I learned about SLAM before 2012?

A: Maintaining sparsity in the underlying representation is critical.

Q: What’s the most important thing I learned about SLAM since 2012?

A: Building and maintaining dense 3D representations is possible.

Leonard’s point about dense representations is in reference to modern dense map-

ping techniques that consume dense depth inputs (from sensors like the Kinect RGB-D

camera) and employ SLAM techniques to fuse the depth data into a dense surface rep-

resentation of the environment. The Kinect Fusion algorithm introduced techniques

that leveraged the high computational capacity of modern GPU hardware to achieve

dense mapping in real time, but it was limited to a fixed volume representation [40].

The Kintinuous algorithm introduced a sliding volume map to support environments

with unlimited spacial extents [41]. In [31] we have shown that the Kintinuous algo-

rithm performs well with alternate depth sources, in this case a stereo camera rather

than RGB-D, and thus is applicable to outdoor environments where Kinect cameras

do not perform as well. These fusion algorithms, with hardware acceleration, pro-

vide surface estimation of the environment at video rates and are therefore a good

source for terrain maps for terrain segmentation and locomotion planning. Terrain

maps based on dense camera depth data overcome the limitations of many available

LIDAR sensors which are slower to produce point cloud maps at equivalent resolution.
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1.2.4 Point Cloud Segmentation

The autonomous biped navigation strategies proposed by the previously cited works

each have terrain perception requirements. Terrain perception is a critical component

of autonomous and continuous biped navigation for footstep placement and obstacle

avoidance. One of the key perception methods used is point cloud segmentation,

and specifically plane segmentation of low curvature terrain features. Chestnutt uses

plane segmentation on a height map to inform the cost function used by the A*

footstep planner [8]. Oßwald uses plane segmentation to localize the robot with

respect to a prior staircase model [9]. Gutmann provides an excellent summary of

plane segmentation techniques applicable to humanoid navigation in [28], including

his improved version of scan line grouping. Gutmann’s plane segmentation algorithm

runs on raw stereo camera depth images as a preprocessing step to 2.5D grid map

building. Segmented planes are filtered so that only horizontal planes are kept, and

the grid model supports ground, raised platforms, and obstacles, but not ramps or

curved surfaces. Notably, none of the previously cited works have performed footstep

planning directly on the plane segmentation results, instead the segmentation results

are used for map building and localization, and planning is performed on discretized

grid representations of the world.

In the Leaving Flatland work by Rusu et al, they describe an integrated system for

motion planning in 3D environments that include stairs and ramps [42] [43]. Many

of the algorithms and data representations techniques from this work evolved into

the Point Cloud Library [44]. In this work, Rusu et al. propose a polygonal rep-

resentation of the environment and a process to generate the model from a series

of raw point clouds. Using an occupancy grid structure, the method uses a local

plane fit to each cell and projects inliers to the plane to compute a planar polygonal

convex hull. Point clouds are registered to a global grid and local planar polygons

are merged based on a polygon-polygon distance function. A geometric heuristic is

used to assign a semantic labeling to polygon clusters with categories such as flat

ground and stairs. The algorithm relies on several thresholds and parameters. 2D
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motion planners are adapted to plan within regions of the polygonal representation,

and indoor and outdoor demonstrations are shown with the RHex mobile robot.

Plane segmentation is also used in the preliminary stages of table top object

manipulation research. In Rusu et al. 2009 paper [45] the authors describe the

table top segmentation algorithm based on RANSAC that has become common place

in lab experiments of object manipulation with point clouds from RGB-D sensors.

Segmentation methods on point clouds are divided between unorganized point clouds,

such as those from laser scans [46] [47] [48], and organized point clouds or range

images such as those from RGB-D sensors or stereo cameras. Trevor et al. [49]

propose an efficient method for segmentation of organized point clouds, and show

how plane segmentation may be used within a general segmentation framework; first

clustered planes are removed and remaining non-planar points are segmented using a

connected components technique. Strom proposes a combined method wherein laser

scan information along with camera images are integrated to perform fast planar

segmentation that benefits from both RGB information and 3D features derived from

the depth [50]. These segmentation algorithm is applied at room scale to segment

planar surfaces and large objects, but not demonstrated at object scale that may be

required for manipulation.

Plane segmentation is also useful in surface reconstruction and SLAM techniques.

In these methods, surface normal estimation from a point cloud provides important

orientation features. Surface normal estimation using least squares regression can

vary in quality based on parameters such as local search radius. Sharp corners in the

original environment can become rounded in the estimation [44]. Boulch proposes

a fast method based on the Randomized Hough Transform that performs surface

normal estimation on unorganized point clouds that maintains sharp features [51].

Maintaining sharp features and edges is important for terrain regions like stairs which

have limited support area. In [51] the method is tested on point clouds collected

at high density with a tripod mounted LIDAR scanner. In our work, we will use

RANSAC [52] for surface normal estimation, and apply it to point clouds from fused

stereo camera data to extract planar terrain features.
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From the fields of computer vision and deep learning, recent results in semantic

segmentation have attained state-of-the-art benchmark performance using convolu-

tional neural networks and only RGB camera data [53] [54]. The networks are trained

on large, human labeled databases with pixel-level ground truth. The results suggest

that convolutional neural networks may be capable of accurate terrain segmentation

without using any of the 3D techniques previously cited in this section. It is possible

that photo realistic renderings can be used to automatically generate databases with

ground truth pixel labels. Perhaps in the future visual simulation will become a new

method for training robots to perceive and plan footsteps on uneven terrain.

1.3 A New Approach to Continuous Locomotion

In this thesis research I propose new methods for continuous locomotion over un-

even terrain through the combination of online terrain perception and footstep re-

planning. New challenges arise when the locomotion task is performed continuously

and autonomously without a human operator. At the DRC, operators were used to

correct errors in terrain perception and to augment footstep planners with expert in-

puts in the form of navigation goals and footstep placement adjustments. This thesis

proposes 3D representations for terrain safe region modeling for footstep planning,

and develop novel perception algorithms to generate these representations from 3D

inputs. Many prior work examples discussed in the previous sections operate with

a 2D height map model, or a flat plane floor model, with obstacles delineated with

bounding boxes or marked grid cells. In those models, obstacles are detected and

avoided, and possibly stepped over, but not stepped onto. In this work, I propose

a 3D representation that supports a broader class of terrain styles and integrate a

footstep planner able to step off flat ground and onto terrain that would otherwise

be considered an obstacle. This representation is able to encode all features of the

environment, such as tables, walls, or doorways, anything that the robot may contact

or use for support.

In addition to locomotion, the proposed perception algorithms and environment
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representations may have extensions to robotic manipulation. While terrain percep-

tion and segmentation techniques find safe regions for the robot to place its feet,

similar methods applied at manipulation object scale can find candidate regions for

the robot to grasp and place finger contacts. Just like in the locomotion example,

better perception will increase autonomy and robustness to allow a robot to contin-

uously estimate and re-plan grasping decisions on newly discovered objects without

prior models or restrictive representations. This thesis makes a novel contribution

to point cloud segmentation algorithms, and applies the segmentation algorithm to

humanoid locomotion over uneven terrain. The contribution is comprised of both the

algorithms and the software implementation within a re-usable framework to realize

autonomous walking behavior on state-of-the-art humanoid hardware platforms.
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Chapter 2

Continuous Humanoid Locomotion

Over Uneven Terrain

2.1 Environment and Models

Locomoting robots will encounter a variety of terrain types to traverse. This section

describes the environment and model representation that will be targeted by the per-

ception algorithms and walking behaviors presented in this thesis. Motivated by the

DARPA Robotics Challenge, we target man-made terrain types that are defined by

locally planar regions of varying slopes, such as ramps, stairs, and scattered stepping

stones. Figure 2-1 shows the uneven terrain course encountered by humanoid robot

competitors at the DARPA Robotics Challenge Finals. The course was composed of

concrete block steps with slopes up to 15 degrees and steps as high as 20 centimeters.

First we describe the 2D height map representation and its limitations, then describe

the 3D representation used in this work.

2.1.1 Height Map

A height map is a 2D grid with uniform spacing. It stores a height value at each

grid node. Additional data such surface normals, color, or calibrated camera image

coordinates may be stored as well. The height map information is represented in

20



Figure 2-1: Left, the DRC uneven terrain course as viewed from the robot’s camera.
Right, convex planar regions used for footstep planning are projected into the camera
image for visualization.

memory using an image data structure and may be transported using efficient image

encoding schemes. Height map data is visualized in 3D as a triangulated mesh, which

may be rendered with color camera image textures, or pseudo-colored with height

map or surface angle information. The height map normals may be computed using

an estimation algorithm, and do not have to agree with the normals defined by the

discrete facets of the mesh triangulation.

A height map stores a single height value per node. As a 2D data structure, it is

unable to represent multi-height features in the environment such as tables and chairs,

vertical walls, toe-kick spaces built into kitchen cabinetry, or overhangs from sloped

steps such as found in the DRC terrain and shown in Figure 2-2. When height maps

are computed from raw sensor data the height values are filtered using a heuristic

algorithm to remove points above a certain height threshold, to remove, for example,

the ceiling in an indoor environment. Obstacles such as stairway hand rails can be

filtered, or if represented in the height map then down stream consumers should be

robust to such extreme outliers in surface representation.

The discretization of height map grids can pose additional problems when the

terrain is not axis aligned with the grid axes. As shown in Figure 2-2, the rotated
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Figure 2-2: Aggregating LIDAR data into a height map can result in loss of 3D
information of important terrain features. The green block is ground truth terrain
geometry, the blue grid is the height map representation. Left, edges and corners that
are not axis-aligned with the height map grid suffer from discretization error. Right,
multi-height terrain features such as overhangs cannot be represented using height
maps.

terrain block feature produces jagged artifacts along the block edge, making it impos-

sible to represent sharp edge features which are important areas for footstep planners

to reason about.

2.1.2 Unorganized Point Cloud

An unorganized point cloud is a list of 3D points defined with respect to some reference

frame. In this work, point clouds are always defined with respect to the local, or world

coordinate frame, and not relative to the robot or sensor, except when noted. As

opposed to an organized point cloud, nearest neighbor information between points is

not stored. In practice, algorithms use a spatial search tree to find neighboring points

within some radius of a reference point. LIDAR data fused over time from multiple

sensor sweeps is often represented using this data structure. Additionally, data from

other sources such as depth images or height maps (both are organized sources) can

be efficiently converted to unorganized point clouds without loss of spatial data. The

reverse is not true, converting an unorganized point cloud to a depth image or height

map requires a projection, where unique points in the unorganized cloud may map

to the same cell within the image. Thus, unorganized point clouds retain the most
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information about terrain features, and are also the most general form of input to

a segmentation algorithm, at the cost of leaving out nearest neighbor information,

requiring the consuming algorithm to select its own strategy in order to operate on

point neighborhoods.

Although unorganized point clouds are a sparse representation of the environment,

as opposed to the dense representation implied by the connectivity information of

organized point clouds or height map grids, in practice the point clouds produced by

LIDAR scanners typically have a high sample density in the regions of interest (subject

to the geometry of the scanner sweep), and actually incur a reduction in sample

density when projected into height map representations of reasonable grid spacing

(0.5 to 1.0 centimeters). Unless otherwise noted, the term point cloud appearing in

this document will always refer to unorganized point clouds.

2.1.3 Planar Polygon Regions

We will represent terrain regions using planar polygons embedded in three-space. The

polygon is a list of 3D vertices that all lie in the same plane. An alternative represen-

tation is an polygon coordinate frame, defined with respect to the local coordinate

frame, and a representation of the vertices within the coordinate frame where the 3rd

component of each vertex is zero. Figure 2-1 shows an example of the DRC Finals

terrain course with planar polygon regions superimposed. These regions are the result

of our terrain segmentation algorithm applied to an unorganized point cloud LIDAR

scan of the terrain. This representation is able to capture planar terrain features

exactly without discretization errors associated with height maps, including sharp

edges, non-axis aligned boundaries, vertical walls, and multi-height features such as

floor and table, or overlapping ladder steps.

2.1.4 Limitations

Modeling the environment with planar polygons incurs some limitations. In practice,

it is a good model for most type of terrain encountered by a robot roaming in man-
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made environments. It is not well suited to deformable terrains, such as grass, mud,

or snow, or surfaces with high curvature or changing slope, or obstacles such as small

diameter pipes (large diameter pipes or low curvature surfaces might be suitably

represented with planar approximation, however). The planar representation must

select a scale parameter at which the environment should be approximated. For

example, a scale could be selected so that a gravel surface is approximated with

a single planar region, but a staircase is segmented into multiple planes instead of

represented as a single planar ramp. Depending on the scaling parameter, surfaces

with high frequency voids such as metal grating may or may not be representable

as a safe region for planning supports. The planar polygon representation does not

answer the question of convex representation. The proposed segmentation algorithm

generates region boundaries that may be non-convex, and we discuss some strategies

for convex representation.

2.2 Sensors

The Atlas robot’s sensor head, the Carnegie Robotics MultiSense SL (Figure. 2-3), is

equipped with a pair of high quality global-shutter cameras with wide FOV lenses, and

also includes an embedded Field-Programmable Gate Array (FPGA) that implements

the Semi Global Matching stereo disparity estimation algorithm [55]. This hardware

allows the sensor to produce rectified RGB-D images on-board at frame rate (15-30

Hz) with low latency (∼90 msec) without impacting the robot’s computational load.

While device is the highest resolution stereo camera commercially available [56], it

produces normals which are unstable from frame to frame — thus requiring fusion

to be useful for the purpose of accurate terrain segmentation. Figure 2-5 shows the

typical depth quality achieved by the sensor under outdoor lighting conditions with

strong sun and shadows.

The MultiSense has a FOV of 90∘-by-90∘ which observes a significant ground

footprint in front of the robot while also allowing the background scene to be used for

visual odometry. The sensor had also contains a revolving Hokuyo laser rangefinder
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Figure 2-3: The Atlas robot’s primary sensing is provided by the Carnegie Robotics
MultiSense SL sensor head which is equipped with a stereo camera and a rotating
LIDAR scanner. (photo credits: Boston Dynamics and Carnegie Robotics)

which generates range samples at 43,000 points per second. The rangefinder revolves

axially around a spindle at a user defined rate, where the speed of revolution affects

the sample density within point clouds generated from fused scans. In our work,

we rotate the sensor head at 5 rotations per minute, such that a new point cloud is

collected every six seconds (each half sweep covers the entire world). Scan lines are

accumulated together and fused over time using an interpolated pose estimation of

the sensor head. Figure 2-4 shows an example of the point cloud collected during a

single sweep of the scanner. Whereas the LIDAR point cloud updates at 0.17 Hz,

the stereo point cloud updates at 15 hz, with comparable resolution but greater noise

and restricted field of view.

2.2.1 Flying Points Filtering

Scan data from the Hokuyo laser rangefinder of the MultiSense contains outlier points

called flying points. These are intermediate range values that fall between background

and foreground objects as a result of glancing reflections when the laser scans across

the boundary of the foreground object. Since flying points occur in areas of dis-
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Figure 2-4: Visualization of terrain sensed by the MultiSense LIDAR scanner and
camera. Left, the LIDAR point cloud is projected into the 2D camera image to
visualize the registration quality between the LIDAR and camera sensors. The LIDAR
has been segmented into ground and scene, colored green and magenta. Right, another
visualization of the camera-to-LIDAR registration, the LIDAR point cloud is colorized
using RGB samples from the camera image.

Figure 2-5: Visualization of stereo depth map from the MultiSense. Left, over exposed
regions of the camera image result in holes in the disparity image computed on-board
the MultiSense (the holes are not the result of occlusions). Right, the stereo disparity
image projected into a 3D point cloud and viewed from a direction perpendicular to
the sensor view direction. In this view the noise characteristics are apparent—edge
boundaries of the terrain features are wavy in appearance due to details of disparity
estimation algorithm.
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continuous range measurement, a typical method to reject these outliers is to use

thresholding on range deltas between neighboring point returns. Equation 2.1 defines

a standard filter that appears in prior work [57]. The filter identifies a set of outlier

flying points 𝑃𝑓 that should be removed from a scan line. A point 𝑥𝑛 corresponding

to a laser range measurement within a single scan line is included in the set if the

distance between 𝑥𝑛 and it’s neighbors 𝑥𝑛−1 and 𝑥𝑛+1 is greater than a threshold

value 𝑇𝑓 .

𝑃𝑓 = { 𝑥𝑛 | 𝑚𝑎𝑥(‖𝑥𝑛 − 𝑥𝑛−1‖, ‖𝑥𝑛 − 𝑥𝑛+1‖) > 𝑇𝑓} (2.1)

In this equation, the threshold value must be determined empirically. Unfortu-

nately, the appropriate value is not easy to determine as it depends on the distance

and the local surface orientation of the object causing the flying points, with respect

to the scanner. We propose a rejection method that is instead based on the angle

between the scanner view direction and the line segment connecting outlier points

with their scan line neighbors. This rejection method is based on the observation

that flying points always fall in line with the view direction of the laser ray. This

angle based filter is defined by Equation 2.2, where ∠ is the function that returns the

angle between two vectors.

𝑃𝑓 = { 𝑥𝑛 | ∠(𝑥𝑛 − 𝑥𝑛−1, 𝑥𝑛) < 𝐴𝑓 ∧ ∠(𝑥𝑛+1 − 𝑥𝑛, 𝑥𝑛) < 𝐴𝑓} (2.2)

In this equation, the points are expressed in the scanner coordinate frame, so the

position of point 𝑥𝑛 is equal to the scanner view direction when the range measurement

for 𝑥𝑛 is collected. Figures 2-6 and 2-7 show the before and after results of flying points

filtering. Two type of outliers in need of filtering are flying points generated from

self observations of the robots arms and legs, and flying points spanning boundaries

between objects such as uneven terrain blocks. Without outlier rejection, the concrete

blocks appear to have ramps connecting the discontinuous surfaces.
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Figure 2-6: LIDAR flying points are outliers. Top left, outliers connect the surfaces of
the terrain steps. Top right, outliers cause spurious range measurements surrounding
the robot. The bottom images show the result of filtering using Equation 2.2. LIDAR
is colored by range delta, the range distance in meters between neighboring returns.

Figure 2-7: A colorized LIDAR point cloud of the valve task at the DRC Finals. Left,
the original point cloud before flying points filtering. Right, the result of filtering.
The green torus is a valve model fit to the point cloud. The filtered point cloud was
input to a perception fitting algorithm to estimate the pose of the valve. Flying points
are especially bad at the boundaries of objects with polished surfaces like the valve.
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2.2.2 Stereo Depth Filtering

For accurate terrain segmentation on stereo depth maps, it is important that the

quality of the maps produced by the vision pipeline be comparable to LIDAR. Visual

aliasing, caused by poor image texture and repeated non-distinctive patterns, com-

monly causes spurious outlier regions within the disparity image and consequently

incorrect 3D depth values. An example of the data is shown in Figures 2-5 and 2-8.

As a result it is crucial to correctly filter and fuse the stereo data before attempt-

ing segmentation and footstep planning. We first apply a de-noising filter on each

frame that (1) labels connected components in the disparity image, where connected-

ness is determined for adjacent pixels by similarity of depth values; and (2) removes

components having a number of pixels below a threshold size, in our case 4,000 pix-

els. This has the effect of suppressing small isolated disparity regions and pixels that

disagree with their neighbors. The result of filtering these outlier regions is shown in

Figure 2-8. The algorithm runs quickly enough to keep up with the stereo camera

frame rate, and run time performance is listed in Table 2.1. Figure 2-5 shows the noise

characteristic of the filtered, but unfused depth map. In the next step we will use

fusion to smooth the depth map and reconstruct an estimate of the terrain surface.

Figure 2-8: Stereo depth data before and after filtering small connected components.
The filtered outliers are removed from the void space in front of the robot.
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2.3 Fusion and Mapping

Dense stereo correspondence, or matching pixels across calibrated camera pairs in

order to infer triangulated distance values, is a well-studied problem in computer

vision research; the Middlebury Benchmark System [58], for instance, provides a de-

tailed performance comparison of over 150 algorithms. However, the use of dense

stereo in real-time robotics applications — particularly at high frame rates — has

been limited. This is mainly due to difficult trade-offs between overcoming inherent

algorithmic challenges (properly handling object boundaries and occlusions, disam-

biguating repeated structures that cause visual aliasing, estimating accurate depth

values in regions of low visual texture) and realizing computationally efficient, low-

latency implementations suitable for robotic platforms.

2.3.1 Active RGB-D Mapping

Active sensors such as the Microsoft Kinect have spurred new interest in dense visual

mapping because they directly address several of these challenges. These sensors pro-

vide color (RGB) images registered with dense, centimeter-accurate depth (D) images

at video rates using an infrared pattern projector and camera pair. All computation

is performed on-board using specialized hardware, and devices are available at com-

modity prices. As a result, active sensors have quickly become the de-facto standard

and have been adopted for a wide range of indoor robotics applications.

Shortly after the release of Microsoft’s sensor, the KinectFusion system [59] demon-

strated real-time RGB-D data fusion within a volumetric data structure (the Trun-

cated Signed Distance Function, or TSDF) maintained in GPU memory. A two-step

process of (1) camera-to-map tracking followed by (2) update of the TSDF via parallel

ray casting produces highly accurate dense reconstructions of small 4–6m volumes at

centimeter resolution. The Kintinuous algorithm [60] was subsequently developed to

accommodate larger-scale exploration for mobile robots. It builds upon KinectFusion

to enable mapping of extended environments in real-time, without being limited to a

region of fixed volume.
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While active RGB-D sensors address many shortcomings of passive stereo, they

still have practical limitations. The Kinect has a narrow field of view and short range

of 4m, but in particular the on-board cameras have rolling shutters and utilize active

illumination. This produces blurred or distorted images while moving and cannot be

used outdoors due to interference by sunlight.

2.3.2 3D Fusion

In this work, we adopt the MultiSense as a surrogate for active sensors to generate

input data for depth fusion algorithms. Our previous publication [61] describes the

details of how this is accomplished.

Each volumetric grid cell within the Kintinuous TSDF contains a signed distance

to the nearest surface, and a probability of occupancy which is a measure of con-

fidence. This probability updates as more observations of a surface are made and

converges as we become confident of surface’s location. Retrieving the full contents

of the TSDF volume from the GPU by copying it to main memory of the CPU is too

expensive to run at camera framerate, so our approach instead is to generate a depth

image from the camera’s viewpoint using an efficient GPU ray casting operation to

find zero-crossings of the TSDF. The resulting image has the same perspective as

the original input stereo data (though it is clipped by the TSDF volume boundary),

and contains the improved surface estimation of the Kintinuous fusion algorithm.

The depth image is converted to an unorganized point cloud for input to the terrain

segmentation algorithm.

The fusion helps to overcome the noise and depth outliers present in the Multi-

Sense disparity images, however it has a tendency to over-smooth sharp features of

the terrain. Nevertheless, in this work we show that the fused depth image is of suffi-

cient quality to be used in place of LIDAR scans as input to the terrain segmentation

algorithm, producing footstep planning regions to support humanoid locomotion in

hardware demonstrations that will be presented in Section 2.7. This exciting result

suggests that stereo fusion, leveraging passive and lower cost sensors, is a suitable

alternative to the more accurate, lower noise, but slower and expensive LIDAR sen-
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sors, and we hope that the faster update rate of the stereo vision approach will enable

faster and more dynamic locomotion capabilities in our robots over uneven terrain

where accurate footstep placement is a must.

2.4 Terrain Segmentation

The proposed terrain segmentation algorithm applies planar region growing to an

unorganized point cloud. It is well suited to model terrain features with sharp edges

in the presence of noisy LIDAR data or smoothed fused stereo data. The input

to the algorithm is pre-filtered to remove some classes of outliers, as described in

Sections 2.2.1 and 2.2.2, but may still contain outliers, so the algorithm uses RANSAC

estimation techniques for robustness. The algorithm is fully agnostic as to whether

the input data comes from LIDAR or fused stereo 3D reconstruction. Analysis of

the performance differences between the two data sources is found in Section 2.7.

Algorithm 1 describes the major steps of the process, which will be described in three

parts, 1) surface normal estimation and filtering, 2) planar region segmentation, and

3) polygonal shape fitting and sorting. Several of these steps require scale parameters

that affect the results. The text provides the parameters that work well in practice,

and we note that the parameters are all selected based on a scale that works well for

segmenting terrain features suitable for foot placement of a human sized foot.

Algorithm 1 Terrain segmentation algorithm
1: function TerrainSegmentation(𝑝)
2: ◁ Given point cloud 𝑝
3: 𝑠𝑐𝑒𝑛𝑒← 𝑅𝑒𝑚𝑜𝑣𝑒𝐺𝑟𝑜𝑢𝑛𝑑𝑃𝑜𝑖𝑛𝑡𝑠(𝑝)
4: 𝑠𝑐𝑒𝑛𝑒← 𝑆𝑢𝑟𝑓𝑎𝑐𝑒𝑁𝑜𝑟𝑚𝑎𝑙𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛(𝑠𝑐𝑒𝑛𝑒)
5: 𝑝𝑙𝑎𝑛𝑎𝑟𝑃𝑜𝑖𝑛𝑡𝑠← 𝐹𝑖𝑙𝑡𝑒𝑟𝐵𝑦𝑁𝑜𝑟𝑚𝑎𝑙(𝑠𝑐𝑒𝑛𝑒)
6: 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠← 𝑃𝑙𝑎𝑛𝑎𝑟𝑅𝑒𝑔𝑖𝑜𝑛𝐺𝑟𝑜𝑤𝑖𝑛𝑔(𝑝𝑙𝑎𝑛𝑎𝑟𝑃𝑜𝑖𝑛𝑡𝑠)
7: 𝑟𝑒𝑔𝑖𝑜𝑛𝑠← 𝐸𝑚𝑝𝑡𝑦𝐿𝑖𝑠𝑡()
8: for each c in clusters do
9: 𝑟𝑒𝑔𝑖𝑜𝑛𝑠← 𝐴𝑝𝑝𝑒𝑛𝑑(𝑟𝑒𝑔𝑖𝑜𝑛𝑠, 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑃 𝑙𝑎𝑛𝑎𝑟𝑃𝑜𝑙𝑦𝑔𝑜𝑛(𝑐))

10: return 𝑟𝑒𝑔𝑖𝑜𝑛𝑠
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2.4.1 Surface Normal Estimation and Filtering

The first step of the segmentation pipeline is to filter all points that represent the

floor (ground plane). This step is not strictly necessary but improves performance

for environments that do contain a large planar ground surface.

Voxel Gridding

We apply a voxel grid downsampling filter to enforce an upper bound sample density in

the point cloud. This ensures that downstream processing completes with consistent

performance and does not depend on the density of the LIDAR point cloud input.

The filter outputs an unorganized point cloud where each point is the centroid of the

points in the input point cloud that fall within for each cell of the voxel grid. We

select a grid size value of 0.5 centimeters which affords enough resolution for accurate

boundary segmentation of the terrain features.

Ground Removal

The ground is defined to be the lowest visible surface in the point cloud, which is

estimated using the 5th percentile of the height coordinates, 𝑧5 (rather than the

minimum height, to exclude outliers), then use RANSAC model fitting [52] of a plane

within a search region that is limited to points in the band 𝑧5 ± 𝜖 where 𝜖 is the half

height of the search region. A value of 5 centimeters works well in practice, as it is

several times larger than the sensor noise. A larger value must be used for sloped

ground, or without concern for performance the ground fitting can be run without

any search region.

Robust Surface Normal Estimation

Next, we perform surface normal estimation using a robust method that employs

RANSAC plane fitting to recover estimates that retain sharp corner features. Fig-

ure 2-9 compares the result of surface normal estimation using a least squares fit

versus RANSAC. Surface normal estimation is computed for each point using a local
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neighborhood of radius 𝑟 centered at the point. Neighbor points are located using a

spatial search over the input point cloud, implemented with the fast k-d tree of the

PCL and FLANN libraries [44, 62]. Using a least squares fit plane to the neighbor-

hood results in reconstructions with rounded corners that do not agree with the real

world terrain. The RANSAC algorithm instead chooses a random subset of two neigh-

bors to compute a proposed plane along with the query point, then checks how many

points in the neighborhood agree with the proposal within 𝜖 distance of the plane.

This is repeated 𝑛 times, and the proposal with the greatest neighbor agreement is

selected. Finally the surface normal is computed from the least squares fitting plane

to the agreeing neighbors. Since point cloud density is controlled, and therefore the

number of neighbors has a fixed upper bound, the overhead associated with RANSAC

estimation is constant in the worst case. The calculation is not prohibitive and could

be efficiently parallelizable, though we leave this opportunity for future work. The

run time performance listed in Table 2.1 is for serial computation.

Figure 2-9: Oriented arrow glyphs are used to visualize surface normals computed by
two different estimation algorithms. The green blocks represent ground truth terrain
geometry. Left, surface normals are estimated using a least-squares plane fit to all
points within a select neighborhood, resulting in rounded off corners. Right, RANSAC
modeling is used to reject a subset of neighborhood points prior to computing the
least-square plane fit, allowing sharp edge reconstruction.
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Filtering By Surface Normal

The points are filtered to keep only those within 𝛼 degrees of horizontal according

to surface normals. Steeper regions are deemed infeasible for footsteps and therefore

can be filtered. The value of 𝛼 may depend on the walking controller performance

and friction characteristics of the robot foot and support surface. We have selected

25 degrees in practice. This step may be excluded in order to search for all planar

regions within the point cloud, to segment vertical walls, for example. Since we did

not consider steep support surfaces, it was most efficient to filter the points at this

stage before proceeding with planar segmentation.

2.4.2 Planar Region Segmentation

The proposed planar region segmentation algorithm is based on a region growing

technique. Planar regions are defined by point cloud neighborhoods where the point

positions and surface normal estimates are all within an error distance to the plane,

and collectively define the plane. Determining the plane is an iterative process, and

the plane estimate is updated as neighboring points are added to the set, as defined

by Equation 2.3.

𝑅𝑖 = { 𝑝𝑛 | 𝑑𝑖𝑠𝑡(𝑝𝑛, 𝑃𝑖) < 𝜖𝑑 ∧ 𝑎𝑛𝑔𝑙𝑒(𝑝𝑛, 𝑃𝑖) < 𝜖𝑎} (2.3)

𝑅𝑖 is a planar region, defined by the set of point ids that belong to the region

for plane estimate 𝑃𝑖. Each point 𝑝𝑛 is added to the set if it is within 𝜖𝑑 distance

perpendicular to the plane estimate 𝑃𝑖 and the surface normal at 𝑝𝑛 is within 𝜖𝑎

degrees of the plane estimate normal.

The region growing method uses a spatial search to locate nearest neighbors, it

does not depend on prior computation of mesh connectivity, and is therefore not

sensitive to small gaps due to occlusions. Like the surface normal estimation, we

use a fixed search radius 𝑟, but select a smaller value for region growing than for

surface normal estimation. In the case of region growing, the search radius sets

the maximum Euclidean distance gap that may be bridged between two otherwise
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disconnected regions. This value is determined empirically for the terrain, and we

have selected 5 centimeters.

Since the neighboring point candidates are tested for inclusion using their local

surface normal estimate, the region growing is robust to outliers and smoothing effects

at corners. This allows the regions to expand to the true boundary of sharp terrain

features. The pseudo-code algorithm for the region growing search is presented in

Algorithm 2.

Algorithm 2 Planar region segmentation algorithm
1: procedure PlanarRegionSegmentation(𝑐𝑙𝑜𝑢𝑑, 𝑟, 𝜖𝑑, 𝜖𝑎)
2:
3: 𝑟𝑒𝑔𝑖𝑜𝑛𝑀𝑎𝑝← 𝑁𝑒𝑤𝑅𝑒𝑔𝑖𝑜𝑛𝑀𝑎𝑝()
4:
5: for each p in cloud do
6:
7: if p in regionMap then
8: continue
9:

10: 𝑟𝑒𝑔𝑖𝑜𝑛𝐼𝑑←𝑀𝑎𝑥𝐼𝑑(𝑟𝑒𝑔𝑖𝑜𝑛𝑀𝑎𝑝) + 1
11: 𝑝𝑙𝑎𝑛𝑒𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒← 𝐼𝑛𝑖𝑡𝑃 𝑙𝑎𝑛𝑒𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒(𝑝)
12: 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑄𝑢𝑒𝑢𝑒← 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝑆𝑜𝑟𝑡𝑒𝑑𝐵𝑦𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑐𝑙𝑜𝑢𝑑, 𝑝, 𝑟)
13:
14: for each 𝑝𝑛 in 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑄𝑢𝑒𝑢𝑒 do
15: if 𝑇𝑒𝑠𝑡𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒(𝑝𝑛, 𝑝𝑙𝑎𝑛𝑒𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒, 𝜖𝑑, 𝜖𝑎) then
16: 𝑝𝑙𝑎𝑛𝑒𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒← 𝑈𝑝𝑑𝑎𝑡𝑒𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒(𝑝𝑙𝑎𝑛𝑒𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒, 𝑝𝑛)
17: 𝑟𝑒𝑔𝑖𝑜𝑛𝑀𝑎𝑝← 𝐴𝑠𝑠𝑖𝑔𝑛𝑅𝑒𝑔𝑖𝑜𝑛(𝑟𝑒𝑔𝑖𝑜𝑛𝑀𝑎𝑝, 𝑝𝑛, 𝑟𝑒𝑔𝑖𝑜𝑛𝐼𝑑)
18: 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠← 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝑆𝑜𝑟𝑡𝑒𝑑𝐵𝑦𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝𝑛, 𝑐𝑙𝑜𝑢𝑑, 𝑟))
19: 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑄𝑢𝑒𝑢𝑒← 𝐴𝑝𝑝𝑒𝑛𝑑(𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑄𝑢𝑒𝑢𝑒, 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠)

20:
21: return 𝑟𝑒𝑔𝑖𝑜𝑛𝑀𝑎𝑝

The planar region segmentation function returns a label mapping that assigns

points in the input point cloud to their respective planar region id. Figure 2-10

visualizes the mapping result of the segmentation algorithm applied to the DRC

Finals terrain course. The point cloud is drawn using a random color assignment to

highlight unique region ids.
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Figure 2-10: Segmentation results of DRC Finals terrain course using LIDAR data.
Left, planar polygon convex hulls are drawn for region segmentations computed after
ground removal and filtering by normal to keep only only regions with slope less
than 25 degrees. Right, region growing has been applied to the entire point cloud
without pre-filtering, producing segmentations of vertical walls and other regions that
should not be candidates for footstep planning, but could be used for other planning
purposes.

2.4.3 Polygon Shape Fitting and Sorting

The region mapping from the prior segmentation step is used to compute planar

polygon shapes in three-space. The shapes will be processed into convex regions for

input to the footstep planner. An example of the regions represented with convex

hulls is shown in Figure 2-10. For each region, the points are written with respect to

the coordinate frame of the local plane estimate of the region. These points can now

be converted to a set of 2D points by zeroing the third component (a projection to the

region plane). Finally, we compute the 2D convex hull of the projected points which is

used to fit the minimum-area bounding rectangle using the calipers algorithm. Rather

than use the convex hull directly, we used this bounding rectangle to represent the

terrain in our experiments and at the DRC Finals, since it filled in portions of the

edge areas that were missed during region growing due to imperfect surface normal

estimation at edges, despite the vast improvement already gained from robust normal

estimation algorithm.

The convex hull and bounding rectangles are converted back to their 3D represen-

tation for visualization. We define a standard orientation for the rectangle shapes by
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using the robot’s stance frame as a reference frame. The stance frame is the average

position and orientation of each foot frame, where the X axis is forward and Z is

up. The coordinate frame of the rectangle is selected with X axis pointing along the

rectangle edge most closely matching the stance frame X axis (by angle projected

into the XY plane), and positioned at the center of the rectangle.

In some cases, segmented regions may not be accurately represented by the convex

hull of the points, such as an L shaped step. Section 4.1.1 discusses how we can use

concave hulls instead to represent the region outline and use convex decomposition to

produce several planning regions for the original planar segmentation. In the experi-

mental results presented below we did not attempt to perform convex decomposition,

instead limited our environment to terrain built of convex features.

2.5 Footstep Re-Planning

The footstep planning problem typically involves choosing an ordered set of foot

positions for the robot, subject to constraints on the relative displacement between

those footsteps, in order to bring the robot close to some desired goal pose. Typically,

these footstep locations must be chosen in order to avoid some set of obstacles in the

environment. Performing a smooth optimization of footstep poses while avoiding

obstacles tends to introduce non-convex constraints which can make globally-optimal

solutions extremely difficult to find [63].

A common approach among footstep planners is to discretize the set of possible

foot transitions, expressed as the relative displacement from one foot pose to the

next. From this set of discrete actions, a tree of possible footstep plans can be

constructed and searched using existing search algorithms such as A*, D*, and RRT

[64, 65, 66, 67, 68]. These techniques, however, are limited by the discretization

of the footstep actions, since a small number of actions severely limits the robot’s

possible footstep plans, while a large number of actions creates an extremely large

search space. Choosing an informative and admissible heuristic for footstep planning

problems can be very difficult [69].
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Figure 2-11: As the robot walks over the terrain, its visual mapping system builds a
dense reconstruction of the environment ahead. Once per step, the planning system
captures the reconstruction, detects convex regions which are large enough to contain
a foot and determines suitable footstep placements to be executed by the walking
controller. Note that self observations of the robot by itself are filtered and that
footsteps are rotated to match the local terrain normal.
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Recent work by Deits and Tedrake reversed the problem of obstacle avoidance

into one of assigning footsteps to some pre-computed safe regions [70]. If the regions

of safe terrain are convex, then the requirement that a footstep remain within some

safe region is a convex constraint. A problem consisting of convex constraints (and

a convex objective function) can typically be solved to its global optimum extremely

efficiently [71]. Combining such a problem with a discrete choice of the assignment of

footsteps to safe regions results in a mixed-integer convex program with high worst-

case complexity but which can often be solved to global optimality efficiently with

modern tools and techniques [72, 73].

We choose to use the mixed-integer convex optimization described by Deits and

Tedrake in [70] and available from the Drake toolbox [74], to quickly produce optimal

footstep plans for an environment which has been decomposed into convex regions

of safe terrain. Rather than operating directly on the point cloud data provided by

the LIDAR or stereo system, the footstep planner requires only a description of each

safe region as a planar area in 3D. Thus, when planning footsteps, the perception

algorithms described in the previous sections can be abstracted away into a tool

which produces regions of safe terrain. These regions, along with a desired navigation

goal pose, are used as input to the footstep planning optimization, which chooses

the number of footsteps to take and the poses of those footsteps. Note that the

planner itself decides online how many footsteps to place in each convex region —

which varies with the size of the region, the robot configuration, and layout of the

upcoming terrain regions.

In prior work, the IRIS segmentation algorithm has been used to compute collision

free configuration space regions on discretized height map data [63]. However, IRIS

suffered from under segmentation, where some collision free space was not included

in the planning regions, and operated on discretized height map data that could not

accurately represent edges and corners frequently found in uneven terrain such as

stairs and the DRC concrete block terrain course, as discussed in Section 2.1.1. In

this work, we have applied a 3D point cloud segmentation algorithm to compute

footstep planning regions. Operating directly on the 3D representation overcomes
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these limitations and results in high quality regions that more accurately align with

the terrain features and include coverage up to the edge and corner boundaries.

2.6 Autonomous Execution

We designed a software interface called Director capable of managing the autonomous

execution of the terrain traversal task. Director, described in Chapter 3, provides an

asynchronous task execution framework which coordinates behaviors requiring inte-

gration between sensor drivers, perception algorithms, and the planning and control

subsystems.

The continuous walking behavior that was demonstrated in our experiments de-

scribed in Section 2.7 is detailed with pseudo-code in Algorithm 3. The behavior

applies our point cloud segmentation algorithm to find footstep regions and uses a

carrot-on-a-stick steering approach to generate navigation goals that lead the robot

over the terrain course. Short-horizon footstep plans within the segmented safe re-

gions are computed and sent to the walking controller for execution.

Algorithm 3 Continuous walking algorithm
1: procedure OnFootLiftoff(𝑞, 𝑓𝑠𝑡𝑒𝑝)
2: ◁ Given footstep frame 𝑓𝑠𝑡𝑒𝑝, or nil to bootstrap
3: if 𝑓𝑠𝑡𝑒𝑝 then
4: 𝑞𝑛𝑒𝑥𝑡 ← 𝐿𝑎𝑛𝑑𝑖𝑛𝑔𝐶𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑞, 𝑓𝑠𝑡𝑒𝑝)
5: else
6: 𝑞𝑛𝑒𝑥𝑡 ← 𝑞

7: 𝑝← 𝑃𝑜𝑖𝑛𝑡𝑐𝑙𝑜𝑢𝑑𝑆𝑛𝑎𝑝𝑠ℎ𝑜𝑡()
8: 𝑟𝑠𝑎𝑓𝑒 ← 𝑇𝑒𝑟𝑟𝑎𝑖𝑛𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛(𝑝, 𝑞)
9: if 𝑒𝑚𝑝𝑡𝑦(𝑟𝑠𝑎𝑓𝑒) then

10: 𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑒𝑄𝑢𝑒𝑢𝑒𝑑𝐹𝑜𝑜𝑡𝑠𝑡𝑒𝑝𝑃 𝑙𝑎𝑛()
11: else
12: 𝑓𝑔𝑜𝑎𝑙 ← 𝑁𝑎𝑣𝑖𝑔𝑎𝑡𝑖𝑜𝑛𝐺𝑜𝑎𝑙(𝑞, 𝑟𝑠𝑎𝑓𝑒)
13: 𝑓𝑝𝑙𝑎𝑛 ← 𝐹𝑜𝑜𝑡𝑠𝑡𝑒𝑝𝑃 𝑙𝑎𝑛(𝑞𝑛𝑒𝑥𝑡, 𝑟𝑠𝑎𝑓𝑒, 𝑓𝑔𝑜𝑎𝑙)
14: if 𝐼𝑠𝑉 𝑎𝑙𝑖𝑑𝑃 𝑙𝑎𝑛(𝑓𝑝𝑙𝑎𝑛) then
15: 𝑄𝑢𝑒𝑢𝑒𝐹𝑜𝑜𝑡𝑠𝑡𝑒𝑝𝑃 𝑙𝑎𝑛(𝑓𝑝𝑙𝑎𝑛)
16: else
17: 𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑒𝑄𝑢𝑒𝑢𝑒𝑑𝐹𝑜𝑜𝑡𝑠𝑡𝑒𝑝𝑃 𝑙𝑎𝑛()

The routine OnFootLiftoff is called once to begin walking, and again each time
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a foot lifts off from the ground during walking. The first stage computes the robot

configuration 𝑞 that will be used as input to the footstep planner. Because the robot

is walking continuously and planning on-line, the configuration 𝑞 used for planning is

chosen to be the next double foot support of the robot after the current swing foot

has landed, i.e., the configuration the robot is expected to achieve in the very near

future upon completion of the current walking step. The configuration 𝑞 is a list of

the robot’s joint positions in generalized coordinates plus the 6 degree of freedom

position and orientation of the robot’s base link in the world coordinate system.

The function LandingConfiguration uses inverse kinematics to find the next double

support configuration using the current stance foot and the next target footstep 𝑓𝑠𝑡𝑒𝑝.

Next, the 𝑁𝑎𝑣𝑖𝑔𝑎𝑡𝑖𝑜𝑛𝐺𝑜𝑎𝑙 returns a navigation goal 1 meter forward along the

steering direction. The segmented regions and navigation goal are passed to the foot-

step planner to compute a footstep plan to navigate towards the goal. The resulting

footstep plan is immediately queued for execution. In typical operation, only the first

footstep of a plan is executed because the remainder of the plan is overwritten at the

next online re-planning stage.

In this work we focused on navigation over uneven stepped terrains, we do not

present results showing exploration over flat terrain with protruding obstacles, or

longer distance global path planning. In the case of the former, the approach would

be to populate the flat terrain with a spanning set of walkable regions (as discussed

in [63]).

2.7 Experiment Results

To demonstrate the described capability we progressively developed the various com-

ponents of this system with more challenging experiments and more general terrain

layouts. Each experiment was carried out in a repeatable manner.

The robot was set up in front of a terrain of uneven concrete blocks and instructed

to progress towards a goal, as described in Section 2.6, and repeatedly did so until it

reached the end of the course with no flat surfaces and stopped. We did not implement
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a general purpose exploration strategy as we focused on the perception and footstep

planning problems. As mentioned in Section 2.6, footstep execution was carried out

by the manufacturer’s stepping controller. The robot autonomously walked over the

entire course in 240 seconds for a total of 25 steps and 14 rows of blocks.

Figure 2-12: Visualization of the robot continuously walking over a complex terrain
course. The upper left figure shows the camera view from the robot’s sensor head.
The lower left figure shows a side view of the experiment. The robot’s actuated
LIDAR sensor is covered up by a white box to demonstrate that only vision is used
here. The main figure shows a rendering of the robot’s configuration while mid-step
and the placements of the next seven steps on the terrain map.

Our computation was provided by two identical off-board desktops each with a

3.30GHz Intel i7 CPU and an Nvidia GeForce GTX 680 GPU. The computation time

of each step of the processing pipeline is shown in Table 2.1

Table 2.1: Algorithm component execution times.

Component Average Time (msec)

Image acquisition 105
Stereo pre-filtering 40
Kintinuous stereo fusion 110
Planar region segmentation 615
Footstep planning 445
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Note that each of the modules operated asynchronously on different threads. In

particular, the segmentation and planning chain is time critical as there is a 4 sec

period (the foot swing cycle) where a new footstep plan can be accepted by the

controller.

In our experiment, we constructed a terrain course containing a climb, uneven

and tilted steps, cracks, and gaps which is shown in Figure 2-12. We conducted

experiments where only the LIDAR sensor was used as point cloud input, as well as

runs where the point clouds were sourced from fused stereo depth maps.

This experiment demonstrated that the segmentation algorithm and footstep plan-

ning could support all these terrain complexities and it also dynamically selected the

number of steps to place within each region depending on the configuration. In the

latter part of the course, when the terrain steps descend, the downward steps only

became visible just as the robot approached and was expected to step down onto

them. This was a particular challenge to both the stereo fusion algorithm and LI-

DAR. For the LIDAR, the steps only became unoccluded in the very last sweep before

segmentation was necessary, and for the stereo, the fusion algorithm requires several

updates to fully resolve the surface reconstruction in the TSDF.

An analysis of the region segmentation point to plane error of the DRC Finals

terrain course LIDAR point cloud is shown in Figure 2-13. The histogram of point

distance to plane error is an illustration of the range measurement noise of the LIDAR

collected under these conditions. The histogram of surface normal estimation error

shows that the majority of point normals are within ±3 degrees of the region plane

normal, but there is a long tail of points with normal angle deviations up to the

cut-off threshold of the region growing algorithm. Notable in the figure (marked with

a red arrow), rendered in the pseudo-color image of surface normal estimation error,

the region at the center of the scanner view direction contains a more points with

surface normal estimation error greater than 3 degrees. We believe this is because

of aliasing effects of overlapping scan lines concentrated in this region at the center

of the MultiSense spindle axis. The aliasing of the overlapping scan lines affects the

performance of the surface normal estimation, but the effect is not present in the
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point distance to plane error plot.

Figure 2-13: Top row, histogram of point cloud attributes within a single segmented
region, in this case, the first block of the robot’s planned walking path. Top left,
the histogram displays the variation in angle between estimated surface normal for
each point and the normal of the least-squares fit plane to the points. Top right,
the histogram displays the point distance to the least-squares fit plane. Bottom left,
pseudo-color visualization of the angle between estimated surface normals and the
plane fit normal. Bottom right, pseudo-color visualization of the point distance to
plane.

2.8 Conclusion

In this work we have described a terrain segmentation algorithm that operates di-

rectly on a 3D representation of the environment, overcoming discretization errors
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associated with 2D height maps, and demonstrated the effectiveness of the segmen-

tation approach when combined with on-line footstep planning to enable continuous

humanoid locomotion over challenging uneven terrain. We presented results from a

hardware experiment where the Atlas robot autonomously traversed a 5.5 meter ter-

rain course requiring up to 30 individual footsteps. The segmentation technique was

also deployed by Team MIT at the DARPA Robotics Challenge finals, enabling our

Atlas robot to successfully traverse the uneven terrain and stairs course on both days

of competition.

With our results, we have also shown how real-time passive stereo fusion can be

used as a direct replacement for an actuated LIDAR sensor, and that it produces

comparable results in challenging lighting conditions. We anticipate the responsive-

ness and greater resolution of this type visual reconstruction may be required for

humanoids to move at human walking speeds in the future.

It is clear that the optimal footstep placement (i.e. those chosen by a human

during human walking) uses subtle information beyond terrain geometry alone — such

as hanging footsteps over step edges and reasoning about occlusions when stepping

down onto partially observed terrain. In future work we aim to add such features to

our system as well as to develop more general navigation strategies.
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Chapter 3

Director: Robot Interface Framework

3.1 Introduction

The previous chapter introduced a terrain perception algorithm and demonstrated

its useful application in a fully autonomous walking task on the Atlas robot. The

autonomous behavior depends on the coordination of a large robotic system archi-

tecture that incorporates control, state estimation, perception, planning, sensors and

drivers, and network communication. This chapter will present Director, a novel robot

interface framework and user interface that we developed to be the high level inter-

face to these components within our robot system architecture. Director provides

a programming interface in the C++ and Python languages, a user interface with

advanced visualization capabilities, and a task execution runtime. The user inter-

face enables operators to interact with the robot through sliding levels of autonomy,

varying from teleoperation modes with no autonomy, to a supervisory role where the

operator monitors status and progress of fully autonomous behaviors.

While fully autonomous operation is of critical importance to many robotic ap-

plications, there are also applications where it is useful and feasible to incorporate

human operators into the robot mission to help ensure robust and safe execution in

challenging and unpredictable environments. Operating a high degree of freedom mo-

bile manipulator, such as a humanoid, in a field scenario requires constant situational

awareness, capable perception modules, and effective mechanisms for interactive mo-
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tion planning and control. A well-designed operator interface presents the operator

with enough context to quickly carry out a mission and the flexibility to handle un-

foreseen operating scenarios robustly. By contrast, an unintuitive user interface can

increase the risk of catastrophic operator error by overwhelming the user with un-

necessary information. With these principles in mind, we present the philosophy and

design decisions behind Director—the open-source user interface developed by Team

MIT to pilot the Atlas robot in the DARPA Robotics Challenge (DRC). At the heart

of Director is an integrated task execution system that specifies sequences of actions

needed to achieve a substantive task, such as drilling a wall or climbing a staircase.

These task sequences, specified a priori, make queries to automated perception and

planning algorithms, such as those described in Chapter 2, online with outputs that

can be reviewed by the operator and executed by our whole-body controller. Our use

of Director at the DRC resulted in efficient high-level task operation while being fully

competitive with approaches focusing on teleoperation by highly-trained operators.

The Director interface was designed with the concept of shared autonomy. The

design goal was to develop a system capable of completing tasks autonomously, but

always be able to fall back to manual operation mode to allow a human to complete

part of the task. Additionally, the autonomous behavior should be organized so that

it is possible to resume the autonomous mode as soon as possible after a period

of manual operation. Entering manual mode should not require the operator to

complete the whole task; there should be many options to return control back to the

autonomous system. This defined our notion of shared autonomy within the context

of the DRC competition: a task execution system that accepts input from both

automated perception and planning algorithms as well as human operator inputs.

In our shared autonomy design, human inputs range from high-level supervision to

low-level teleoperation. The operator can provide input to the perception system

by verifying or adjusting the result of a perception algorithm, or providing a seed,

such as a search region, to steer the perception algorithm. For task autonomy, the

human can provide input through supervision of subtask execution. For example,

the operator can approve a motion plan before it is executed by the robot, or pause
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automatic execution of a subtask (due to some knowledge about the situation that

is not available to the robot) and complete the task manually using teleoperation.

At the lower levels of teleoperation, the operator can control Cartesian poses of end-

effectors, a wide range of kinematic constraints, or individual joint positions.

Sections 3.2–3.4 describe the interface elements and design decisions that com-

prise the Director user interface and it’s interactive perception algorithms, as well

as the programming interface. Sections 3.5 and 3.6 provide analysis of the effec-

tiveness of these methods in the context of the DRC competition tasks. Material

from these sections also appears in our publication currently under review [75]. That

publication also includes details of the task execution system and shared autonomy

concepts within Director. Director interacts with our wider architecture which has

been described in a previous publication [76].

Figure 3-1: MIT Atlas robot at the DRC Finals. Pictured left, this photo was taken
on the rehearsal day. It was the first time MIT Atlas walked outdoors without a
safety belay and using battery power. Right, MIT Atlas walks the terrain course on
the first day of competition. The right arm hangs limp, damaged in a fall during the
vehicle egress task.

3.2 User Interface Design

Director is the primary graphical user interface (GUI) that was used to operate the

robot in competition, and to test and develop robot capabilities in our laboratory. It

is the central location from which the operator initiates all commands to the robot
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including startup and calibration procedures, manipulation and walking plan queries,

and high-level task operation.

Director was almost entirely developed between the DRC Trials (December, 2013)

and the DRC Finals (June, 2015). It replaced the DRC-trials user interface described

in [76] (Figure 14), whereas the remainder of the architecture described therein was

largely retained.

The DRC-trials interface was originally developed for MIT’s entry in the DARPA

Urban Challenge in 2007. Given the nature of that challenge, it was primarily in-

tended as a tool to observe the status of an autonomous robot and to visualize the

results of automated perception and planning algorithms. For this reason, it was

fundamentally designed as a viewer and not as a tool to support on-line interaction.

While it was re-engineered to allow a user to operate the Atlas robot for the DRC

Trials, it was inefficient and difficult to use for the following reasons:

∙ Individual modules (such as LIDAR visualization, footstep planning, reach plan-

ning etc) were implemented as separate plug-ins within an isolated memory

space. This enabled independent development but meant that coordination of

the modules wasn’t possible, for example, hiding the LIDAR point cloud auto-

matically when examining a prospective motion plan.

∙ Each module implemented its own interaction elements within a single taskbar.

This required the user to expand and then scroll through the taskbar to find

the button which requested a particular sensor feed or to change the speed of

plan execution. This was both inefficient and unintuitive.

∙ Rendering was implemented using low level OpenGL commands which did not

coordinate across the modules. As mentioned in Section 3.3.3 the combined

scene graph approach of the Director gave the operator complete control over

the active visual elements.

∙ The DRC-trials interface lacked either task sequencing or a state machine.

While the operator could place reaching goals and request a motion plans to
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them, these actions were not tailored to the action, for example using specific

joint speeds or motion planning constraints for turning a door handle or moving

an arm in free space.

∙ Finally, the DRC-trials user interface was implemented in C and C++. Us-

ing a low-level language made development slow and prone to runtime crashes.

By contrast, several team members could use our higher level Python–based

task sequencing to prepare a DRC Finals task (as shown in Figure 3-3) with-

out needing to understand how the Director interface was assembled into an

application.

These design limitations directly motivated the development of the Director, which

we believe allowed us to more quickly develop semi-autonomous behaviors and was

more specifically tailored to the task of operating a humanoid robot — which in turn

allowed us to more efficiently execute the DRC tasks.

Director is comprised mainly of two user interface windows: the task panel (Fig-

ure 3-2), and the application main window (Figure 3-3). During competition runs,

the task panel is the primary interface through which the operator and robot share

responsibilities to complete the tasks. The operator supervises task execution through

the task panel, but may use the manual interfaces of the main window if the need

arises to make corrections, for example, the operator may need to adjust automated

perception fitting results or plan and execute through teleoperation.

3.2.1 Director main window

The main application window of the Director is pictured in Figure 3-2. The main

window contains a 3D visualization environment to draw the robot’s current state,

perception sensor data, motion plans, and hardware driver status. Embedded panels

are available to interface with hardware drivers for the sensors, grippers, and monitor

overall health status of the system state. The interface also provides a teleoperation

interface to support manual control by the operator.
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Figure 3-2: The Director main user interface. The main window contains a 3D
visualization environment to draw the robot’s current state, perception sensor data,
motion plans, and hardware driver status. Feature panels are opened from the right
side task bar.
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Figure 3-3: The task panel interface. In the competition, the task panel was the
primary interface used to supervise autonomous behaviors and provide inputs to the
guided perception system. As long as there are no failures in execution, the task
panel occupied the complete attention of the primary operator.
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3.2.2 Visualization

A 3D visualization window is the central widget of the main window, and occupies

the majority of the screen real estate. The visualization system is built using the

Visualization Toolkit (VTK), an object-oriented scientific visualization library with

data filtering and interaction capabilities [77]. Key to the success of our visualiza-

tion system is its ability to be scripted at a high-level to easily enable users to add

new capabilities and prototype algorithms. Algorithm prototyping is supported by

a rich visual debugging system capable of drawing primitive shapes, meshes, frames,

images, point clouds, text overlays, etc. Through the use of a Python interface to the

Point Cloud Library, we are able to prototype and debug new point cloud processing

algorithms with seamless integration in the 3D visualization environment [78].

Director also visualizes multiple renderings of the robot model. Separate instances

of the model are used to display the state estimate, the interactive teleoperation

configuration, and to animate manipulation plans. In Figure 3-2, we see a snapshot

of a DRC Finals run: the robot stands with the door in front of the robot, the point

cloud is drawn and an affordance model of the door has been fitted. The interface

also shows a candidate walking plan returned from the planner at the request of the

autonomy system. The operator has the ability to manually adjust footstep plans in

the 3D window using interactive widgets. Similar widgets are used to adjust the 3D

pose of affordance models and geometric constraints in the teleoperation interface.

3.2.3 Feature panels

A core motivation for the development of our user interface was clarity and minimal-

ism over exposing the operator to needless detail. Where possible, panels are opened

only when the user actively needs them and otherwise closed to maximum screen real

estate for the visualization window. A vertical toolbar is docked on the right edge of

the screen that provides buttons to activate context specific panels. By organizing

features in single panels that fit the screen without scroll bars, the user learns to

expect interface element positions and may reach them with a single mouse click.
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3.2.4 Teleoperation interface

One of the most frequently used feature panels is the teleop panel. Together with

the visualization window, the teleoperation panel (shown in Figure 3-4) provides the

operator with a rich set of controls to design whole-body manipulation poses and

trajectories following from a set of geometric constraints. Through this interface, the

operator can constrain the position and/or orientation of the robot’s hands, feet, and

pelvis and the angles of individual joints. Our custom inverse kinematics solver also

allowed the operator to express quasi-static stability constraints by requiring that the

robot’s center of mass remain within the support polygon of one or more of the robot’s

feet [76]. Together, the kinematic and quasi-static constraints allowed the operator

to describe complex whole-body motions with changing contact states through the

teleoperation interface.

3.2.5 Task panel

The task panel window is shown in Figure 3-3. The task panel contains a tabbed

widget, with each tab holding the task plan for one of the eight tasks in the competi-

tion. In the competition, the task panel occupied the full screen of one of the primary

operator’s monitors and the main Director window occupied a second. As long as

there are no failures in execution, the task panel occupied the complete attention of

the primary operator. The task panel is a visual representation of the shared au-

tonomy system, it steps through the hierarchy of tasks and asks for inputs from the

operator as required to complete the tasks. If something fails, for example, the door

fails to unlatch after turning the handle, the task sequence is paused (in some cases,

through automatic failure detection, and in other cases by operator intervention) and

the operator may switch focus to the main window to manually operate the robot

back to a state where the autonomy system is capable of resuming control. The task

panel interface was designed so that any individual on our team could be capable of

operating the robot to complete tasks. When the system asks for an input from the

operator the requested input is clearly stated and designed so that it is not sensitive
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Figure 3-4: The teleoperation interface provides the user with a rich set of preset
constraints that are adjusted with widgets in the visualization window. The robot’s
current configuration is shown as a translucent model, and its desired configuration
is shown as the full opaque model. In this example, the operator has indicated
constraints on the position and orientation of the robot’s left hand and right foot.
The operator has also indicated that the robot’s final posture should keep its center
of mass near the center of the robot’s left foot, ensuring that the robot will be able
to stably balance on just that foot.
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to the variation in possible responses from the operator. For example, a skilled op-

erator is not required to interact with the perception system. An operator need only

click on a camera image anywhere on the door in order to convey the required infor-

mation to a door fitting algorithm. However, if a task fails and manual intervention is

required, we found that this operational mode required user training and knowledge

of the specific task flows in order to manually operate the robot around the failure

and to continue autonomous operation.

The task panel interface has tabs across the top of the panel as pictured in Figure

3-3 to switch between DRC competition tasks. The text area at the bottom of the

window displays simple status messages when each task starts and completes. If a

task fails for any reason, the failure is displayed in red text so that the operator

may quickly locate a description of the detected failure. Above the text area, the

task panel is divided into three columns. The central column is the main focus: it

contains a tree list of the task hierarchy. In the figure, a user prompt task is active,

so it displays the message Please approve the footstep plan and displays accept and

reject buttons. The interface includes controls to pause, continue, or step through

the task sequence. The user can either step through the task sequence conservatively

or allow continuous task execution. Task parameters (in the left column) were used

to alter task behaviors, for example, to switch hands used in manipulation, or to

select a grasping strategy. The right column contains a list of button macros that

can be used to execute some steps of the task manually. In normal operation the

task parameters and button macros are not needed, but may be used by the operator

during edge cases when the planned task sequence is not compatible with the new

unforeseen situation. Section 3.3.5 describes the programming model underlying the

task panel user interface.
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3.3 Programming Interface Design

3.3.1 Software stack

The Director framework is a combination of C++ and Python code. Python, being

a high-level scripting language, is the top layer in the software stack where most high

level functionality is implemented. C++ is an important language for interfacing to

robotics libraries, implementing fast algorithms that loop over large data, performing

high rate communication, or run multi-threaded coded.

The software stack is diagramed in Figure 3-5. The C++ layer of Director ties

together several advanced scientific computing and robotics libraries, such as Drake,

PCL, and VTK, to design components with simplified interfaces for scripting by

Python [74, 44, 77]. A key design of the Director software stack is the interface

between C++ and Python components. We have selected two core C++ library

dependencies, Qt and VTK to build the foundation of our framework. Qt is a cross-

platform widget library for building user interfaces, and VTK is a scientific computing

library for data processing, I/O, and rendering. Both libraries come with full Python

bindings, meaning that their complete C++ API is available to the Python pro-

gramming language, and objects or data in memory can be accessed from C++ and

Python, and passed between layers without overhead. Additionally, C++ classes in

the Director source code that inherit from VTK or Qt base classes automatically get

Python bindings. This allows developers to work seamlessly between languages with-

out writing specialized interfaces. Recently, SWIG has been used to wrap portions

of the Drake library for Python, allowing the Director Python layer to script Drake

objects directly without using helper interfaces in the Director C++ code.

3.3.2 Scripting

The user interface embeds a Python programming environment with an interactive

console interface pictured in Figure 3-6. Every action that can be performed in the

user interface can also be commanded programmatically from the Python console
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Figure 3-5: The Director software stack includes layers in Python and C++. The
core libraries build the application framework, and the robot API pulls in function-
ality from libraries like Drake, OpenHumanoids, LCM, and PCL. This is a simplified
diagram, the actually software has many other optional dependencies, for example,
OpenCV for computer vision, Bullet for collision detection, or OctoMap for point
cloud occupancy mapping.

Figure 3-6: The Python console provides an interactive programming environment
embedded within the Director user interface.
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or from a Python script. For example, the user interface panel available to the

operator for requesting walking plans is implemented with a programmatic interface

so that Python calls can make the same high-level interface to query the walking

planner and execute the resulting plan, or collect point cloud data and invoke an

affordance fitting algorithm. In addition to accessing the user interface elements from

the Python environment, the user and programmer also has access to data objects

stored in the Director scene graph: sensor data such as images and point clouds,

robot poses and trajectories, affordance models, and frames and transforms, may be

read and manipulated from the Python interface. This was a key design that allowed

us to design our shared autonomy tasks with high-level specifications, and allowed

members of the team without comprehensive expertise in the lower level APIs to write

task routines that interfaced with the full robot system capabilities.

3.3.3 Affordance model

When a physical object was to be interacted with, it was denoted to be an affordance,

which combined a 3D model of the object with metadata describing the modes of in-

teraction with it. One such set of metadata is a set of named reference frames relative

to the body frame of the object. The combination of geometry and annotations of the

form of reference frames are used as input to build constraints for motion planning

queries called from the task execution system. This affordance model proved a natu-

ral way to structure our system’s interaction with objects in the world, although our

library of affordances is limited to objects that are relevant specifically to the DRC

competition (door handle, valve and drill for example), and a set of basic geometric

shapes (box, cylinder, prism, and sphere for instance). Our approach to the gener-

alization of affordances was to implement a segmentation routine that would cluster

objects in the point cloud and return the convex hull for each one of them. Each

convex hull is an instance of the affordance model and therefore treated as such for

planning purposes.
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3.3.4 Object model

The left dock of the main UI window contains the scene browser panel and properties

panel. These are visual representations of the underlying object model within the

application. The object model groups items in named collections using a tree hier-

archy which takes inspiration from the concept of a scene graph which is common in

3D visual rendering applications. The object model stores a variety of object types,

including robot models, affordances, coordinate frames, point clouds, terrain maps,

motion plans, and footstep plans. Each object’s interface is presented in the form of

modifiable properties. Properties can be edited by the user, or automatically by a

task execution. Crucially, the object model was used as a data store for tasks to pass

data through the execution pipeline, and to present data to the user for approval or

adjustments.

3.3.5 Tasks

Subtasks required to execute a complete DRC task were implemented with callable

Python objects and functions. Many subtasks were parameterized and reusable, while

others were customized for purposes targeted toward specific tasks. As an example,

the following is a typical sequence of task executions and the subtasks used: fit

drill, approve drill, plan reach, approve manipulation plan, execute plan, wait for

execution, close gripper. The name plan reach in this example refers to an affordance

specific planning function—a function that plans a reaching motion to bring the

end-effector to a grasping location around the drill affordance. A typical planning

task was parametrized to include the reaching side (left, right), and the name of the

target affordance i.e. the drill. The task calls subroutines that construct the required

constraints based on the coordinate frames of the drill affordance, and then query the

manipulation planner. The task waits for a response from the manipulation planner

or information about a failure (for example, if the required drill affordance cannot be

found or if the planner failed to find a feasible solution).

The approve drill and approve manipulation plan tasks are examples of user
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prompt tasks. The user prompt task presents a message to the user along with

options to accept or reject. The task waits for a decision from the user and either

completes successfully or raises an exception to pause execution of the task queue.

User prompts give the user the opportunity to adjust an input to the system with-

out having to actively intervene to pause execution. During the approve drill user

prompt, the user can adjust the drill affordance pose if required. The adjusted pose

will then be used in the subsequent planning task. The execute plan task publishes

the manipulation plan on the committed plan channel which will be transmitted to

the robot. This task completes immediately. The next task, wait for execution mon-

itors the execution of the task by the controller until execution is complete. The last

task in this example, close gripper, sends a small message that is received by the

gripper driver. This task is also parametrized by side (left, right) and the type of grip

required.

3.4 Perception for search and rescue robots

We adopted a guided perception approach to model fitting from point clouds and

images. Fitting algorithms estimate the 3D pose of objects of interest in the envi-

ronment which are represented using affordance models described in Section 3.3.3.

Operators can provide guidance to the perception system by annotating search re-

gions for the point cloud fitting algorithms. The operator can define annotations

by clicking on displayed camera images, or by clicking on 3D positions in a point

cloud. For the competition we preferred annotations on 2D camera images because it

required less precision than point cloud annotations. For instance, during the valve

task, we were required to fit a valve affordance to the valve in the point cloud. As

shown in Figure 3-7, the operator reduces the search space by indicating the region

where the valve is located by annotating two points that surround the valve using

mouse clicks on the camera image.

Using only this two-click input over the 2D image, the algorithm proceeds to fit

the valve in the 3D point cloud and creates the affordance as shown in the 2D view
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Figure 3-7: Fitting the valve affordance. User provides simple annotation in the 2D
camera image (left), the fitting algorithm fits a valve affordance, results shown in 2D
(middle) and in the 3D view (right).

in Figure 3-7 (middle) and the 3D view in Figure 3-7 (right).

We developed both automatic and operator guided object fitting algorithms for

the competition. While we had some success with fully automated fitting, we focused

more on guided fitting due to the competition rules. In the DRC Trials and Finals,

unlike the VRC, operator input (operator-to-robot bandwidth usage) was not penal-

ized, and the extra time required to provide operator input to a fitting algorithm was

small compared with the time lost due to planning robot motion with a poorly fit af-

fordance model. Thus, guided perception algorithms were used in most manipulation

tasks at the DRC.

An operator guided perception algorithm was developed for the debris task to

enable rapid fitting of lumber of arbitrary dimensions laying in unstructured config-

urations with overlap and occlusions. The algorithm was designed to fit rectangular

prisms, and could be applied to boards, cinder blocks, bricks, and boxes. The opera-

tor began by selecting the expected cross-sectional dimensions of the affordance; for

instance, lumber cross sections are typically 2×4 in, 4×4 in, or 2×6 in.

The operator then defined the search region by drawing a line annotation on

the display using mouse clicks to define the endpoints. This annotation could be

drawn either on a camera image or a 3D point cloud rendering; in practice we always

annotated using the 3D rendering because the camera’s limited field of view did not

always include the region of interest for this task. The line end points were projected

as rays in 3D originating from the camera center to define a bounded plane, and
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Figure 3-8: A fitting algorithm produces an affordance that can be used to plan a
reach motion. A line annotation defines a search region that is used by a segmentation
algorithm to fit a 2"x4" board affordance to the 3D point cloud data.
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points in the LIDAR point cloud within a threshold distance of this plane were kept

as the initial search region.

Given the initial search region, the board-fitting algorithm used RANSAC with a

plane model to select inlier points that were then labeled as board face points. These

were binned along the vector parallel to the edge connecting the search region ray end

points, which was roughly parallel to the board’s length axis. The algorithm identified

one candidate edge point in each bin by selecting the maximum distance among that

bin’s points along the vector perpendicular to the RANSAC plane normal and length

axis. Due to occlusions and adjacent surfaces, not all candidate edge points were true

board edge points, so a RANSAC line fit was applied to the candidate edge points

to label inliers presumed to be the board edge. The board affordance model was

snapped to the fitted face plane and edge line, and extended along the edge line to

encompass the minimum and maximum face point projections onto that line.

The resulting accurately-fit object position, orientation, and scale parameters were

finally transmitted to an affordance manager which maintained the states of all iden-

tified affordances in the vicinity of the robot and made them available to both the

user interface for visualizer, and to the planners for manipulation planning. Combined

with the current robot state, this affordance information provided inputs necessary

for the online planning routines of our shared autonomy task system.

3.5 Performance Evaluation at the DRC Finals

This section describes the performance of the Team MIT Atlas robot in the DRC

Finals with qualitative analysis of the usage pattern of the shared autonomy system

on the user interface. Our publication [75] presents a summary of each individual

field task at the DRC Finals with an emphasis on the outcomes of using the workflow

implemented in Director. We highlight the use of automation and teleoperation as

it was required in the field, and of particular interest are the events that produced

failures and therefore required manual control by the operator.

Figure 3-9 presents a selection of task execution times collected during the two
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competition runs at the DRC Finals. On tasks where the shared autonomy system

proceeded without interruption (operator intervention), execution times are consistent

for each run. Tasks that required manual operator intervention were however slower:

for example the door task on Day 1, and the terrain task on Day 2. Table 3.1

summarizes the failures for each task, and counts the number of plans computed

automatically by the autonomy system versus the number of plans generated by the

teleoperation interface during manual control.
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Figure 3-9: Timing comparison between tasks executed on competition Day 1 and Day
2. Task completion success varied over the two days so we cannot directly compare
all eight tasks; egress and drill are not shown due to lack of completion on at least
one day. The door task required manual intervention of Day 1, and terrain required
manual intervention on Day 2, and took longer as a result.

The nominal workflow for task execution is based on the task sequencing that the

operator interacts with in the task panel, i.e. the outer loop shown in Figure 3-3. This

task sequencing, shown in the task queue in the center panel of the Figure, includes

steps of three main types: (1) requires operator’s input to an autonomous component,

such as the valve fitting process explained before; (2) are fully autonomous, such as

reaching to the valve; (3) are only manual by request of the automatic task sequencing,

such as manually adjusting the fit of the valve when the task sequencing requires the

operator to confirm or adjust the current fitting. A break from the nominal sequence

is expected to happen only because of a system failure or unforeseen events that

must alter the task sequencing. These events require more manual intervention from
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the operator through teleoperation. The teleoperation process is still assisted by the

automatic motion planner, once the operator has manually indicated a goal pose and

a set of constraints.

Task failures can be detected automatically or detected by an operator. Although

there is great benefit to detecting failures automatically, the detection creates cog-

nitive burden for the operator because the operator has to read and understand the

failure. For this reason, we preferred to anticipate most of the events that would po-

tentially require the operator’s intervention, and include them in the task sequencing

as a request to the operator, as opposed to leaving them only to reactive intervention.

In the months leading up to the competition we refined our task sequences to replace

tasks that had a low success rate with tasks that incorporate shared autonomy to

increase success rate. The typical case is a task that uses a perception algorithm to

localize an affordance. The task will prompt the user to verify the affordance pose

before proceeding with autonomous manipulation.

For this reason, in the competition the only task failures that led to pausing

the task sequence were operator detected failures of unforeseen events. There were

relatively few of these events, and they are listed in Table 3.1 as interrupts, the details

of which are found in [75].
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Table 3.1: A summary of the number of task failures during the competition that led to interrupting the automatic task
execution sequence, and the types of plans executed for each task. During the driving task joint commands were streamed
directly instead of using motion plans. N/a indicates that we did not attempt this task.

Day 1 Day 2

Task Interrupts Auto Plans Teleop Plans Interrupts Auto Plans Teleop Plans

Driving 0 0 * 0 0 *
Egress 1 6 0 0 9 0
Door 1 4 6 0 9 0
Valve 0 9 0 0 9 0
Drill n/a n/a n/a 1 19 11
Surprise 0 4 12 n/a n/a n/a
Terrain 0 2 0 1 2 0
Stairs 0 3 0 0 3 0
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3.6 Contribution of Shared Autonomy

We illustrate the case for increased levels of autonomy by exploring the performance

in the valve task during laboratory experiments when using different sets of features

available to the operator in the user interface.

Director is the central hub of interaction with many components of a larger and

complex system that includes perception, planning, control and communications.

While it is possible to evaluate the performance of these components in isolation,

the resulting performance of such a complex system is a combination of success of

individual components together with the results of the interactions between them.

Director interacts directly with each component and uses this information to create

an unified representation of the robot’s world and actions that enables the operator

to remotely control the robot to execute a variety of locomotion and manipulation

tasks using a shared autonomy framework. A fundamental contribution of the in-

terface is to properly integrate the interaction with the overall system into a single

usable interface that exploits the advantages of the other components while keeping

a coherent high-level view of the system, and we use our field performance during the

DRC Finals as a proxy to evaluate its efficacy.

Ideally, we would like to quantify the contribution of the shared autonomy in-

terface to our overall performance at the DRC competition relative to all the other

components of our robot system. It is difficult to make direct comparisons between

Director and our previous user interface used at the DRC Trials in December 2013

because many components of our robot system have changed, and the competition

tasks and rules changed. Nonetheless, we performed an evaluation of the results for

completion time of a task while enabling different features of our system. As there

are limited trials on the field during competition, we present an analysis of the valve

task performed with and without certain features of our shared autonomy and task

automation performed in our laboratory. We tested the following four feature sets,

which are summarized in Table 3.2.
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Table 3.2: Explanation of feature sets used in valve task trials.

Feature Set 1 Feature Set 2 Feature Set 3 Feature Set 4

Affordance Placement none manual auto auto
Navigation Goal Placement manual auto auto auto
Manipulation Planning teleop auto auto auto
Task Sequencing no no no yes
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1. Teleoperation: the operator manually placed a navigation goal near the valve to

create the walking plan. To turn the valve, the operator used our teleoperation

interface to raise the arm, grasp, and turn the valve.

2. Affordance-based planning: the operator manually aligned a valve affordance,

then invoked task specific planners to generate a navigation goal relative to the

valve. After walking to the valve, the operator manually re-adjusted the valve

affordance model to match the LIDAR point cloud. The operator used task

specific planners to perform the manipulation task.

3. Affordance-based planning and automatic fitting: The operator used a percep-

tion fitting algorithm to automatically align the valve affordance. Everything

is the same as feature set 2, but automatic fitting is used.

4. Task sequencing: the task panel is used to automatically sequence the task.

Automatic fitting and affordance-based planning are also used. In this mode,

the operator does not have to click in the interface to invoke the task specific

planners for navigation and manipulation. The task queue automatically steps

through the task while the operator supervises the execution. This feature set

was used at the DRC Finals.

Figure 3-10 shows the timing results of the task repeated for 10 trials with each

feature set. The trials were performed by the same operator over three different

sessions. Even though this is a limited analysis, it demonstrates the case for increased

levels of autonomy by measuring the performance benefit of adding assisted perception

and planning. Note that the task time variance for teleoperation is higher due to the

variability in the manner that the operator carries out manual control, whereas task

time is more predictable when the task panel is used to sequence the task.

3.7 Discussion

The shared autonomy framework that Director implements is based on a handful of

high-level principles such that the use of affordances as the center of the actions and
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Figure 3-10: Valve task trial data collected from laboratory experiments illustrates
the performance benefit (measured in task completion time) of varying feature sets
within the Director user interface.

task planning through the generation of a sequence of motion plans that accomplish

the task. While the Challenge accelerated progress on these fronts (enabling the

execution of field tasks that were never demonstrated or were significantly slower

at the start of the program), we have identified key limitation in these components

that demand the attention of the research community. Expanding the potential of

high-level planning will further unlock the capabilities developed during the DRC.

In particular, from the development of the Director, we found challenges on the use

of affordances when you encounter new objects and limitations on the assisted task

planning when faced to a new task. We also note the need of improvements on

collision avoidance planning, object fitting and tracking.

A key contribution we have presented in this chapter is a task execution user

interface which assists the operator in commanding and supervising the execution

of a queue of low-level atomic actions. While this workflow improved performance

speed, the underlying approach is still limited to pre-specified tasks which required

a robotics programmer, knowledgeable in the limitations of the robot as well as our

algorithms, to explicitly encode task sequences. These steps took significant time to

implement and to iterate upon for each new task sequence.
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As mentioned in Section 3.4, we defined important objects in the environment as

affordances and central to our semi-autonomy were the motion planning and object

fitting functions we attached to their software representations. Our original approach

to this, discussed in [76], was entirely abstract — focusing on parameterizing object

degrees of freedom and defining interaction with the object considering the robot’s

limitations. For Director, we have extended the representation to encode properties

relevant to both object and the robot, such as where to stand and the pre-grasp

configuration in SO(3) relative to the position of the object, as well as custom motion

planning constraints, in addition to the previously used object geometric parameters.

We have found it challenging to transfer this information from one affordance to

another without explicit modifications by our UI designer, and, while it is possible to

use existing affordances in our library to fit previously unseen affordances as a solution

for the perception problem, the planning problem is still difficult and the operator

often uses teleoperation to compensate for actions that haven’t been encoded.

We have described the graphical user interface and shared autonomy system used

by Team MIT to pilot an Atlas robot in the DRC Finals. Our contribution focused

on the development and field testing of this interface which supported the execution

of complex manipulation and locomotion tasks. The approach alternated between

autonomous behaviors represented in a task hierarchy supervised by an operator and

teleoperation of the robot as required by task complexity. These methods empow-

ered the operator to perform complex whole-body behaviors with a high-DoF robot,

whereas previous technology deployed in field missions has been largely based on

joint-level teleoperation of low-DoF robots.

A comparison of task execution in the field was limited to the two competition

runs but it showed a consistent indication that using a larger portion of autonomy

allowed for task completion in less time compared to manual intervention. To further

explore the benefits of increased levels of autonomy, we performed the valve task in

repeated timed trials with various feature sets for planning and perception. This

laboratory testing allowed us to asses the contribution of individual features of the

user interface, which we could not do using field data from the competition.
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On both days of competition, the robot successfully completed the course in under

60 minutes, though not all tasks were completed for reasons discussed previously.

Manual intervention by an operator was required occasionally, but overall we felt

we achieved our goal of fielding a robot system that was largely based in autonomy.

We have described how our shared autonomy designs performed under competition

pressures, and highlighted what worked well, what failed, and the limitations that

remain.

We have released Director1 under an open-source license, including all of the soft-

ware described in this article, and the larger codebase developed for our DRC entry2,

in which Director is the user interface submodule. The software has been generalized

to support a variety of robots with different kinematics, locomotion methods, end

effectors, sensors and firmware, as illustrated in Figure 3-11, and continues to be used

by a growing community of users since the DRC project.

1http://github.com/RobotLocomotion/director
2http://github.com/OpenHumanoids/oh-distro
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(a)	
   (b)	
  

(b)	
  

Figure 3-11: Director being used with different classes of robots: (a) NASA’s Valkyrie,
a humanoid robot, shown using the constrained end-effector teleoperation feature; (b)
MIT’s Optimus, a dual arm mobile manipulator for EOD, shown with an affordance
fitted to a stereo point cloud [79]; (c) an ABB fixed-base industrial manipulator and
Kinect RGB-D data.
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Chapter 4

Conclusions and Future Work

4.1 Future Work

This thesis has presented algorithms and hardware demonstrations for continuous

humanoid locomotion over uneven terrain, using online perception and footstep plan-

ning, but many opportunities for improvements still remain. This chapter will de-

scribe some of the most relevant pieces of future work in this problem domain, in-

cluding region segmentation post-processing using convex decomposition, speed ups

and refinements to support faster, more dynamic walking, and algorithmic extensions

for grasping and manipulation domains.

4.1.1 Convex Region Decomposition

In this work we have represented planar region segmentations of unorganized point

clouds with polygons in 3D. The segmentation is a mapping of points in the point

cloud to distinct planar regions, but converting those point sets to polygonal represen-

tations presents further opportunities for investigation. For our autonomous walking

experiments described in 2.7, we computed the minimum area bounding rectangles of

the points for each region. The man-made terrain features traversed by the robot in

our experiments and at the DRC Finals course, such as stairs and concrete blocks, had

natural convex outlines, and were therefore best represented with convex hulls and
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rectangles. However, as shown in Figure 4-1, some planar regions in the environment

are not well represented with convex hulls.

In future work, we could explore convex decomposition strategies to break the

regions into several pieces that individually may be accurately represented with convex

hulls. In IRIS, the segmentation algorithm finds convex regions in configuration space,

but it requires multiple searches with seed points derived from user input or random

sampling in order to cover concave regions of the environment with overlapping convex

regions. The point cloud segmentation algorithm presented in this thesis is able to

fully segment concave planar regions in task space, but requires post-processing to

decompose segmentations into convex pieces.

Figure 4-1 shows preliminary work in post-processing point could segmentations

into convex pieces, applied to a LIDAR scan from the DRC Finals door task. The

segmentation algorithm has successfully separated the recessed door from the wall,

but representing the wall segmentation with a convex hull produces a polygon that

is not adequate because it includes large areas that do not correspond to wall points.

Instead, we compute the concave hull of the point set using the Delaunay triangulation

based alpha shapes algorithm [80]. Whereas a point set has a unique minimal convex

hull, the concave hull boundary depends on the selection of the 𝛼 parameter used

to prune edges of the Delaunay triangulation. Next, the concave hull is broken into

convex pieces using approximate convex decomposition [81]. The algorithm splits

concave shapes based on a measure of concavity 𝜏 , which is the distance from the

vertex of a concave notch to the convex hull. The algorithm runs recursively to split

the concave hull until all pieces have concavity measure less than a user selected 𝜏

value.

This decomposition strategy works well when applied to the results of our seg-

mentation, but still requires user selected parameters. Examples of applying these

algorithms to the LIDAR scan while varying 𝛼 and 𝜏 parameters are shown in Fig-

ure 4-2. It is difficult to set these parameters to adequately process a whole envi-

ronment which contains features of varying scales and sensor data of varying sample

density. Although it is possible to find values that are sufficient for the terrain features
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evaluated in our experiments so far, in order to plan contact between the robot and

the environment using planar approximations of non terrain regions, such as walls, it

will be important to study improved methods of convex region decomposition.

4.1.2 Dynamic Walking

As discussed by Deits [82], extending planning capabilities to support dynamic walk-

ing planning is important to enable faster motions and guarantee feasibility of foot-

step plans. To support these capabilities, in addition to planning extensions, the

perception pipeline must be accelerated. Our presented pipeline was tested with slow

walking rates on the order of several seconds per footstep. We can make our percep-

tion pipeline operate more quickly by tuning parameters. For example, increasing the

downsampling parameter results in fewer points to process, so point cloud processing

algorithms for surface normal estimation and region growing run more quickly, but

at the cost of less accurate representations of terrain features. It is also possible to

decrease the search radius of surface normal estimation, so as to decrease the run

time of that step of the pipeline. We may be able to achieve a good speed up through

parallel implementations of normal estimation and region growing without sacrificing

resolution and accuracy.

Finally, even with quicker point cloud processing, we still have the problem of

data collection rates. Currently, our segmentation pipeline runs more quickly than

our LIDAR point cloud update rate, but slower than our stereo update rate. As

the robot moves more quickly, the LIDAR update rate will be a bottle neck. The

stereo camera updates as sufficient speed, but when the robot moves more quickly

the Kintinuous fusion algorithm will have less time to average observations of terrain

before the reconstruction must be snapshotted for input to region segmentation. More

work has to be done to evaluate the speed of walking at which our perception pipeline

fails to provide adequate regions for footstep planning.
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(a) Robot’s camera view of the wall and door. (b) LIDAR scan of the wall and door, colored
by intensity of return.

(c) Planar region segmentation result, the re-
cessed door is separated from the wall.

(d) The convex hull of the wall points is not
an accurate representation.

(e) The concave hull of the wall points com-
puted with 𝛼 = 0.2.

(f) An approximate convex decomposition of
the concave hull with 𝜏 = 0.2 produces 7 new
regions.

Figure 4-1: Convex decomposition of planar region segmentation applied to a LIDAR
scan. Note that in the planar segmentation, some points on the right side of the wall
have been filtered and lost because the sample density was too low for surface normal
estimation with our selected search radius.
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(a) 𝛼 = 0.1 (b) 𝛼 = 0.2, 𝜏 = 0.2

(c) 𝛼 = 0.2 (d) 𝛼 = 0.2, 𝜏 = 0.1

(e) 𝛼 = 0.3 (f) 𝛼 = 0.2, 𝜏 = 0.05

Figure 4-2: Result of approximate convex decomposition applied to the wall LIDAR
scan. Left column, varying the 𝛼 parameter of the concave hull computation. Right
column, with concave hull 𝛼 = 0.2, varying the 𝜏 parameter of the approximate
convex decomposition algorithm.
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4.1.3 Segmentation for Grasp Planning

Although this work has applied planar region segmentation to terrain, the segmenta-

tion algorithm is also able to compute planar approximations of graspable objects for

robotic manipulation. Figures 4-3 and 4-4 show results of the proposed segmentation

pipeline where input parameters have been selected to find planar regions that can

be used for contact planning for force closure grasps. This procedure may be useful

for computing grasps on objects without prior models.

In Figure 4-3, the segmentation is applied to objects from the Berkeley Instance

Recognition Dataset [83]. The objects in the database are provided as meshed sur-

faces reconstructed from depth images at multiple viewing angles. Only the vertices

of the mesh are used and are treated as an unorganized point cloud. However, in ma-

nipulation scenarios without prior models, it is unlikely that the robot’s depth sensor

will be able to observe the object from all angles. Figure 4-4 shows some preliminary

results of the segmentation applied to single view RGB-D data of table top objects

viewed from a distance of around 1.5 meters.

Planar approximations of small objects presents new challenges that we did not

encounter when applying the algorithms for walking. Graspable objects often have

rounded features, concave notches, and salient features of varying scales, which are

not easily captured with a single tuning of parameters of the segmentation algorithm.

Additionally, objects to be manipulated often appear together close proximity, and

planar segmentation may group them together. For example, multiple books on a shelf

will be considered to be a single planar region. Depth processing alone cannot resolve

these challenging situations—the segmentation must be informed by camera RGB

data, as proposed by Strom in [50], although that method was not applied to small

scale objects. It is not clear that planar approximations are the best representation

for small scale objects, but some of the methods that we have applied for terrain

estimation such as RANSAC model fitting may be good strategies to apply here,

such as the primitive shape fitting proposed by Schnabel et al. in [84], a method

designed for high resolution scans of detailed parts.
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Figure 4-3: Planar segmentation of example objects from the Berkeley Instance
Recognition Dataset.

Figure 4-4: Planar segmentation of graspable objects sitting on a table collected with
a single depth image of a RGB-D sensor.
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4.2 Conclusion

We have presented a terrain perception algorithm and method to combine it with

a footstep planner and autonomous execution framework to accomplish continuous

humanoid locomotion over uneven terrain. The technique hinges on planar region

segmentation using robust surface normal estimation, applied directly to a 3D map,

resulting in a 3D polygon representation of regions for footstep planning. We have

shown that the algorithm’s robust design is well suited to process fused stereo depth

maps from passive imaging sensors, as compared to slower but more accurate LIDAR

scans, opening the door to faster and more dynamic locomotion that will require

quicker updates from the terrain perception pipeline.

The terrain perception and continuous walking task was enabled by Director,

our robot user interface and operation software. We described how the design of

Director supports shared autonomy through integration of a perception framework

that supports rapid prototyping, and integrates human input with the perception and

motion planning subsystems. The benefits of the design were tested and validated

through a series of human-in-the-loop experiments that demonstrate the increased

speed performance when perception and task sequencing are incorporated into a user

interface. In the future, we look forward seeing additional robots and task behaviors

added to Director to continue supporting humanoid research and operation.
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