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Abstract. Given a graph, the shortest-path problem requires finding a sequence of edges with
minimum cumulative length that connects a source vertex to a target vertex. We consider a variant
of this classical problem in which the position of each vertex in the graph is a continuous decision
variable constrained in a convex set, and the length of an edge is a convex function of the position
of its endpoints. Problems of this form arise naturally in many areas, from motion planning of
autonomous vehicles to optimal control of hybrid systems. The price for such a wide applicability
is the complexity of this problem, which is easily seen to be NP-hard. Our main contribution is a
strong and lightweight mixed-integer convex formulation based on perspective operators, that makes
it possible to efficiently find globally optimal paths in large graphs and in high-dimensional spaces.
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1. Introduction. The Shortest-Path Problem (SPP) is one of the most im-
portant and ubiquitous problems in combinatorial optimization. In its single-source
single-target version, this problem asks for a path of minimum length connecting two
prescribed vertices of a graph, where the length of a path is defined as the sum of the
lengths of its edges. Typically, the edge lengths are fixed scalars, given as problem
data, and the assumptions made on their values have a dramatic impact on the prob-
lem complexity [43, Chapters 6 to 8]. In this paper we introduce the SPP in Graph of
Convex Sets (GCS), a variant of the SPP in which the edge lengths are convex func-
tions of continuous variables representing the position of the vertices (see Figure 1).
More precisely, a GCS is a directed graph in which each vertex is paired with a convex
set. The spatial position of a vertex is a continuous variable, constrained to lie in the
corresponding convex set. The length of an edge is a given convex function of the
position of the vertices that this edge connects. When looking for a path of minimum
length in a GCS, we then have the extra degree of freedom of optimizing the position
of the vertices visited by the path. According to the literature, this problem could
also be classified as an SPP with neighborhoods; we call it SPP in GCS to highlight
the crucial role that convexity plays in the developments of this paper.

Many problems of practical interest can be formulated as SPPs in GCS: for some
of those the convex sets and the edge-length functions are naturally suggested by the
application, for others the construction of the GCS requires more thinking. As an
example of the former class of problems, scheduling the flight of a drone with limited
batteries is immediately cast as an SPP in GCS like the one in Figure 1. The start
region is on the left, the goal region is on the right, and the remaining regions can be
used for recharging. Pairs of regions that are close enough for the drone to fly between
are connected by an edge. The objective is to minimize the overall length of the flight.
Optimal control of discrete-time hybrid dynamical systems [4] is a main application
that we target in this paper, and is an example of a problem whose formulation as an
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Fig. 1. Example of an SPP in GCS. The source set is on the left and the target set is on the
right. The graph edges are arrows, and the shortest path is shown in dashed green. The dotted red
lines connect the optimal positions of the vertices along the shortest path.

SPP in GCS is nontrivial. In this case we let the convex sets live in the joint state
and control space of the dynamical system. Each discrete time step corresponds to an
edge transition in the GCS, and the edge lengths quantify, e.g., the energy consumed
to move between states (a length that is infinite if the motion is not compatible with
the system dynamics). This is explained in detail in Section 8.

1.1. Contributions. The following are the main contributions of this article.

Problem statement (Section 2). The SPP in GCS represents an unexplored
class of problems at the interface of combinatorial and convex optimization. It lends
itself to a simple problem statement and, at the same time, it is a versatile framework
that includes as special cases many problems of practical relevance.

Mixed-integer convex formulation (Section 5). The SPP in GCS is easily
seen to be NP-hard (Section 3). Our main contribution is the formulation of this
problem as a strong and lightweight Mixed-Integer Convex Program (MICP). This
program extends in a natural way the classical network-flow formulation of the SPP,
and it allows us to efficiently find shortest paths in large graphs (hundreds of vertices)
and high-dimensional spaces (tens of dimensions). In addition, the design principles
of this MICP can be applied to improve existing mixed-integer formulations of other
graph problems with neighborhoods, which are limited to small graphs and sets in
two or three dimensions (see Appendix A).

Set-based convex relaxation of bilinear constraints (Section 7). The
main building block of our MICP is a tight and compact convex relaxation for a class
of bilinear constraints that emerge naturally in our problem. This relaxation is set
based, in the sense that it does not rely on the explicit constraints that define the sets in
our GCS, but it works directly with their abstract set representations. This makes our
MICP usable even when these sets are black boxes accessible only through a separation
oracle. This relaxation is similar in spirit to the Lovász-Schrijver one [31], and is based
on perspective operators (a popular tool in mixed-integer optimization [9, 47, 18, 22]).

Control applications (Section 8). Computation times are the main limita-
tion to a widespread application of mixed-integer optimization in control of hybrid
systems [38, 46, 35]. Our shortest-path formulation of these problems is substantially
different from the state of the art [37, 34], as we do not use binary variables to en-
code the discrete mode in which the system is at each time step but, instead, we use
them to select the transitions between modes. This different parameterization yields
slightly larger but much stronger MICPs that, in our computational experiments, are
orders of magnitude faster to solve.
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1.2. Related graph problems. In this subsection we overview a few variants
of classical graph problems that are closely related to our problem formulation.

Graph problems with neighborhoods. Graph problems where the vertices
are allowed to move within corresponding sets are often called problems with neigh-
borhoods. The SPP with neighborhoods has been analyzed in [13] under stringent
assumptions that ensure polynomial-time solvability: the sets are disjoint rectilinear
polygons in the plane, and the edge lengths penalize the L1 distance between the ver-
tices. The applications we target with this paper, however, do not verify any of these
hypotheses. A special case of the SPP with neighborhoods is the touring-polygon
problem, which asks for the shortest path between two points that visits a set of poly-
gons in a given order [14]. Our problem differs from this in that our sets are convex
and the order in which we visit them is not predefined. Other problems akin to the
touring polygon, but substantially different from the SPP in GCS, are the safari, the
zookeeper, and the watchman route; see [29, Part IV] and the references therein.

The Traveling-Salesman Problem (TSP) and the Minimum-Spanning-Tree Prob-
lem (MSTP) are the two combinatorial problems that have been studied most ex-
tensively in their variants with neighborhoods [3, 50]. Exact algorithms for these
generally rely on expensive mixed-integer nonconvex optimization [19, 5, 7], and do
not scale beyond two or three dimensions. Although the techniques we propose in
this paper are particularly well suited to the structure of the SPP, they can be used
without modifications to formulate other graph problems with neighborhoods as very
tractable MICPs (see Appendix A).

Graph problems with clusters. Generalized Steiner problems [15] (otherwise
known as generalized network-design problems [17, 40]) can be thought as the discrete
counterpart of the graph problems with neighborhoods: the vertex set is partitioned
into clusters and the problem constraints are expressed in terms of these clusters,
rather than the original vertices. A clustered version of the SPP has been presented
in [30]: each vertex in the graph is assigned a nonnegative weight, and the total
vertex weight incurred by the shortest path within each cluster must not exceed a
given value. The problem we analyze in this paper can be approximated as an SPP
with clusters in a natural way. In low-dimensional spaces, this approximation can be
computationally efficient and sufficiently accurate for practical applications. However,
this strategy is infeasible in high dimensions, where covering a volume of space with
a cluster requires an exponential number of points.

Euclidean shortest paths. Another related variant of the SPP is the Euclidean
SPP [29], where we look for a continuous path that connects two points and avoids
given polygonal obstacles. In two dimensions, this problem can be reduced to a
discrete search and is solvable in polynomial time [32]. In three dimensions or more
the problem is NP-hard [8, Theorem 2.3.2], and common algorithms rely on a grid
discretization of the space [27]. More recently, a moment-based technique that handles
semialgebraic obstacles has been proposed in [16].

2. Problem statement. We start with a formal statement of the SPP in GCS.
Let G := (V, E) be a directed graph with vertex set V and edge set E . For each vertex
v ∈ V, we have a nonempty compact convex set Xv ⊂ Rn and a point xv contained in
it.1 The length of an edge e = (u, v) ∈ E is determined by the location of the points

1The results presented in this paper are easily extended to the case in which the sets Xv do not
have common dimension n.
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xu and xv via the expression `e(xu,xv). The edge length function `e takes values
in R≥0 ∪ {∞} and is assumed to be proper, closed, and convex. Note that, despite
its name, we do not assume `e to be a valid metric, and properties like symmetry
or the triangle inequality are not required to hold. Given a source vertex s and a
target vertex t 6= s, an s-t path p is a sequence of distinct vertices (v0, . . . , vK) such
that v0 = s, vK = t, and (vk, vk+1) ∈ E for all k = 0, . . . ,K − 1. We denote with
Ep := {(v0, v1), . . . , (vK−1, vK)} the set of edges traversed by this path, and with P
the set of all s-t paths in the graph G. The SPP in GCS is then stated as

minimize
∑

e=(u,v)∈Ep

`e(xu,xv)(2.1a)

subject to p ∈ P,(2.1b)

xv ∈ Xv, ∀v ∈ p.(2.1c)

The decision variables are the discrete path p and the continuous values xv. The
cost (2.1a) minimizes the total path length. Constraint (2.1c) is enforced only for the
vertices visited by the path, since the positions of the other vertices are irrelevant.

The edge length used in Figure 1 is the Euclidean distance:

`e(xu,xv) := ‖xv − xu‖2.(2.2)

With this choice the polygonal line connecting the points xv along a shortest path is
as straight as possible, perfectly straight if (s, t) ∈ E . Conversely, if the edge length
is the Euclidean distance squared,

`e(xu,xv) := ‖xv − xu‖22,(2.3)

straight trajectories may be suboptimal if they require long steps xv −xu. Note also
that by letting `e take infinite value outside a convex set Xe we are effectively enforcing
the edge constraint (xu,xv) ∈ Xe. This will be used in Section 8 to formulate optimal-
control problems as SPPs in GCS: there the edge constraints will couple the vertex
positions according to the system dynamics.

3. Complexity analysis. If we fix the vertex positions xv, problem (2.1) simpli-
fies to the classical SPP with scalar nonnegative edge lengths, which is easily solvable
using, e.g., Linear Programming (LP). Similarly, if we fix the path p, problem (2.1)
simplifies to a convex program that can be efficiently solved for most convex sets Xv
and edge lengths `e. In this section we show that the simultaneous optimization of
the vertex positions and the path makes the SPP in GCS an NP-hard problem.

Recall that an s-t path p := (v0, . . . , vK) is said to be Hamiltonian if it visits every
vertex in the graph (i.e., if K = |V|−1), and a graph is Hamiltonian if it contains such
a path. The Hamiltonian-Path Problem (HPP) asks if a given graph is Hamiltonian.
As an example, the graph in Figure 1 is not Hamiltonian.

Theorem 3.1. The SPP in GCS (2.1) is NP-hard.

Proof. We show that the HPP is polynomial-time reducible to the SPP in GCS.
The thesis will then follow since the HPP is NP-complete [26]. We construct an SPP
in GCS that shares the same graph G as the given HPP. We let the source Xs := {0}
and target Xt := {1} sets be singletons on the real line, while we define Xv := [0, 1]
for all v 6= s, t. The length of each edge is the Euclidean distance squared (2.3).
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Given these choices, the optimal positioning of the vertices for a fixed path p is given
by xvk = k/K for k = 0, . . . ,K. The length of this path is K(1/K)2 = 1/K. We
conclude that an optimal path is one for which K is maximized, and is Hamiltonian
if and only if G is Hamiltonian. This reduction operates in polynomial time.

This simple reduction shows that, even if the convex sets Xv are one-dimensional
intervals, the SPP in GCS can be a hard problem. Nonetheless, one might wonder
if additional assumptions on the problem data could turn the SPP in GCS into a
problem that is solvable in polynomial time.

• What if the graph G is acyclic? In case of an acyclic graph the HPP is solvable
in linear time [2, Section 4.4], and our hardness proof is not valid.

• What if the sets Xv are disjoint? In fact, some graph problems with neighbor-
hoods can be solved more efficiently in case of disjoint neighborhoods [13, 7].

• What if the edge lengths `e are positively homogeneous? An edge length like
the Euclidean distance (2.2) could not be used in our reduction since it would
not force the optimal path p to visit as many vertices as possible.

It turns out that all these questions have a negative answer. This is summarized
in the following theorem, whose proof is omitted since it is a long and relatively
straightforward adaptation of the complexity analysis of the Euclidean SPP from [8].

Theorem 3.2. Assume that the graph G is acyclic, the sets Xv are disjoint, and
the edge lengths `e are positively homogeneous. The SPP in GCS (2.1) is NP-hard.

4. Convex-analysis background. This section introduces two basic concepts
in convex analysis: perspective operators (homogenization) and valid inequalities (du-
ality). These are the main tools that we will use in the design and the analysis of our
MICP. Our goal here is to set the notation and collect some important definitions and
properties; for a comprehensive introduction to these topics see [42, Parts II and III]
or [25, Chapters III and IV].

4.1. Perspective operators. There is a natural construction that maps a set in
n dimensions to a cone in n+1 dimensions. This is sometimes called homogenization,
or the cone over the set. Here we call it perspective, for coherence with the name
commonly used for the same operation applied to functions [25, Section IV.2.2].

Definition 4.1. We define the perspective of a closed convex set X ⊆ Rn as

X̃ := cl{(x, λ) : λ ≥ 0, x ∈ λX},

where cl denotes the closure of the set.

Remark 4.2. The closure operation in Definition 4.1 is unnecessary for bounded
sets X . While, when the set X is unbounded, it ensures that the perspective X̃
contains all its limit points with λ = 0 [42, Theorem 8.2].

Importantly, the perspective operation preserves convexity, and the set X̃ is a
closed convex cone. The next example shows that the perspective of a set represented
in conic form can be computed very easily.

Example 4.3. Let X := {x : Ax + b ∈ K}, for some matrix A, vector b, and
closed convex cone K. We have X̃ = {(x, λ) : λ ≥ 0,Ax+ bλ ∈ K}.

This example has great practical relevance since, informally, it tells us that if a
conic-optimization solver can handle the set X then it can also handle its perspec-
tive X̃ . For instance, we see that the perspective of a polyhedral, ellipsoidal, and
spectrahedral set can be represented through a set of linear, second-order-cone, and
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semidefinite constraints, respectively. More in general, if the set X is bounded, the
formal equivalence of optimizing over X and its perspective X̃ can be established
using the ellipsoid method [21, Chapter 4], since the separation problems for these
two sets are easily seen to be equivalent.

The next definition uses the construction from [42, Page 39] to describe what the
perspective operation does to a convex function.

Definition 4.4. We define the perspective of a closed convex function f : Rn →
R∪{∞} as the unique function f̃ whose epigraph is the perspective of the epigraph of
f , i.e.,

f̃(x, λ) := inf{σ : (x, σ, λ) ∈ ẽpi f},

where epi f := {(x, σ) : f(x) ≤ σ}.2

Since its epigraph is closed and convex, the perspective function f̃ is closed and
jointly convex in x and λ.

Remark 4.5. For λ > 0, noticing that λ epi f = {(x, σ) : λf(x/λ) ≤ σ}, we have
that the perspective function is f̃(x, λ) = λf(x/λ). For λ < 0, we immediately see
that f̃(x, λ) = ∞. The behavior for λ = 0 is more complicated [42, Corollary 8.5.2],
but for the scope of this paper it suffices to note that if f is proper then, by the
closedness of f̃ , we must have f̃(0, 0) = 0.

Although Definition 4.4 might seem unsuitable for numerical optimization, the
perspectives of most common functions f can be minimized using standard solvers.
In fact, given a conic representation of the epigraph of f , we can compute the epigraph
of f̃ as in Example 4.3, and minimize f̃ using a slack variable.

The next two examples draw further useful parallels between the perspective
operation applied to sets and to functions.

Example 4.6. Let X be a nonempty closed convex set and g be a finite convex
function. Define f(x) := g(x) if x ∈ X and f(x) :=∞ otherwise. We have f̃(x, λ) =
g̃(x, λ) if (x, λ) ∈ X̃ and f̃(x, λ) =∞ otherwise.

Example 4.7. For a set X := {x : fi(x) ≤ 0 for all i ∈ I}, where the functions fi
are closed and convex, we have X̃ = {(x, λ) : f̃i(x, λ) ≤ 0 for all i ∈ I}. Equivalently,
using Remark 4.5, we have X̃ = cl{(x, λ) : λ > 0, λfi(x/λ) ≤ 0 for all i ∈ I}.

4.2. Valid inequalities. A second cone that is naturally associated with a con-
vex set is the cone of its valid inequalities. This will play an important role in the
analysis of our MICP in Section 7. We report here a formal definition and a useful
property.

Definition 4.8. We define the cone of valid inequalities of a set X ⊆ Rn as

X ◦ := {(a, b) : a>x+ b ≥ 0 for all x ∈ X}.

The cone X ◦ is easily seen to be closed and convex, even when X is neither closed
nor convex. Note also that the cone of valid inequalities is closely related to the polar
set, but the latter lives in n dimensions.

The next lemma relates the two operations defined in this section. Recall that
the dual cone of a closed convex cone K is the set K∗ := {a : a>x ≥ 0 for all x ∈ K}.

Lemma 4.9. Let X be a closed convex set. The closed convex cones X̃ and X ◦
are dual to each other.

2More precisely the sets epi f̃ and ẽpi f are isomorphic: epi f̃ := {(x, λ, σ) : (x, σ, λ) ∈ ẽpi f}.
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Proof. The perspective cone X̃ can be equivalently defined as the closure of the
cone generated by X × {1}. By applying [42, Corollary 11.7.2] to the latter set, we
obtain X̃ = {(x, λ) : a>x+ bλ ≥ 0 for all (a, b) ∈ X ◦}. This shows that X̃ = (X ◦)∗.
The other direction follows from the bipolar theorem [42, Theorem 14.1].

5. Mixed-integer convex formulation. We now present the main contribu-
tion of this paper: the formulation of the SPP in GCS (2.1) as a strong and lightweight
MICP. This program is designed in two steps. First, in Section 5.2, we extend the
network-flow formulation of the classical SPP (recalled in Section 5.1) to our setting.
This yields an optimization problem with bilinear equality constraints. Second, in
Section 5.3, we construct a convex relaxation tailored to these bilinear constraints
and we formulate our MICP. The relaxation technique used in this section will be
described at a higher level of generality and thoroughly analyzed in Section 7.

5.1. Network-flow formulation of the SPP. The starting point for the design
of our MICP is the network-flow formulation of the SPP with scalar nonnegative edge
lengths (see, e.g., [2, Section 4.1]):

minimize
∑
e∈E

leye(5.1a)

subject to
∑
e∈Eout

s

ye = 1,
∑
e∈Eint

ye = 1,(5.1b)

∑
e∈Einv

ye =
∑
e∈Eout

v

ye,
∑
e∈Eoutv

ye ≤ 1, ∀v ∈ V − {s, t},(5.1c)

ye ≥ 0, ∀e ∈ E .(5.1d)

In this LP the decision variables ye parameterize a path p, with ye = 1 if the edge e is
traversed by p and ye = 0 otherwise. The scalar le ≥ 0 represents the length of the edge
e. The sets E inv := {(u, v) ∈ E} and Eoutv := {(v, u) ∈ E} collect the edges incoming and
outgoing vertex v. Without loss of generality, we assume |E ins | = |Eoutt | = 0, i.e., the
source and the target have no incoming and outgoing edges, respectively. Interpreting
the value of ye as the flow carried by the edge e, constraint (5.1b) asks that one unit
of flow is injected in the source and ejected from the target. For all the other vertices,
constraint (5.1c) enforces the flow conservation and a degree constraint. The latter
enforces a limit of one to the total flow traversing the vertex.

Remark 5.1. Note that we do not explicitly require the flows ye to be binary, but
we only enforce their nonnegativity in (5.1d). This is because all the basic feasible so-
lutions of the LP (5.1) can be shown to have binary value (see, e.g., [2, Section 11.12]),
and the constraints ye ∈ {0, 1} would not affect the optimal value of this program.

Remark 5.2. Since we assumed the edge lengths le to be nonnegative, the degree
constraint in (5.1c) is actually redundant for the LP (5.1), as well as for problem (5.2)
below. However, as we will see in Section 5.4, this constraint is not redundant for our
final MICP. Therefore we include it in our formulation from the start.

5.2. Biconvex formulation. As an intermediate step towards our MICP, we
formulate the SPP in GCS as a biconvex optimization problem. Specifically, a non-
linear program whose nonconvexity comes only from products between the vertex
locations and the flow variables parameterizing a path. Note that this is consistent
with the observation from Section 3 that the SPP in GCS simplifies to a convex
program if we fix either the vertex locations or the path through the graph.
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A natural attempt to extend the LP (5.1) to the SPP in GCS is to proceed as done
for other graph problems with neighborhoods [19, 5, 7]: include the vertex locations
xv among our decision variables, enforce the constraint xv ∈ Xv for all v ∈ V, and
substitute the addends in the cost (5.1a) with `e(xu,xv)ye. However, one immediate
issue with this approach is that the latter product is undefined if `e(xu,xv) =∞ and
ye = 0, while we would like the cost contribution of the edge e to always be zero if
ye = 0. Perspective functions give us a convenient and rigorous way to “turn on and
off” the length of an edge using the corresponding flow variable.

Let us introduce two auxiliary variables ze := yexu and z′e := yexv per edge
e = (u, v), and consider the perspective function ˜̀

e(ze, z
′
e, ye).

3 When the flow ye is
positive, this function coincides with the product above:

˜̀
e(ze, z

′
e, ye) = `e(ze/ye, z

′
e/ye)ye = `e(yexu/ye, yexv/ye)ye = `e(xu,xv)ye,

where the first equality comes from Remark 4.5. When the flow ye is zero, the function
˜̀
e is well defined and correctly evaluates to zero, even when `e(xu,xv) =∞. In fact,
ye = 0 implies ze = z′e = 0, and ˜̀

e(0,0, 0) = 0 as discussed in Remark 4.5.
Overall, we then have the following biconvex formulation of the SPP in GCS:

minimize
∑
e∈E

˜̀
e(ze, z

′
e, ye)(5.2a)

subject to constraints of problem (5.1),(5.2b)

xv ∈ Xv, ∀v ∈ V,(5.2c)

ze = yexu, z
′
e = yexv, ∀e = (u, v) ∈ E .(5.2d)

The decision variables are the flows ye, the vertex positions xv, and the auxiliary
variables ze and z′e. The role of the latter is to match the vertices xu and xv when
ye = 1, and collapse to zero when ye = 0. This behavior is driven by the bilinear
equality constraints (5.2d), which are the only nonconvexity in our formulation and
whose convexification is the focus of the next subsection. Before that, let us formally
verify that, as mentioned in Remark 5.1 for the LP (5.1), forcing the flows ye to be
binary does not affect the optimal value of the biconvex program (5.2).

Proposition 5.3. For any local minimum L ∈ R≥0 of problem (5.2), there exists
a feasible point of (5.2) with cost equal to L and such that ye ∈ {0, 1} for all e ∈ E.

Proof. Given a local minimizer of (5.2) with cost L, we fix the vertex positions
xv. This reduces problem (5.2) to an LP of the form (5.1). The optimal value of this
LP must be L, otherwise we would have found a descent direction and our solution
of (5.2) would not be locally optimal. Furthermore, because of Remark 5.1, we can
assume that the optimal flows of this LP are binary. Paired with the previously fixed
variables xv, these binary flows yield a feasible solution of (5.2) with cost L.

5.3. Convex relaxation of the bilinear constraints. The biconvex pro-
gram (5.2) is our first formulation of the SPP in GCS that can be tackled numerically.
However, the bilinear constraints (5.2d) make this optimization problem challenging
to solve, even just locally. In this subsection we show how to reformulate problem (5.2)
as a lightweight and strong MICP, that can be reliably solved to global optimality
using branch-and-bound algorithms.

3We are slightly abusing notation here: since in Definition 4.4 we defined the perspective of
functions with a single argument, to be precise, we should write ˜̀

e((ze,z′e), ye).
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The next lemma allows us to construct a tight envelope around the constraints
of the biconvex program (5.2) through a small number of perspective cones. In its
statement we let Ev := E inv ∪ Eoutv denote the set of edges incident with vertex v ∈ V.
Recall also that a valid constraint for an optimization problem is a constraint that is
verified by all the feasible points.

Lemma 5.4. For some vertex v ∈ V, assume that the linear inequality∑
e∈Ev

ceye + d ≥ 0(5.3)

is valid for problem (5.2). Partitioning the summation over Ev in incoming and out-
going edges, we have that the following convex constraint is also valid for (5.2): ∑

e∈Einv

cez
′
e +

∑
e∈Eout

v

ceze + dxv,
∑
e∈Ev

ceye + d

 ∈ X̃v.(5.4)

Proof. Constraint (5.4) requires two conditions to hold. One is (5.3), which is
assumed. The other is verified by multiplying both sides of xv ∈ Xv from (5.2c) by
the left-hand side of (5.3), and then using the bilinear constraints (5.2d).

Remark 5.5. If the valid constraint (5.3) holds with equality, Lemma 5.4 simply
amounts to multiplying this equality by xv, and it gives us a valid linear equality of
the form

∑
e∈Einv

cez
′
e +

∑
e∈Eout

v
ceze + dxv = 0.

Remark 5.6. Generating new valid constraints by multiplying existing ones is a
standard procedure at the core of many relaxation techniques [36, 44, 31, 28, 39].
Lemma 5.4 will be analyzed at a higher level of generality in Section 7, where its
similarities with existing methods will be clearly drawn.

Lemma 5.4 lifts any valid linear constraint on the flows incident with vertex v
into a convex constraint that envelops the feasible set of problem (5.2). Our MICP
is obtained by applying this lemma to each flow constraint in the LP (5.1), and by
replacing the constraints of the biconvex program (5.2) with the envelope resulting
from this process. Let us first state our MICP and then prove its equivalence to the
SPP in GCS (Theorem 5.7 below):

minimize
∑
e∈E

˜̀
e(ze, z

′
e, ye)(5.5a)

subject to
∑
e∈Eout

s

ye = 1,
∑
e∈Eint

ye = 1,(5.5b)

∑
e∈Eout

v

ye ≤ 1, ∀v ∈ V − {s, t},(5.5c)

∑
e∈Einv

(z′e, ye) =
∑
e∈Eoutv

(ze, ye), ∀v ∈ V − {s, t},(5.5d)

(ze, ye) ∈ X̃u, (z′e, ye) ∈ X̃v, ∀e = (u, v) ∈ E ,(5.5e)

ye ∈ {0, 1}, ∀e ∈ E .(5.5f)

Constraint (5.5d) is obtained as in Remark 5.5 from the flow conservation in (5.1c),
and (5.5e) is the result of applying Lemma 5.4 to the nonnegativity constraint (5.1d).
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Note that the application of the same technique to the equalities (5.5b) and to the
degree constraint in (5.1c) would give us

xs =
∑
e∈Eout

s

ze, xt =
∑
e∈Eint

z′e,(5.6a)

xv −
∑
e∈Eout

v

ze ∈

1−
∑
e∈Eout

v

ye

Xv, ∀v ∈ V − {s, t}.(5.6b)

However these constraints would be redundant since the vertex positions xv for v ∈ V
do not appear in the rest of problem (5.5). Note also that the combination of (5.6)
and (5.5e) implies the constraints xv ∈ Xv for all v ∈ V, which would also be redundant
for our MICP. The convex relaxation of (5.5) is obtained simply by dropping the
integrality constraint (5.5f) (the nonnegativity of the flows ye is imposed by the cost
and also by (5.5e)). Observe that, unlike the biconvex program (5.2), the optimal
value of the MICP can decrease if the flows are allowed to be fractional.

Theorem 5.7. The MICP (5.5) has optimal value equal to the SPP in GCS (2.1).
An optimal path p for problem (2.1) is recovered from the solution of (5.5) through the
relation Ep := {e ∈ E : ye = 1}. An optimal positioning of the vertices is reconstructed
for the source and the target as in (5.6a), and for all the other vertices by letting xv
be any point such that (5.6b) holds.

In Section 7.3 we will see that this theorem follows from a simple geometric
property of Lemma 5.4. Here we give a direct proof that explicitly illustrates the
logic behind our formulation.

Proof. The only flows that can satisfy the constraints in (5.5) are such that the
set Ep defined above describes the vertex-disjoint union of an s-t path and cycles.
However, the presence of cycles can be excluded since the edge lengths `e are non-
negative, and traversing a cycle that is disjoint from the main path cannot decrease
the cost. Therefore, at optimality, Ep identifies a path p. For all the edges e /∈ Ep,
constraint (5.5e) simplifies to ze = z′e = 0, and the corresponding cost addends give
˜̀
e(0,0, 0) = 0. For the vertices v /∈ p, constraint (5.5d) is trivially satisfied and (5.6b)

reads xv ∈ Xv. For an edge e = (u, v) along the path p, constraint (5.5e) becomes
ze ∈ Xu and z′e ∈ Xv, and the cost addend is ˜̀

e(ze, z
′
e, 1) = `e(ze, z

′
e). Denoting

with f = (v, w) ∈ Ep the edge after e in the path, the flow conservation (5.5d) reads
z′e = zf . Finally, the conditions in (5.6) give us xu = ze and xv = z′e for all edges
e = (u, v) ∈ Ep.

Remark 5.8. If the sets Xv are singletons, the SPP in GCS simplifies to the SPP
with nonnegative edge lengths. In this case our MICP reduces to the LP (5.1) and
its convex relaxation is exact, as discussed in Remark 5.1.

Remark 5.9. For the edge lengths `e and convex sets Xv that typically appear in
practice, the MICP (5.5) can be solved to global optimality with standard solvers (see
the discussion in Section 4.1). However, problem (5.5) can be tackled numerically even
when the sets in our GCS are not defined by explicit constraints (e.g., convex inequal-
ities). For example, each set Xv may be very complex and accessible only through
an oracle that, given a point xv, either certifies that xv ∈ Xv or returns a separating
hyperplane. In fact, such an oracle is easily adapted to checking membership to the
perspective cones in (5.5e), and this black-box access to the problem constraints is
sufficient for efficient optimization algorithms like the ellipsoid method [21].
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5.4. Degree constraints. In Remark 5.2 we anticipated that, although redun-
dant for the LP (5.1), the degree constraints (5.5c) play an important role in our
MICP. This is illustrated in the next example, which shows how the optimal flows
from (5.5) can induce cycles if the degree constraints are not enforced.

Example 5.10. Consider a graph with vertices V := {s, 1, 2, t} and edges E :=
{(s, 1), (1, 2), (2, 1), (1, t)}. Define the sets Xs := {−1}, X1 := [−1, 1], X2 := {0}, and
Xt := {1}. Let the length of each edge be the Euclidean distance squared (2.3). The
optimal value of this SPP in GCS is 2 and the optimal path is p = (s, 1, t). However,
if we do not enforce the degree constraints (5.5c), our MICP has optimal value equal
to 1 and its optimal flows are ye = 1 for all e ∈ E , i.e., they induce the cycle (1, 2, 1).

In case of an acyclic graph G, the issues just described do not arise and the degree
constraints are redundant for our MICP and its convex relaxation. Nonetheless, we
still include them in our formulation since they are computationally light and their
explicit presence can trigger the use of specialized generalized-upper-bound branching
rules in the solver [10, Section 9.2].

6. Alternative formulations. Multiple alternative MICP formulations of the
SPP in GCS can be designed and finding the most effective one is a tradeoff between
the size of the program and the tightness of its convex relaxation. The MICP (5.5)
is very compact: it has only O(|E|) binary variables, O(n|E|) continuous variables,
and O(n(|V| + |E|)) constraints (assuming that the cones in (5.5e) are described by
O(n) constraints). In addition, in the experiments in Section 9, we will see that the
relaxation of our MICP is typically very tight (although a carefully designed instance
in Section 9.4 shows that our relaxation can, in principle, be arbitrarily loose).

A simple alternative way to reformulate the biconvex problem (5.2) as an MICP
is to enforce the integrality constraints ye ∈ {0, 1} for all e ∈ E , and relax each bilinear
constraint (5.2d) independently using a McCormick envelope [36]. With our notation,
this amounts to replacing (5.2d) with

(ze, ye) ∈ B̃u, (z′e, ye) ∈ B̃v, (xu − ze, 1− ye) ∈ B̃u, (xv − z′e, 1− ye) ∈ B̃v,(6.1)

where, for each v ∈ V, we let Bv be an axis-aligned box that contains Xv. Especially
if the convex sets Xv are defined by many constraints, this MICP is more compact
than ours. However, as we will see in Section 9, this formulation has loose convex
relaxation and its solution times are generally much larger than with our approach.

At the other end of the spectrum, a variety of stronger but potentially more
expensive formulations could be devised. For example, we have found that subtour-
elimination constraints like [48, Section 2.2] can tighten the relaxation of our MICP
for some classes of problems. Alternatively, we could formulate our MICP by group-
ing the constraints in (5.2) vertex by vertex, and by computing the convex hull of
each group (see Section 7.2 below). We could also use more expensive semidefinite
relaxations [31, 28, 39] of the bilinear constraints (5.2d). In our computational ex-
perience, the MICP (5.5) represents the best compromise between a lightweight and
a strong formulation, and its solution times are lower than any other formulation we
have tested.

7. Analysis of the mixed-integer formulation. In this section we describe
and analyze at a more abstract level the method used in Section 5.3 to formulate the
SPP in GSC as an MICP. We show that Lemma 5.4 can be used to design convex
relaxations of a large class of bilinear constraints, and we connect this result to existing
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relaxation techniques for nonconvex optimization. Finally, we give a simpler geometric
proof of the validity of our MICP (already shown in Theorem 5.7).

7.1. Set-based relaxation of bilinear constraints. Our first step in this
analysis is to show that Lemma 5.4 is, in fact, a general-purpose relaxation technique
for nonconvex sets of the form

S := {(x,y,Z) : x ∈ X , y ∈ Y, Z = xy>},(7.1)

where X ⊆ Rn and Y ⊆ Rm are closed convex sets. In particular, here X takes the
place of a generic set Xv in our GCS, while Y plays the role of the linear constraints
on the flow variables incident with vertex v (see Remark 7.2 below for more details).

A natural approach to construct a convex envelope around the set S is to multiply
all the valid inequalities a>x + b ≥ 0 for the set X by all the valid inequalities
c>y + d ≥ 0 for the set Y, and then use the bilinear equality Z = xy> to linearize
these products. This gives us an infinite family of valid linear inequalities for S, which
form our convex relaxation:

(7.2) S ⊆ S ′ := {(x,y,Z) : a>Zc+ da>x+ bc>y + bd ≥ 0

for all (a, b) ∈ X ◦ and (c, d) ∈ Y◦}.

Note that the conditions x ∈ X and y ∈ Y are implied by the inequalities in (7.2)
that correspond to (0, 1) ∈ Y◦ and (0, 1) ∈ X ◦, respectively.

The relaxation (7.2) is not obviously implementable on a computer, since it in-
volves an infinite number of constraints. However, if one of the two sets is a polytope
(i.e., a bounded polyhedron) then the convex set S ′ can be efficiently described by a
finite number of perspective-cone constraints.

Proposition 7.1. Let Y be a polytope with halfspace representation {y : c>i y +
di ≥ 0 for all i ∈ I}. We have

S ′ = {(x,y,Z) : (Zci + dix, c
>
i y + di) ∈ X̃ for all i ∈ I}.(7.3)

Proof. To recover (7.2) from (7.3) we first use Lemma 4.9 to rewrite the mem-
bership to X̃ as a>(Zci + dix) + b(c>i y+ di) ≥ 0 for all (a, b) ∈ X ◦. Then we notice
that listing only the valid inequalities (ci, di) for i ∈ I is equivalent to listing all the
valid inequalities (c, d) ∈ Y◦. In fact, since Y is bounded, any vector (c, d) ∈ Y◦
can be expressed as

∑
i∈I αi(ci, di) for some nonnegative coefficients αi. Using these

coefficients, the inequality a>Zc + da>x + bc>y + bd ≥ 0 is seen to be implied by
the inequalities generated by (ci, di) for i ∈ I.

We then have two descriptions of the relaxation S ′: the symmetric one (7.2) that
clearly exposes the logic behind the technique, and the asymmetric one (7.3) that
is computationally efficient, provided that one of the two sets is polytopic and has
a small number of facets. The asymmetric relaxation generalizes Lemma 5.4, with
c>i y+di ≥ 0 taking the place of the flow inequality (5.3). The asymmetric relaxation
is also set based, in the sense that it does not rely on the explicit constraints defining
X , but it works directly with its abstract set representation. Besides making the
analysis very concise, this has also the practical advantages discussed in Remark 5.9.

Remark 7.2. The constraints of the biconvex program (5.2) can be restated in
terms of the set S as follows. First, we collect in the vector yv := (ye)e∈Ev the
flows incident with vertex v. Second, we let Yv be the polytope defined by the linear
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constraints acting on yv. Constraint (5.1b) and the flow nonnegativity (5.1d) make
Ys and Yt unit simplices (recall that |E ins | = |Eoutt | = 0). For v 6= s, t, the polytope Yv
is defined by the flow nonnegativity (5.1d) together with the conservation and degree
constraints in (5.1c). Third, we stack in the columns of the matrix Zv the auxiliary
variables z′e for e ∈ E inv and ze for e ∈ Eoutv , so that the bilinear constraints (5.2d)
take the form Zv = xvy

>
v . By defining the sets Sv as in (7.1), the constraints of

problem (5.2) become (xv,yv,Zv) ∈ Sv for all v ∈ V. Our relaxation of the SPP in
GCS is then obtained by replacing the constraint sets Sv with S ′v defined as in (7.3).

7.2. Tightness of the relaxation S ′. Ideally, we would like our relaxation to be
as tight as possible, and the set S ′ to coincide with the convex hull of S. This equality
holds, for example, when X and Y are intervals on the real line, in which case S ′
simplifies to the McCormick envelope [36]. However, the inclusion convS ⊂ S ′ can be
strict in general. In fact, for polytopic sets X and Y, our approach of multiplying valid
inequalities simplifies to the first level of the Reformulation-Linearization Technique
(RLT) [44], which does not yield the convex hull of S if, e.g., X := Y := [0, 1]2.

The convex hull of S can be efficiently described when Y is a polytope with a small
number of extreme points {ŷj}j∈J . Specifically, by using disjunctive-programming
techniques [9], it can be verified that

convS =

∑
j∈J

(xj , λj ŷj ,xj ŷ
>
j ) :

∑
j∈J

λj = 1, (xj , λj) ∈ X̃ for all j ∈ J

 .(7.4)

Note that this (lifted) description is convex and also set based. While our relaxation
S ′ has size proportional to the number |I| of facets of Y, this description of the convex
hull has size proportional to the number |J | of extreme points of Y. For the SPP in
GCS, the polytopes Yv have O(|E inv | + |Eoutv |) facets and only O(|E inv ||Eoutv |) extreme
points, and this difference can be relatively small if the graph is sparse. However,
in our experience the MICPs obtained with our method provide a better tradeoff
between strength and size, and are typically much faster to solve.

Remark 7.3. That our relaxation S ′ is not always the convex hull of S should be
fully expected. In fact, for X := [0, 1]n and Y := [0, 1]m, the bilinear program

minimize p>x+ q>y + x>Ry subject to x ∈ X , y ∈ Y,(7.5)

is NP-hard [41], and equivalent to minimizing a linear function over S. The equality
S ′ = convS would then allow us to solve an NP-hard problem in polynomial time.

7.3. Geometric proof of Theorem 5.7. In the proof of Theorem 5.7 we have
shown the correctness of the MICP (5.5) by analyzing all the feasible values that the
variables in this program can take. We now present a simple property of the relaxation
S ′ that will lead to a geometric and more concise proof of Theorem 5.7. This result
will also generalize a known property of RLT.

Lemma 7.4. Let Y be a polytope and ŷ one of its extreme points. We have
(x, ŷ,Z) ∈ S if and only if (x, ŷ,Z) ∈ S ′.

Proof. One direction follows from S ⊆ S ′. For the other direction we show that if
(x, ŷ,Z) ∈ S ′ then Z = xŷ>. Since ŷ is an extreme point of Y, there are m linearly
independent inequalities that are active at ŷ. Let C ∈ Rm×m and d ∈ Rm collect the
coefficients (ci, di) of these inequalities, so that Cŷ+d = 0. For the same inequalities,
the constraints in (7.3) give us Zci + dix = 0 or, equivalently, ZC> + xd> = 0. We
then have ZC> = xŷ>C> and, since C is invertible, Z = xŷ>.
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Alternative proof of Theorem 5.7. As in the first proof of Theorem 5.7, note that
the optimal solution of the MICP (5.5) is such that the edges traversed by a unit of flow
identify a path p. Note also that, for all v ∈ V, the flow vectors yv corresponding to
a path p are extreme points of the polytopes Yv. Then the validity of the MICP (5.5)
follows since our relaxation is exact in these points by Lemma 7.4.

Remark 7.5. Consider the bilinear program (7.5) with polytopic sets X and Y,
and the additional constraint y ∈ {0, 1}m. Assuming Y ⊆ [0, 1]m, the first-level
RLT is known to yield a valid mixed-integer linear formulation of this program [1,
Theorem 1]. Lemma 7.4 extends this result to generic closed convex sets X . In fact,
Y ⊆ [0, 1]m ensures that any vector y ∈ Y ∩{0, 1}m is an extreme point of Y, and the
relaxation S ′ is exact in correspondence of these points.

7.4. Related relaxation techniques. The basic idea of generating new valid
constraints by multiplying existing ones is classical, and has many incarnations: from
the simple McCormick envelope [36] to semidefinite hierarchies for polynomial opti-
mization [28, 39], passing through RLT [44]. Among this family of techniques, the
Lovász-Schrijver hierarchy [31] is the closest to ours, since it is set based and includes
constraints of the form (7.3); see [31, Theorem 1.6 and Conditions (iii) to (iii”)]. How-
ever, this hierarchy focuses on binary optimization and symmetric quadratic maps,
and its naive application to the bilinear set S would produce multiple redundant vari-
ables and constraints. Our approach leverages the bilinear structure of the set S, that
emerges naturally in the SPP in GCS, to construct a relaxation S ′ that is smaller
and as tight as the first level of the Lovász-Schrijver hierarchy, without semidefinite
constraints. (As discussed in Section 6, our practical experience is that higher levels
of the hierarchy and semidefinite constraints lead to MICPs that, although stronger,
are significantly slower to solve.)

If both the sets X and Y are polytopes, the convex hull of S in (7.4) is also a
polytope, and its extreme points are extS = {(x,y,xy>) : x ∈ extX ,y ∈ extY}. In
general, this yields an exponential-size description of convS. Nevertheless, if the sets
X and Y have further special structure then specialized techniques can be applied to
efficiently generate additional valid inequalities for convS; see, e.g., the techniques
developed for network-interdiction problems [11], pooling problems [23], bipartite bi-
linear programs [12], and bipartite boolean quadratic programs [45].

The recent work [51] shows how perspective functions can be used to allow the
multiplication of nonlinear convex constraints in the RLT algorithm. However, the
relaxation in that work is not set based, and requires an explicit analysis of all the
possible products of basic cone inequalities.

8. Control applications. A main application of the framework presented in
this paper is optimal control of discrete-time dynamical systems. In this section we
show how two simple control problems can be cast as SPPs in GCS. These examples
illustrate some basic modeling techniques that can also be applied to control problems
involving more complex discrete decision making.

8.1. Minimum-time control. Consider the linear dynamical system sτ+1 =
Asτ +Baτ , where sτ ∈ Rq and aτ ∈ Rr are the system state and control action at
time step τ . Given an initial state s0, we look for a sequence of controls that drives
the system state to the origin in the minimum number T of time steps. At each time
τ , the state and control pair (sτ ,aτ ) is constrained in a compact convex set D.

To formulate this problem as an SPP in GCS we proceed as in Figure 2a. The
vertices V in our graph are ordered in a sequence. The source s is the first vertex
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(b) Control of a PWA system.

Fig. 2. Graphs for the formulation of the optimal-control problems in Section 8 as SPPs in GCS.

and the target t is the last. The number of vertices is equal to T̄ + 1, where T̄ is a
given upper bound on the optimal time horizon T . Each vertex that is not the target
has two outgoing edges: one that connects it to the next vertex in the sequence and
one that goes to the target. For each v ∈ V, the continuous variable xv represents a
state and control pair (sv,av). These variables are constrained by the following sets:
Xs := D ∩ ({s0} ×Rr) for the source, Xt := {(0,0)} for the target (the value of at is
actually irrelevant), and Xv := D for all the other vertices. To minimize the number
of edges in the optimal path (i.e., the time steps to reach the origin), the length of
each edge (u, v) is 1 if sv = Asu +Bau and infinite otherwise. (See Example 4.6 for
the perspective of such a function.)

The solution of the MICP (5.5) gives us a path p := (v0, . . . , vK). The optimal
time horizon is T := K, and the corresponding control sequence is aτ := avτ for τ =
0, . . . , T −1. The state trajectory is retrieved similarly, and is such that sT := st = 0.

8.2. Control of hybrid systems. PieceWise-Affine (PWA) systems are a pop-
ular framework for modeling hybrid dynamics. Loosely speaking, almost any dynam-
ical system whose nonlinearity is exclusively due to discrete logics can be written in
PWA form [24]. Among the many applications of PWA systems, we have automo-
tive [6], power electronics [20], and robotics [33]. Given a finite collection {Dν}ν∈N of
compact convex subsets of the state and control space, a PWA system has dynamics
sτ+1 = Aντsτ + Bντaτ + cντ if (sτ ,aτ ) ∈ Dντ . The index ντ ∈ N represents the
system discrete mode at time τ , which is itself a decision variable. We consider the
problem of driving a PWA system from a given initial state s0 to the origin, in a
fixed number T of time steps. The objective is to minimize the sum of the stage costs
γ(sτ ,aτ ) for τ = 0, . . . , T − 1. The function γ is convex and finite.

We model this problem through the GCS in Figure 2b. The source s is the leftmost
vertex and the target t is the rightmost. In between, we have T layers with |N | vertices
each. The source is connected via an edge to each vertex in the first layer, and all the
vertices in the last layer are connected to the target. Each pair of consecutive layers
is fully connected. Also in this case the continuous variables xv represent state and
control pairs (sv,av). The source is paired with the set Xs := {(s0,0)}, the target
with Xt := {(0,0)}, and the νth vertex v of each layer with Xv := Dν . To enforce
the initial conditions, the edges (s, v) outgoing from the source have zero length if
sv = ss, and infinite length otherwise. (Note that here the values of both as and at
are irrelevant.) The length of any other edge (u, v), where u is the νth vertex in its
layer, is γ(su,au) if sv = Aνsu +Bνau + cν and infinite otherwise.

A shortest path p := (v0, . . . , vK) has now T + 2 vertices. The optimal control at
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time τ = 0, . . . , T − 1 is aτ := avτ+1
. The state trajectory is defined similarly.

Remark 8.1. Frequently in optimal control we need to enforce convex terminal
constraints of the form sT ∈ DT , as well as convex terminal penalties γT (sT ). These
are easily incorporated in our construction through a suitable modification of the set
Xt and the lengths of the edges incoming to the target vertex.

Remark 8.2. The size of the GCS we just constructed is linear in the time horizon
T and quadratic in the number |N | of discrete modes. Conversely, common formu-
lations for these problems have size linear in both T and |N | [34]. We will see in
Section 9.3 that the greater strength of our MICPs can be well worth this price.

9. Numerical results. This section collects multiple numerical experiments.
We start in Section 9.1 with a simple two-dimensional problem. Section 9.2 presents
a statistical analysis of the performance of our MICP on large-scale instances of the
SPP in GCS. In Section 9.3 we compare our approach with state-of-the-art mixed-
integer formulations for control. Finally, in Section 9.4 we use a carefully designed
problem to show how symmetries in the GCS can loosen the relaxation of our MICP.

The code necessary to reproduce these results is available at https://github.com/
TobiaMarcucci/shortest-paths-in-graphs-of-convex-sets. All the experiments are run
using the commercial solver MOSEK 10.0 with default options on a laptop computer
with processor 2.4 GHz 8-Core Intel Core i9 and memory 64 GB 2667 MHz DDR4.
A mature implementation of the techniques presented in this paper is also provided
by the open-source software Drake [49].

9.1. Two-dimensional example. We consider the two-dimensional problem in
Figure 3a. We have a graph G with |V| = 9 vertices, |E| = 22 edges, and multiple
cycles. The source Xs := {θs} and target Xt := {θt} sets are single points, while
the remaining regions are full dimensional. The geometry of the sets Xv and the
edge set E can be deduced from Figure 3a. As edge lengths we consider the Euclidean
distance (2.2) and the Euclidean distance squared (2.3), whose corresponding shortest
paths are shown in Figure 3a in orange and blue. As expected, the first path is almost
straight, while the lengths of the segments in the second are better balanced.

In Figure 3b we compare the optimal values of the SPP in GCS, the relaxation
of our MICP (5.5), and the relaxation of the McCormick formulation (6.1). Both
relaxations are Second-Order-Cone Program (SOCPs), and for the McCormick one
the bounding boxes Bv are chosen as small as the corresponding sets Xv allow. We
run this comparison for different values of a parameter σ > 0 that controls the volume
of the sets Xv. The value σ = 1 corresponds to the GCS in Figure 3a. While for σ 6= 1
each set Xv is shrunk or enlarged via a uniform scaling, with scale factor σ, relative
to a fixed Chebyshev center of the set.

When the edge length is the Euclidean distance (2.2), the top panel in Figure 3b
shows that our relaxation is exact for all values of σ. This was expected for σ close
to zero, since by Remark 5.8 our relaxation is exact when the sets are singletons.
Similarly, the problem is trivial for very large σ, when the regions are so big that, no
matter the discrete path we take, we can always reach the target via a straight line.
However, that our relaxation is exact for all the intermediate values of σ is not an
obvious result. The McCormick relaxation is also exact for small σ, but gives a trivial
lower bound of zero when the sets are large.

With the Euclidean length squared (2.3), both relaxations are still guaranteed to
be tight as σ goes to zero. This is confirmed by the bottom panel of Figure 3b. When σ
is very large, we have seen in Section 3 that our problem is equivalent to the HPP, and

https://github.com/TobiaMarcucci/shortest-paths-in-graphs-of-convex-sets
https://github.com/TobiaMarcucci/shortest-paths-in-graphs-of-convex-sets


SHORTEST PATHS IN GRAPHS OF CONVEX SETS 17

0 1 2 3 4 5 6 7 8 9
4

3

2

1

0

1

2

3

s t

Euclidean distance
Euclidean distance squared

(a) GCS with sets of nominal size, σ = 1. The
optimal solutions for the edge lengths (2.2) and (2.3)
are shown in orange and blue, respectively.

0
2
4
6
8

10

Co
st

Euclidean distance

SPP in GCS
Our relaxation
McCormick

10 2 10 1 100 101

Set size 

0

10

20

30

40

Co
st

Euclidean distance squared

SPP in GCS
Our relaxation
McCormick

(b) Optimal values of the SPP in GCS
and its convex relaxations as functions of
the edge length and the size of the sets.

Fig. 3. Two-dimensional SPP in GCS from Section 9.1. The tightness of the convex relaxation
of our MICP (5.5) is analyzed for two edge lengths (the Euclidean distance (2.2) and the Euclidean
distance squared (2.3)) and different sizes of the sets Xv (parameterized by the scalar σ). As a
baseline, we also report the optimal value of the relaxation of the McCormick formulation (6.1).

the argument from Theorem 3.1 shows that its optimal value is ‖θt−θs‖22/K = 11.6,
where K = 7 is the number of edges in the longest s-t path in the graph in Figure 3a.
A close inspection of the bottom of Figure 3b reveals that, for large σ, our relaxation
yields the lower bound ‖θt − θs‖22/(|V| − 1) = 10.1, which corresponds to the simple
inequality K ≤ |V| − 1. (Using a duality argument, it can be verified that our
relaxation always recovers this bound.) Conversely, the lower bound provided by the
McCormick relaxation is again equal to zero.

9.2. Large-scale random instances. We present a statistical analysis of the
performance of our formulation. We generate a variety of random large-scale SPPs in
GCS, and we analyze the relaxation tightness and the solution times of the MICP (5.5)
as functions of various problem parameters. We stress that generating random graphs
representative of the “typical” SPP in GCS we might encounter in practice is a difficult
operation. Inevitably, the instances we describe below are not completely represen-
tative, and our algorithm might perform worse or better on other classes of random
graphs. Our goal here is to show that our MICP is not limited to small-scale problems.

We construct an SPP in GCS as follows. We set Xs := {0} and Xt := {1}. The
rest of the sets Xv are axis-aligned cubes with volume Λ and center drawn uniformly
at random in [0, 1]n. Given a number |E| of edges, we construct the edge set in two
steps. First we generate multiple s-t paths such that every vertex v 6= s, t is traversed
exactly by one path. These are determined via a random partition of the set V−{s, t}:
the number of sets in the partition (number of paths) is drawn uniformly from the
interval [1, |V|−2], and also the number of vertices in each set (length of each path) is a
uniform random variable. Then we extend the edge set by drawing edges uniformly at
random from the set {(u, v) ∈ V2 : v 6= s, u 6= t, u 6= v} until a desired cardinality |E| is
reached. As edge lengths we consider the Euclidean distance (2.2) and the Euclidean
distance squared (2.3), which both make our formulation (5.5) a mixed-integer SOCP.
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Fig. 4. Projection onto two dimensions of a random instance of the SPP in GCS from Sec-
tion 9.2. The problem parameters have nominal value.
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Fig. 5. Relaxation gap versus MICP solution time for the 500 random instances described in
Section 9.2. Two edge lengths are analyzed: the Euclidean distance (2.2) and the Euclidean distance
squared (2.3). For each edge length, 100 nominal instances are generated with the nominal problem
parameters, and four other batches of 100 instances each are obtained by increasing a different subset
of the parameters. Our relaxation is almost always exact with the Euclidean length. While, with the
Euclidean length squared, it is more sensitive to the dimension n of the space and the density of the
graph G. (Note the different horizontal scales of the two plots.)

For each edge length, we first solve 100 random instances with the following
nominal parameters: volume Λ = 0.01, n = 4 dimensions, |V| = 50 vertices, and
|E| = 100 edges. Then we solve four other batches of 100 problems where, in each
batch, a different subset of these parameters is increased by a factor of 5. Specifically,
these additional batches test our formulation in case of large sets Xv (Λ from 0.01 to
0.05), high dimensions (n from 4 to 20), dense graphs (|E| from 100 to 500), and large
graphs (|V| and |E| from 50 and 100 to 250 and 500). To give an idea of what these
problems look like, the projection onto two dimensions of a GCS generated using the
nominal parameters is shown in Figure 4.

Figure 5 shows the relaxation gap (cost gap between the MICP and its relaxation,
normalized by the MICP cost) versus the MICP solution time for all the instances
described above. As observed in the previous example, the Euclidean edge length (2.2)
results in easier programs: our relaxation is tight in almost all the instances and
the solution times are relatively low. The squared edge length (2.3) leads to more
challenging problems, even though the maximum relaxation gap and runtime are only
2.1% and 0.66s in the nominal case. When the volume of the cubes Xv is increased
to Λ = 0.05 these values increase to 9.1% and 1.12s, and the performance of our
MICP is minimally affected. Note that this is not in contrast with the previous
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example, where we analyzed the regime of extremely large sets Xv. Note also that the
volume of the sets does not affect the MICP size. The growth of the space dimension
to n = 20 increases the size of our programs, and also loosens the relaxation. The
largest relaxation gap is 28.9%, and our MICP takes 72s to be solved in the worst case.
Similarly, when the number |E| of edges is increased to 500 the maximum relaxation
gap and runtime become 32.9% and 174s. This is due to the combination of the
quadratic edge length and the large number of cycles that we have in a graph with
high density of edges |E|/|V|. To show this, in the last batch of problems we keep
|E| = 500 and we increase the number of vertices to |V| = 250. This increases the
MICP size further but makes the graph sparser, reducing the maximum relaxation
gap and runtime to 5.3% and 5.4s.

Also for the problems in this analysis our formulation outperforms the McCormick
one in (6.1). With the nominal parameters, the McCormick median (maximum) run-
time is 12.9 (4.3) times larger than ours for the Euclidean length (2.2), and 10.3 (2.7)
times larger for the Euclidean length squared (2.3). This performance difference grows
larger for the other batches of problems, where the McCormick formulation reaches
our time limit of one hour very often. The slowness of the McCormick approach is
due to its loose relaxation: even with the nominal parameters, we have a median
(maximum) relaxation gap of 29% (52%) for (2.2), and 34% (58%) for (2.3).

9.3. Optimal control. We apply the method from Section 8.2 to solve the
optimal-control problem shown in Figure 6a. We have a mechanical system with
position q ∈ R2, velocity v ∈ R2, and force a ∈ R2. The system has the dynamics
of a double integrator: qτ+1 = qτ + vτ and vτ+1 = vτ + ηaτ , where η is a scalar
parameter that regulates the system controllability. The system state at time τ is
sτ := (qτ ,vτ ). The initial position is q0 := (0.5,−3.5) (green plus at the bottom left
of Figure 6a), the initial velocity is v0 := 0. At each time step τ = 1, . . . , T − 1, the
position qτ must belong to one of the seven regions in Figure 6a, while the velocity
and the controls are limited by the constraints ‖vτ‖∞ ≤ 1 and ‖aτ‖∞ ≤ 1. The goal
is to reach the point qT := (6.5, 3.5) (green cross at the top right of Figure 6a) with
zero velocity vT in T := 30 time steps. The cost function is the sum of the stage costs
γ(sτ ,aτ ) := ‖vτ‖22/5 + ‖aτ‖22.

We let the parameter η vary between the seven regions. The five regions in the
range −5 ≤ q2 ≤ 5 (light blue in Figure 6a) have η = 1. While in the other two regions
(red in Figure 6a) we make the system more expensive to control by setting η = 0.1.
Since the parameter η varies with the state, the system dynamics is PWA and the
control problem falls into the class considered in Section 8.2. The GCS beneath this
problem (depicted in Figure 2b) has |V| = 212 vertices and |E| = 1435 edges, and the
convex sets Xv live in R6. Also in this case problem (5.5) is a mixed-integer SOCP.

Figure 6a shows the optimal trajectory (q0, . . . , qT ) (white circles) and the opti-
mal controls (a0, . . . ,aT−1) (blue arrows). Geometrically, the red regions would be
shortcuts to the goal, but the low controllability in these areas makes it too expensive
not to fall out of the feasible set. The optimal strategy is then to follow a winding
trajectory and incur a cost of 9.37.

As a baseline, we first solve the problem using the state-of-the-art perspective
formulation from [37, Section 6] (see also [34, Section 5.2.2]). At each time step τ ,
this expresses the system state sτ as a convex combination of one auxiliary variable
sντ per region ν = 1, . . . , 7. The control aτ is decomposed similarly. When the
coefficients bντ of this combination are required to be binary, the solver is forced to
make a hard selection of the region in which the system must be at each time step.
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(b) Solution of the convex re-
laxation from [37, 34]. The re-
laxation gap is 93%, and the
MICP is solved in 17min.
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(c) Solution of our convex re-
laxation. The relaxation gap is
20%, and the MICP is solved
in 7.1s.

Fig. 6. Control problem from Section 9.3 of driving a dynamical system from start (green plus)
to goal (green cross). The light-blue and red regions have high and low controllability, respectively.
The optimal positions qτ are white circles, the optimal controls aτ are blue arrows. The triangles
are the auxiliary variables qντ whose convex combination yields qτ . The opacity of the triangles
equals the optimal value of the variables bντ that serve as weights in this convex combination.

When the coefficients bντ can be fractional, the system evolves according to a convex
combination of the dynamics in each region. Figure 6b illustrates the solution of the
convex relaxation of this formulation (which, thanks to a perspective reformulation of
the stage cost, is also an SOCP). It reports the position qτ , the barely visible controls
aτ , and the auxiliary copies qντ of the position vector. The latter have triangular
markers and opacity equal to the value of the indicator bντ . As it can be seen, this
relaxation is insensitive to the arrangement of the regions, and its optimal trajectory
heads straight to the goal. Also the indicator variables bντ are uninformative, and
take nonzero value in the regions with low controllability (visible triangles in the red
regions). The optimal value of this relaxation is 0.67, which is only 7% of the MICP
value (93% relaxation gap). The MICP solution time is 1011s ≈ 17min.

The convex relaxation of our formulation is much tighter: its optimal value is
7.46, which is 80% of the MICP value (20% relaxation gap). This has a dramatic
effect on computation times that are now reduced to 7.1s. To make a plot comparable
to Figure 6b we leverage the structure of our GCS in Figure 2b. The equivalent
of the indicator variable bντ is the total flow traversing the νth vertex in the τth
layer of the graph. Similarly, the position of the same vertex plays the role of the
auxiliary variables (sντ ,a

ν
τ ), which can then be combined using the coefficients bντ to

get candidate values for the state sτ and the control aτ . Figure 6c illustrates these
values, and shows that the trajectory reconstructed from our relaxation resembles the
MICP solution in Figure 6a much more closely. All the markers in the regions with
low controllability are now invisible, indicating that our relaxation correctly identifies
these as regions of high cost. The visible points qντ are clustered along the optimal
trajectory of the MICP, suggesting that our relaxation contains detailed information
about the optimal path to reach the goal.
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(b) Optimal solution of the relaxation. For each
edge e = (u, v), the orange line connects the
surrogates z̄e and z̄′e of the vertex positions xu
and xv , and is labeled with the flow ye.

Fig. 7. Instance of the SPP in GCS from Section 9.4 that shows how symmetries in the GCS
can deteriorate the convex relaxation of our MICP. For the relaxation, the cost contribution of edge
e is obtained by multiplying the flow ye by the distance between z̄e and z̄′e. Since only the mean of
z̄′
(1,3)

and z̄′
(2,3)

is required to match z̄(3,t), the cost is minimized by moving these two points closer

to z̄(1,3) and z̄(2,3), respectively.

9.4. Symmetries in the GCS. We conclude by showing how symmetries in
the GCS can deteriorate the convex relaxation of our MICP and, in principle, make it
arbitrarily loose. We illustrate this through the following carefully designed problem.

We consider the SPP in GCS depicted in Figure 7a. We have an acyclic graph
with |V| = 5 vertices and |E| = 5 edges. All the sets Xv are singletons {θv}, except
for X3 which is a full-dimensional rectangle. As an edge length, we use the Euclid-
ean distance (2.2). Solving this problem, we obtain the optimal path p = (s, 1, 3, t)
with length 7.4 (the symmetric solution p = (s, 2, 3, t) would also be optimal). The
corresponding vertex positions are connected by an orange line in Figure 7a.

Figure 7b illustrates the solution of the relaxation of the MICP (5.5). For each
edge e, we connect the optimal points z̄e := ze/ye and z̄′e := z′e/ye with an orange
line, labeled in blue with the corresponding flow ye. Note that, for ye > 0, we have
˜̀
e(ze, z

′
e, ye) = `e(z̄e, z̄

′
e)ye, and the vectors z̄e and z̄′e are the actual points where

the length of the edge e is evaluated. Note also that, by (5.5e), we have z̄e ∈ Xu and
z̄′e ∈ Xv. The relaxation splits the unit of flow injected in the source into two: half
unit is shipped to the target via the top path, the other half via the bottom path.
The optimal value of this convex program is 7.0.

The looseness of the relaxation can be explained as follows. If we denote with ρ
the flow traversing edge (1, 3), the flow conservation gives y(2,3) = 1−ρ, while the flow
through the edge (3, t) is always one. Since the variables z̄(1,3), z̄(2,3), and z̄′(3,t) are

forced to match θ1, θ2, and θt, respectively, the cost terms in (5.5a) corresponding
to the edges (1, 3), (2, 3), and (3, t) read

ρ‖z̄′(1,3) − θ1‖2 + (1− ρ)‖z̄′(2,3) − θ2‖2 + ‖θt − z̄(3,t)‖2.(9.1)

The only constraint that links these variables is (5.5d) for v = 3, which gives ρz̄′(1,3) +

(1−ρ)z̄′(2,3) = z̄(3,t). When ρ = 1/2, this constraint asks the mean of z̄′(1,3) and z̄′(2,3)
to match z̄(3,t), as opposed to forcing either one of the first two points to match the
third, as it would be for ρ ∈ {0, 1}. Therefore, while keeping their mean equal to
z̄(3,t), the points z̄′(1,3) and z̄′(2,3) can move vertically, and get closer to θ1 and θ2.
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This reduces the first two terms in (9.1), and keeps the third term unchanged.
Although this example leads to a relaxation gap of only 5%, a simple variation of

it shows that our relaxation can be arbitrarily loose. In particular, if we let `(s,1) :=
`(s,2) := 0 and we shift the centers of the sets X3 and Xt to the origin, then the cost of
the MICP and its relaxation are reduced to 2 and 0, and the relaxation gap becomes
100%. Nevertheless, we emphasize that this is a contrived problem, and the instances
we encounter in practice lead to these phenomena very rarely.

10. Conclusions. In this paper we have introduced the SPP in GCS, a versatile
generalization of the classical SPP. Our main contribution is a compact MICP formu-
lation for the solution of this NP-hard problem. Numerical experiments show that the
convex relaxation of our formulation is typically very tight, and it enables us to quickly
solve large problems to global optimality. We have demonstrated the applicability of
the proposed framework to control systems: many optimal control problems are in-
terpretable as SPPs in GCS and, in our tests, the proposed formulation outperforms
state-of-the-art techniques for their solution.

Acknowledgments. We would like to thank Hongkai Dai for all the time spent
improving the solver interface used in the numerical experiments of this paper.
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Appendix A. Other graph problems in GCS. Existing exact algorithms
for graph problems with neighborhoods rely on expensive mixed-integer nonconvex
optimization [19, 7, 5]. Here we show that, under standard convexity assumptions, the
techniques from Section 7 apply beyond the SPP, and yield exact MICP reformulations
for a wide variety of graph problems. A thorough numerical evaluation of these novel
formulations will be the object of future works.

Given a directed graph G := (V, E), many combinatorial problems require finding
a set of edges E? ⊆ E that is optimal according to a given criterion and given feasibility
conditions. Typically, these are formulated as integer linear programs of the form

minimize
∑
e∈E

leye subject to y ∈ Y ∩ {0, 1}|E|,(A.1)

where y := (ye)e∈E . The edge set E? is parameterized by the variables ye as E? =
{e ∈ E : ye = 1}, the polyhedron Y ⊆ [0, 1]|E| embodies the feasibility conditions, and
the cost is a linear function that assigns a weight le ≥ 0 to each edge e ∈ E .

We extend the graph problem modeled by (A.1) to its version in GCS as done for
the SPP. We let the position xv ∈ Rn of vertex v be a decision variable, constrained
in the set Xv, and we let the length of the edge e = (u, v) be `e(xu,xv). The sets Xv
and the functions `e satisfy the assumptions from Section 2. We define two auxiliary
variables ze := yexu and z′e := yexv per edge e = (u, v), and we formulate our graph
problem in GCS as in (5.2), with the condition y ∈ Y ∩ {0, 1}|E| in place of (5.2b).
This yields a mixed-integer program with bilinear constraints. At this point, in the
case of the SPP, we grouped the constraints in our problem vertex by vertex, and we
applied the relaxation from Lemma 5.4. However, in general, the polyhedron Y might
not enjoy this convenient separability, as it might couple flows that do not share a
common vertex. There are two ways around this issue.

One option is just to separate the flow constraints that are vertex-wise separable
from the ones that are not. Using only the first to define the polyhedra Yv ⊆ [0, 1]|Ev|,
we can then proceed as in Remark 7.2. The MICP we get is a valid problem formu-
lation since any point in Yv ∩{0, 1}|Ev| is an extreme point of Yv and, by Lemma 7.4,
our relaxation is exact for those points. The formulation resulting from this approach
is compact but it might be weak.

The second option is to introduce new variables that represent the product of
each flow ye and vertex position xv, even if edge e is not incident with vertex v. This
gives us a total of n|V||E| continuous variables Z := xy>, where x := (xv)v∈V lives in
the Cartesian product X :=

∏
v∈V Xv. Defining the set S as in (7.1), the constraints

of our problem become y ∈ {0, 1}|E| and (x,y,Z) ∈ S. We then use the relaxation S ′
of S from (7.3) to get an MICP whose validity is ensured again by Lemma 7.4. This

https://drake.mit.edu
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second option yields larger but potentially stronger MICPs.

Appendix B. Dual optimization problem. In this appendix we analyze
the dual of the convex relaxation of the MICP (5.5), and we draw additional parallels
between this problem and the network-flow formulation (5.1) of the SPP.

B.1. Dual of the SPP. As a reference for the discussion below, the dual of the
LP (5.1) is

maximize ps − pt(B.1a)

subject to pu − pv ≤ le, ∀e = (u, v) ∈ E .(B.1b)

Here ps and pt are the multipliers of the two constraints in (5.1b), and pv for v 6= s, t
are the multiplier of the flow conservation in (5.1c). These multipliers are interpretable
as potentials: the objective asks to maximize the potential jump between source and
target, and the constraints ensure that the potential jump along each edge does not
exceed the edge length. Since the degree constraints in (5.1c) are redundant (see
Remark 5.2), their multipliers do not appear in the dual problem.

For the LPs (5.1) and (B.1), complementary slackness reads (le − pu + pv)ye = 0
for all edges e = (u, v). Therefore, at optimality, each edge e ∈ Ep along the shortest
path must have a potential jump equal to its edge length.

B.2. Dual of the SPP in GCS. The convex relaxation of the MICP (5.5) is a
conic program, and its dual is derived in the standard way. To make the interpretation
of the dual program easier, we assume that the graph G is acyclic, and we remove the
degree constraints (5.5c) from the primal. This leads to the following optimization
problem:

maximize ps − pt(B.2a)

subject to r>u xu + pu − r>v xv − pv ≤ `e(xu,xv),(B.2b)

∀xu ∈ Xu,xv ∈ Xv, e = (u, v) ∈ E ,
rs = rt = 0.(B.2c)

The dual variables are pv and rv for all v ∈ V. The first are paired with the flow
constraints as above. The second correspond to the portion of the flow conserva-
tion (5.5d) that involves the auxiliary variables ze and z′e (the additional variables rs
and rt have only the role of simplifying the presentation).

Similarly to the LP (B.1), the dual (B.2) can be interpreted in terms of potentials.
For each vertex v ∈ V, the linear function r>v xv +pv defines the potential of the point
xv ∈ Xv. Because of (B.2c), these functions are constant over the source and target
sets, and the objective (B.2a) maximizes the potential jump between s and t as in the
classical SPP. Like (B.1b), constraint (B.2b) asks the potential jump along an edge
to be smaller than the edge length. By setting all the potential functions to zero, we
see that the dual problem is always feasible and has nonnegative optimal value.

For the primal-dual pair (5.5) and (B.2), complementary slackness requires

r>u ze + puye − r>v z′e − pvye = ˜̀
e(ze, z

′
e, ye)

for all edges e = (u, v). As for the classical SPP, this is trivially satisfied if ye = 0.
While, for ye > 0, we get r>u z̄e + pu − r>v z̄′e − pv = `e(z̄e, z̄

′
e), with z̄e := ze/ye and

z̄′e := z′e/ye. In words, at optimality, the potential jump along edge e is tight to the
edge length `e at the point (z̄e, z̄

′
e).
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