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Abstract

The goal of this work is to develop a soft robotic manip-
ulation system that is capable of autonomous, dynamic,
and safe interactions with humans and its environment.
First, we develop a dynamic model for a multi-body flu-
idic elastomer manipulator that is composed entirely from
soft rubber and subject to the self-loading effects of grav-
ity. Then, we present a strategy for independently identify-
ing all unknown components of the system: the soft manip-
ulator, its distributed fluidic elastomer actuators, as well as
drive cylinders that supply fluid energy. Next, using this
model and trajectory optimization techniques we find lo-
cally optimal open-loop policies that allow the system to
perform dynamic maneuvers we call grabs. In 37 exper-
imental trials with a physical prototype, we successfully
perform a grab 92% of the time. Last, we introduce the
idea of static bracing for a soft elastomer arm and discuss
how forming environmental braces might be an effective
manipulation strategy for this class of robots. By studying
such an extreme example of a soft robot, we can begin to
solve hard problems inhibiting the mainstream use of soft
machines.

1 Introduction

Industrial-style manipulators have discrete joints and rigid
links. They have been transformative for industrial repetitive
tasks. However, these robots are often considered too rigid
for human-centered environments where the tasks are unpre-
dictable and the robots have to ensure that their interaction
with the environment and with humans is safe. Our goal is to
develop soft robot manipulators capable of autonomous, safe,
and dynamic interactions with people and their environments.
In this paper we present a suite of algorithms for dynamically
controlling a soft fluidic elastomer manipulator acting under
gravity.

Soft robots are designed with a continuously deformable or
continuum body providing the robot with theoretically infinite
degrees of freedom; see review by Trivedi et al. [2008]. Soft
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robots can conform to variable but sensitive environments ex-
emplified by Chen et al. [2006]. They can adaptively manipu-
late and grasp novel objects varying in size and shape [McMa-
han et al., 2006]. And their continuously deformable bodies
allows them to squeeze through confined spaces [Shepherd
et al., 2011]. Additionally, when robots are made entirely from
soft rubber they are extremely resilient to harsh environmen-
tal conditions [Tolley et al., 2014b] and can collide harmlessly
with their environment [Marchese et al., 2014a]. However, the
softer we make robots the less predictable their motions be-
come. Robots made entirely from soft elastomer and powered
by fluids do not yet have well understood models nor plan-
ning and control algorithms primarily because their intrinsic
deformation is continuous and highly compliant. Additionally,
such systems are often underactuated; they can contain many
passive degrees of freedom (DOF), and when driven with low
pressure fluids the available input fluid power is unable to com-
pensate for gravitational loading incurred at appreciable bend
angles.

In this work we provide an approach for dynamically con-
trolling soft robots. That is, an entirely soft fluid-powered
multi-segment spatial robot can be autonomously positioned
to accomplish tasks outside of its gravity compensation enve-
lope. Specifically, we begin by developing a dynamic model
for such a soft manipulation system as well as a computational
strategy for identifying the model. Then, we use this model
and trajectory optimization methods to execute dynamic mo-
tion plans. Through simulation and experiments we demon-
strate repeatable positioning of the aforementioned manipula-
tor to states outside of the statically reachable workspace in
dynamic maneuvers we call grabs (See Fig. 1). For example,
consider a soft manipulator that can safely and dynamically in-
teract with humans by quickly grabbing objects directly from
a human’s hand. Additionally, this type of soft manipulator
is well-suited for safely bracing itself against nearby surfaces,
the same way we humans rest our wrists against a table while
we write. We show that required bracing forces for such a soft
manipulator are generally small compared to a rigid bodied
manipulator and that braces can generally be accomplished on
a wider range of bracing surfaces. To the best of our knowl-
edge, this is the first instance of dynamic motion control for a
soft fluidic elastomer robot.
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(a) Experiment 2 (b) Experiment 3 (c) Experiment 4

Figure 1: Sequenced photographs from experiments two, three, and four.

1.1 Prior Work

Soft robots have continuously deformable backbones that un-
dergo large deformations. This attribute means soft robots are
a subclass of continuum robots, as reviewed by Robinson and
Davies [1999]. However, not all continuum robots are soft and
even continuum robots referred to as soft have varying degrees
of rigidity.

1.1.1 Dynamics and Control for Continuum Robots

Purely kinematic approaches to continuum robot control and
planning work in simulation and when the robot is sufficiently
constrained by the rigidity of its actuators or backbone. For
example, Hannan and Walker [2003] develop novel continuum
kinematics for a hyper-redundant elephant trunk and demon-
strate how these enable capabilities like obstacle avoidance.
Jones and Walker [2006b] and Jones and Walker [2006a] pro-
vide kinematic algorithms for controlling the shape of multi-
segment continuum manipulators. Chirikjian and Burdick
[1995] use a continuous backbone model to plan optimal
hyper-redundant manipulator configurations using calculus of
variations. Additionally, Xiao and Vatcha [2010] introduce a
planar continuum arm planner that enables simulated grasping
in uncertain, cluttered environment.

Dynamic models of continuum robots open the door for a
variety of control techniques. Chirikjian [1994] uses a con-
tinuum approach to model the dynamics of a hard hyper-
redundant manipulator and uses this for computed torque con-
trol. Mochiyama and Suzuki [2002] develop a dynamic model
of a flexible continuum manipulator based on infinitesimal
slices of the arm orthogonal to its backbone. Gravagne and
Walker [2002] dynamically model the Clemson Tentacle Ma-
nipulator, a hard continuum robot, and show a PD plus feed-
forward regulator is sufficient for stabilizing the system. They
further develop a large deflection model and controller in
Gravagne et al. [2003]. Snyder and Wilson [1990] and Wil-

son and Snyder [1988] dynamically model polymeric pneu-
matic tubes subject to tip loading using a bending beam model
but do not use this for control. Using a Lagrangian approach
Tatlicioglu et al. [2007] develop a dynamic model for and pro-
vide simulations of a planar extensible continuum manipula-
tor. Braganza et al. [2007] develop a neural network controller
for continuum robots such as OctArm [McMahan et al., 2005]
based on a dynamic model.

1.1.2 Dynamics and Control for Soft Elastomer Robots

To the best of our knowledge, highly compliant robots whose
bodies are made from soft elastomer and distributed fluidic
actuators have not used dynamic model-based control. Prior
work in this field uses model-free, open-loop control policies,
but because this existing work does not derive control policies
from nonlinear dynamic models these approaches cannot effi-
ciently plan motions for novel tasks without sufficient manual
trial-and-error. Most fluid powered soft robots use model-free
open-loop valve sequencing to control body segment bending.
That is, a control valve is turned on for a user-determined du-
ration of time to pressurize an elastomer actuator and then
off to either hold or deflate the actuator. For instance, there
are soft rolling robots [Correll et al., 2010, Onal et al., 2011,
Marchese et al., 2011] made of fluidic elastomer actuators that
use this control approach. A self-contained, autonomous soft-
bodied fish developed by Marchese et al. [2014c] uses such
a controller to locomote. Also a soft snake-like robot devel-
oped by Onal and Rus [2013] uses this open-loop scheme to
enable serpentine locomotion. Luo et al. [2014] develop and
verify a planar dynamic model for this soft snake but do not
use it for control. Again, Shepherd et al. [2011] use a model-
free open-loop valve controller to drive body segment bending
in an entirely soft multigait robot. Passive control is demon-
strated in an explosive, jumping robot in Shepherd et al. [2013]
and extended to use a valve controller in Tolley et al. [2014a].
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Martinez et al. [2013] develop manually operated elastomer
tentacles containing 9 PneuNet actuators embedded within 3
body segments. There is also an example of controlling a soft
pneumatic inchworm-like robot using servo-controlled pres-
sure described in Lianzhi et al. [2010].

There are several notable examples of soft fluidic elastomer
manipulators. Wakimoto et al. [2009] develop a miniature
soft hand composed of fiberless fluidic micro actuators where
pressurization and vacuuming is driven by a hand syringe.
Cianchetti et al. [2013] present a soft elastomer manipulator
module that can bend bidirectionally and elongate using pos-
itive pressure actuation as well as stiffen using granular jam-
ming. The module is controlled by regulating pressure and
powered by a compressor. Deimel and Brock [2013] demon-
strate robust grasping performance with a novel soft elastomer
hand without using feedback. In these examples, the research
is neither focused on dynamic nor computational control. Pre-
viously, we have demonstrated an approach to motion control
for planar soft elastomer manipulators using closed-loop kine-
matic control in Marchese et al. [2014b,a], but again a dynamic
model was not used in the control strategy.

Open-loop model-free control is also common for soft elas-
tomer robots that do not use pneumatic actuation. For ex-
ample, previous work on soft bioinspired octopus-like arms
developed by Calisti et al. [2010] demonstrate open-loop ca-
pabilities like grasping and locomotion [Laschi et al., 2012,
Calisti et al., 2011]. Umedachi et al. [2013] developed a soft
crawling robot that uses an open-loop SMA driver to control
body bending.

1.2 Contributions

Our work builds on this previous work and aims to enable new
capabilities for soft manipulation. Specifically, this paper con-
tributes the following:

• A dynamic model for a fluid powered manipulator made
entirely from soft elastomer as well as a process for fitting
the model to experimental data;

• Dynamic control algorithms that allow such a soft manip-
ulator operating under gravity to be precisely positioned;

• Manipulation primitives built on these dynamic control
algorithms, grabbing and bracing; and

• Extensive experiments with a physical prototype.

This paper significantly extends an original conference pub-
lication Marchese et al. [2015b] and is organized as follows:
in Section 3 we develop a dynamic model for an entirely soft
fluid powered manipulator whose design is detailed in March-
ese and Rus [2015]. In Section 4 we describe a process for
identifying the manipulator as well as its actuators and drive
mechanisms. Section 5 explores grabbing as a manipulation
primitive. These autonomous dynamic maneuvers enable the
soft arm to reach areas that are statically unreachable due to
gravity. Similarly, this section provides an overview of the
grabbing strategy, an algorithm for planning and executing

grabs, as well as evaluations of this motion primitive in both
simulation and with a physical prototype of the aggregate ma-
nipulation system. Section 6 discusses the strategy of static
bracing as a manipulation primitive. Here, we provide condi-
tions for feasible bracing, an algorithm for planning and ex-
ecuting a simple normal force brace, as well as evaluate this
concept in simulation. Finally Section 7 provides a conclusion
and discussion of future work.

2 Device Overview

To start, we provide the reader with a brief overview of the
soft arm prototype and its drive mechanisms developed by the
authors in Marchese and Rus [2015]. The soft arm is pictured
in an unactuated configuration in the left panel of Figure 2. It
is composed entirely of low durometer rubber and is powered
by fluidic elastomer actuators. These actuators are distributed
throughout the arm’s four body segments and allow each seg-
ment to bend with two actuated degrees of freedom. For more
information on fluidic elastomer actuator designs and fabrica-
tion techniques also refer to Marchese et al. [2015a]. Driving
actuation is an array of fluidic drive cylinders (Fig. 2 right).
These devices consist of a fluidic cylinder at (a) coupled to an
electric linear actuator at (b). They move fluid into and out of
the arm’s soft actuators in a closed circuit and provide continu-
ous adjustment of fluid flow. The actuated region of one of the

Figure 2: Left: A soft continuum manipulator composed en-
tirely from low durometer rubber developed by the authors in
Marchese and Rus [2015]. The manipulator has four indepen-
dently actuatable body segments, each capable of 2 degree of
freedom bending. In this work, an external camera system is
used to localize soft connectors between arm segments shown
in green. Right: An array of high capacity fluidic drive cylin-
ders [Marchese et al., 2014b] used to drive the manipulator’s
distributed fluidic elastomer actuators. Each drive mechanism
consists of a pneumatic cylinder (a) driven by an electric linear
actuator (b). The primary benefits of this drive mechanism are
that it is closed circuit and allows realization of continuously
variable flow profiles.

manipulator’s soft arm segments is observed to bend with ap-
proximately constant curvature κ and bend angle θ (i.e. κ = θ

L )
within a sagittal plane defined by the bend angle orientation γ.
In order to transform from a segment’s base to a point s along
the neutral axis of its actuated region, i.e. s = [0, L] where L
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is undeformed actuator length, we use the following kinematic
model transformation

Sbases = Rz (γ) Tz (LP ) Ry

(
κ s
2

)
Tz (d (κ s)) Ry

(
κ s
2

)
,

(1)
where R and T are rotations and translations about and along
the subscript axes, and LP is the length of the segment’s unac-
tuated region and accounts for deadspace produced by chan-
nel inlets and/or soft end-plate connectors. This model is
consistent with continuum manipulator literature [Webster and
Jones, 2010] and is developed and validated in the context of
the soft fluidic elastomer manipulator in Marchese and Rus
[2015].

The transformation from base to tip of a multi-segment soft
arm composed of N segments confined to a sagittal plane de-
fined by γ can be represented by cascading single segment
transformations together

Mbase
tipN

= Sbasetip (γ, θ1) Sbasetip (0, θ2) · · · Sbasetip (0, θN ) .
(2)

3 Dynamic Model

To begin, we develop a dynamic model. The benefit of us-
ing a dynamic model within the iterative learning control algo-
rithm is that control policies can be generated using a model-
based open-loop policy search algorithm, such as trajectory
optimization, and these are well-suited for underactuated sys-
tems.

3.1 Energetics

Our objective is to write the equations of motion for this soft
fluidic elastomer manipulator. To do this we can first find the
potential, kinetic, and input components of energy for a single
arm segment and then use a Lagrangian approach to derive the
equations of motion with respect to the segment’s generalized
coordinate. A fundamental difference between soft and hard
robot manipulators is in the way energy is stored. In a soft
fluidic elastomer manipulator, input fluid energy is delivered
from a power supply and stored as both strain energy along its
continuum segments Vε and gravitational potential energy Vg .
Both forms of stored energy serve to deform the manipulator
and are transferred to kinetic energy T . However, it is impor-
tant to note that just as in a more traditional robotic system,
not all of the supplied fluidic energy is stored in the robot and
this is primarily due to losses in the transmission system. The
complete energy description is

∫
Vo

0

ps (V) dV = Vε + Vg + Vf + Tr + T. (3)

Here, the left hand side represents the total energy output by a
fluidic power supply. The volume output by the supply is V o

and this volume is a function of time, i.e. V(t) =
∫ t

0
v(t) dt

where v is fluid flow. The supply’s pressure ps is a function
of volume. The right hand side describes how this energy is

expended in the aggregate manipulation system. Due to the
relative compressibility of the transmission fluid, a component
of output energy Vf is stored in the residual volume of the
fluid supply and transmission line and never makes it to the
manipulator. Additionally, a component of delivered energy
Tr is lost due to the resistivity of the fluid transmission line
and viscous fluid friction. This component of energy generally
increases as soft actuators are driven at higher actuation rates
[Marchese et al., 2014c].

3.1.1 Potential Energy of a Segment

Consider a single arm segment deforming in a sagittal plane
defined by a fixed γ. By approximating the center of mass
to be located half-way along the segment’s neutral axis, we
can use Sbase

s to express the center of mass position in R
3 as

(xm (θ), ym (θ), zm (θ)). Bend angle θ is understood to be time
dependent. The gravitational potential energy of the segment
is

Vg (θ) = m g zm (θ) (4)

where m is the segment’s mass and g is the gravitational con-
stant. For a fluidic soft manipulator made of deformable elas-
tomer, a significant component of potential energy is strain
energy. For strain below 60%, we can approximate the stress
strain relationship of the arm segment’s outer layer with a con-
stant elastic modulus E. This was determined from the spe-
cific material properties of the chosen elastomer. With this,
the strain energy developed in an actuated channel is

Vε =
1

2
∨ E ε2 → Vε =

1

2
π t̄ (h̄ + t̄) L E ε2 (5)

where ε is material strain, ∨ is the material volume incurring
strain, and t̄ and h̄ are the wall thickness and diameter of the
actuated channel. In a segment subject to circumferential and
longitudinal strain that deforms under constant curvature, ma-
terial strain ε and bend angle θ can be related by decomposing
the actuated region into J cross-sectional x-y slices of z-axis
length w as outlined in Marchese and Rus [2015] and the law
of cosines

ε j =
h̄ j

w j

√
2 − 2 cos θ j ∀ j = 0 .. J → ε =

h̄
w
θ. (6)

There are several important observations that allow us to ex-
press this relationship between ε and θ: First, the dimensions
of each slice are uniform under the aforementioned constant
curvature assumption. Second, in general h̄ is not constant,
but rather changes as a function of strain h̄(ε ) and this is con-
sistent with the analysis contained in Shepherd et al. [2011]
where pneumatic channels similar to the type described here
increase in stiffness and potential energy when pressurized.
However, we observe that after undergoing initial circumfer-
ential expansion, the diameter of the actuated channels here
changes little. Approximating the diameter h̄ to be constant is
valid to describe the regime of operation after the initial cir-
cumferential change. Lastly, using the small angle approxima-
tion cos θ ≈ 1− θ2

2 for the argument θ
J where J is chosen such
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that the approximation is valid, we can linearize the relation-
ship between ε and θ in order to arrive at a constant stiffness
coefficient and help reduce the complexity of the model.

Now, we can write strain energy in the segment as a function
of bend angle

Vε (θ) =
1

2

(
π t̄ (h̄ + t̄) L E h̄2

w2

)
θ2 → Vε (θ) =

1

2
k θ2,

(7)
where k is an effective stiffness for the generalized coordinate
θ. The total potential energy of the arm segment in the sagittal
plane defined by γ is V (θ) = Vg + Vε .

3.1.2 Kinetic Energy of a Segment

The total kinetic energy T of a soft segment within the sagittal
plane as a function of the generalized coordinate is

T (θ) =
1

2
m

(
∂xm
∂t
+
∂zm
∂t

)2
(8)

3.1.3 Input to a Segment

We develop an independent generalized force τ that acts on an
arm segment by differentiating the total potential energy with
respect to the generalized coordinate, i.e. τ = ∂

∂θ V

τ = k θ + a g Lm cos

(
θ

2

)
θ − 1

4
g L m sin

(
θ

2

) (
−1 + a θ2

)
(9)

We can substitute in the approximations sin
(
θ
2

)
≈ θ and

cos
(
θ
2

)
≈ 1 − 1

8θ
2 with less than 5% error at θ equal to 50◦

and 100◦ respectively

τ = k θ +
1

8
(1 + 8 a) g L m θ − 1

4
a g L m θ3. (10)

This approximation will help simplify the identification pro-
cess in Section 4.3. Next, we can express the change in chan-
nel volume Vc as a function of material strain and, because of
our aforementioned strain assumption, a function of θ

Vc =
1

2

π h̄2

4
L ε → Vc =

π h̄3 L
8w

θ. (11)

Substituting this into the generalized force yields:

τ = −128 a g m w3

L2 π3 h̄9
V

3
c +

(
8 k w

π h̄3 L
+

(1 + 8 a) g m w

π h̄3

)
Vc ,

(12)
revealing that there is a cubic relationship between the gener-
alized force and the change in channel volume.

3.2 Multi-Segment Equations of Motion

We can write the equations of motion for a multi-segment soft
manipulator using multiple generalized coordinates as follows.
The center of mass position of the n th soft segment is repre-
sented by Pn and can be expressed as

Pn = Mbase
tipn−1 Sbase

Ln
2

0 ∀ n = 1 .. N, (13)

where 0 is a vector of zeros. The total kinetic energy of a
manipulator with N segments is

T =
N∑
n=1

1

2
mn

d
dt
Pn · d

dt
Pn . (14)

And the total potential energy is

V =
N∑
n=1

1

2
kn θ

2
n + g

N∑
n=1

mn Pn · k̂. (15)

Using the Lagrangian L = T − V , N independent nonlinear
equations of motion can be written, one for each generalized
coordinate

d
dt
∂L

∂θ̇n
− ∂L
∂θn
= τn − bn θ̇n ∀ n = 1 .. N. (16)

where b is a damping term used to account for the non-
conservative nature of the generalized forces. The soft robot
dynamics can now be written in traditional manipulator equa-
tion form

H(θ) θ̈ + C
(
θ, θ̇

)
θ̇ +G(θ) = B τ. (17)

Figure 3 provides an illustration of this model for a soft ma-
nipulator composed of four segments. The sagittal plane is
defined by a traditional rotational degree of freedom γ located
at the manipulator’s base. In the most general case, the dy-
namic model is parameterized by four generalized coordinates
θ1 . . . θ4 and four corresponding segment masses m, general-
ized stiffnesses k, and damping coefficients b. Additionally
there are three generalized input forces τ.

xB

yBzB

xγ

yγ

m1

m2

m3

m4

γ

g

Sagittal Plane
k1

k2

k3

k4

τ2

τ3

τ4

Figure 3: Visualization of the multi-segment soft manipulator
model. The base frame is rotated by γ by a traditional rota-
tional degree of freedom and defines the sagittal plane within
which the manipulator moves. The first soft segment is unac-
tuated.

4 System Identification

In order to use the dynamic model developed in Section 3 for
automated control we must first develop a strategy for identi-
fying the model’s unknown physical parameters. In addition
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to this, we must also define an approach for identifying an ac-
curate model for the manipulator’s soft actuators as well as
its drive mechanisms. In this section we first present a high-
level algorithm used to identify the aggregate manipulation
system composed of three distinct subsystems: fluidic drive
cylinders, distributed soft actuators, and the soft manipulator.
Then, we look specifically at how these unknown model pa-
rameters arise from each subsystem.

4.1 Approach Overview

Identification of the aggregate dynamical manipulation sys-
tem arm is performed by iteratively adjusting a parameter
set p such that a model instantiated from p follows the same
N-segment endpoint Cartesian trajectory as measured on the
physical system. Specifically, we do this by solving the non-
linear optimization within Algorithm 1 for a locally optimal
parameter set p∗. Here, En, i is a discrete trajectory of the

Algorithm 1: System Identification

min
p

∑
i

N∑
n=1

‖arm .FORWARDKINn (xi ) − En, i ‖

subject to arm ← UPDATEMODEL(p)

x(t ) ← SIMULATE
(
u(t ), arm, [0, t f ], x0

)
,

i = 
 t
dt
� ∀ t = 0 .. t f .

And initial conditions x0 are found according to

x0 = min
x

N∑
n=1

‖arm .FORWARDKINn (x) − En, 0 ‖

subject to xmin
n ≤ xn ≤ xmax

n ∀ n = 1 .. N .

measured cartesian endpoint coordinates of the n th arm seg-
ment. The manipulator state trajectory x(t) is composed of
segment bend angles θ and corresponding velocities θ̇. The
function FORWARDKINn uses the multi-segment transforma-
tion to return the cartesian endpoint coordinates of the n th arm
segment. The function UPDATEMODEL instantiates arm ac-
cording to the parameter set p and the function SIMULATE for-
ward simulates the response of the dynamic model to input
trajectory u(t) over the time interval t = [0, t f ] from initial
conditions x0.

The aggregate manipulation system arm consists of four
fluidic drive cylinder pairs (Figure 2 right panel) connected
to eight fluidic elastomer actuators distributed within the soft
manipulator. We break this aggregate system into three distinct
subsystems with the following input→ output relationships:

1. Fluidic Drive Cylinders:
reference inputs u→ cylinder displacements V s

2. Fluidic Elastomer Actuators:
cylinder displacements Vs → generalized torques τ

3. Soft Manipulator:
generalized torques τ → manipulator states x

Both the dynamic manipulator model and system identi-
fication algorithm were implemented using Drake [Tedrake,
2014], which is an open-source planning, control, and analy-
sis toolbox for nonlinear dynamical systems.

4.2 Fluidic Drive Cylinders

Volumetric fluid changes to each agonistic pair of embedded
channels within a soft arm segment are controlled by a pair of
position-controlled fluidic drive cylinders, a device developed
by the authors in Marchese et al. [2014b]. In this work we
further develop and identify the device’s dynamic model. Each
pair is identified as an independent subsystem, and under the
sagittal plane assumption N of these subsystems are required.

The input to each subsystem is u, a reference differential
volumetric displacement to the position controlled cylinder
pair and the output of each subsystem is V s , the differential
volumetric displacement of the cylinders. One of two iden-
tical cylinders in the pair is driven at a time and pressurizes
either half of the attached bending segment.

To experimentally identify this subsystem we conduct sev-
eral trials of the same experiment. The experiment consists of
exciting the system with a reference wave u(t) that is the sum-
mation of W sinusoidal waves with randomized phase delays
φ, frequencies ω, and amplitudes aw randomly sampled from
a Bretschneider wave spectrum S+(ω) with peak frequencyωp

of 2 π and significant wave height ζ equal to twice the maxi-
mum displacement Vmax .

u(t) =

W∑
i=1

awi sin (ωi t + φi ), (18)

S+(ω) =
1.25

4

ω4
p

ω5
ζ2 exp

(
−1.25

(ωp

ω

)4)
. (19)

We fit a second order state space model to measured input-
output data from one of five trials and then validated the model
prediction against the remaining four trials. An example verifi-
cation is shown in Figure 4. The identification and verification
process was repeated for each of the 4 cylinder pairs used in
later experiments.

4.3 Fluidic Elastomer Actuators

To identify the dynamics of the arm’s soft actuators, we rely
on the predicted cubic relationship between internal channel
volume Vc and generalized torque τ as developed in Section
3.1.3. Also, the relationship between piston pressure p s and
channel volume Vc indicates a delay due to the impedance of
the fluid transmission line. Combining these effects, we define
a simplified identifiable model in the form

τ(t) = cV3
s (t − td ) . (20)

The model constants c for each actuator pair and a single t d
are added to the main algorithm’s parameter set p for identifi-
cation, as the soft actuators are subject to dynamic fatigue and
their performance is susceptible to change over time.
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Figure 4: Example experimental identification of a position
controlled fluidic drive cylinder subsystem. The identification
process consists of exciting each independent subsystem with
several randomized wave profiles and fitting and verifying a
two state LTI black-box model to measured input-output data.
Top: model predicted and measured output in blue and red
respectively. Bottom: subsystem input.

To validate this input output relationship, we again perform
several trials of the aforementioned experiment, this time de-
riving actuator torque through a custom apparatus that mea-
sures the blocked tip force exerted by a segment fixed at its
base. Figure 5 shows an example input-output identification
for this subsystem.
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Figure 5: Example experimental identification of a soft actu-
ator subsystem. Again the identification process consists of
exciting each independent subsystem with several randomized
wave profiles, but here we fit and verify a two parameter non-
linear model to measured input-output data. Top: model pre-
dicted and measured output in blue and red respectively. Bot-
tom: subsystem input.

4.4 Soft Manipulator

The manipulator’s dynamic model is symbolically parameter-
ized by N masses m, stiffnesses k, and damping coefficients
b. In the actuated case, there are also N additional actuator

parameters, N − 1 unknown coefficients c and a single time
delay td . To reduce the parameter set p from 4 N parameters
to 2 N + 2 parameters we make the following observations:
according to the expression for Vε in Section 3.1.1 stiffness
changes linearly with channel length L and therefore we can
replace k with Li

L1
k where i is the segment index and k is a

single unknown stiffness. Furthermore, we hypothesize the
non-conservative components of force b θ̇ are similar along the
length of the arm, therefore we approximate the coefficients b i

to be equal ∀ i.
Measurements provided a coarse estimate of each parame-

ter in p. The identification algorithm, Algorithm 1, then freely
adjusts these parameters. Initial mass and stiffness parameters
were bound by a ±38% and ±23% change respectively, and the
damping coefficient was adjusted on the interval [1, 5] · 10−3.
Multiple identifications were performed using random pertur-
bations in the initial parameter set. Table 1 summarizes the
results 4 trials and Figure 6a shows an example initial and
final aggregate positional error between measured and simu-
lated segment endpoints over time. When summed over time
this is the algorithm’s objective function.
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Table 1: Identification of Passive Arm

p cost
m1 m2 m3 m4 k b

∑
i

∑
n

(kg) (N m) (N m s) (m)
Initial 0.21 0.17 0.085 0.065 0.12 2.0·10 −3 10

Final
0.190 0.146 0.090 0.090 0.108 4.2·10 −3 0.969
±0.012 ±0.001 ±0.002 ±0.003 ±0.003 ±0.1·10 −3 ±0.004
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Figure 6: At (a) the positional error between measured and
simulated endpoints summed over segments both for the ini-
tial parameter set (dashed line) and final parameter set (solid
line) over time. At (b) the initial pose of the arm is shown at
θ̇ = 0. Measured segment endpoints are shown in red and the
modeled neutral axis of the arm is shown in black. The black
circles indicate the approximated center of mass locations.
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5 Grabbing

5.1 Grabbing Overview

A primitive enabled by the developments in Sections 3 and 4 is
grabbing. Grabbing is defined as bringing the arm’s end effec-
tor to a user specified, statically unreachable goal point with
near zero tip velocity. Grabbing is an advantageous strategy to
employ during manipulation as it enables the soft arm to reach
areas that are statically unreachable due to gravity.

There are several major challenges that arise when trying to
autonomously move the soft manipulator. First, we leave the
top segment unactuated to accommodate external loads act-
ing on the distal segments. Second, the system is tightly con-
strained by generalized torque limits. That is, the low operat-
ing pressures of the fluidic actuators in combination with their
very low durometer rubber composition equate to constraints
on input forces. To exemplify this problem consider the fol-
lowing search for feasible solutions that statically position the
arm’s end effector to a goal point in task space

find s.t. C − B τ = 0,

τ, θ ‖arm.FORWARDKINN (θ) − Goal‖ − ε = 0,

τmin
m ≤ τm ≤ τmax

m ∀m = 1 ..M,

θmin
n ≤ θn ≤ θmax

n and θ̇n = 0 ∀ n = 1 .. N.
(21)

By looking for solutions to goal points in the vicinity of the
end effector, we quickly bring to light the limitations of a
purely kinematic approach to motion planning for this class
of manipulators subject to gravity. Figure 7 depicts feasible
static solutions in green for identified arms under estimated
torque limits.

5.2 Grabbing Algorithms

We develop an algorithm, Algorithm 2, that can plan and exe-
cute a grab maneuver. The algorithm uses trajectory optimiza-
tion to both plan a locally-optimal policy in generalized torque
space as well as to determine an optimal input trajectory to the
aggregate manipulation system to realize this policy. The tra-
jectory optimizations were implemented using Drake Tedrake
[2014]. Algorithm 2 can be interpreted as an iterative learn-
ing control, which after a couple grabbing attempts is able to
successfully perform the desired maneuver.

Algorithm 2: Iterative Learning Control

arm0 ← SYSTEMID (xm (t), u(t)).
i = 0.
while Goal is not met do
Π ← TRAJOPT (armi , Goal).
u(t) ← INVERTACTUATORS (armi , Π).
xm (t) ← RUNPOLICY (u(t)).
armi+1 ← SYSTEMID (armi , xm (t), u(t)).
i + +.

end
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Figure 7: Feasible static solutions for an identified soft ma-
nipulator under estimated torque limits. The solid blue lines
represent the initial state of the manipulator. Dark and light
green circles indicate points that were statically reachable un-
der the torque limits of |τ | = [0.13, 0.13, 0.13, 0.13]T and
|τ | = [0, 0.12, 0.13, 0.18]T respectively.

Here, xm (t) represents a measured state trajectory of the
soft manipulator over the time interval t = [0, t f ], u(t) is the
reference input trajectory to the manipulation system, and Π
represents a matrix of locally-optimal generalized torque and
state trajectories. The function SYSTEMID describes the iden-
tification process in Section 4, the functions TRAJOPT and IN-
VERTACTUATORS embody processes described in Subsections
5.2.1 and 5.2.2, and RUNPOLICY represents executing the ref-
erence input policy u(t) on the physical manipulation system.

5.2.1 Trajectory Optimization

We use a direct collocation approach to trajectory optimization
von Stryk [1993] in line 4 of Algorithm 2. In short, this is a
model-based open-loop policy search that finds a feasible input
trajectory that moves the manipulator from an initial state to a
goal state given both input and state constraints. The policyΠ
can generally be a function of both state and time, but in this
case is parameterized by M × t f

dt free parameters α where M
is the number of inputs and dt is a discrete time step

Πα (x, t) = αm, i ∀m = 1 ..M, (22)

i = 
 t
dt
� ∀ t = 0 .. t f . (23)

In the case of the soft manipulator each α is a generalized
torque τ for each actuated segment augmented with the ma-
nipulator’s state vector at each time step

Πα =

⎡⎢⎢⎢⎢⎣

τ0 τ1 τ2 . . . τ t f
dt

x0 x1 x2 . . . x t f
dt

⎤⎥⎥⎥⎥⎦
. (24)
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The following trajectory optimization is performed to identify
a locally-optimal policy Π∗α

Π∗α = min
α

∑
i

g(xi , τi ) ⇐ Objective Function

subject to 0 = xi − f (xi−1,τi−1) dt − x0 ∀ i = 1 ..
t f
dt
,

0 = h(x t f
dt

), ⇐ Enforce Tip Motion

τmin
m ≤ τm,i ≤ τmax

m and τm, 0 = 0 ∀m, ∀ i,

θmin
n ≤ θn, i ≤ θmax

n ∀ n, ∀ i,

θn, 0 ← measured and θ̇n, 0 = 0 ∀ n.
(25)

The first line of constraints forces the policy to obey the ma-
nipulator’s dynamics and leverages a sequential quadratic pro-
gram’s ability to handle constraints. The second line consists
of general nonlinear constraints enforced at the last point in
the trajectory t = t f . In the specific case of performing a grab
we formulate h as follows:

hp = ‖arm.FORWARDKINN (θ) − Goal‖ − εp , (26)

hv = ‖arm.FORWARDVELN

(
θ , θ̇

)
‖ − εv , (27)

where hp constrains end effector position to the goal point and
hv constrains end effector velocity to be near zero at the point
in time the goal is reached. In both constraints ε represents a
definable error tolerance.

For the task of grabbing, the objective function g() can
be used to minimize end effector velocity at t f , i.e. taking

the form g
(
x t f

dt

)
= ‖arm.FORWARDVELN

(
x t f

dt

)
‖. Alterna-

tively, g() can be used to find a minimal effort policy and take
the form g (τ i ) = τT

i R τi , where R is a scalar weight.

5.2.2 Inverting Actuators

The manipulator’s motion is planned in reference to its gen-
eralized torques. Using the soft actuator model developed in
Section 4.3, this motion plan can be expressed in reference to
cylinder displacements V

m
s , where superscript m denotes an

individual cylinder model for each input

V
m
s (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪
⎩

−12/3 τ1/3
m (t )

a1/3
m

: τm (t) ≤ 0

τ1/3
m (t )

a1/3
m

: τm (t) > 0
(28)

Since the target motion plan V
∗
s (t) is a volume profile, many

alternative drive systems can be used to realize the manipu-
lator’s trajectory, e.g. high pressure gas and valves Marchese
et al. [2014c], rotary pumps Onal and Rus [2013]Katzschmann
et al. [2014], or fluidic drive cylinders Marchese et al.
[2014b]Marchese et al. [2014a]. In this work we use fluidic
drive cylinders and this approach allows us to closely match
the prescribed volume profile. To effectively invert the LTI flu-
idic drive cylinder model, developed in the Section 4.2, we use
M direct collocation trajectory optimizations. In these prob-

lems

Πm
α =

⎡⎢⎢⎢⎢⎢⎣

um
0 um

1 um
2 . . . um

t f
dt

xm0 xm1 xm2 . . . xmt f
dt

⎤⎥⎥⎥⎥⎥⎦
. (29)

And the following optimization, performed for each cylinder
model, identifies a locally-optimal reference input u∗(t). The
superscript m has been omitted for convenience

Πα
∗ = min

α

∑
i

‖Vs (i) − Cxi +D ui ‖ ⇐ Track V Profile

subject to 0 = xi − (Axi−1 + B ui−1) dt − x0 ∀ i = 1 ..
t f
dt
,

umin ≤ ui ≤ umax ∀ i and x0 = 0.
(30)

It is important to note that the locally-optimal input trajec-
tories u∗(t) returned by the above optimization represent the
best realization of a given volume profile subject to the dy-
namic limitations of the drive mechanism. For example, areas
of high-frequency oscillation within τ ∗(t) can result in signif-
icant localized tracking errors. As a solution, if the discrep-
ancy between simulated model output and volume profile, i.e.
‖Vs (t) − Cx(t) + Du(t)‖, exceeds an experimentally deter-
mined threshold for some span of time, we simply rerun the
policy search procedure with a randomized τ(t) until a suit-
able realization is found. Alternative solutions may include
planning directly in u space; however, this requires a single
optimization to handle a dynamic model of the entire manipu-
lation system, i.e. manipulator, actuator models, and cylinder
models.

5.3 Grabbing Evaluations

5.3.1 Simulations

To validate this approach to dynamic motion planning for the
soft arm, we run direct collocation trajectory optimization on
an experimentally identified model of the arm. We find a min-
imal tip velocity open-loop policy that executes a grab. Figure
8 depicts four different grab states (A-D) and Figure 9a-9d
shows corresponding locally optimal policies generated by the
planning approach. Table 2 lists the goal points and corre-
sponding positional errors, or the error between the manipula-
tor’s simulated end effector position at t f and the goal point,
as well as simulated end effector velocity at t f for seven trials
per goal point. Positional errors and velocities that exceed ε p
and εv are explained by the fact that the trajectory optimiza-
tion only enforces dynamic constraints every dt, initialized at
80 ms, which is orders of magnitude greater than the time step
used to integrate the manipulator’s equations of motion in the
approximately continuous time simulation.

5.3.2 Experiments

In order to experimentally validate the outlined approach for
grabbing with a soft and highly-compliant arm, we conduct
multiple trials of four experiments, summarized in Table 3 and

10



−0.3 −0.2 −0.1 0 0.1 0.2 0.3

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

x [m]

z 
[m

]

D

A

B C

Figure 8: The neutral axis of an experimentally identified
model of a four segment soft manipulator is shown in blue
at four different grab states (A-D), where the goal position of
the grab is shown in red. Green points represent goal positions
that are statically feasible under the estimated torque limits of
|τ | = [0, 0.12, 0.13, 0.18]T.
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Figure 9: The corresponding locally optimal generalized
torque trajectories (a-d) for each of the grab states shown in
Figure 8 (A-D), respectively. The input trajectory to segment
2 is shown in red, segment 3 in black, and segment 4 in blue.

Table 2: Dynamic motion planning with direct collocation

R = 0.1 R = 0.01
Goal Coordinates Error Velocity Error Velocity

(cm) (cm) (cm ·s−1) (cm) (cm ·s−1)
A (-25, -45) 1.1 1.4 1.1 ± 0.2 1.5 ± 1.2
B (15, -35) 1.1 2.4 0.8 ± 0.4 2.7 ± 1.0
C (20, -40) 0.9 0.1 1.0 ± 0.1 0.8 ± 0.4
D (-30, -30) 1.7* 7.6* 0.9 3.7

εp = 1 cm and εv = 2 cm ·s−1 in all cases.
*Solver terminated after numerical difficulties.

shown within the video in Extension 1. The goal of these ex-
periments is to have the aggregate manipulation system au-
tonomously perform a grab maneuver. A successful grab is
defined as attaching to and removing a 4 cm diameter table
tennis ball from a holder at the goal position; refer to Figure
1. Locally-optimal input trajectories u∗(t), as determined in
Section 5.2.2, are executed on the aggregate manipulation sys-
tem. Trials reported in Table 3 and Figure 10 occurred after
successful completion of Algorithm 2. The arm’s torque lim-
its are controlled and varied between experiments, i.e. experi-
ments one and two to three and four. Among these groups goal
location is also controlled for and varied, i.e. one to two and
three to four. In experiments one and two the ball, represented
as the black circle in Table 3, is fixed at the user specified
goal location around which the plan is derived. In experiments
three and four the ball location underwent an initial one-time,
experimentally determined adjustment by 2 cm to ensure it
corresponded to the simulated realization of the plan, which
considers the dynamic limitations of the fluidic drive system.
Important simplifications: In these evaluations the unactuated
regions between segments Lp were assumed zero. Addition-
ally, for model stability purposes, the center of mass locations
were redefined as

Pn = Mbase
tipn−1 Rz (γ) Tz (LP ) Ry

(
κ s
2

)
Tz

(
d (κ s)

2

)
0 ∀ n.

(31)
This adjustment effectively amplifies center of mass motion

as segment curvature increases; However, for segment curva-
tures achieved during these experiments, this model assump-
tion captures the dynamics of interest.

The aggregate system was able to successfully grab the ball
in approximately 92% of trials. Experiments one and two
were performed consecutively. Although 2 iterations of sys-
tem identification were performed on the actuator model pa-
rameter set during experiment one, no additional identifica-
tions were performed during experiment two. Similarly, exper-
iments three and four were performed consecutively and two
identifications were required during experiment three and one
during experiment four. Figure 10 shows the cartesian state
trajectories of the manipulator’s end effector for each experi-
ment. The left and right figures show x and y velocity versus
position, respectively. Multiple trial trajectories are overlaid
on each figure and these trajectories originate from the origin
and terminate at red markers. Trials for which motion capture
data was lost for a significant portion of time were omitted.
This occurred when the end-effector endpoint was misinter-
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preted as the ball center-point and is a limitation of the exper-
imental setup. Raw end effector velocity measurements were
filtered using a 5-point moving average, removing jitter from
numerical differencing.
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Figure 10: Cartesian state trajectories of the manipulator’s end effector for each experiment. The left and right figures show x
and y tip velocity versus position, respectively. The trajectories of independent trials for each experiment are overlaid in black.
These trajectories originate from the origin and terminate at red markers indicating t = t f . The vertical blue lines represent
planned end-effector realizations ± 2 cm.
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(h) Segment 4

Figure 11: Experimental characterization of a dynamic grab maneuver performed with a four segment soft manipulator. Panels
(a) and (b) depict the planned and realized manipulator motion in cartesian space respectively. In panel (a) the manipulator’s
predicted neutral axis is shown in blue and blue circles represent modeled center of mass locations. Here, green points represent
a set of statically reachable points under estimated torque limits |τ | = [0.08, 0.07, 0.09, 0.13]T and the red point represents the
goal point of the maneuver. In (b) blue and red represent simulated and experimentally measured realizations of the ideal
motion plan presented in (a). In panels (c)-(e) the locally optimal reference input trajectories u ∗ (dotted line), the target
piston displacements V∗s (blue line), and the realized piston displacements VR

s (red line) are shown for segments 2, 3, and 4
respectively. Similarly, in panels (f)-(h) the locally optimal torque trajectories τ ∗ (blue) and realizations τR (red) are again
shown for each actuated segment.
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Table 3: Summary of Grabbing Experiments

Exp. Sys Consecutive Successful Plan Realization
# IDs Attempts Grabs at t = t f

1 2 10 10
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4 3

2 0 10 9†

3 2 5 4�

4 1 12 11�

† Actuator burst during 10th attempt.
� A successful grab occurred after the failed attempt.

6 Bracing

Static bracing is a motion primitive enabled by the develop-
ment of an identified dynamic model for the soft manipulation
system in Section 4. By understanding the system’s dynam-
ics we can devise a planning algorithm that searches for and
executes an environmental brace during a manipulation task.
This is similar to the way humans rest their wrists against a ta-
ble while writing. By statically bracing against nearby objects,
we are able to ground the manipulator at a point between its
base and end-effector, effectively reducing the contribution of
dynamic forces and uncertainty from some number of manip-
ulator segments on the primary manipulation task, e.g. end
effector movement.

The concept of bracing for manipulation was first intro-
duced in the 1980s [Book et al., 1985]. Bracing strategies with
rigid body manipulators can involve physically fixing a distal
point on the manipulator to a bracing surface (e.g. using suc-
tion, mechanical clamps, or magnets), but these approaches re-
quire additional hardware limiting the surfaces against which
the manipulator can brace. Alternatively, normal force, or the
component of contact force normal to the bracing surface, can
be used to form braces as in Lew and Book [1994]. Here, a hy-
brid force-position controller is developed to mitigate the con-
trol complexity arising from normal force bracing. Despite the
complexity, normal force bracing is a more universal strategy
in that it only requires a suitable bracing surface to lie within
the null space of the manipulator. Additionally, bracing strate-
gies with probabilistic contact estimation [Petrovskaya et al.,
2007] and multiple contact controllers [Park and Khatib, 2008]
have been developed for rigid body manipulators. It is evident
that for such manipulators contact force must be controlled to
prevent damage to both the robot and the environment.

Here, we show that bracing is also a feasible and effective
strategy for soft fluidic elastomer manipulators. With such a
soft manipulator the required bracing force is generally small
relative to that of a traditional rigid body manipulator for a

given task. For tasks requiring high bracing forces, a soft flu-
idic elastomer manipulator will safely undergo elastic defor-
mation before the bracing surface for a wider range of surfaces
than a more traditional manipulator.

6.1 Limitations

We do not provide a dynamic model that considers contact, nor
do we have knowledge of the contact forces through sensing.
Rather, the intent of this section is to show that the presented
dynamic model and planning infrastructure is sufficient to ac-
complish simple normal force bracing at an arm segment’s
endpoint. Specifically, we make the assumption that the piece-
wise constant curvature modeling assumption remains valid
despite the kinematic constraints imposed by the brace.

6.2 Bracing Conditions

We outline three criteria for the static bracing strategy and
these conditions help to illustrate the differences in employ-
ing this manipulation primitive with a soft elastomer robot as
opposed to with a more traditional rigid body manipulator.

6.2.1 Condition 1

The contact force between the robot and object must be of suf-
ficient magnitude to form a static brace. Figure 12 illustrates
this concept. We assume the surface of the robot and the sur-
face of the object come into contact and that they are non-
moving. We can relate the normal force Fn , or the component
of contact force normal to the bracing surface at ◦

a, the brace
position and orientation, and the friction force F f as

Ff ≤ μs Fn , (32)

where μs is the static coefficient of friction between the two
surfaces. Accordingly, μs Fn is the threshold below which the
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robot’s tangential force Ft will not break the static brace. That
is,

Ft < μs Fn . (33)

Components of force due to end-effector interactions as well
as due to the robot’s actuators compose Fn and Ft .

In general, the soft fluidic elastomer robot presented in this
work can statically brace with less contact force than a hard
robot. The soft robot is composed of low durometer silicone
rubber and this material has a high coefficient of static friction
when in contact with solids [ToolBox]. During normal force
bracing, a rigid body robot is coated with a wear resistant sur-
face [Book et al., 1985], which has a low coefficient of static
friction when in contact with solids [ToolBox]. For example,
teflon in contact with steel has a μs of between 0.05 and 0.20
[ToolBox] whereas soft silicone rubber in contact with steel
has a μs of between 0.6 and 0.9 [Mesa Múnera et al., 2011].
It follows that for a given tangential force Ft , a hard robot will
have to exert a force on the object of between 3 and 18 times
greater than a soft robot to maintain a static brace.

Ff

Ft

Fn å

Object

Robot

Figure 12: Illustration of normal force bracing where the first
condition is that contact force between the robot and object
must be of sufficient magnitude to form a static brace.

6.2.2 Condition 2

The normal force at the static brace point should not deform
the object. The motivation behind this condition is that the
robot should not damage the environment by bracing. Fig-
ure 13a schematically represents the local interaction between
the robot and object. The normal force Fn radially compresses
both the robot and the object, whose local stiffnesses are rep-
resented by kR and kO respectively. The condition can then be
written as kO >> kR . This relationship implies that the robot
will deform well before the object deforms. For an entirely
soft robot this condition is satisfied over a wider larger range
of objects than for a rigid body manipulator with mechanical
compliance. For example, Figure 13b depicts the radial stiff-
ness, normal to the bending axis, of a robot made entirely of
silicone rubber. The robot’s radial stiffness is approximately
1 N

mm . Additionally, the torsional stiffness between the base
and brace point is approximately 0.2 N

rad . To the best of our
knowledge, the stiffness of a soft fluidic elastomer robot is

Fn

kR kO

ObjectRobot

(a)

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

8

Displacement [mm]

C
om

pr
es

si
on

 F
or

ce
 [N

]

 

 

(b)

Figure 13: (a) A simplified model of the local interaction be-
tween the robot and object. (b) Radial stiffness, normal to the
bending axis, of a robot made of silicone rubber.

lower than a rigid body manipulator with mechanical compli-
ance.

6.2.3 Condition 3

There must exist a pose
◦
a on and tangential to an object’s sur-

face O and a set of joint space parameters θ and γ such that
the task space is contained within the workspace, or reachable
envelope, of the manipulator and

◦
a is within the nullspace.

Figure 14 illustrates the kinematic conditions for static brac-
ing. Here the task space is shown as a square region, the brac-
ing object O is shown as a sphere, and the soft robot is com-
posed of multiple cylindrical bending segments.

6.3 Bracing Algorithm

Having outlined the conditions required for bracing, we next
devise a planning algorithm that satisfies these conditions and
allows the soft elastomer manipulator to execute an environ-
mental brace. To begin, consider a soft manipulator whose dy-
namics can be represented in the manipulator form as outlined
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Figure 14: A depiction of the third kinematic condition for
static bracing

in Section 3

H(θ) θ̈ + C
(
θ, θ̇

)
θ̇ +G(θ) = B τ +

∂φ

∂θ
λ, (34)

φ(θ) = 0, (35)

where λ are external forces defined by static brace constraints.
We propose finding a feasible static brace pose ◦

a by solving
the following optimization,

min

τ,θ,γ,
◦
a

τT R τ ⇐ Minimal Effort

subject to G − ∂φ

∂θ
λ − Bτ = 0, ⇐ Gravity and Contact Comp

‖arm .FORKINN (θ, γ) − Goal ‖ = 0, ⇐ Task

‖arm .FORKINN−n (θ, γ) − ◦a‖ = 0, ⇐ Brace Constraint

τmin
m ≤ τm ≤ τmax

m ∀m = 1 .. M,

θmin
n ≤ θn ≤ θmax

n ∀ n = 1 .. N,

γmin
n ≤ γn ≤ γmax

n ,

θ̇n = 0,

γ̇n = 0.
(36)

Algorithm 3 uses the optimization outlined in Equation 36
as well as a classical controller for each generalized coordinate
of the soft arm to perform the primary task of positioning the
manipulator’s end effector while accomplishing the secondary
task of bracing an intermediate segment’s endpoint against a
nearby surface if possible. For simplicity, we again operate
within a sagittal plane defined by γ1 and fix γ2 . . . γN = 0.
The task space is simply a Goal point in R

3.

Algorithm 3: Static Brace Strategy
n = 1.
while A feasible solution does not exist do

θ∗, ◦a∗ ← Find an optimal static brace solution using (36) (refer to
Section 6.2.3).
n + +.

end
Move into contact with the object at ◦a∗ by servoing the proximal N − n
segments to θ∗1 . . . θ∗n .
Apply normal force to object (refer to Section6.2.1).
Replan optimal solution for reaching goal using (36) with the added
constraints of θ∗1 . . . θ∗n equaling the measured arc space configuration.

Move to goal by servoing the distal n segments to θ∗n+1 . . . θ∗N .

6.4 Bracing Evaluations

6.4.1 Simulations

To evaluate the strategy of static bracing for a soft elastomer
manipulator, we simulated Algorithm 3 on an identified model
of the manipulator but with increased generalized input limits.
The objective of the simulations is to demonstrate the forma-
tion of a simple environmental brace. The arm was servoed
during steps 2 and 5 of the simulation using a PD controller
for each arm segment. During step 3, we assume the arm is ca-
pable of satisfying Condition 1 without simulating the contact
force, and in order to simulate the effect of contact we increase
the friction, or damping coefficient, acting on the braced seg-
ments once the Brace Pose Constraint is satisfied. The results
of the simulation are shown in Figures 15. The top 3 panels
of Figure 15 show an example of a static brace formed at the
endpoint of the second link of a four link manipulator. The
left panel illustrate steps 1 through 3 of Algorithm 3 occurring
over 5 seconds. Here, the black circle represents the object,
the blue curves represent the neutral axis of the 4-link soft ma-
nipulator overlaid at one second intervals, and the small red
circle represents the goal location of the end effecter. The cen-
ter panel illustrates steps 4 and 5 of Algorithm 3 where the
manipulator executes its primary task of moving the end ef-
fector to the goal. The neutral axes are overlaid at 0.5 second
intervals. The right panel depicts the arm moving to the goal
location in the absence of a nearby object, where a brace strat-
egy is not feasible.

17



−0.2 −0.1 0 0.1 0.2

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

x [m]

z 
[m

]

−0.2 −0.1 0 0.1 0.2

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

x [m]
−0.2 −0.1 0 0.1 0.2

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

x [m]

Figure 15: Simulation of static bracing with a soft elastomer manipulator. Left panel: Steps 1 through 3 of Algorithm 3 are
illustrated. Here, the black circle represents the object, the blue curves represent the neutral axis of the 4-link soft manipulator
overlaid at one second intervals, and the small red circle represents the goal location of the end effecter. Center Panel: Steps 4
and 5 of Algorithm 3 are illustrated. Here, the manipulator executes its primary task of moving its end effector to the red goal
location. The neutral axes are overlaid at 0.5 second intervals. Right Panel: A depiction of the arm moving to the goal location
in the absence of a nearby object, where a brace strategy is not feasible.

7 Conclusion

An approach for dynamically controlling soft robots is ex-
plored. First, a dynamic model for a soft fluidic elastomer
manipulator is developed. Then, a method for identifying all
unknown system parameters is presented, i.e. the soft manip-
ulator, fluidic actuators, and continuous drive cylinders. Us-
ing this identified model and trajectory optimization routines,
locally-optimal dynamic maneuvers called grabs are planned
through iteration learning control and repeatably executed on
a physical prototype. Actuation limits, the self-loading effects
of gravity, and the high compliance of the manipulator, physi-
cal phenomena common among soft robots, are represented as
constraints within the optimization. Additionally, we present
the idea of bracing for soft robots. We outline conditions
for static environmental bracing and develop an algorithm for
planning a brace. Experimentally, we validate this concept by
comparing braced and unbraced end-effector motions.

In these initial experiments, we found it feasible to com-
pute a sufficiently accurate dynamic model to make planning
viable for a soft elastomer manipulator. However, to obtain
the required performance for executing specific tasks, like
grabbing, we found it necessary to use iterative learning con-
trol. In future work, these trajectories may be stabilized using
linear time-varying linear quadratic regulators (LTV LQRs)
[Tedrake, 2009] making them robust to uncertainty in initial
conditions and tolerant of modeling inaccuracies. Addition-
ally, more accurate dynamic models may need to be developed.
Although this class of robot is well-suited for environmental
contact (e.g. whole arm grasping and bracing), the modeling
assumptions used here may not suffice under these conditions.
Specifically, the dynamic model presented here does not con-
sider contact. Further, only the fundamentals of bracing are
explored in this paper. It is likely that bracing may enable a

wide variety of capabilities for soft elastomer machines and
we intended this work to begin that discussion. Also, during
grab experiments, hook and loop fasteners were used on the
manipulators end effector and the ball. To some degree, this
mechanism compensated for positional errors as the ball and
end effector were securely connected after the moment of con-
tact. This work suggests dynamic model-based planning and
control may be an appropriate approach for soft robotics.
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Appendix A: Index to Multimedia Ex-
tensions

Extension Type Description
1 Video This video demonstrates the soft flu-

idic elastomer manipulator proto-
type executing locally-optimal open
loop policies found using an itera-
tive learning control algorithm.

18



References

Wayne J Book, Sanh Le, and Viboon Sangveraphunsiri. Brac-
ing strategy for robot operation. In Theory and Practice of
Robots and Manipulators, pages 179–185. Springer, 1985.

David Braganza, Darren M Dawson, Ian D Walker, and Niten-
dra Nath. A neural network controller for continuum robots.
Robotics, IEEE Transactions on, 23(6):1270–1277, 2007.

Marcello Calisti, Andrea Arienti, Maria Elena Giannaccini,
Maurizio Follador, Michele Giorelli, Matteo Cianchetti,
Barbara Mazzolai, Cecilia Laschi, and Paolo Dario. Study
and fabrication of bioinspired octopus arm mockups tested
on a multipurpose platform. In Biomedical Robotics and
Biomechatronics (BioRob), 2010 3rd IEEE RAS and EMBS
International Conference on, pages 461–466. IEEE, 2010.

Marcello Calisti, Michele Giorelli, Guy Levy, Barbara Maz-
zolai, B Hochner, Cecilia Laschi, and Paolo Dario. An
octopus-bioinspired solution to movement and manipula-
tion for soft robots. Bioinspiration & biomimetics, 6(3):
036002, 2011.

Gang Chen, Minh Tu Pham, and Tanneguy Redarce. Devel-
opment and kinematic analysis of a silicone-rubber bend-
ing tip for colonoscopy. In Intelligent Robots and Systems,
2006 IEEE/RSJ International Conference on, pages 168–
173, 2006. doi: 10.1109/IROS.2006.282129.

Gregory S Chirikjian. Hyper-redundant manipulator dynam-
ics: a continuum approximation. Advanced Robotics, 9(3):
217–243, 1994.

Gregory S Chirikjian and Joel W Burdick. Kinematically opti-
mal hyper-redundant manipulator configurations. Robotics
and Automation, IEEE Transactions on, 11(6):794–806,
1995.

Matteo Cianchetti, Tommaso Ranzani, Giada Gerboni, Iris
De Falco, Cecilia Laschi, and Arianna Menciassi. Stiff-
flop surgical manipulator: Mechanical design and experi-
mental characterization of the single module. In Intelli-
gent Robots and Systems (IROS), 2013 IEEE/RSJ Interna-
tional Conference on, pages 3576–3581, Nov 2013. doi:
10.1109/IROS.2013.6696866.

Nikolaus Correll, Cagdas D. Onal, Haiyi Liang, Erik Schoen-
feld, and Daniela Rus. Soft autonomous materials - using
active elasticity and embedded distributed computation. In
12th Internatoinal Symposium on Experimental Robotics,
New Delhi, India, 2010.

Raphael Deimel and Oliver Brock. A compliant hand based
on a novel pneumatic actuator. In Robotics and Automa-
tion (ICRA), 2013 IEEE International Conference on, pages
2047–2053, May 2013. doi: 10.1109/ICRA.2013.6630851.

Ian A Gravagne and Ian D Walker. Uniform regulation of a
multi-section continuum manipulator. In Robotics and Au-
tomation, 2002. Proceedings. ICRA’02. IEEE International
Conference on, volume 2, pages 1519–1524. IEEE, 2002.

Ian A Gravagne, Christopher D Rahn, and Ian D Walker.
Large deflection dynamics and control for planar continuum
robots. Mechatronics, IEEE/ASME Transactions on, 8(2):
299–307, 2003.

Michael W Hannan and Ian D Walker. Kinematics and the im-
plementation of an elephant’s trunk manipulator and other
continuum style robots. Journal of Robotic Systems, 20(2):
45–63, 2003.

Bryan A Jones and Ian D Walker. Kinematics for multisection
continuum robots. Robotics, IEEE Transactions on, 22(1):
43–55, 2006a.

Bryan A Jones and Ian D Walker. Practical kinematics for real-
time implementation of continuum robots. Robotics, IEEE
Transactions on, 22(6):1087–1099, 2006b.

Robert K Katzschmann, Andrew D Marchese, and Daniela
Rus. Hydraulic autonomous soft robotic fish for 3d
swimming. In International Symposium on Experimental
Robotics (ISER), 2014.

Cecilia Laschi, Matteo Cianchetti, Barbara Mazzolai, Laura
Margheri, Maurizio Follador, and Paolo Dario. Soft robot
arm inspired by the octopus. Advanced Robotics, 26(7):
709–727, 2012.

Jae Young Lew and W.J. Book. Bracing micro/macro manip-
ulators control. In Robotics and Automation, 1994. Pro-
ceedings., 1994 IEEE International Conference on, pages
2362–2368 vol.3, May 1994.

Yu Lianzhi, Lu Yuesheng, Hu Zhongying, and Cheng Jian.
Electro-pneumatic pressure servo-control for a miniature
robot with rubber actuator. In Digital Manufacturing and
Automation (ICDMA), 2010 International Conference on,
volume 1, pages 631 –634, 2010. doi: 10.1109/ICDMA.
2010.158.

Ming Luo, Mahdi Agheli, and Cagdas D Onal. Theoretical
modeling and experimental analysis of a pressure-operated
soft robotic snake. Soft Robotics, 1(2):136–146, 2014.

Andrew D Marchese and Daniela Rus. Design, kinematics,
and control of a soft spatial fluidic elastomer manipulator.
In International Journal of Robotics Research, 2015. (In
press).

Andrew D Marchese, Cagdas D Onal, and Daniela Rus. Soft
robot actuators using energy-efficient valves controlled by
electropermanent magnets. In Intelligent Robots and Sys-
tems (IROS), 2011 IEEE/RSJ International Conference on,
pages 756–761. IEEE, 2011.

Andrew D Marchese, Robert K Katzschmann, and Daniela
Rus. Whole arm planning for a soft and highly compliant
2d robotic manipulator. In Intelligent Robots and Systems
(IROS 2014), 2014 IEEE/RSJ International Conference on,
pages 554–560. IEEE, 2014a.

19



Andrew D Marchese, Konrad Komorowski, Cagdas D Onal,
and Daniela Rus. Design and control of a soft and con-
tinuously deformable 2d robotic manipulation system. In
Robotics and Automation (ICRA), 2014 IEEE International
Conference on, pages 2189–2196. IEEE, 2014b.

Andrew D Marchese, Cagdas D Onal, and Daniela Rus. Au-
tonomous soft robotic fish capable of escape maneuvers us-
ing fluidic elastomer actuators. Soft Robotics, 1(1):75–87,
2014c.

Andrew D Marchese, Robert K Katzschmann, and Daniela
Rus. A recipe for soft fluidic elastomer robots. Soft
Robotics, 2(1):7–25, 2015a.

Andrew D Marchese, Russ Tedrake, and Daniela Rus. Dy-
namics and trajectory optimization for a soft spatial fluidic
elastomer manipulator. In Robotics and Automation (ICRA),
2015 IEEE International Conference on. IEEE, 2015b.

Ramses V Martinez, Jamie L Branch, Carina R Fish, Lihua Jin,
Robert F Shepherd, Rui Nunes, Zhigang Suo, and George M
Whitesides. Robotic tentacles with three-dimensional mo-
bility based on flexible elastomers. Advanced Materials, 25
(2):205–212, 2013.

William McMahan, Bryan A Jones, and Ian D Walker. Design
and implementation of a multi-section continuum robot:
Air-octor. In Intelligent Robots and Systems, 2005.(IROS
2005). 2005 IEEE/RSJ International Conference on, pages
2578–2585. IEEE, 2005.

William McMahan, V Chitrakaran, M Csencsits, D Dawson,
Ian D Walker, Bryan A Jones, M Pritts, D Dienno, M Gris-
som, and Christopher D Rahn. Field trials and testing of
the octarm continuum manipulator. In Robotics and Au-
tomation, 2006. ICRA 2006. Proceedings 2006 IEEE Inter-
national Conference on, pages 2336–2341. IEEE, 2006.
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