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Abstract: Predictive models have been at the core of many robotic systems, from
quadrotors to walking robots. However, it has been challenging to develop and
apply such models to practical robotic manipulation due to high-dimensional
sensory observations such as images. Previous approaches to learning models in
the context of robotic manipulation have either learned whole image dynamics
or used autoencoders to learn dynamics in a low-dimensional latent state. In
this work, we introduce model-based prediction with self-supervised visual
correspondence learning, and show that not only is this indeed possible, but
demonstrate that these types of predictive models show compelling performance
improvements over alternative methods for vision-based RL with autoencoder-type
vision training. Through simulation experiments, we demonstrate that our models
provide better generalization precision, particularly in 3D scenes, scenes involving
occlusion, and in category-generalization. Additionally, we validate that our
method effectively transfers to the real world through hardware experiments.
https://sites.google.com/view/keypointsintothefuture.
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1 Introduction

It has been argued that one of the hallmarks of human-level learning is the ability to construct and
leverage causal models of the world [17]. In the area of manipulation, this manifests itself in the ability
to approximately predict how an object will move if we grasp or push it. Traditional model-based
robotics has successfully leveraged such predictive models, oftentimes derived from first principles, to
solve challenging planning and control problems [22, 21]. In the area of practical vision-based robotic
manipulation, however, it has been particularly hard to leverage such predictive models, due to varied
and novel objects and the high-dimensional observation spaces involved (e.g., RGB or RGBD images).
Alternative approaches, such as imitation learning or model-free reinforcement learning, sidestep
the task of building a predictive model and directly learn a policy. Although this can be appealing,
model-based techniques offer several benefits. They can be sample efficient compared to model-free
methods and, in contrast to behavior cloning techniques, can leverage off-policy non-expert data. Once
a model has been acquired, it can be used together with a planner to achieve a wide variety of tasks and
goals. One of the main challenges for model learning applied to robotic manipulation is determining the
state representation on which the dynamics model should be learned. Prior work has used approaches
ranging from full image space dynamics [6, 5, 30, 25] to a variety of autoencoder formulations [1, 11].

In this paper we propose to use object keypoints, which are tracked over time, as the latent state in
which to learn the dynamics. These keypoints anchor our model-based predictions, and provide various
advantages over alternatives such as abstract latent states: (i) the output is interpretable, which enables
the ability to analyze the performance of the visual model separately from the predictive model. (ii)
The representation is 3D and hence can naturally handle changing general off-axis 3D camera positions.
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Figure 1: (a) Shows the initial pose (blue keypoints) and goal pose (green keypoints) along with the demonstration
trajectory. (b) - (d) show the MPC at different points along the episode. Current keypoints are in blue, white lines
and purple keypoints show the optimized trajectory from the MPC algorithm, using the learned dynamics model.
Goal keypoints are still shown in green. (e) shows the demonstration trajectory in a 3D visualizer. (f) Illustrates a
dynamics model on a category level task. The actual keypoint trajectory is shown in green; the predicted trajectory
using the learned model shown in blue. (g) Overview of our hardware setup. (h) Example of visual clutter.

(iii) As demonstrated in [9, 10] the visual models we use, Dense Object Nets, have demonstrated
reliable performance in a variety of real-world settings and are able to generalize at the category level.
We found that autoencoder approaches particularly struggled with category-level generalization. And
as discussed in prior works [9, 20], keypoints and dense correspondences provide advantages over using
6D object poses: they can apply to deformable objects and represent category-level generalization.

We show that this formulation enables reliable, sample-efficient learning capable of precise
visual-feedback-based manipulation in the real world – and is trained with nothing other than a small
amount of interaction data (10 minutes) and a single demonstration for goal specification. In our
approach to acquiring keypoints, we extract them as descriptors which are tracked from a dense
descriptor model – while multiple approaches could be used to acquire keypoints, this route can be
entirely self-supervised. As opposed to [10] which uses keypoints from a dense-correspondence model
in an imitation learning framework, the use of keypoints as input to a model-based RL system presents
several unique challenges. In particular the keypoints need to be both informative for the task at hand
and be able to be tracked accurately. In this paper we explore these challenges and propose solutions.

Contributions: Our primary contribution is (i) a novel formulation of predictive model-learning
using learned dense visual descriptors as the state representation. We use this approach to perform
closed-loop visual feedback control via model-predictive-control (MPC). (ii) Using simulated
manipulation experiments we demonstrate that this approach offers performance benefits over a variety
of baselines, and (iii) we validate our approach in real-world robot experiments.

2 Related Work

We focus our related work on methods that target robotic manipulation with learned predictive models.
The Introduction discussed alternative approaches to synthesizing closed-loop feedback controllers
without predictive models, via imitation learning or model-free reinforcement learning.

Model-based RL in Robotic Manipulation. These methods can be classified by whether they use
first-principles-based or data-driven models, and whether they consume raw visual inputs (such as
RGBD images) or they consume ground truth state information (from a simulator or an external
perception system). First-principles-based models, e.g., [13, 34], rely on known object models and thus
don’t generalize to novel or unknown objects, and also rely on external vision systems. Given this, the
tasks we consider are out of scope for these approaches. In the area of methods that use external vision
systems but learn data-driven models, [12] learns a dynamics model for a closed-loop-controlled planar
pushing task, however, the approach is tailored to the specifics of the pusher-slider task and doesn’t
readily generalize to other tasks, or to novel objects within the same task. [23] learns deep dynamics
models for a variety of different simulated dexterous manipulation tasks, using ground truth object states,
and one task on real hardware, using an external camera-based 3D object position tracker. Although
[12, 23] achieve impressive results, their reliance on ground truth object state and/or specialized visual
trackers limits their general applicability in more diversified real-world manipulation tasks.
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There also exists a large literature on model-based RL for robotic manipulation that operates in the
more challenging problem class of directly consuming image observations. Methods can be broadly
categorized into whether they predict the image-space dynamics of the entire image [6, 4, 5, 30, 25], or
predict the dynamics of a low-dimensional latent state [29, 27, 1, 11]. Although image-space dynamics
approaches are general, they require large training datasets. For latent-space dynamics approaches, to
avoid a trivial solution where all observations get mapped to a constant vector, a regularization strategy
is needed for the latent state z. [27, 11] use an autoencoder architecture and regularize the latent state
z using a reconstruction loss. [1] regularize the latent space by simultaneously training both forward
and inverse dynamics models while [29] uses a contrastive loss on the latent state. In contrast to these
approaches we use visual-correspondence pretraining to produce a latent state which is physically
grounded and interpretable as the 3D locations of keypoints on the object(s).

Visual Representation Learning For more related-work in self-supervised visual learning for
robotics, we refer the reader to [9]. Approaches that use autoencoders [27, 11, 7] or full image-space
dynamics [6, 4, 5, 30] rely on image reconstruction as their source of visual supervision. [7] uses sparse
keypoints extracted from an autoencoder as input to a guided policy search algorithm. [15] is perhaps
most related to ours, in that they first learn a visual model which is then used for a downstream task,
and they show that freezing the visual model and using a keypoint-type representation as an input to
model-free RL algorithms improves performance on Atari ALE [2]. Our approach is distinct in that (i)
we use a predictive model-based method rather than a model-free method, (ii) we use a correspondence-
based training loss, while [15] uses an image-reconstruction-based loss with a specialized pixel-space
transport mechanism, and (iii) we demonstrate results with real-world hardware. As a baseline, we try
using their vision model as an input to the same model-based RL algorithm used by our own method.

3 Formulation: Self-Supervised Correspondence in Model-Based RL

This section describes our approach to model-based RL using visual observations. The goal is to learn
a dynamics model that can then be used to perform online planning for closed-loop control.

3.1 Model-Based Reinforcement Learning

Our setting consists of an environment with states x ∈ X , observations o ∈ O, actions a ∈ A and
transition dynamics x′= fstate(x,a). The task is specified by a reward function r(x,a) and the goal
is to choose actions to maximize the expected reward over a trajectory. We approach this problem by
first learning an approximate dynamics model f̂θdyn , which is trained to minize the dynamics prediction
error on the observed data D. The learned model is then used to perform online planning to obtain
a feedback controller.

Typical example environments are depicted in Figures 1, 3. The state x contains information about
the underlying pose and physical properties of the object, but we only have access to the observation o.
The observation typically consists of both the robot’s proprioceptive informationOrobot (such as joint
angles, end-effector poses, etc.) and high-dimensional imagesOimage ∈RW×H×C for a C-channel
image of height H and width W . Hence the full observation space is O=Orobot×Oimage. For the
purposes of our approach we will assume that x is fully observable from o (or a short history of o
in order to infer velocity information). Note that this still allows for the object to undergo significant
partial occlusion as long as it is not completely occluded, see Figure 3 (c) for an example. While our
work focuses on addressing partial occlusion, future work may address full occlusion via models with
longer time horizons or higher-level planning.

Rather than learn the dynamics directly in the observation space, as in [6, 4], we instead learn a mapping
g :O→Z from the high-dimensional observation spaceO to a low-dimensional latent spaceZ together
with a dynamics model ẑt+1 = f̂θdyn

(zt−l:t,at) in this latent space, where zt−l:t=(zt,zt−1,...,zt−l)
encodes a short history (we use l= 1 in all experiments). This latent state should capture sufficient
information about the true state x such that driving z→ z∗ sufficiently well achieves the goal of
driving x to x∗ (where z∗ is the latent state corresponding to x∗). Given the current latent state and
a sequence of actions {at,at+1,...}we can predict future latent states z by repeatedly applying our
learned dynamics model. The forward model is then trained to minimize the dynamics prediction
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error (also know as simulation error) over a horizonH

Ldynamics =

H∑
h=1

||ẑt+h−zt+h||22, ẑt+h+1 = f̂θdyn(ẑt−l:t,at+h), ẑt=zt (1)

3.2 Learning a Visual Representation

The objective of the visual model g :O→Z is to produce a low-dimensional feature vector z which
serves as a suitable latent state in which to learn the dynamics. For the types of tasks and environments
that we are interested in, spatial information about object locations is a critical piece of information.
Pose estimation has played a critical role in classical manipulation pipelines, and was also used
in dynamics learning approaches such as [12, 23]. In general producing pose information from
high-dimensional observations (such as RGBD images) requires a dedicated perception system.
Although pose can be a powerful state representation when dealing with a single known object, as
noted in [9, 20, 10] it has several drawbacks that limit its usefulness in more general manipulation
scenarios. In particular it doesn’t readily (i) extend to the case of deformable objects, (ii) generalize
to novel objects or (iii) extend to category-level tasks.

Our strategy is to leverage visual-correspondence pre-training to track points on the object of
interest. The locations of these tracked points can then serve as the latent state on which we learn the
dynamics. Similar to the approach taken in [9, 10], we use visual-correspondence learning, which
is trained in a completely self-supervised fashion, to train a visual model which that can be used
to find correspondences across RGB images. We then propose several approaches to produce a
low-dimensional latent z using the pre-trained dense-correspondence model.

First we give a bit of background on dense correspondence models (see [8, 9] for more details). Given
an image observation oimage ∈ RW×H×C (where C denotes the number of channels), the dense-
correspondence model gθdc outputs a full-resolution descriptor image ID∈RW×H×D. Since we want
to learn a dynamics model on a low-dimensional state, we need a way to construct z from the descriptor
imageID. The idea, similar to [10], is forz to be a set of points on the object(s) that are localized in either
image-space or 3D space. These points are represented as a set{di}Ki=1 of K descriptors, where eachdi∈
RD is a vector in the underlying descriptor space. A parameterless correspondence function gc(ID,di)3

extracts the location of the keypoint yi∈RB from the current observation. Combining our learned cor-
respondences together with the reference descriptors, we have a function that maps image observations
oimage to keypoint locations y={yi}Ki=1. We propose four methods for constructing the latent state
z=gθz (y) fromy, where θz denotes the (potentially empty) set of trainable parameters in this mapping.

Descriptor Set (DS): In our simplest variant the latent state z is simply made up of keypoint locations
yi for a set of descriptor keypoints randomly sampled from the object. Specifically, we sampleK (we
useK=50 in all experiments) descriptors {di}Ki=1 corresponding to pixels from a masked reference
descriptor image in our training set. Thus

z=(zobject,orobot)=(y,orobot)=({yi}Ki=1,orobot) (2)

Spatial Descriptor Set (SDS): Rather than randomly sampling descriptors, as in (DS), this method
attempts to choose descriptors d={di}Ki=1 having specific properties. In particular we would like the
descriptors {di}Ki=1 to be (i) reliable, and (ii) spatially separated. By reliable we mean that they can
be localized with high accuracy and don’t become occluded during the typical operating conditions,
see Figure 2 for an example. Spatially separated means that the chosen descriptors aren’t all clustered
around the same physical location on the object(s) of interest, but rather are sufficiently spread out
(either in 3D space or pixel space) to provide meaningful information about both object position and
orientation. Our dense descriptor model can provide a confidence score associated with descriptors and
their associated correspondences.4 Figure 2 shows a clear example of high confidence for a valid match
and low-confidence when no valid correspondence exists due to an occlusion. We use this feature of our
visual model to compute a confidence score ci for each each descriptor di according to what fraction
of images in the training setD contain a high probability correspondence for di. The intuition is that
descriptors di corresponding to points on the object that are easy to localize and remain unoccluded
will have a high confidence score. As in the DS method we initially select a large number of descriptors

3see Appendix 6.3 for more details on the visual-correspondence model
4see Appendix 6.3 for more details
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(K=100) corresponding to points on the object. We then select theK∗ descriptors with the highest
average confidence on the training set and which additionally satisfy a threshold on minimum separation
distance (typically 25 pixels in a 640×480 image). In the experiments we useK∗=4 orK∗=5.

(a)

0.02
0.97

(b)

Source Target

.

Figure 2: Visualization of the learned visual-correspondence model
on a reference image (left) and target image (right). Colored num-
bers in the target image represent the probability that the detected
correspondence is valid. Green reticle shows a valid correspondence
with a high confidence score, red reticle shows a case where no corre-
spondence exists in the target image due to occlusion, hence the low
confidence probability. Confidence heatmap shown in bottom right.

Weighted Descriptor Set (WDS):
One problem that can arise when learn-
ing the dynamics of a latent state z
is that some component of z may be
noisy or unreliable, which can make
it difficult or impossible to learn a dy-
namics model z′=f(z,a). This prob-
lem doesn’t arise in the imitation learn-
ing setting of [10] which performs su-
pervised learning from zt → aexpert

t ,
and thus can learn to ignore compo-
nents of the latent state zt that aren’t
useful for predicting the action aexpert

t .
The fundamental difference of our
dynamics learning formulation com-
pared to the imitation learning setup
of [10] is that the latent zt appears di-
rectly in the cost function (1). There are a variety of reasons that one or more of the tracked descriptors
could be unreliable (e.g. occlusions, regions of the object where the correspondence model has less
accurate) and thus we would like our dynamics learning framework to be robust to this. We achieve this
by defining a learnable mapping φ :y→z which maps the keypoint locations y to the latent state z,
where the keypoints bmy are as in our DS method. A regularization strategy is needed to ensure that φ
doesn’t collapse to the trivial solution φ≡0. We introduce learnable weights α∈RK×K and define
wk,i =

exp(αk,i)∑K
j=1exp(αk,j)

. Let W ∈RK×K be the matrix with entries wk,i, where the parameterization

guarantees thatwk,i≥0 and
∑K
i=1wk,i=1. φ is defined as

ỹk=

K∑
i=1

wk,iyi, φ(y;α)= ỹ={ỹk}Kk=1 (3)

Note that each yi is a keypoint location in RB . Thus ỹ is simply a convex combination of the keypoints
in y. The latent state z is then defined as

z=(zobject,orobot)=(ỹ,orobot)=(φ(y,α),orobot) (4)

The learnable weights α are trained jointly with the parameters θdyn of the dynamics model, and are
fixed at test time. The fact thatzobject is gotten fromy by taking a weighted linear combination preserves
the interpretation of z as tracking keypoints on the object, while allowing some flexibility to ignore
unreliable keypoints.

Weighted Spatial Descriptor Set (WSDS): Combination of (SDS) and (WDS).

3.3 Learning the Dynamics

We adopt a standard dynamics learning framework where we aim to predict the evolution of the
latent state z. The dynamics model is trained to minimize the prediction error in Equation (1) where
zt = gθz (ot). Our proposed methods differ in the structure of the mapping g :O→Z and the set of
trainable parameters Θ. 5 Across our methods the weights of the visual-correspondence network, θdc,
remain fixed.
3.4 Online Planning for Closed-Loop Control

Once we have learned a dynamics model z′=f(z,a), we use online planning with MPC to select an
action. Given a goal latent state z∗, we want to find an action sequence {at′}t+H−1

t′=t that maximizes the
rewardR=

∑t+H−1
t′=t r(zt′ ,at′). Our dynamics learning approach is agnostic to the type of optimizer

used to solve the MPC problem and the focus of our work is on the visual and dynamics learning,
rather than the specifics of the MPC. Many model-based RL approaches [30, 5, 23, 11, 6] use a

5see Appendix 7.2 for details
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Figure 3: This figure shows reference descriptors {di}Ki=1 of the Spatial Descriptor Set variant for our different
simulation environments. In particular in (c) the sides of the object undergo occlusions as the box rotates about the
vertical axis. (d)-(e) show two different mugs from the category-level mugs (category) task.

random-sampling based planner (e.g. cross-entropy method) to solve the underlying MPC problem.
We experimented with random shooting, gradient based shooting, cross-entropy and model-predictive
path integral (MPPI) planners and found that MPPI worked best in our scenarios.6

4 Results

We perform experiments aimed at answering the following questions: (1) Is it possible to successfully
use self-supervised descriptors as the latent state for a model-based RL system? (2) What is the effect
of various design decisions in our algorithm? (3) How does visual-correspondence learning compare to
several benchmark methods in terms of enabling effective model-based RL policies? (4) Can we apply
the method on real hardware?

Our main contribution is on the formulation of the visual model and dynamics learning problem rather
than the specifics of the MPC. However, to accurately compare our approach to various baselines,
we need to perform experiments in which the dynamics model is used in closed-loop to solve a
manipulation task. Our formulation of dynamics learning is very general, and in principle can handle
a wide variety of manipulation scenarios. However, even with an accurate model (whether it comes
from first principles or is learned), using this model to perform closed-loop feedback control remains a
challenging problem. Thus, for our closed-loop experiments, we limit ourselves to pushing tasks that
can adequately be solved by the planners outlined in Section 3.4.

Tasks: Extended experimental details are provided in the Appendix but we provide a brief overview
of the tasks here. We perform experiments with four simulated tasks (depicted in Figure 3) and one
hardware task. All tasks involve pushing an object to a desired goal state. The first three simulation
tasks, denoted as top-down, angled, occlusions involve pushing a single object. top-down has cameras
in a top-down orientation while they are angled at 45 degrees in angled. Task occlusions keeps the
angled camera positions but the box is resting on a different face, resulting in significant self-occlusions.
Task mugs involves pushing many different objects from a category, in this case mugs with different
size, shape and textures. The hardware task is essentially identical to the angled sim task.

4.1 Visual-correspondence Performance

Figures 1, 2 show the performance of our dense visual-correspondence model. In particular Figure 1
shows the localization performance on real data along a trajectory while Figure 2 shows an example
of the confidence scores used as in the SDS method. Figure 3 shows the descriptors used in the
SDS method for each of our simulation tasks. In particular Figure 3 (d)-(e) shows the ability of the
descriptors to accurately find correspondences across different object instances within a category,
despite differences in color and shape.

4.2 Ablations on visual-correspondence for dynamics learning

Ablation studies show that the choice of what to track can have a substantial impact on model per-
formance, especially in the case of partial occlusions. Quantitative results are detailed in Table 1.
On tasks top-down and angled camera all methods perform reasonably well, almost matching the
performance of the GT 3D baseline that uses ground truth state information. Intuitively this is because
there are minimal occlusions in these settings, and so almost all keypoints can be tracked reliably
using dense-visual-correspondence. In contrast the occlusions introduces the potential for significant
occlusions. Given the camera angle as shown in Figure 3 (c) and the fact that the object rotates through
the full 360 degrees of yaw during the task, only the top face of the box remains unoccluded while
the 4 side faces are alternately occluded and visible. This task exposes significant differences in
performance among our various ablations. In particular SDS, WDS and WSDS perform significantly

6See Appendix 8 for more details.
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Task top-down camera angled camera occlusions mugs (category)

Method / task data pos, cm angle, ◦ pos, cm angle, ◦ pos, cm angle, ◦ pos, cm angle, ◦

Avg. trajectory 11.32 32.05 11.32 32.05 10.36 31.81 11.28 56.25

GT 3D 1.14 4.01 1.14 4.01 1.29 5.45 – –
SDS 1.19 3.88 1.10 3.97 1.46 6.77 1.20 15.03
WDS 1.16 4.43 1.30 5.12 1.49 8.64 1.00 13.29
DS 1.12 4.07 1.45 5.50 3.66 12.27 1.19 11.73
WSDS 1.19 4.00 1.18 4.86 1.28 5.59 1.39 18.18

Table 1: Ablations and comparison with ground-truth – quantitative results for various ablations of our method
on four simulated tasks. Each method was evaluated on the same set of 200 different initial and goal states. The
pos and angle columns denote the translational (in cm) and rotational (in degrees) deviations of the object from
the goal position, averaged across all trials for a specific method and task. Avg. trajectory denotes the average
translation and rotation between the initial and goal poses for each task.

Task top-down camera angled camera occlusions mugs (category)

Method pos, cm angle, ◦ pos, cm angle, ◦ pos, cm angle, ◦ pos, cm angle, ◦

SDS (ours) 1.19 3.88 1.10 3.97 1.46 6.77 1.20 15.03
WDS (ours) 1.16 4.43 1.30 5.12 1.49 8.64 1.00 13.29
Transporter 3D 2.01 15.95 4.36 25.14 3.72 20.65 2.81 61.22
Transporter 2D 2.08 13.59 3.60 23.60 2.74 18.86 2.33 60.18
Autoencoder 2.18 14.79 2.85 13.79 3.08 14.20 9.05 56.84

Table 2: Comparisons with baselines – quantitative results of our method compared to various baselines on our
four simulated tasks. Each method was evaluated on the same set of 200 different initial and goal states. pos and
angle denote the translational (in cm) and rotational (in degrees) deviations of the object from the goal position,
averaged across all trials for a specific method and task.

better than DS. We believe that this is due to the fact that some of the descriptors {di}Ki=1 that are
tracked in DS correspond to locations on the object that become occluded during an episode. The dense
visual-correspondence model is not able to track keypoints through occlusions, and when trying to
localize an occluded point our dense-correspondence model maps it to the closest point in descriptor
space, which is not the location of the true correpondence. Hence the keypoint locations that makeup
the latent state zobject for DS suffer reduced accuracy, leading to a less accurate dynamics model and
ultimately lower performance when used for closed-loop MPC.

On the category-level task mugs the camera is in a top-down position and thus occlusions are no longer
an issue. However because the task involves different objects from a category there is shape variation
among the different objects. Thus the methods that use K = 50 keypoints, namely DS and WDS,
perform better than the sparser variants SDS, WSDS that use onlyK=4,5 keypoints. We believe that
this is due to the fact that having a larger number of keypoints better captures the shape variation across
object instances and allows for a more accurate dynamics model.

4.3 Comparison of visual-correspondence pretraining with baselines

In our comparisons against baselines, our model outperforms alternatives on all experimental tasks.
The largest differences are apparent in tasks occlusions and mugs which involve partial occlusions and
category-level generalization, respectively. The transporter baseline uses the keypoint locations from
[16] as the latent state z , while the autoencoder baseline jointly trains an autoencoder with a forward
dynamics model. For a detailed discussion of the baselines see Appendix 9.3. Quantitative results are
detailed in Table 2.

On task top-down camera, the transporter[15] model was able to achieve performance that was
only slightly worse than WDS and SDS, while the autoencoder performed significantly worse. The
top-down setting is ideally suited for the feature transport approach of the transporter model.

On tasks angled camera and occlusions, which have angled camera positions as opposed to the top-
down task, the performance of our methods remained consistent while transporter suffered. This
is potentially due to the fact that the feature transport mechanism of transporter is not well-suited
to off-axis camera positions in 3D worlds. The performance of the autoencoder baseline remainded
consistent, but worse than our approach, across tasks without category-level generalization.

Task mugs contains a variety of different mug shapes with varied visual appearances that tests category-
level generalization of both the perception and dynamics models. As discussed in Section 4.1, our
dense-correspondence model is able to find correspondences across these variations in appearance using
only self-supervision, which allows us to learn a dynamics model that is effective for completing the task.
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Figure 4: Left image shows demonstration for trajectory 4. Scatter plots show results of our approach on the
four different reference trajectory tracking tasks. The axes of the plots show the deviation of the object starting
pose from the initial pose of the demonstration. Color indicates the distance between final and goal poses, lower
cost is better. The various reference trajectories are of different difficulties, as reflected by the different regions of
attraction of the MPC controller. More details can be found in Appendix 10 and videos are on our project page

.This task is significantly harder than the other tasks not only because of the presence of novel objects,
but because the goal states involve much larger rotations, as detailed in the first row of Table 1. Both the
transporter and autoencoder baselines perform poorly in this task. We hypothesize that this is due
to the fact that there is much more variance in the visual appearance of the objects as compared to the
other tasks and thus the latent state z produced by these baselines is not amenable to dynamics learning.

4.4 Hardware

Experimental Setup:

We used a Kuka IIWA LBR robot with a custom cylindrical pusher attached to the end-effector to
perform our hardware experiments, see Figure 1. RGBD sensing was provided by two RealSense D415
cameras rigidly mounted offboard the robot and calibrated to the robot’s coordinate frame. During
training both cameras are used to train the correspondence model, while at test time only a single
camera is used to localize the keypoints. The robot is controlled by commanding end-effector velocity
in the xy plane at 5Hz.

Hardware Results: For visual learning we collected a small dataset of the object in different positions
to provide a diverse set of views for training the dense-correspondence model. For dynamics learning,
we collected a dataset of the robot randomly pushing the object around. This amounted to approximately
10 minutes of interaction time and was used to train the dynamics model. All hardware experiments
used the SDS method. To enable our MPC controller to accomplish long-horizon tasks, we supplied the
controller with a reference trajectory for the object keypoints that came from a single demonstration,
see Figure 1 (a),(d). The MPC controller then tracked this reference trajectory using a 2 second MPC
horizon, which corresponds to H = 10 since we are commanding actions at 5 Hz. We collected 4
different reference trajectories7 and ran multiple rollouts for each trajectory, varying the initial condition
of the object pose during each run to test the region of attraction of our controller. In all cases our
controller showed the ability to stabilize the system to the reference trajectory in spite of perturbations
to the initial condition. Quantitative results are detailed in Figure 4. In particular, we see that the ability
of the controller to stabilize the trajectory in the face of disturbances in the initial condition depends on
the trajectory. For trajectory (1) the controller is able to stabilize disturbances of up to 60 degrees, while
trajectory (4) has a much smaller region of attraction. As can be seen in Appendix 10, trajectory (1) is a
relatively simple trajectory with minimal orientation change between start and goal, while trajectory (4)
involves a challenging 180-degree orientation change and requires the robot to operate at the edge of its
kinematic workspace, reducing its control authority. Overall, our system exhibits impressive feedback
and is able to track a trajectory in the keypoint latent space, enabling one-shot imitation learning. We
encourage the reader to watch the videos on our project page to see the system in action.

5 Conclusion
We presented a method for using self-supervised visual-correspondence learning as input to a predictive
dynamics model. Our approach produces interpretable latent states that outperform competing baselines
on a variety of simulated manipulation tasks. Additionally, we demonstrated how the category-level
generalization of our visual-correspondence model enables learning of a category-level dynamics
model, resulting in large performance gains over baselines. Finally, we demonstrated our approach on
a real hardware system, and showed its ability to stabilize complex long-horizon plans by tracking the
latent state trajectory from a single demonstration.

7see Appendix 10 for details on the reference trajectories
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Appendix

6 Dense Correspondence

Here we give a brief overview of the dense correspondence model formulation [24, 9] with spatial
distribution losses [10, 8]. We briefly explain the loss functions and how the descriptors {di} are
localized.

6.1 Network Architecture

We use an architecture that produces a full resolution descriptor image. Namely it maps
W×H×3→W×H×D (5)

We use a FCN (fully-convolutional network architecture) [19] with a ResNet-50 or ResNet-101 with
the number of classes set to the descriptor dimension. Note that the FCN used in this work does not use
striding and upsampling as in the architecture originally used in [9].

6.2 Loss Function

For all shown experiments we use the spatially-distributed loss formulation with a combination of
heatmap and 3D spatial expectation losses, as described in [10], Chapter 4.

6.2.1 Heatmap Loss

Let p∗ be the pixel space location of a ground truth match. Then we can define the ground-truth heatmap
as

H∗p∗(p)=exp

(
−||p−p

∗||22
σ2

)
(6)

p represents a pixel location. A predicted heatmap can be obtained from the descriptor image ID
together with a reference descriptor d∗. Then the predicted heatmap is gotten by

Ĥ(p;d∗,ID,η)=exp

(
−||ID(p)−d∗||22

η2

)
(7)

The heatmap can also be normalized to sum to one, in which case it represents a probability distribution
over the image.

H̃(p)=
Ĥ(p)∑

p′∈ΩĤ(p′)
(8)

The heatmap loss is simply the MSE betweenH∗ and Ĥ with mean reduction.

Lheatmap =
1

|Ω|
∑
p∈Ω

||Ĥ(p)−H∗(p)||22 (9)

6.2.2 Spatial Expectation Loss

Given a descriptor d∗ together with a descriptor image ID we can compute the 2D spatial expectation
as

Jpixel(d
∗,ID,η)=

∑
p∈Ω

p·H̃(p;d∗,ID,η) (10)

If we also have a depth image Z then we can define the spatial expectation over the depth channel as

Jz(d
∗,ID,Z,η)=

∑
p∈Ω

Z(p)·H̃(p;d∗,ID,η) (11)

The spatial expectation loss is simply the L1 loss between the ground truth and estimated correspondence
using

Lspatial pixel = ||p∗−Jpixel(d
∗)||1 (12)

We can also use our 3D spatial expectation Jz to compute a 3D spatial expectation loss. In particular
given a depth image Z let the depth value corresponding to pixel p be denoted by Z(p). The spatial
expectation loss is simply

Lspatial z = ||Z(p∗)−Jz(d∗,ID,Z,η)||1 (13)
being careful to only take the expectation over pixels with valid depth valuesZ(p).
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6.2.3 Total Loss

The total loss is a combination of the heatmap loss and the spatial loss

L=wheatmapLheatmap+wspatial(Lspatial pixel+Lspatial z) (14)

where thew are weights.

6.3 Correspondence Function

Given a reference descriptor di the correspondence function gc(ID,d∗) in Section 3.2 is computed
using the spatial expectations Jpixel(d

∗,ID,η),Jz(d
∗,ID,Z,η) in Equations (10), (11). These spatial

expectations localize the descriptor di in either pixel space or 3D space. If in 3D we additionally use
the known camera extrinsics to express the localized point in world frame.

If we define p̂=Jpixel(d
∗,ID,η) as the estimated pixel location of the correspondence for descriptor d∗,

then our visual model can additionally provide a confidence scores that p̂ is a valid correspondence for
this descriptor. The confidence is defined as the value of the unnormalized heatmap Ĥ (see Equation
(7)) at the pixel location p̂. Specifically the confidence is given by

Ĥ(p̂;d∗,ID,η) (15)

Note that this value always lies in the range [0,1].

7 Training Details

This section provides details on the simulation and hardware experiments.

7.1 Trajectory Data Augmentation

Many physical systems exhibit invariances in their dynamics. For example, in the environments we
consider the dynamics are invariant to translation in the xy plane and rotation about the z axis. In
other words, if we translate or rotate our frame of reference the dynamics don’t change. Encoding
this invariance into our dynamics model has the potential to greatly simplify the learning problem.
[12] achieves this by parameterizing the dynamics relative to the object frame, however this approach
requires having access to the ground truth object frame and assumes you are dealing with a single
rigid object. Another approach, taken by [33, 32, 25], is to rotate the observation into a frame defined
by the action. While this can work well in the setting of simple manipulation primitives (e.g. push
along a straight line for 5cm) it doesn’t naturally extend to the realtime feedback setting where you are
commanding actions continuously at 5−10 Hz without returning the robot to a reference position.
Since in our approach the latent-state z is a physically grounded 3D quantity we are able to encode some
of this invariance by using an alternative approach based on data augmentation. Given a latent-state
action trajectory {(yt,at)} then transforming this trajectory using a homogeneous transform T , which
consists ofxy translation and z rotation, yields another valid trajectory {(ỹt,ãt)}={(T ·yt,T ·at)}. At
training time we augment the training trajectories by sampling such random homogeneous transformsT .

Several recent works have employed data-augmentation to improve the performance of imitation
learning [31] or reinforcement learning [18] algorithms. While these augmentations have been shown
to improve performance in the policy learning setting they don’t naturally extend to the setting of
model-based RL where you must learn a dynamics model. In particular [31, 18] use data augmentations
such as random crops, rotations, translations etc. and attempt to train a policy that is robust to these
variations. In the imitation learning setting of [31] the goal is to learn a policy f :o→a that mimics
the expert policy fexpert(o). Data augmentation is employed by augmenting o to o′ (for example by
applying a random crop) while keeping the target expert action aexpert = fexpert(o) the same. The
hope is to then learn a policy f which is invariant to the augmentations (color jitter, rotation, crops,
etc.). We argue that such augmentations don’t naturally extend to the model-based RL setting. Given
an observation-action sequence {ot,at} and applying data augmentation (e.g. random translation,
crop) to the sequence of observations ot yields a new sequence of observations {o′t}. However the
observation-action sequence {o′t,at} in general won’t correspond to any physically realizable trajectory.
Thus it doesn’t make sense to add {o′t,at} to the set of observation-action sequences for training the
dynamics model. This is because an augmentation (e.g. random crop) has been applied to only the
observation, but not the action at. For many augmentations used in [31, 18] (e.g. crop, translation,
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Method Learnable Parameters Θ

DS {θdyn}
SDS {θdyn}
WDS {θdyn,α}

WSDS {θdyn,α}
Transporter {θdyn}
Autoencoder {θdyn,θautoencoder}

Table 3: The set of learnable parameters for the different methods during the dynamics learning phase. For our
methods and transporter, these parameters don’t include the weights of the visual model which remain fixed during
the dynamics learning phase.

image-space rotation, etc.) it is not obvious how to properly transform the action at (e.g. end-effector
or joint velocity) such that {o′t,a′t} forms a valid, physically realizable observation-action pair. In
contrast our data-augmentation approach outlined above operates directly on the physically-grounded
3D keypointsy rather than the raw image observations o, which allows us to apply meaningful physical
augmentations T . We note that our visual model [9] already employs data augmentations that can be
performed on images (e.g. rotation, crop, color jitter, etc.) We view the ability to augment both the
visual model and the dynamics model separately as a strength of our approach.

7.2 Training Details

All methods used the same architecture for the dynamics model f̂θdyn
, an MLP with two hidden layers

of 500 units. All of our variants, along with the transporter baselines, use visual pre-training. The
visual models are trained for 100 epochs and the model with the best test error is used. The dense-
correspondence model uses both camera views for visual pretraining, while the transporter model uses
only the images from the camera used at test time. For the dynamics learning all methods are trained for
1000 epochs using an Adam optimizer [14] with a learning rate of 10−4. For each method the model
with the best test error was used for evaluation. Table 3 details the set of learnable parameters for each
method.

8 Online Model-Predictive Control

Following [23] we use the model-predictive path integral (MPPI) approach derived in [28]. Here
we provide a brief overview but refer the reader to [28] for more details. MPPI is a gradient-free
optimizer that considers coordination between timesteps when sampling action trajectories. The
algorithm proceeds by samplingN trajectories, rolling them out using the learned model, computing
the reward/cost for each trajectory, and then re-weighting the trajectories in order to sample a new set of
trajectories. LetH be look-ahead horizon of the MPC, then a single trajectory consists of state-action
pairs {(x(k)

t ,a
(k)
t }H−1

t=0 . LetRk=
∑t+H−1
t′=t r(x

(k)
t ,a

(k)
t ) be the reward of the k-th trajectory. Define

µt=

∑N
k=0

(
eγRk

)
a

(k)
t∑N

k=0e
γRk

A filtering technique is then used to sample new trajectories from the previously computed mean µt.
Specifically

ait=nit+µt (16)

where the noise nit is sampled via

uit∼N (0,Σ), ∀i∈0,...,N−1, ∀t∈0,...,H−1 (17)

nit=βuit+(1−β)nit−1 where nt<0 =0 (18)

This procedure is repeated forM iterations at which point the best action sequence is selected. All of
our experiments we usedN = 1000,M = 3,H = 10,β= 0.7. The cost/reward in the MPC objective
varied slightly between the hardware and simulation experiments, more details are provided below.
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9 Simulation Experiments

To evaluate our method we consider four manipulation tasks in simulation. We use the Drake simulation
environment [26] which provides both the underlying physics simulation and rendering of RGBD
images at VGA resolution 640×480×3. Figure 3 shows image from the four simulation tasks that we
consider.

• top down camera: This environment, depicted in Figure 3 (a), consists of the sugar-box
object from the YCB dataset [3] laying flat on a table. The robot is represented as cylindrical
pusher (shown in green) and the action a is the x−y velocity of the pusher in the plane. The
environment timestep is dt=0.1, so the agent must command actions at 10Hz. Two cameras
are placed directly above the table, facing downwards. The camera positions are offset by
90 degrees about their z-axis. Our methods use both camera feeds for training the visual
correspondence model, but only one camera feed at test time. An image from this camera is
shown in Figure 3 (a). All other methods use only a single camera feed at both train and test
time.

• angled camera: This environment is identical to top down camera but has different camera
positions. Instead of being top down the two cameras are located on adjacent sides of the table
and angled at 45 degrees, see figure 3 (b). The setting of angled cameras is more similar to our
hardware experimental setup and is useful for comparing approaches that use pixel space vs.
3D representations.

• occlusions: This environment uses the same setup of task angled camera the only difference
being that the object is now laying on its side, see Figure 3 (c). This, together with the angled
camera position, means that occlusions become a significant factor. In particular as the box
rotates through the full 360 degrees in yaw, the sides of the box become alternately occluded
or visible. The top face of the box is the only one that remains unoccluded for all poses of the
object.

• mugs (category): This environment has the same top-down camera placements and cylindri-
cal pusher as task angled camera. Instead of a single object however, we use a collection of 10
different mug models and vary the color and texture on each episode. This environment tests
category-level vision and dynamics generalization. Two mug instances are shown in Figures
3 (d) and (e).

9.1 Data Collection

For each environment we collect a static dataset that is then used to learn the visual dynamics model.
All methods have access to exactly the same dataset and the visual pretraining for our method and
the transporter baseline is done using this same dataset. For each task the dataset is generated by
collecting 500 trajectories of length 40 using a scripted random policy. The simulator timestep is 0.1
seconds so a trajectory of length 40 equates to 4 seconds.

9.2 Evaluating closed-Loop MPC performance

For each environment we evaluate the different methods by planning to a desired goal-state image and
computing the pose error (both translation and rotation) using the ground truth simulator state. Goal
states are generated sampling a random control input and applying it to the environment for 15 time
steps. We further require that goal states are sufficiently far from initial states (in both translation and
rotation). This generates a diverse set of initial and goal state pairs for evaluation. The simulator state is
then reset to the initial state and we use closed-loop MPC to control the system to the goal state. The
MPC cost function is simply the L2 distance between the latent state and the goal state. Ground truth
state information is used to compute the error between the final and goal poses for the object.

9.3 Baselines

To demonstrate the benefits of our approach over prior methods we compare against several baselines.

• Ground Truth 3D points (GT 3D): This baseline is used for tasks top down camera, angled
camera, occlusions since those environment use just a single object. zobject contains ground
truth world-frame 3D locations of 4 points on the object. Knowing the location of 4 points is
equivalent to knowing the object pose for a rigid object. We believe that this is a strong baseline
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that provides an upper bound on what is achievable with our descriptor-based methods that
attempt to track points on the object.

• Transporter: We use the Transporter autoencoder formulation from [15] to pre-train a visual
model. Following the original paper we use 6 keypoints and freeze the visual model while
training the dynamics model. We investigate two variants using the transporter approach.
In transporter 2D zobject are the pixel-space locations of the keypoints. In transporter 3D
zobject are the 3D world frame locations of the keypoints, computed from the pixel space by
using the depth image together with the camera intrinsics and extrinsics.

• Autoencoder: This method jointly learns the visual model and the dynamics model. Specifi-
cally we jointly train a convolutional autoencoder together with a forward dynamics model.
The loss is a combination of the dynamics loss, Equation (1), and an image reconstruction
loss, which penalizes the L2 distance between the reconstructed and actual images. Note
that this is exactly the autoencoder baseline from [29]. Following [29] images are down-
sampled to 64×64 before being passed into the network. The encoder architecture contains
6 2D convolutions with kernel sizes [3,4,3,4,4,4], strides [1,2,1,2,2,2] and filter sizes
[64,64,64,128,256,256]. Leaky ReLU activations are added between the convolutional layers.
The final output is flattened and passed through a fully-connected layer to form the latent-state
zobject. We experimented with different dimensions for z from 16 to 64 and found that 64
worked best. Hence a 64 dimensional latent state is used for all experiments. The decoder
follows the one in [11] and consists of a dense layer followed by 4 transposed convolutions
with kernels size 4 and stride 2 which upscales the output image to 64×64.

10 Hardware Experiments

10.1 Hardware Setup

We used a Kuka IIWA LBR robot with a custom cylindrical pusher attached to the end-effector to
perform our hardware experiments, see Figure 5. RGBD sensing was provided by two RealSense D415
cameras rigidly mounted offboard the robot and calibrated to the robot’s coordinate frame. To enable
effective correspondence learning between views, it is ideal to have views with some overlap such
that correspondences exist, but still maintain different-enough viewpoints from each camera. At test
time only a single camera is used to localize the dense-descriptor keypoints. The robot is controlled
by commanding end-effector velocity in the xy plane at 5Hz. A high-rate Jacobian space controller
consumes these 5Hz end-effector velocity commands and closes the loop to command the robot’s joint
positions at 200Hz.

10.2 One-Shot Imitation Learning

Although our learned dynamics model together with online MPC is able to plan over short to medium
horizons, we can track much longer horizon plans by providing a single demonstration and using a
trajectory tracking cost in our MPC formulation. This demonstration can in principle come from any
source, in our case we used a human teleoperating the robot. We capture observations throughout the
trajectory at 5Hz resulting in a trajectory of observations {o∗t }Tt=0. Using our visual model we convert
these observations into keypoints {y∗t }Tt=0 and latent state {z∗t }Tt=0 trajectories. These trajectories are
used to guide the MPC. In particular the cost/reward function in the MPC is

r(zt,at)=−||zt−z∗t ||22 (19)

This trajectory cost allows us to accurately track long horizon plans (where the demonstrations are as
long as 15 seconds) using an MPC horizon of 2 seconds. The four demonstrations trajectories used in
the hardware experiments are illustrated in Figure 6.

10.3 Results

In this section we provide more details on the hardware experiments from Section 4.4. Figure 7 expands
on Figure 4 showing the region of attraction of our MPC controller when attempting to stabilize the
four different trajectories shown in Figure 6. We define a trajectory as a success if the final object
position is within 3 cm and 30 degrees of the goal position. Given that during trials we explicitly chose
initial conditions to test the region of attraction of the MPC controller, success rates are not particularly
meaningful, as the success rate depends on the initial condition. Table 4 shows the average translational
and angular errors among successful trajectories.
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Figure 5: Overview of our experimental setup, including the two external Realsense D415 cameras. Images from
both cameras are used to train the dense-descriptor model, while only the right camera is used at runtime to localize
the keypoints on the object.

Trajectory pos (cm) angle ◦ success rate num trials

1 1.23±0.55 5.25±3.99 87.5% 40
2 1.10±0.319 7.32±4.08 89% 36
3 1.16±0.58 3.80±2.54 73% 33
4 1.44±0.30 9.73±5.48 65% 29

Table 4: Quantitative results of hardware experiments. A trial is considered a success rate if the final object
position was within 3 cm and 30 degrees of the goal pose. Note that, as shown in Figure 7 the initial conditions
were intentionally chosen to test the region of attraction of our controller, thus the success rates are not meaningful
in and of themselves and are included only for completeness. The pos (cm) and angle columns show the deviation
of the final object position from the target. Note that the mean and standard deviation are only calculated over the
successful trials. This serves to give a sense of the accuracy that can be achieved by using our closed-loop MPC
controller.
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GoalStart Time

(1)

(2)

(3)

(4)

Figure 6: The 4 demonstration trajectories used for the hardware experiments. The left image of each row shows
the starting position blended with the goal position. The SDS keypoints are shown in teal for each frame. The
green lines show the paths followed by the keypoints moving from the starting position to the final position. The
right image of each row shows the final/goal position.

17



4 2 0 2 4
x (cm)

60

40

20

0

20

40

60

ya
w 

(d
eg

re
es

)

Traj 1

7.5 5.0 2.5 0.0 2.5 5.0
x (cm)

20

0

20

40

Traj 2

4 2 0 2
x (cm)

30

20

10

0

10

20

Traj 3

2 0 2 4
x (cm)

10

5

0

5

10

15

20

25
Traj 4

8 6 4 2 0
y (cm)

60

40

20

0

20

40

60

ya
w 

(d
eg

re
es

)

8 6 4 2 0
y (cm)

20

0

20

40

6 4 2 0 2
y (cm)

30

20

10

0

10

20

2 0 2
y (cm)

10

5

0

5

10

15

20

25

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7: Scatter plots show results of our approach on the four different reference trajectory tracking tasks. The
axes of the plots show the deviation of the object starting pose from the initial pose of the demonstration. The top
row shows the deviation in the x and yaw axes, while the bottom shows the deviation in the y and yaw axes. Axes
are illustrated in Figure 4. The color indicates the distance between final and goal poses, lower cost is better. The
numerical value is computed as cost= ∆pos

3
+ ∆angle

30
where ∆pos,∆angle are the translational (in centimeters) and

angular (in degrees) errors between the object’s final position and the goal position. The costs are rescaled and
plotted in the range [0,1]. The various reference trajectories, shown in Figure 6, are of different difficulties, as
reflected by the different regions of attraction of the MPC controller. Videos of the closed-loop rollouts can be
found at project page.
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https://sites.google.com/view/keypointsintothefuture
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