
Localizing External Contact Using Proprioceptive
Sensors: The Contact Particle Filter

by

Lucas Manuelli

A.B., Princeton University (2012)
Masters of Science, Massachusetts Institute of Technology (2015)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2018

c○ Massachusetts Institute of Technology 2018. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Electrical Engineering and Computer Science

January 31, 2018

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Russ Tedrake

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Theses



2



Localizing External Contact Using Proprioceptive Sensors:

The Contact Particle Filter

by

Lucas Manuelli

Submitted to the Department of Electrical Engineering and Computer Science
on January 31, 2018, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

In order for robots to interact safely and intelligently with their environment they
must be able to reliably estimate and localize external contacts. This paper introduces
the CPF, the Contact Particle Filter, which is a general algorithm for detecting and
localizing external contacts on rigid body robots without the need for external sensing.
The CPF finds external contact points that best explain the observed external joint
torque, and returns sensible estimates even when the external torque measurement is
corrupted with noise. We demonstrate the capability of the CPF in multiple scenarios.
We show how it can track multiple external contacts on a simulated Atlas robot, and
also perform extensive simulation and hardware experiments on a Kuka iiwa robot
arm.
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Preface

This work is organized in five chapters. Chapter 1 introduces the work, states the

contributions, discusses the motivation for external contact localization, and reviews

related work. Chapter 2 describes the algorithmic formulation of the contact particle

filter in detail. Chapter 3 presents experiments, both in simulation and hardware,

that validate the algorithm. In addition this chapter provides an extensive discussion

of limitations, failure modes and computational performance. Chapter 4 concludes.

An abridged version of this thesis without the hardware experiments was originally

published as

Lucas Manuelli, and Russ Tedrake. Localizing external contact using pro-

prioceptive sensors: The Contact Particle Filter. In International Con-

ference on Intelligent Robots and Systems, October 2016.

The intent is to submit an extended version that includes the hardware experi-

ments of Chapter 3 as a journal paper.
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Chapter 1

Introduction

One of the main challenges facing robotics is how to gracefully and safely handle

contact with the environment. Most robots in the world today try to explicitly avoid

contact with the environment. Quadrotors and autonomous vehicles explicitly try to

avoid obstacles, and robot arms attempt to limit contact to specific locations on the

end effector. There are some robots, however, that do have to make and break contact

with the world. Walking robots need to push on the ground with their feet in order to

locomote, and any robot wanting to manipulate an object must reach out and pick it

up. However, in all these cases we try to control the contact interactions of the robot

very carefully. If a walking robot makes contact with the world with something other

than its feet, or a robot arm touches the environment with something other than its

end effector, the results can be catastrophic. Fundamentally robots are not effective

at handling unexpected contact events with their environment. This was exemplified

by our experience as part of Team MIT at the DARPA Robotics Challenge Finals in

June 2015. During the finals our robot experienced an unexpected contact with its

environment which led to a fall.

Systems with changing contact states, such as walking robots, are fundamentally

hybrid in nature. When an external contact occurs it causes a transition to a new

hybrid mode. For control systems used on walking robots, having an accurate dynamic

model is critical for effectively controlling the robot. If an unexpected contact event

occurs which causes the system to switch hybrid modes, we need algorithms that
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can detect this change and estimate the new hybrid mode so that we can update

our dynamic model. Similarly for robot arms, if we are accidentally contacting the

environment then the solution should be to detect this and handle it gracefully, rather

than to let an integrator build up inside our controller and apply large forces on the

environment.

As humans we don’t even consider this problem as we have skin covering our entire

body which allows us to easily sense external contacts. Although there has been some

research in this direction, high performance sensing skin is not yet commonplace on

robots. As such an algorithm is needed that can solve this problem using the sensors at

hand, namely proprioceptive sensors. Proprioceptive sensors include joint encoders,

torque sensors, IMUs etc.

1.1 Contribution

The main contribution of this thesis is an estimation algorithm, the Contact Particle

Filter, which is capable of localizing multiple external contacts using only propriocep-

tive sensors. To the authors knowledge this is the first such algorithm that considers

the problem from a sound probabilistic framework. In Chapter 3 we describe simula-

tion experiments that validate the performance of our algorithm across a wide range

of conditions, and show how our algorithm overcomes the main limitations of the

method of [1]. We perform hardware experiments with a Kuka iiwa arm demonstrat-

ing the performance of our algorithm. To the authors knowledge these are the first

such hardware experiments that include ground truth data for the contact locations

using an instrumented force probe together with an external motion capture system.

1.2 Related Work

There is a large literature devoted to physical Human-Robot Interaction (pHRI) [2],

[3], which is concerned with allowing robots to operate safely and collaboratively

with humans in unstructured environments. One approach to interacting safely with
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and around humans is to attempt to avoid collisions, rather than detect and react to

them. Avoiding a collision typically requires the use of exteroceptive sensors such as

externally mounted RGBD sensors [4] or onboard vision [5], [6].

Another approach to solving the collision detection and localization problem is

to use a sensitive skin [7], [8], [9], [10]. These skins often use a capacitive material

whose electric resistance changes as force is applied to the surface. One drawback of

these skins is the complex wiring structure that must be constructed to collect the

necessary signals. [11] uses model predictive control together with whole arm tactile

sensing to perform reaching actions in clutter while controlling contact forces with the

environment. Although their is potential in sensing skin, most robots do not come

equipped with whole body sensitive skins. And if a robot does have a sensitive skin

it is usually only at a few key locations, such as the hands and feet. Given this we

focus on the problem of collision detection and localization using only proprioceptive

sensors.

Initial approaches to this problem, mainly with applications to industrial robot

arms, involved monitoring the measured currents in the robot’s electrical motors and

looking for fast transients that could be caused by a collision [12], [13], [14]. These

methods are meant to detect abrupt collisions, rather than general contact events.

In addition they don’t provide any information about the location or direction of

the contact. These collision detection strategies were used in conjuction with active

compliance control [15], [16] to endow the robots with some safety in the presence of

humans.

More recently a collision detection method based on generalized momentum [17],

[18] has been proposed in [19], [20]. An advantage of this method is that it doesn’t

require acceleration measurements. Acceleration measurements are sensitive to noise

since they require twice differentiating position measurements. Another advantage of

using generalized momentum is that the collision detection strategy is independent

of the control strategy used to generate the commanded motor torques. A variety of

safe reaction strategies after a collision is detected are considered in [21], [22], [23].

We use the generalized momentum observer as the starting point for our estimation
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algorithm. A brief overview of the generalized momentum observer is given in Section

2.1.1. [20] uses the method of [19] in a collision detection and safe reaction framework

using a DLR-III lightweight manipulator arm. They are interested in the scenario of

a collaborative robot arm working in a factory alongside human workers and their

main motivation is to allow the robot to react safely in the event of a collision with

a human. They show that the momentum observer contains sufficient information

to allow the manipulator arm to react safely after a collision. However, since the

implemented control strategies don’t require precise information on the location of

the contact point, they don’t attempt to localize the contact point. [24] uses the

momentum observer of [19] together with time-varying collision detection thresholds

to provide more accurate collision detection performance in the presence of model

errors.

[25] uses the generalized momentum observer, together with an external depth

camera to estimate the interaction force between a robot and an external contact. As

opposed to our work they use the depth camera to detect the location of the external

contact point, whereas we localize the external contact without the use of external

sensors.

The most related work to ours is the contact point localization algorithm outlined

in section IV. B of [1]. As in our approach Haddadin et. al. [1] estimates the location

of an external contact point using only proprioceptive information. A brief overview

of this approach is presented in section 2.1.2. Although Haddadin et. al. is very

computationally efficient, it doesn’t use all the available information when estimating

the contact location, and the algorithm isn’t grounded in a probabilistic framework.

This leads to several limitations, in particular their method isn’t guaranteed to return

a valid estimate, is susceptible to measurement noise and doesn’t extend well to the

case of multiple external contacts. We present a comparison of our method to [1] in

Sections 3.2.3 and 3.3.3

[26] considers the problem of estimating the configuration of an object during

manipulation using in-hand contact sensors. Although they focus on a different prob-

lem, the algorithmic approach is related. In particular they use a particle filter and
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sample allowable object poses from the contact manifold consistent with current force

sensor readings. Our approach is similar, in that we also use a particle filter, and

sample allowable contact locations directly from the robot link surface, which is a

manifold in R3.
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Chapter 2

Localizing External Contact without

Proprioceptive Sensors

This chapter we present the algorithmic foundations of the CPF. Section 2.1 explains

the residual observer and presents the method of [1]. Section 2.2 explains the CPF

in detail.

2.1 Preliminaries

We consider a robot with rigid links. Let 𝑞 ∈ R𝑛𝑞 describe the positions of the 𝑛𝑞

joints. For a floating-base robot, the floating-base degrees of freedom also appear in

𝑞. Joint velocities are denoted by 𝑣 ∈ R𝑛𝑣 . Note that a floating-base robot which

uses quaternions to represent orientation we will have 𝑛𝑞 = 𝑛𝑣 + 1. The equations of

motion are then

𝐻(𝑞)�̇� + 𝐶(𝑞, 𝑣)𝑣 + 𝑔(𝑞) = 𝐵𝜏 + 𝜏𝑒𝑥𝑡. (2.1)

𝐻(𝑞) ∈ R𝑛𝑣×𝑛𝑣 is the inertia matrix, 𝐶(𝑞, 𝑞) ∈ R𝑛𝑣×𝑛𝑣 are the Corioilis and centrifugal

terms, and 𝑔(𝑞) ∈ R𝑛𝑣 is the gravity vector, 𝜏 are the motor torques, 𝐵 maps the motor

torques to the actuated joints. The external joint torques 𝜏𝑒𝑥𝑡 arise from generalized

contact forces acting on the robot. Suppose we have a contact on the surface of the

i-th link whose position is given by 𝑟𝑐. Let J𝑟𝑐 be the 6 × 𝑛𝑣 geometric Jacobian
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corresponding to contact point 𝑟𝑐. An external force 𝐹𝑐 ∈ R3 applied to the contact

point 𝑟𝑐, and an external torque 𝑀𝑐 ∈ R3 applied to the same point can be combined

into a wrench Γ𝑐 = [𝐹𝑐,𝑀𝑐]
𝑇 ∈ R6. Then the contribution of the generalized contact

at point 𝑟𝑐 to the external joint torque 𝜏𝑒𝑥𝑡 is

J𝑟𝑐(𝑞)𝑇Γ𝑐 = J𝑟𝑐(𝑞)𝑇

⎡⎣𝐹𝑐

𝑀𝑐

⎤⎦ . (2.2)

If there are multiple contacts we have 𝜏𝑒𝑥𝑡 =
∑︀

𝑐 J𝑟𝑐(𝑞)𝑇Γ𝑐. Later we will make the

simplifying assumption that 𝑀𝑐 = 0, thus for notational convenience let 𝐽𝑟𝑐(𝑞) be the

3 × 𝑛 submatrix of J𝑟𝑐(𝑞) corresponding to the linear velocity. Then

J𝑟𝑐(𝑞)𝑇

⎡⎣ 𝐹𝑐

03×1

⎤⎦ = 𝐽𝑟𝑐(𝑞)𝑇𝐹𝑐. (2.3)

2.1.1 Residual Observer

In this section we provide an overview of the momentum observer method of [19] which

provides an estimate of the external joint torque 𝜏𝑒𝑥𝑡. Following their treatment define

the residual vector 𝛾(𝑡) ∈ R𝑞𝑣 as

𝛾(𝑡) = 𝐾𝐼

(︂
𝑝−

∫︁ 𝑡

0

(𝐵𝜏 + 𝐶𝑇 (𝑞, 𝑣)𝑣 + 𝛾(𝑠))𝑑𝑠

)︂
, (2.4)

where 𝑝 = 𝐻(𝑞)𝑣 is the generalized momentum of the robot and 𝐾𝐼 > 0 is a diagonal

gain matrix. The residual has dynamics given by

�̇�(𝑡) = 𝐾𝐼(𝜏𝑒𝑥𝑡 − 𝛾). (2.5)

Specifically 𝛾 is a first order observer of 𝜏𝑒𝑥𝑡. Hence the residual provides an estimate

of the external joint torque that results from contact force/torques applied anywhere

on the robot. If we have some known external torques, such as the feet of a walking

robot, we may want to subtract these out when computing the residual so that 𝛾

estimates only the external torques resulting from unmeasured contacts. In particular
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if we have contacts 𝑐1, . . . , 𝑐𝑗 for which we can measure the applied wrenches Γ𝑐𝑖 (e.g.

if our robot has 6-axis force-torque sensors at the ankles) we can subtract these out

by defining

𝛾(𝑡) =𝐾𝐼

(︃
𝑝−

∫︁ 𝑡

0

(𝐵𝜏 +

𝑗∑︁
𝑖=1

J𝑐𝑖(𝑞)𝑇Γ𝑐𝑖 (2.6)

+ 𝐶𝑇 (𝑞, 𝑣)𝑣 + 𝛾(𝑠))𝑑𝑠

)︃
.

Henceforth we let 𝜏𝑒𝑥𝑡 denote the external joint torques produced by unmeasured

external wrenches. [1] performs extensive experiments using a Kuka Light Weight

Robot (LWR) characterizing the performance of the residual observer. As noted

in [20], [1], there are situations where we can determine which link the contact is on

simply by inspecting the residual 𝛾. Suppose our robot is an 𝑛-link manipulator and

there is a contact on the i-th link at location 𝑝𝑐𝑖 . Then one can show that that the

last 𝑛− 𝑖 columns of J𝑐𝑖 will be zero. Hence only the first 𝑖 components of 𝜏𝑒𝑥𝑡 will be

non-zero. In some situations this can allow us to isolate the link on which collision is

occurring by searching for the largest index 𝑖 such 𝛾𝑖 ̸= 0. See [1] for a more detailed

discussion.

2.1.2 Method of Haddidin et. al.

In [1] the authors propose a method for estimating the location of a contact point Later

we will use this as a benchmark for comparison, so we provide a brief overview here. As

with the CPF, their method takes as input the residual estimate 𝛾. This immediately

imposes some restrictions on what types of external contacts which are identifiable. A

key restriction is that the algorithms can only estimate point contacts. In particular

contacts where both a force and torque are exerted are not identifiable. The reason

for this is that if we consider contacts where a wrench Γ can be applied, then there

exist situations where two different contact locations 𝑟𝑐1 , 𝑟𝑐2 with two different applied

wrenches Γ1,Γ2 lead to exactly the same external torque 𝜏𝑒𝑥𝑡. Suppose both contacts

19



are on link 𝑘. The external torque is given by

𝜏𝑒𝑥𝑡,𝑖 = 𝐽𝑟𝑐𝑖Γ𝑖 (2.7)

and the contact Jacobian 𝐽𝑟𝑐𝑖 can be decomposed as

𝐽𝑟𝑐𝑖 = 𝐽𝑘𝐽𝑟𝑐𝑖 (2.8)

where 𝐽𝑖 is the Jacobian for a fixed frame on link 𝑖. For the contact forces to be

indistinguishable it is sufficient that

𝐽𝑟𝑐𝑖Γ1 = 𝐽𝑟𝑐2Γ2 (2.9)

which would imply that the induced external torques 𝐽𝑘𝐽𝑟𝑐1Γ1 and 𝐽𝑘𝐽𝑟𝑐2Γ2 are equal.

Given that 𝐽𝑟𝑐𝑖 ∈ R6 × R6, and Γ𝑖 ∈ R6 this is possible in many instances.

Since the only only information given to the contact estimation algorithm is 𝛾,

which is an estimate of 𝜏𝑒𝑥𝑡, there is no way to distinguish between the situation of

wrench Γ1 applied at contact point 𝑟𝑐1 and wrench Γ2 applied at 𝑟𝑐2 . Henceforth we

restrict ourselves to the situation of point contacts where only a force can be applied.

Note that there is no restriction that the force be applied along the surface normal,

thus the force can have non-zero frictional components.

Suppose that 𝛾 ≈ 𝜏𝑒𝑥𝑡, and that using the reasoning outline in Section 2.1.1, we

have localized the contact to be on link 𝑖. This is an assumption that is often not

satisfied in practice. A wrench Γ𝑐 applied at some point 𝑟𝑐 on link 𝑖 can always be

transformed to an equivalent wrench Γ𝑖 applied at some known frame on link 𝑖. The

idea of the two-step procedure is to break the problem into two parts, each of which

can easily be solved. The first step is to estimate Γ𝑖. Then if the wrench Γ𝑐 = [𝐹𝑐,𝑀𝑐]

consists of only a force, i.e. 𝑀𝑐 = 0, we can attempt to recover 𝐹𝑐 and 𝑟𝑐 from Γ𝑖.

Now we describe each step in detail.
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Estimating the Link Wrench Γ𝑖

Let 𝑟𝑖,𝑐 be the location of the contact point in a known frame attached to link 𝑖.

Denote this frame by 𝑇𝑖. Let 𝐽𝑖(𝑞) be the geometric jacobian for frame 𝑇𝑖 and let

the wrench applied at the contact point be Γ𝑐 when expressed in frame 𝑇𝑖. Let A be

the force-moment transformation from 𝑟𝑖,𝑐 to the origin of 𝑇𝑖. A transforms a wrench

applied at 𝑟𝑖,𝑐 to the equivalent wrench applied at the origin of 𝑇𝑖, and takes the form

A =

⎡⎣ I 0

𝑆(𝑟𝑖,𝑐) I

⎤⎦ , (2.10)

where 𝑆(𝑟𝑖,𝑐) is the skew-symmetric matrix such that 𝑆(𝑟𝑖,𝑐)·𝑥 = 𝑟𝑖,𝑐×𝑥 for all 𝑥 ∈ R3.

The wrench Γ𝑖 = AΓ𝑐 applied at 𝑇𝑖 is equivalent to Γ𝑐 applied at 𝑟𝑖,𝑐. Substituting

this into the computation of the external torque gives

𝐽𝑐(𝑞)𝑇Γ𝑐 = 𝐽𝑖(𝑞)𝑇Γ𝑖, (2.11)

Since 𝑟𝑖,𝑐 is unknown, the geometric Jacobian 𝐽𝑐(𝑞) is also unknown. However, since

𝑇𝑖 is a known frame on link 𝑖, the geometric Jacobian 𝐽𝑖(𝑞) is known. If there is a

single external contact then 𝜏𝑒𝑥𝑡 = 𝐽𝑐(𝑞)𝑇Γ𝑐 = 𝐽𝑖(𝑞)𝑇Γ𝑖. Thus we can find Γ𝑖 that

best explains the residual by minimizing

min
Γ𝑖∈R6

(𝛾 − 𝐽𝑖(𝑞)𝑇Γ𝑖)
𝑇 (𝛾 − 𝐽𝑖(𝑞)𝑇Γ𝑖), (2.12)

One solution to the above minimization is given by the pseudo-inverse

Γ̂𝑖 = (𝐽𝑖(𝑞)𝑇 )#𝛾 (2.13)

If 𝐽𝑖(𝑞) has full row rank, which requires 𝑖 ≥ 6, there is no loss of information in com-

puting Γ̂𝑖. Or equivalently the optimization problem (2.12) has a unique minimum.
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Recovering the Contact Location From Γ𝑖

Now that we have solved for the link wrench Γ𝑖 we want to recover 𝑟𝑐, the location

of the contact point. As noted previously one cannot determine 𝑟𝑐 if we allow gener-

alized contact wrenches Γ𝑐. Thus we restrict ourselves to contact wrenches with zero

moments as in Equation 2.14. A contact wrench with no moment is simply a point

contact.

Γ𝑐 =

⎡⎣𝐹𝑐

0

⎤⎦ (2.14)

This is usually the case for most typical contact situations, so we don’t view it as

a major restriction. What remains is to solve for a force 𝐹𝑐 and contact location 𝑟𝑐

such that when 𝐹𝑐 is applied at 𝑟𝑐 it generates the wrench Γ̂𝑖 at the origin of frame

𝑇𝑖. This requires

Γ̂𝑖 =

⎡⎣𝐹𝑖

�̂�𝑖

⎤⎦ = 𝐴

⎡⎣𝐹𝑐

0

⎤⎦ =

⎡⎣ 𝐹𝑐

𝑆(𝑟𝑖,𝑐)𝐹𝑐

⎤⎦ (2.15)

Immediately we know that 𝐹𝑐 = 𝐹𝑖. The remaining equation is

�̂�𝑐 = 𝑆(𝑟𝑖,𝑐)𝐹𝑐 = 𝑟𝑖,𝑐 × 𝐹𝑐 = −𝐹𝑐 × 𝑟𝑖,𝑐 = −𝑆(𝐹𝑐)𝑟𝑖,𝑐 (2.16)

𝑆(𝐹𝑐) is a 3 × 3 skew-symmetric matrix that represents the operator 𝐹𝑐×.

𝑆(𝐹𝑐) =

⎡⎢⎢⎢⎣
0 −𝐹𝑐,3 𝐹𝑐,2

𝐹𝑐,3 0 −𝐹𝑐,1

−𝐹𝑐,2 𝐹𝑐,1 0

⎤⎥⎥⎥⎦ (2.17)

Since 0 = 𝐹𝑐 × 𝐹𝑐 = 𝑆(𝐹𝑐)𝐹𝑐 we know that rank(𝑆(𝐹𝑐)) ≤ 2. In particular if 𝐹𝑐 ̸= 0,

which we will suppose from now on since otherwise there is no force to be estimated,

then it is simple to check that rank(𝑆(𝐹𝑐)) = 2. Define

𝑟𝑖,𝑑 = (−𝑆(𝐹𝑐))
#�̂�𝑖 (2.18)
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Since rank(𝑆(𝐹𝑐)) = 2 there are a continuum of solutions to equation 2.16, and the

solution space has dimension one. Since 𝑆(𝐹𝑐)𝐹𝑐 = 0 the solutions to equation (2.16)

are of the form 𝑟𝑖,𝑐 = 𝑟𝑖,𝑑 + 𝜆𝐹𝑐/||𝐹𝑐|| for scalar 𝜆. We denote the set of solutions

𝑟𝑖,𝑐 as the line of force action. If we know the surface 𝒮𝑖 of link 𝑖, the contact point

𝑥𝑐 can be found by intersecting the line of force action with the 𝒮𝑖. In general this

will yield two intersection points along the line, denoted by 𝜆𝐴, 𝜆𝐵. Then we simply

choose the point where 𝐹𝑐 is pointing into the link surface. This comes from the fact

that external forces usually only push (and don’t pull) on the surface of a link. The

problem with this method arises when the line of force action fails to intersect the

link surface. This issue will be discussed further in Sections 3.2.3 and 3.3.3.

Extension to multiple external contacts

The same procedure can be extended to attempt to simultaneously estimate multiple

contact points. Suppose we knew that there was contact on links 𝑖, 𝑗. The the first

step involves solving the analog of (2.12) for the case of multiple contacts. The only

difference is that 𝐽𝑖(𝑞)𝑇Γ𝑖 is replaced by 𝐽𝑖(𝑞)𝑇Γ𝑖+𝐽𝑗(𝑞)𝑇Γ𝑗. Again this can be solved

using the pseudoinverse.⎡⎣Γ̂𝑖

Γ̂𝑗

⎤⎦ = ([𝐽𝑖(𝑞)𝑇 , 𝐽𝑗(𝑞)𝑇 ])#𝛾 = (J𝑇 )#𝛾, (2.19)

where J =

⎡⎣𝐽𝑖(𝑞)

𝐽𝑗(𝑞)

⎤⎦. Again for there to be no information loss when going from 𝛾 to

[Γ̂𝑖, Γ̂𝑗], which is equivalent to the analog of (2.12) for the multi-contact case having

a unique solution, the matrix J must be of rank 12. Once we have Γ̂𝑖, Γ̂𝑗 we follow

the same procedure as in the single contact case to find the location of the contact on

each link. In general this procedure can be used to localize any number of contacts.

If there are 𝑘 external contacts, then in order for there to be no information loss one

needs that the stacked link Jacobian matrix J = [𝐽𝑖1(𝑞)𝑇 , . . . , 𝐽𝑖𝑘(𝑞)𝑇 ] is of rank at

least 6𝑘.
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2.2 Contact Detection and Localization

In this section we describe the details of the CPF algorithm. First we formulate the

contact localization problem as a nonlinear optimization. Then we leverage some

features of this optimization problem to approximate it using a tractable quadratic

programming framework, and show how to use this framework as part of a particle

filter.

For simplicity consider the case of a single external contact at location 𝑟𝑐 on link

𝑖. Following [1] we make the assumption that only forces, and no torques, are applied

at 𝑟𝑐. This is the case for most typical contact situations. Given a residual 𝛾 we want

to find the contact location and contact force 𝐹𝑐 which best explain 𝛾. Let 𝒮𝑖 ⊂ R3 be

the surface manifold of the i-th link. Since contact point 𝑟𝑐 must lie on the surface of

the robot the allowable contact locations are 𝒮 =
⋃︀

𝑖 𝒮𝑖. Let ℱ(𝑟𝑐) denote the friction

cone at contact point 𝑟𝑐. Note that the method of [1] doesn’t consider the friction

cone, and thus isn’t taking advantage of all available information. Then solving for

the contact location can be formulated as an optimization

min
𝑟𝑐,𝐹𝑐

(𝛾 − 𝐽𝑟𝑐(𝑞)𝑇𝐹𝑐)
𝑇 (𝛾 − 𝐽𝑟𝑐(𝑞)𝑇𝐹𝑐) (2.20)

subject to 𝑟𝑐 ∈ 𝒮, 𝐹𝑐 ∈ ℱ(𝑟𝑐). (2.21)

The optimization (2.20) is non-convex since 𝑟𝑐 and 𝐹𝑐 appear as a cross product in

the term 𝐽𝑟𝑐(𝑞)𝑇𝐹𝑐. However, if we fix the contact location 𝑟𝑐 then the optimization

problem becomes convex.

min
𝐹𝑐

(𝛾 − 𝐽𝑟𝑐(𝑞)𝑇𝐹𝑐)
𝑇 (𝛾 − 𝐽𝑟𝑐(𝑞)𝑇𝐹𝑐) (2.22)

subject to 𝐹𝑐 ∈ ℱ(𝑟𝑐).

The problem is convex because once we fix 𝑟𝑐 the Jacobian 𝐽𝑟𝑐(𝑞) is simply a known

fixed matrix, and the friction cone ℱ(𝑟𝑐) is a convex set. A similar insight was
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used in [27] in the context of grasp analysis. One way to approximate the solution

to problem (2.20) is to sample contact locations 𝑟𝑐 ∈ 𝒮 and then solve the convex

problem (2.22) for each contact location. By choosing the point 𝑟𝑐 with the smallest

objective value, we achieve an approximation to the solution of the full problem (2.20).

In section 2.2.1 each particle in our particle filter will correspond to a contact location

𝑟𝑐 and the measurement update will correspond to solving a version of (2.22). In this

way we avoid the intractability of problem (2.20).

Section 2.2.1 describes the Contact Particle Filter for the case of a single external

contact. In section 2.2.2 we extend the CPF to the general multi-contact case.

2.2.1 Single External Contact

Let 𝛾(𝑡) be the residual observer from section 2.1. Each particle 𝑟[𝑚]
𝑡 ∈ R3 corresponds

to a particular location of the external contact on the surface of the robot. A particle

filter requires us to specify both a measurement model, described in section 2.2.1,

and a motion model, detailed in section 2.2.1. [28] provides an extensive overview of

particle filters and their associated convergence properties.

Measurement Model

Our measurement will be the residual 𝛾(𝑡), also abbreviated as 𝛾. The measurement

update 𝑝(𝛾|𝑟[𝑚]
𝑡 ) captures how well a force applied at point 𝑟[𝑚]

𝑡 can explain the residual

𝛾(𝑡). To find a probability for 𝑝(𝛾|𝑟[𝑚]
𝑡 ) we suppose that the residual is the true

external joint torque plus noise,

𝛾 = 𝜏𝑒𝑥𝑡 + 𝜂, where 𝜂 ∼ 𝒩 (0,Σ𝑚𝑒𝑎𝑠). (2.23)

Now define

𝜀 = min
𝐹𝑐

(𝛾 − 𝐽𝑇

𝑟
[𝑚]
𝑡

𝐹𝑐)
𝑇Σ−1(𝛾 − 𝐽𝑇

𝑟
[𝑚]
𝑡

𝐹𝑐) (2.24)

subject to 𝐹𝑐 ∈ ℱ(𝑟
[𝑚]
𝑡 ).
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Fc,4

Fc

Figure 2-1: Polyhedral approximation to the friction cone

Following the approach in [29] we replace the friction cone with a polyhedral ap-

proximation shown in Figure 2-1. This polyhedral approximation to the friction cone

allows us to approximate (2.24) using a quadratic program.

𝑄𝑃 (𝛾|𝑟[𝑚]
𝑡 ) = min

𝛼𝑖,𝐹𝑐

(𝛾 − 𝐽𝑇

𝑟
[𝑚]
𝑡

𝐹𝑐)
𝑇Σ−1

𝑚𝑒𝑎𝑠(𝛾 − 𝐽𝑇

𝑟
[𝑚]
𝑡

𝐹𝑐) (2.25)

subject to 𝛼𝑖 ≥ 0, 𝐹𝑐 =
𝐾∑︁
𝑖=1

𝛼𝑖𝐹𝑐,𝑖.

where 𝐾 is the dimension of the approximation to the friction cone. In our case we

use 𝐾 = 4 as shown in Figure 2-1. Then 𝜀 ≈ 𝑄𝑃 (𝛾|𝑟[𝑚]
𝑡 ). We can recover a likelihood

using the fact that 𝛾 = 𝜏𝑒𝑥𝑡 + 𝜂. Namely

𝑝(𝛾|𝑟[𝑚]
𝑡 ) ∝ exp

(︂
−1

2
𝑄𝑃 (𝛾|𝑟[𝑚]

𝑡 )

)︂
, (2.26)

where we have omitted the normalizing constant. The key insight is that once we

specify a contact location, the measurement update can be formulated as a quadratic

program, abbreviated as QP.

Motion Model

The other half of a particle filter is the motion model. In particular we must specify

𝑝(𝑟𝑡|𝑟𝑡−1, 𝑢𝑡) where 𝑢𝑡 are the control inputs at time 𝑡, in this case the torques applied

to the robot. Our motion model won’t depend on the control inputs so we define

𝑝(𝑟𝑡|𝑟𝑡−1) ∝ 𝒩 (𝑟𝑡; 𝑟𝑡−1,Σ𝑚𝑜𝑡𝑖𝑜𝑛). (2.27)
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Particles must correspond to contact locations on the surface of the link, so in order to

sample from this distribution we first generate 𝑟 ∼ 𝒩 (𝑟𝑡−1,Σ𝑚𝑜𝑡𝑖𝑜𝑛) and then project

𝑟 back to the closest point 𝑟𝑡 on the robot’s surface. Given a set of particles 𝒳

let Motion-Model(𝒳 ) be the result of applying the motion model to each particle.

This motion model corresponds to a mean-zero random walking assumption of the

contact location in the link frame. In other words the contact point moves around

randomly on the surface of the link. Other motion models, such as zero velocity of

the contact point in the world frame are also possible. We believe that the specific

choice of motion model does not have a large impact on filter performance, as the

measurement update step provides strong information for resampling particles near

the true contact location.

Contact Particle Filter

Now we combine the measurement and motion models to form the single contact par-

ticle filter (Single-CPF). As in [20] and [1] we must specify a threshold for determining

when there is an external contact. Define 𝜖(𝑡) = 𝛾(𝑡)𝑇Σ−1
𝑚𝑒𝑎𝑠𝛾(𝑡). We say that there

is an external contact if 𝜖(𝑡) is greater than some threshold 𝜖. Imposing a thresh-

old serves to reduce false positives, but it can also delay detection for contacts with

small forces. If the thresholding approach is not sufficient, we can apply model-based

adaptive thresholding [30] or learning based methods [31]. Let 𝒳𝑡 denote the current

set of particles {𝑟[1]𝑡 , . . . , 𝑟
[𝑚]
𝑡 }, and 𝒳𝑖𝑛𝑖𝑡 be fixed set of particles which are evenly

sampled from the surface of the robot. The Single-CPF is described in Algorithm

1. The Importance-Resample function simply performs the standard particle filter

importance resampling using the importance weights 𝑤
[𝑚]
𝑡 .

The final step is to recover the most likely contact location given a particle set

𝒳𝑡. This is done by computing an average contact location for the particle set and

projecting this point back to the surface of the robot. Label this procedure Get-

Contact-Location(𝒳𝑡).

Figure 2-2 shows 4 iterations of the Single-CPF algorithm while localizing a con-

tact on the torso. The particles are drawn in red just after importance resampling,
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Algorithm 1 Single-CPF(𝒳𝑡−1, 𝛾(𝑡))

1: if 𝜖(𝑡) = 𝛾(𝑡)𝑇Σ−1
𝑚𝑒𝑎𝑠𝛾(𝑡) < 𝜖 then

2: 𝒳𝑡 = ∅
3: return 𝒳𝑡

4: if 𝒳𝑡−1 = ∅ then
5: 𝒳 ′

𝑡 = 𝒳𝑖𝑛𝑖𝑡

6: else
7: 𝒳 ′

𝑡 = Motion-Model(𝒳𝑡−1)

8: 𝒳 𝑡 = ∅
9: for 𝑟

[𝑚]
𝑡 in 𝒳 ′

𝑡 do
10: 𝑤

[𝑚]
𝑡 = 𝑝(𝛾(𝑡)|𝑟[𝑚]

𝑡 )

11: 𝒳 𝑡 = 𝒳 𝑡 + ⟨𝑟[𝑚]
𝑡 , 𝑤

[𝑚]
𝑡 ⟩

12: 𝒳𝑡 = Importance-Resample(𝒳 𝑡)
13: return 𝒳𝑡

line 12 of Algorithm 1. The true contact location is shown in green. Initially there

is no external force and the filter has 𝒳𝑡 = ∅. Then an external force of 10 newtons

is continuously applied at a location on the torso, shown in green. The filter detects

this and enters the if statement at line 5 and sets 𝒳 ′
𝑡 = 𝒳𝑖𝑛𝑖𝑡. This is visualized

in Figure 2-2a. Subsequent filter steps shown in Figure 2-2b-2-2d show the particles

converging to the true contact location.

2.2.2 Multiple External Contacts

In this section we extend the Single-CPF algorithm to handle multiple external con-

tacts. First we consider a naive generalization and show why it is not computationally

tractable. Then we propose a computationally tractable alternative.

Suppose we have 𝑙 external contacts. Now the state space is the location of all 𝑙

contact points, thus a particle r𝑡 in our filter encodes the locations of all 𝑙 contact

points, r𝑡 = (𝑟𝑡,1, . . . , 𝑟𝑡,𝑙), where 𝑟𝑡,𝑗 is the location of the j-th contact point. There is

a simple extension of the measurement update from section 2.2.2 to the multi-contact

case. Let 𝐹
[𝑘]
𝑐,1 , . . . , 𝐹

[𝑘]
𝑐,4 be the polyhedral approximation to the friction cone of the
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(a) (b)

(c) (d)

Figure 2-2: Four iterations of the Single-CPF algorithm. Particles are shown in red
just after importance resampling. The length of the arrow is proportional to the
number of particles at that location. The green arrow is the true contact location.
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k-th contact point 𝑟𝑡,𝑘. Then define

𝑄𝑃 (𝛾|(𝑟𝑡,1, . . . , 𝑟𝑡,𝑙)) = min
𝛼𝑖,𝑘,𝜏𝑒𝑥𝑡

(𝛾 − 𝜏𝑒𝑥𝑡)
𝑇Σ−1

𝑚𝑒𝑎𝑠(𝛾 − 𝜏𝑒𝑥𝑡) (2.28)

s.t. 𝛼𝑖,𝑘 ≥ 0, 𝐹 [𝑘]
𝑐 =

4∑︁
𝑖=1

𝛼𝑖,𝑘𝐹
[𝑘]
𝑐,𝑖 , 𝜏𝑒𝑥𝑡 =

𝑙∑︁
𝑘=1

𝐽𝑇
𝑟𝑡,𝑘

𝐹 [𝑘]
𝑐 .

This a quadratic program with 4 * 𝑙 decision variables. As in the single contact case

the likelihood is

𝑝(𝛾|(𝑟𝑡,1, . . . , 𝑟𝑡,𝑙)) ∝ exp

(︂
−1

2
𝑄𝑃 (𝛾|(𝑟𝑡,1, . . . , 𝑟𝑡,𝑙))

)︂
. (2.29)

Thus our measurement model extends naturally to multiple contact points. However

the complexity of this algorithm will grow exponentially in the number of contact

points. If we have 𝑙 contact points, then the particle representing all the contact

locations belongs to a space of dimension 𝑙. The number of particles needed in a

particle filter grows exponentially with the dimension of the state space, and so as the

number of contact points increases we would need to increase the number of particles

exponentially, which would require solving an exponentially increasing number of

quadratic programs. Clearly this is not tractable so we propose an approximate

scheme.

Instead of having a single particle encode the location of all the external contacts,

each particle will encode the location of a single external contact, as in the single-CPF

algorithm. If there are 𝑙 actual external contacts, labeled 𝑐1, . . . , 𝑐𝑙, then we will have 𝑙

particle sets 𝒳𝑡,1, . . . ,𝒳𝑡,𝑙, one for each contact point. Let X𝑡 = {𝒳𝑡,1, . . . ,𝒳𝑡,𝑙} denote

the set of particle sets. The particles in particle set 𝒳𝑡,𝑘 will estimate the location of

the k-th contact. As in section 2.2.1 we must define the measurement model and the

motion model.

Measurement Model

To get around the computational problems mentioned in the previous section we make

an independence assumption when computing the measurement update for particle
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𝑥𝑡,𝑗 ∈ 𝒳𝑡,𝑗. Specifically we take the location of the other contacts as given. The

Get-Contact-Location(𝒳𝑡,𝑘) method described in section 2.2.1 naturally provides an

estimate of the location of contact 𝑐𝑘, given by 𝑟*𝑐,𝑘 = Get-Contact-Location(𝒳𝑡,𝑘).

If we define r = {𝑟*𝑐,𝑘}𝑘 ̸=𝑗 then the measurement update for a particle 𝑟
[𝑚]
𝑡,𝑗 ∈ 𝒳𝑡,𝑗 is

defined as

𝑝(𝛾|𝑟[𝑚]
𝑡,𝑗 ,X ) ∝ exp

(︂
−1

2
𝑄𝑃 (𝛾|(𝑟[𝑚]

𝑡,𝑗 , r))

)︂
. (2.30)

where 𝑄𝑃 (𝛾|(𝑟[𝑚]
𝑡,𝑗 , r)) refers to (2.28). The full measurement update is detailed in

Algorithm 2.

Algorithm 2 Multi-Measurement-Update(𝛾,X𝑡)

X 𝑡 = ∅
for 𝒳𝑡,𝑗 ∈ X do

𝒳 𝑡,𝑗 = ∅
r = {𝑟*𝑡,𝑘}𝑘 ̸=𝑗

for 𝑟
[𝑚]
𝑡,𝑗 in 𝒳𝑡,𝑗 do

𝑤
[𝑚]
𝑡,𝑗 = exp

(︁
−1

2
𝑄𝑃 (𝛾|(𝑟[𝑚]

𝑡,𝑗 , r))
)︁

𝒳 𝑡,𝑗 = 𝒳 𝑡,𝑗 + ⟨𝑟[𝑚]
𝑡,𝑗 , 𝑤

[𝑚]
𝑡,𝑗 ⟩

return X 𝑡

Motion Model and Importance Resampling

The motion model for a single particle is the same as in the single contact case with

the sampling density 𝑝(𝑟𝑡,𝑗|𝑟𝑡−1,𝑗) defined as in section 2.2.1. Then we simply apply

the motion model to each particle set independently.

Importance resampling just consists of independently resampling each particle set

using the importance weights 𝑤
[𝑚]
𝑡,𝑗 computed in the measurement update step.

Adding and Removing Particle Sets

Since each particle set 𝒳 represents a single external contact, we keep track of the

number of external contacts and update the number of particle sets accordingly. Given

X = {𝒳𝑡,1, . . . ,𝒳𝑡,𝑙} let r*(X ) = {𝑟*𝑡,1, . . . , 𝑟*𝑡,𝑙}, where 𝑟*𝑡,𝑘 is the most likely contact
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location for 𝒳𝑡,𝑘. Define

𝜖(X𝑡, 𝛾) = 𝑄𝑃 (𝛾|r*(X𝑡)). (2.31)

If X𝑡 is empty then let

𝑄𝑃 (𝛾|r*(X𝑡)) = 𝛾𝑇Σ−1
𝑚𝑒𝑎𝑠𝛾. (2.32)

If 𝜖(X𝑡, 𝛾) > 𝜖 then it means that with our current estimate of the locations of the

external contacts we are not able to explain the residual 𝛾. This means that there is

likely another contact point that is not accounted for by one of the current particle

sets, so we add a new particle set to X𝑡 to represent this new external contact point.

Since we don’t know where this new contact point is we initialize the new particle set

to 𝒳𝑖𝑛𝑖𝑡.

When should we remove a particle set? If the residual is well explained without

using a force at a particular contact location then it is likely that there is no force at

this contact location. In this situation we remove the particle set corresponding to

that contact point. Formally if 𝒳 is such that 𝜖(𝛾,X𝑡∖{𝒳𝑡,𝑘}) < 𝜖, then we should

eliminate the particle set 𝒳𝑡,𝑘 from X𝑡. The full procedure is outlined in Algorithm 3

Algorithm 3 Manage-Particle-Sets(𝛾,X𝑡−1)
𝒳𝑡 = X𝑡−1

if 𝜖(𝛾,X𝑡−1) > 𝜖 then
add 𝑋𝑖𝑛𝑖𝑡 to X𝑡

return X𝑡

for 𝒳𝑡,𝑘 in X𝑡 do
if 𝜖(𝛾,X𝑡∖{𝒳𝑡,𝑘}) < 𝜖 then

remove 𝒳𝑡,𝑘 from X𝑡

return X𝑡

return X𝑡

Multi-Contact-Particle-Filter

For the multi-contact particle filter we simply combine the motion model, the Multi-

Contact-Measurement-Update, and the Manage-Particle-Sets algorithms. The details

are given in Algorithm 4.
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Algorithm 4 Multi-CPF(𝛾,X𝑡−1)

X𝑚𝑜𝑡𝑖𝑜𝑛 = Motion-Model(X𝑡−1)
X𝑚𝑒𝑎𝑠 = Multi-Measurement-Update(𝛾,X𝑚𝑜𝑡𝑖𝑜𝑛)
X𝑟𝑒𝑠𝑎𝑚𝑝𝑙𝑒 = Importance-Resample(X𝑚𝑒𝑎𝑠)
X𝑡 = Manage-Particle-Sets(𝛾,X𝑟𝑒𝑠𝑎𝑚𝑝𝑙𝑒)
return X𝑡

To recover the best estimate of the contact locations we simply apply Get-Contact-

Location to each particle set 𝒳𝑡,𝑘 ∈ X𝑡.
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Chapter 3

Experimental Validation

This chapter analyzes a variety of experiments that demonstrate the performance of

the CPF. Section 3.1 describes implementation details of the CPF algorithm. Section

3.2 describes experiments using a simulated 36 DOF robot, where we show the ability

of the CPF to localize up to 3 simultaneous external contacts. Section 3.3 describes

simulation experiments performed on a Kuka iiwa 7 DOF robot arm. In particular

we analyze the performance of the CPF across a variety of contact locations, robot

poses and noise levels in the residual. We also compare our approach to the method

of [1]. Section 3.4 shows the results of hardware experiments on the Kuka iiwa that

match the simulation experiments from Section 3.3.

3.1 CPF Implementation Details

To speed up development the CPF was implemented in a single thread Python process

using the Director software package [32]. We use the FORCES Pro [33] software

package to generate efficient solvers for the quadratic programs in the measurement

update step. This is possible since the size of the quadratic programs is known

ahead of time. The CPF must be passed a complete surface mesh of the robot at

initialization, but the only required real-time information are the joint positions 𝑞 and

the residual 𝛾. In all the experiments the CPF was run on an Intel Core i7-5820K

X6 3.3GHz with 16GB of RAM.
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3.2 Simulation Experiments with Atlas Humanoid

Robot

Section 3.2.1 describes the experiment setup, 3.2.2 gives quantitative results on the

localization performance of the CPF. Section 3.2.3 provides a comparison of the per-

formance of the CPF and the method of [1]. A video of the CPF is available at

http://youtu.be/ckvsMK0QhB0.

3.2.1 Experimental Setup

We perform our first experiments using a simulated model of the Atlas robot. In

particular we ran the simulations using the Drake robotics toolkit [34]. The At-

las robot has 36 degrees of freedom and 30 actuated joints. To properly formulate

the residual detector we need joint position and velocity measurements 𝑞, 𝑣, in ad-

dition to torque measurements 𝜏 for the actuated joints, i.e. excluding the floating

base. Although the Atlas hardware only has 3-axis force-torque sensors at the feet

we simulate full 6-axis force-torque sensors. As discussed in Section 2.1.1 these 6-

axis force-torque measurements are necessary in order to properly “subtract out” the

known contact wrenches at the feet when computing the residual 𝛾. Other humanoids

such as NASA’s Valkyrie [35] have these 6-axis force-torque sensors. To test our al-

gorithm we also augment the simulator allow application of arbitrary contact forces

along the surface of the robot. This allows us to simulate many different potential

contact situations without constructing complex environments that the robot can

collide with.

3.2.2 Filter Performance

In all the experiments the parameters were held constant, specifically we used particle

sets of size 50. We ran three classes of experiments, distinguished by the number of

simultaneous external contacts. The first set of experiments applied a single con-

tact force to the robot. There were 7 distinct locations where this contact force was
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applied. The second set of experiments considered pairs of external contacts. In par-

ticular we had four pairs of contacts. Since the filter cannot handle multiple contacts

that arise simultaneously1 we add the contacts sequentially 1 second apart. The final

set of experiments considers 3 simultaneous contacts. In this case we considered three

triples of contact locations. As in the situation of two contacts, the contact forces

were applied sequentially. In all experiments a 20 Newton force was applied at each

contact location. The robot’s pose can also affect filter performance since the contact

Jacobians 𝐽𝑟𝑐 in equation (2.2) are a function of the joint angles. To incorporate this

effect we moved the robot through a series of poses for each set of contact locations.

The poses involved moving the upper body and adjusting the center of mass height,

but did not include walking. Finally, in practice the residual 𝛾 may not be perfectly

accurate due to inaccuracies in the dynamic model of the robot, and errors in the

joint position and torque sensor. To capture this effect we added Gaussian noise with

standard deviation {0, 0.1, 0.2} to the residual. The results are summarized in Figure

3-1. The CPF was able to localize contacts to within 3 centimeters in most cases.

In general filter performance deteriorates as the amount of noise increases, however

the localization accuracy remained fairly constant as the number of external contacts

increased. Since the experiments were performed in simulation the residual observer

(2.4) had the correct inertial parameters of the robot. Since the simulation doesn’t

include friction in the robot’s joints, this ultimately implies that the residual observer

was using a very accurate dynamic model of the robot, an assumption that may or

may not be satisfied in real world operation. However, the addition of noise in the

experiments shows that the filter performs fairly well even if the residual contains

errors.

3.2.3 Comparison to Haddadin et. al.

In this section we compare the performance of the CPF to the contact localization

method of [1], described in Section 2.1.2. A typical situation is shown in Figure 3-2.

As we can see the CPF precisely estimates the location of both contact points, while
1see Section 3.5.6 for a more extensive discussion
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Figure 3-1: This chart shows the localization performance of the CPF across the
experiments described in Section 3.2.2. The experiments are classified according
to the number of external contacts, either one, two or three. Gaussian noise with
standard deviation {0, 0.1, 0.2} was added to the residual. For each noise level, we
report the average localization performance across the different contact locations in
that set.

the method of [1] doesn’t provide accurate estimates 2. In particular the line of force

action for the arm fails to intersect the robot surface. The reason that the method

of [1] does poorly in this scenario is because when solving for the link wrenches Γ𝑖 (in

this case one for the arm and one for the torso) in the first stage, it allows arbitrary

wrenches Γ𝑖 ∈ R6. If 𝐴(𝑟𝑐) denotes the force moment transformation which converts

a force applied at 𝑟𝑐 to a wrench at the known link frame then the set of wrenches

that can be generated by point forces applied to the robot is given by

𝒲𝑖 = {Γ : Γ = 𝐴(𝑟𝑐)𝐹𝑐 for 𝑟𝑐 ∈ 𝒮𝑖, 𝐹𝑐 ∈ ℱ(𝑟𝑐)}. (3.1)

By allowing Γ𝑖 ∈ R6 rather than restricting Γ𝑖 ∈ 𝒲𝑖 in the first stage, the method

of [1] doesn’t take advantage of all the information in the residual 𝛾. In the situation

of Figure 3-2 the external joint torque is given by

2For the purposes of this experiment we gave the method of [1] the identity of the two links
where contact was occurring. In general this is something that would need to be deduced from
the residual. This is relatively easy in the case of a single contact, or multiple contacts on distinct
kinematic chains, but it is not generally possible for multiple contacts on the same kinematic chain.
However, for the sake of comparing the two methods we allow the method of [1] this additional
information.
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𝛾 ≈ 𝜏𝑒𝑥𝑡 = J1(𝑞)𝑇Γ1 + J2(𝑞)𝑇Γ2, (3.2)

where the 𝑖 = 1, 2 subscripts denote quantities for the arm and torso, respectively.

The method of [1] fails because if we allow Γ1,Γ2 ∈ R6, then equation (3.2) admits

multiple solutions. [1] uses the pseudo-inverse to choose a particular solution Γ̂1, Γ̂2,

but if Γ̂1 ̸∈ 𝒲1 then there does not exist a contact location 𝑟 on the arm and force

𝐹 which generate this link wrench Γ̂1. This is manifested in Figure 3-2 as the line of

force action for the arm failing to intersect the robot surface. Ultimately not imposing

the restriction that Γ𝑖 ∈ 𝒲𝑖 in the first stage causes the failure of the method of [1]

to localize the contact points. On the other hand the CPF does impose that Γ𝑖 ∈ 𝒲𝑖

as can be seen in (2.20). This additional restriction eliminates the multiplicity of

solutions to Equation (3.2) that plagued the method of [1] and allows the CPF to

accurately localize the external contacts.

As illustrated in Figure 3-2 one of the failure modes of the method of [1] is that

the line of force action fails to intersect the link surface. This is a result of the first

stage estimate Γ̂𝑖 not being in 𝒲𝑖. If the residual 𝛾 is a sufficiently noisy estimate of

𝜏𝑒𝑥𝑡 then the first stage of the method of [1], which attempts to solve 𝛾 = 𝐽𝑖(𝑞)𝑇 Γ̂𝑖

can return Γ̂𝑖 ̸∈ 𝒲𝑖. Since the resulting line of force action fails to intersect the

link, the method of [1] doesn’t return an estimate. On the other hand since the CPF

samples particles on the link surface it never suffers this problem. The estimates may

be degraded by a noisy 𝛾, as seen in Figure 3-1, but by construction they always lie

on the link surface.

3.3 Simulation Experiments with Kuka iiwa Arm

3.3.1 Experimental Setup

We use an analogous setup to the experiments in Section 3.2. The only difference

is that we use the 7 degree of freedom Kuka iiwa robot model instead of Atlas. To

test out the benefit of adding additional sensors, Section 3.3.4 explores the effect of
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Figure 3-2: There are two external contacts on the robot, shown in green. Each
contact is applying a 10 Newton force. The estimated contact locations from the
CPF are shown in cyan. The lines of force-action for the method of [1] are the long
yellow rays.

adding a 6-axis force torque sensor to the base of the Kuka robot.

3.3.2 Filter Performance

Since the Kuka only has 7 degrees of freedom the residual 𝛾 ∈ R7, there isn’t sufficient

information to localize multiple external contacts, thus all the experiments with the 7

degree of freedom Kuka will be with a single external contact force. This is in keeping

with the method of [1] which was primarily developed and tested for industrial robot

arms such as the Kuka. The experiments consist of evaluating the CPF across a

variety of contact locations, robot poses, and noise levels in the residual torque 𝛾.

The parameters of the filter were held constant across all experiments. We sampled

six contact locations on the surface of links 4,5,6,7 of the Kuka robot, shown in Figure

3-3. Each experiment applied a single point force to one of the locations in Figure 3-3.

Since the contact Jacobians 𝐽𝑟𝑐 in equation (2.2) are a function of the joint angles, the

robot pose can affect filter performance. To study this effect we ran experiments for

the four poses shown in Figure 3-4. Finally, we added noise to the residual estimate

𝛾. This served as a proxy for inaccuracies in the robot model used when computing

the residual. We used Gaussian noise with standard deviations {0, 0.1, 0.5}. For each

combination of contact location, robot pose and noise level we ran 5 experiments and

computed the average performance. The results are show in Figure 3-5.

Figure 3-5a shows accuracy of the contact location estimate, across different robot

poses, contact locations and noise levels. In particular, even with noise the contact
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(a) Contact location 0 (b) Contact location 1

(c) Contact location 2 (d) Contact location 3

(e) Contact location 4 (f) Contact location 5

Figure 3-3: The six contact locations used in the Kuka iiwa simulation and hardware
experiments. Each contact location is indicated with a green line segment along the
normal direction.

41



(a) Pose 0 (b) Pose 1

(c) Pose 2 (d) Pose 3

Figure 3-4: The four robot poses used in the Kuka iiwa simulation and hardware
experiments.
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(a)

(b)

(c)

Figure 3-5: Results of simulation experiments run on the Kuka robot. A simulation
experiment was run for each combination of contact location, robot pose and noise
added to the residual. (3-5a) shows the average error, measured in centimeters, of the
estimated contact location as compared to the true contact location. (3-5b) shows
the average angle, measured in degrees, between the estimated force direction and
the measured force direction. (3-5c) shows the estimated force magnitude error as a
percentage of the actual force.
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location estimate was always within 2 cm, and in the case of no noise within 1 cm.

This shows that the CPF is able to accurately localize external contact across a

range of poses and contact locations. Since the input to the algorithm is the residual

estimate, it is expected that filter performance will suffer as the quality of the residual

degrades. This can be seen by comparing the three plots in Figure 3-5a. The leftmost

plot, which corresponds to no noise in the residual, has the best performance, and

localization accuracy decreases as more noise is added to the residual.

Figure 3-5b shows the average angle error between the estimated and actual con-

tact force directions. Again we see that force direction accuracy is excellent, within

4 degrees for all scenarios. Similarly to the contact location estimation, performance

deteriorates as more noise is added to the residual.

Figure 3-5c shows the accuracy of the force magnitude estimate, where the esti-

mated force magnitude error is given as a percentage of the actual force. Across all

trials we were able to estimate the force to within 8% of the true magnitude. As

mentioned above the general trend is that the force accuracy deteriorates as noise is

added to the residual.

The plots also show us that both contact location and robot pose can affect ac-

curacy. In particular performance of the CPF for contact location 1 is significantly

worse than for the other contact locations. As shown in Figure 3-3 this contact is

on the fourth link of the iiwa. This implies that the last three columns of the con-

tact Jacobian 𝐽𝑟𝑐 are zero. Hence the residual 𝜏𝑒𝑥𝑡 ∈ R7 defined in section 2.1 has

only four non-zero components. Effectively this means that there is less information

for the CPF to use in estimating the contact location. This is reflected Figure 3-5

with contact location 1 having the worst performance, among the different contact

locations, in all three metrics, location, direction and magnitude.

3.3.3 Comparison to Haddadin et. al.

In this section we compare the performance of the CPF to the method of [1] outlined

in section 2.1.2. We analyze the same set of experiments as in Section 3.3.2, focusing

on the scenario with no added noise. Figure 3-6 shows the results. The plots are
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analogoous to those in Figure 3-5 with one key difference. As mentioned in Section

3.2.3 the method of [1] does not always return valid estimates for the contact location

and force. As analyzed in detail in Section 3.2.3 this is due to the fact that the method

of [1] doesn’t impose the restrictions implied the fact that the contact must lie on the

robot surface and the applied force must be within the friction cone. This situation

is exacerbated on the Kuka arm where the Jacobian 𝐽𝑟𝑐 ∈ R6×7. In particular if

the contact is on the 𝑘𝑡ℎ link then rank(𝐽𝑟𝑐) ≤ 𝑘. Since in our experiments we have

contacts with 𝑘 = 4, 5, 6, 7 it is often the case that 𝐽𝑟𝑐 is not of full rank. In some of

these situations the line of force action, described in Section 2.1.2, will fail to intersect

the link surface. In this case the method of [1] simply fails to provide an estimate

for the contact location and force. In Figure 3-6 we denote these instances by gray

squares.

The results of Figure 3-6 show that the method of [1] doesn’t return a valid

estimate for 6 of the 24 test cases, while the CPF by construction always returns a

valid estimate. In addition, even though an estimate is provided for contact location

4 the accuracy is very poor, with errors of more than 12 cm in the estimated contact

location. Comparing the left column and right column of Figure 3-6 we see that even

in the small number of scenarios where their method returns valid estimates, the CPF

almost always provides more accurate estimates. We can conclude that although the

method of [1] is very computationally efficient, the fact that it doesn’t impose the

restriction that the contact force lie on the link surface and satisfy the friction cone

restrictions, as detailed in Section Section 3.2.3, severely limits its usefulness in real

world scenarios.

The method of [1] is also more sensitive to noise in the residual than the CPF.

Figure 3-7 plots the results of exactly the same experiments as 3-6 but with Gaussian

noise with standard deviation 0.5 added the residual. The squares containing red

lettering indicate that the method of [1] failed to return a valid estimate at some

point during the experiment. In this case we see that the number of experiments in

which an invalid estimate was returned jumps up to 13 from 6. In addition to simply

not returning an estimate, the localization accuracy of the method of [1] suffers more
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than that of the CPF with the addition of noise. This can be seen across all the

dimensions, contact location, contact force magnitude and contact force direction.

3.3.4 Additional Sensors

As mentioned previously the dimension of the residual vector 𝛾 captures the difference

between the modeled and the sensed dynamics. In particular as more sensors are

added the amount of information contained in the residual increases. In this section

we consider the effect of adding a 6-axis force torque sensor to the robot base. This

raises the dimension of the residual 𝛾 from R7 to R13 so there is much more information

contained in the residual. In particular we are able to reliably and accurately localize

forces that occur on the first 3 links of the Kuka robot, something that wasn’t possible

without the force-torque sensor. Figure 3-8 shows the contact locations used in the

experiments. Results of the experiments are given in Figure 3-9. In particular we

note that in the situation where we have the 6-axis force-torque sensor the localization

accuracy is almost perfect. However, when we don’t have the 6-axis force-torque

sensor localization accuracy is significantly diminished. This is because when the

contact is on the 𝑗𝑡ℎ link only the first 𝑗 rows of the contact Jacobian are non-zero.

Thus in the case of a contact on link 2, there are only two non-zero components of

the residual 𝛾. Section (3.5.3) provides a more detailed discussion.

3.4 Hardware Experiments with Kuka iiwa Arm

3.4.1 Experimental Setup

Robot

All the hardware experiments outlined below used the same experimental setup. The

robot we used was a Kuka iiwa robot arm, see Figure 3-10a. This robot arm has seven

degrees of freedom and is equipped with high resolution encoders and torque sensors

at each joint. These torque sensors are essential in providing the information needed

to compute the residual torque. Kuka uses a high fidelity internal model to compute

46



(a)

(b)

(c)

Figure 3-6: Results of simulation experiments run on the Kuka robot. A simulation
experiment was run for each combination of contact location and robot pose. For
purposes of comparison to the two step estimator no noise was added to the residual.
The left hand plots show the performance of the CPF. The right hand plots show the
performance of the method of [1] described in Section 2.1.2. This method can fail
to return an estimate for the contact location, force and direction, when the line of
force action doesn’t intersect the robot surface. This is indicated by a grey square in
the above. (3-6a) shows the average error, measured in centimeters, of the estimated
contact location as compared to the true contact location. (3-6b) shows the average
angle, measured in degrees, between the estimated force direction and the measured
force direction. (3-6c) shows the estimated force magnitude error as a percentage of
the actual force.
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(a)

(b)

(c)

Figure 3-7: Results of simulation experiments run on the Kuka robot. A simulation
experiment was run for each combination of contact location and robot pose. In these
experiments the Gaussian noise with standard deviation 0.5 was added the residual.
The left hand plots show the performance of the CPF. The right hand plots show the
performance of the method of [1] described in Section 2.1.2. This method can fail
to return an estimate for the contact location, force and direction, when the line of
force action doesn’t intersect the robot surface. This is indicated by a grey square
in the above. If the method of [1] only returned a valid estimate some of the time,
the average performance when an estimate was returned is plotted and the value
is shown in red. (3-7a) shows the average error, measured in centimeters, of the
estimated contact location as compared to the true contact location. (3-7b) shows
the average angle, measured in degrees, between the estimated force direction and
the measured force direction. (3-7c) shows the estimated force magnitude error as a
percentage of the actual force.
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(a) Contact location 0 (b) Contact location 1

(c) Contact location 2

Figure 3-8: The three contact locations used in the Kuka iiwa simulation experiments
of Section 3.3.4. Each contact location is indicated with a green line segment along
the normal direction.
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(a)

(b)

Figure 3-9: Results of simulation experiments run on the Kuka robot. A simulation
experiment was run for each combination of contact location and robot pose. No
noise was added the residual in these experiments. The left hand plots show the
performance of the CPF without the additional force-torque sensor. The right hand
plots show the performance of the CPF with the 6-axis F/T sensor. (3-9a) shows the
average error, measured in centimeters, of the estimated contact location as compared
to the true contact location. (3-9b) shows the average angle, measured in degrees,
between the estimated force direction and the measured force direction.
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an estimate of the residual 𝛾 (defined in Equation 2.4) which is exposed via an API

call. The provided estimate is quite accurate. If no external forces are acting on the

robot then the residual torque should be the zero vector. In practice, when no external

forces are acting on the Kuka the magnitude of each component of the residual torque

is less than 0.5Nm for all robot poses. Although the residual torque estimate exhibits

a small amount of bias, the signal is constant for different poses and doesn’t exhibit

significant noise characteristics apart from the bias. Performance while the robot is in

motion is worse. By the same logic as before moving the robot while not applying any

external forces should result in the residual vector being identically zero. In practice

individual components of the residual exhibit magnitudes up to 10Nm depending on

the specific joint and the speed at which it is moving.

OptiTrack and Force Probe

In order to estimate the ground truth contact location we built a custom force probe,

depicted in Figure 3-10c. It consists of two pieces of 80-20 shaped into a cross with a

rubber cap at one end. The force probe is outfitted with reflective OptiTrack markers

for pose tracking. The lab space has a 12 camera OptiTrack system, see Figure 3-10,

which provides 200Hz 6 DOF pose estimation for any rigid body outfitted with the

markers. By having OptiTrack markers on the force probe we know the location of the

force probe in the world frame. The rubber cap has a diameter of 1.5 cm so the force

location measurement is only accurate up to this resolution. We can also estimate

the force direction using the 6 DOF pose estimate of the force probe. However since

the force probe is not equipped with a 3-axis force sensor we estimate the ground

truth force direction by assuming that the applied force is in the direction of the

long axis of the probe. Effectively this supposes that the frictional components of

the applied force are zero. During experiments we attempt to apply a purely normal

force, but some frictional forces are likely being applied. Thus the force direction

estimate is subject to some errors due the possibility of frictional forces. These errors

are bounded by the angle of the friction cone.

In addition the base of the Kuka iiwa is also outfitted with OptiTrack markers,
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(a) (b)

(c) (d)

Figure 3-10: Setup for the hardware experiments. (3-10a) The Kuka iiwa robot
used in all the hardware experiments. Additionally five OptiTrack cameras can be
seen mounted above and behind the robot. In total we had 12 cameras covering the
workspace. (3-10b) A close up view of a single OptiTrack camera. (3-10c) The force
probe used to apply external forces to the robot. It consists of two pieces of 80-20 in
a cross shape. At the bottom is black rubber stopper which is where we contact the
robot. Additionally there are a total of five OptiTrack markers in order to be able
to accurately track the pose of the force probe. (3-10d) OptiTrack markers placed on
the base of the Kuka robot so that it can be localized with respect to the force probe.
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shown in Figure 3-10d, which gives us the pose of the robot in the world frame. By

combining this information with the pose of the force probe we can infer the location

at which the probe is making contact with the robot, and also the direction of the

force being applied. Combining the diameter of the rubber cap along with calibration

errors in aligning the OptiTrack markers with the robot base, we believe that the

estimated contact locations from force probe are within 2 cm of the actual values.

Filter Performance

The experiments we ran on the Kuka hardware are designed to match the simulation

experiments performed in section 3.3. In particular we choose the same set of force

locations shown in Figure 3-3, and the same set of poses as in Figure 3-4. Since

there are six contact locations and four robot poses this resulted in 24 unique data

points. Results are shown in Figure 3-11. In particular Figure 3-11a shows that for

all the experiments the maximum error was less than 2.4 cm, with the majority being

within 2 cm of the ground truth location. Given that there is up to 2cm of calibration

error in our system (see Section 3.4.1) we believe it is possible that the results are

actually more accurate, and that the reported numbers are slightly conservative. To

the author’s knowledge these are the first such hardware experiments to be conducted.

Overall the CPF delivers excellent performance, localizing the contact point to within

2.4 cm consistently across all tested contact locations and poses.

Figure 3-11b shows the angle between the estimated contact direction and the

measured contact direction from the force probe. Overall the results are quite good,

with a maximum of 14.8 degrees of error. As discussed in Section 3.4.1 the force

direction estimates using the force probe are subject to small errors. Hence the

results in Figure 3-11b should be considered an approximation. However, since our

force probe cannot measure these frictional forces, we believe that the results given are

an upper bound on the angle error. So it is likely that the true results are somewhat

more accurate. Even with these caveats, the CPF performs well in estimating the

contact direction, as well as the contact location.
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(a) (b)

Figure 3-11: Results of physical experiments run on the Kuka robot. A physical
experiment was run for each combination of contact location and robot pose. (3-11a)
shows the average error, measured in centimeters, of the estimated contact location
as compared to the true contact location. (3-11b) shows the average angle, measured
in degrees, between the estimated force direction and the measured force direction.
The measured force direction is only accurate up to approximately a 15 degree angle
due to the fact that the force probe is not frictionless where it makes contact with the
robot. Hence the applied force need not be in the direction of the axis of the force
probe.

3.5 Discussion

3.5.1 Computational Complexity

Table 3.1 shows the runtime performance of the CPF for different numbers of external

contacts. Currently the code is not optimized for performance and is implemented

in a single threaded Python process. As discussed in Section 3.1 we used FORCES

Pro [33] to solve the quadratic programs. Interestingly the quadratic program solves

account for a relatively small portion of the total time, less than 13%. The majority

of the time is spent in the motion model sampling points and projecting them back

to the robot’s surface. This portion of the code is not optimized, but with some care

a substantial speedup could be achieved.

In this section we discuss some of the main limitations of the CPF and highlight

areas where the algorithm can be extended.
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# Contacts Total (ms) QP Solves (ms) Num QP Solves
1 161 18 51
2 244 25 102
3 395 50 153

Table 3.1: Total is the total time for a single step of the filter. QP Solves is the
total time spent solving quadratic programs. Num QP Solves is how many distinct
QP’s were solved. There were 50 particles in each particle set for this example. All
computations were run on a single thread Intel Core i7 @ 3.30 GHz

3.5.2 Model Error

Probably the most important limitation of CPF is that it relies on having an accurate

dynamic model of the robot. Model inaccuracies can result from unmodeled actuator

dynamics, friction, link compliance, incorrect link masses and/or inertias, etc. Having

an accurate model is essential since the residual detector is effectively estimating the

model error given by

𝐻(𝑞)�̇� + 𝐶(𝑞, 𝑣)𝑣 + 𝑔(𝑞) −𝐵𝜏. (3.3)

Model error affects the first three terms in the above equation, but the last term

𝐵𝜏 depends on joint torque measurements. So the accuracy of our joint torque

measurements also affects the quality of the residual estimate. When the observed

dynamics don’t match the model dynamics, this difference is captured by the residual

𝛾. If our model and torque measurements are accurate then these discrepancies

correspond exactly to the external torques 𝜏𝑒𝑥𝑡 =
∑︀

𝑐 𝐽
𝑇
𝑐 𝐹𝑐 we want to measure. If our

model or torque measurements aren’t accurate then our residual will be contaminated

by these errors. In short, the fidelity of our model affects the accuracy of the relation

𝛾 ≈ 𝜏𝑒𝑥𝑡. Since the CPF takes 𝛾 as an input, the worse the approximation 𝛾 ≈ 𝜏𝑒𝑥𝑡

the worse the performance of the CPF will be. On the other hand this limitation is

not specific to the CPF, but rather is a fundamental limitation of any approach that

relies on proprioceptive sensors. As an example of this limitation consider a pendulum

with a single degree of freedom 𝑞 ∈ R. Suppose a control torque 𝜏 is applied which

according to our model should cause the robot to move. If the robot doesn’t move

then there are at least two possibilities. One is that there is unmodeled friction in
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the joint, corresponding to the case of an inaccurate model. The second possibility

is that the pendulum is pushing against a wall and the wall is applying a contact

force which exactly opposes the commanded torque. If all we have is proprioceptive

sensors, in this case joint position and joint torque sensors, then there is no way to

tell the difference between these two possibilities.

3.5.3 Identifiability

In section 3.2.3 we showed an example situation where the method of [1] couldn’t

accurately estimate the contact locations but the CPF could. Identifiability of the

CPF depends on there being a unique set of contact points that can generate the

current residual. In general suppose there are contact points 𝑐1, . . . , 𝑐𝑘 on the surface

of the robot with associated contact forces 𝐹𝑐1 , . . . , 𝐹𝑐𝑘 . Then we say the contact

situation is “identifiable” if there does not exist another set of contact points 𝑐1, . . . , 𝑐𝑘

with associated contact forces 𝐹𝑐1 , . . . , 𝐹𝑐𝑘 which obey the friction cone and have

𝑘∑︁
𝑗=1

𝐽𝑇
𝑐𝑗
𝐹𝑐𝑗 = 𝜏𝑒𝑥𝑡 =

𝑘∑︁
𝑗=1

𝐽𝑇
𝑐𝑗
𝐹𝑐𝑗 (3.4)

If we are in a contact situation that is not identifiable, then there are multiple sets

of contacts that could all produce the observed residual. In this case there two sets

of contact locations are equally likely and thus the CPF could converge to 𝑐1, . . . , 𝑐𝑘

rather than the true contact locations 𝑐1, . . . , 𝑐𝑘. In practice if contact 𝑐𝑘 is the

last contact to become active, and the filter was correctly estimating the location

of contacts 𝑐1, . . . , 𝑐𝑘−1 then it is likely that when contact 𝑐𝑘 is added the filter will

converge to the correct set of contact locations 𝑐1, . . . , 𝑐𝑘. In several of the experiments

with two and three contact points the contact locations were not identifiable, however,

the filter was still able to converge.
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Figure 3-12: The CPF particles are shown in orange as Atlas sits on a box

3.5.4 Point Contacts

Another restriction of the CPF is that it only considers point contacts. For many

real world contact situations this is a reasonable assumption for a rigid robot. There

are however situations in which we have multiple or continuous contact. For example

if the robot is sitting then it is possible to have many multiple contacts. Ultimately

if the wrench exerted on link 𝑖 by these contacts can be well approximated by the

wrench exerted by a point force then the CPF will return a reasonable estimate. The

estimated contact point will likely be a weighted average of the true contact points.

An example of Atlas sitting on a box is shown in Figure 3-12. In this simulation there

are two contacts on the pelvis, but the CPF particles still return reasonable estimates

located on the bottom of the pelvis.

3.5.5 Filter Divergence

For computational efficiency we perform the measurement update for particle set

𝒳𝑡,𝑗 ∈ X taking the locations of the other contacts as given. Consider a situation

where the estimate 𝑟*𝑡,𝑘 of the location of the k-th contact point given by 𝒳𝑡,𝑘 is not

accurate. Then when performing the measurement update for a particle 𝑟
[𝑚]
𝑡,𝑗 ∈ 𝒳𝑡,𝑗

the force 𝐹𝑐 applied at 𝑟
[𝑚]
𝑡,𝑗 will have to match the contribution of the j-th contact

point 𝑐𝑗 to 𝜏𝑒𝑥𝑡 but also the contribution of contact point 𝑐𝑘 that cannot be explained

by the poor estimate 𝑟*𝑡,𝑘. This can lead to incorrect importance weights for particles
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in 𝑋𝑡. If 𝑟*𝑡,𝑘 is a sufficiently bad estimate of 𝑐𝑘 then the filter can diverge. However

the filter never diverged during the 42 simulation runs used in Figure 3-1.

3.5.6 Sequential Arrival of External Contacts

The CPF maintains as many particle sets as there are external contacts. Algorithm 3,

Manage-Particle-Sets, adds a particle set if the current residual is not well explained

by the existing particles. This relies on the assumption that new contacts arrive se-

quentially, not simultaneously. We think that this is not an unreasonable assumption

in practice. If two point contacts arrived at once the the filter would add a single

particle set to try to localize one new contact. Since there are two new contacts, the

particles in this new particle set are would move towards a location that could best

explain the two new contact forces with a single contact force. This can lead to filter

divergence as described in the previous section.

3.5.7 Additional Proprioceptive Sensors

A nice feature of the CPF is that additional proprioceptive sensors can easily be

incorporated into the algorithm without increasing the complexity. If we had an

additional force-torque sensor somewhere on the robot, for example at the wrist or

the shoulder, then we could augment the state of the robot to incorporate this as a

fixed joint. All this does is increase the dimension of 𝑞, say from 𝑛 to 𝑛 + 6. Denote

quantities that use this augmented state with tildes, e.g. 𝑞. The effect of this is that

external forces are projected into a higher dimensional external torque space. Namely

𝜏𝑒𝑥𝑡 = 𝐽𝑐(𝑞)𝑇𝐹𝑐 ∈ R𝑛+6 as opposed to 𝜏𝑒𝑥𝑡 = 𝐽𝑐(𝑞)𝑇𝐹𝑐 ∈ R𝑛. This means that there is

effectively more information encoded in 𝜏𝑒𝑥𝑡, which increases the likelihood that the

quadratic program in the measurement update step has a unique optimum. There

is almost no additional computation cost to this, as the only changes are computing

Jacobians in the new space 𝑞 instead of 𝑞. Thus the CPF can easily incorporate

additional proprioceptive information.
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Chapter 4

Conclusion

This thesis introduces the CPF, the Contact Particle Filter, a general algorithm for

detection and localization of external contacts on rigid body robots using only pro-

prioceptive sensing. The algorithm uses the measurements of joint position, velocity

and effort to compute an estimate of the difference between expected dynamics from

the model and direct measurements of torques. A non-zero residual must be due to

external forces. The CPF runs a particle filter to find external contact points that

can best explain the estimated external joint torque. In particular we take advantage

of the fact that once a set of potential contact locations is specified, computing how

well they explain the observed residual can be formulated as quadratic program. The

CPF leverages this insight to tractably formulate the problem in the framework of a

particle filter.

We demonstrate successfull localization of up to 3 external contacts in a simulated

environment on a complex humanoid robot with 36 degrees of freedom. In addition

we perform extensive simulation analysis on a Kuka iiwa robot, and show that per-

formance carries over to the real robot hardware. Each application of CPF requires

only a dynamic model of the robot and a description of the surface manifold of each

link, no underlying algorithmic changes are necessary.

We believe that being able to reliably estimate and localize external contacts,

both expected and unexpected, is a necessary first step in developing robots that

can interact safely and intelligently with their environment. The CPF presents an
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approach to solving this problem.
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