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Abstract We propose a constructive control design for stabilizatibnon-periodic
trajectories of underactuated mechanical systems. An iitmpbexample of such
a system is an underactuated “dynamic walking” biped rokakivg over rough
terrain. The proposed technique is to compute a transviesarization about the
desired motion: a linear impulsive system which locallyressgnts dynamics about
a target trajectory. This system is then exponentiallyiszaiol using a modified
receding-horizon control design. The proposed method perxentally verified
using a compass-gait walker: a two-degree-of-freedomdbiyth hip actuation but
pointed stilt-like feet. The technique is, however, verpgal and can be applied to
higher degree-of-freedom robots over arbitrary terrash@ther impulsive mechan-
ical systems.

1 Introduction

It has long been a goal of roboticists to build a realistic hapid robot. Clearly,
one of the most fundamental abilities such a robot must hate walk around its
environment in a stable, efficient, and naturalistic manner

When one examines the current state of the art, it seems thataomhave either
stability and versatilityor efficiency and naturalisjrbut not all four. This paper
reports some recent efforts to bridge this gap.
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We propose a general method of exponentially stabilizifoitrary motions of
underactuated mechanical systems. In particular, we dgegbrovably-stable feed-
back control strategy for efficient “dynamic walking” bigedver uneven terrain,
and demonstrate experimentally that the method is feaaidesffective.

1.1 Bipedal Walking Robots

The world of bipedal walking robots can be divided into tw@dnl classes. The
first, including well-known robots such as the Honda ASIMQ@ &éine HRP-2, are
based on the “zero moment point” (ZMP) principle (see, d4.and references
therein). The main principle of stability and control is tllae center of pressure
always remains within the polygon of the stance foot, antheddot always remains
firmly planted on the ground. Satisfaction of this princigleures that all dynamical
degrees of freedom remain fully actuated at all times, and tontrol design can
be performed systematically using standard tools in rabotilowever, the motions
which are achievable are highly conservative, inefficiant unnatural looking.

The second broad class consists of passive-dynamic wadketdimit-cycle
walkers. Inspired by the completely passive walkers of Max3@e], these robots
forgo full actuation and allow gravity and the natural dyresto play a large part
in the generation of motion. They may be completely passivpartially actuated.
Even with partial actuation, the motions generated canfbdike and highly ef-
ficient energetically [3]. However, there is presently &lat tools for systematic
control design and systems analysis.

Comparatively little work has been done as yet on walking cwegh terrain, es-
pecially for underactuated dynamic walkers. The problerfoofstep planning has
been approached using computational optimal control [4] experimental stud-
ies have shown that a minimalistic open-loop control cariexehstability for the
compass-gait walker [5]. Recently, more complete plan@ng control systems
have been developed for quadruped walkers: see, e.g., [6].

To give the present paper context, in Fig. 1 we depict a plessitganizational
structure for the perception and control of a dynamic watkerough terrain. The
main components are:

1. Terrain Perception: fusion of sensors such as vision, radar, and laser, perhaps
combined with pre-defined maps, generating a model of thaiteahead.

2. Motion Planning: uses the terrain map, current robot state, and a model of the
robot’s dynamics to plan a finite-horizon feasible sequerideotstep locations
and joint trajectories. Slow time-scale: motion plan migbtupdated once per
footstep.

3. Motion Control: feedback control to stabilize the planned motion in the fafce
inaccurate modelling, disturbances, time delays, etd.tias-scale: typically of
the order of milliseconds.
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Fig. 1 Possible organization of perception and control of a walkotgpt.

4. Robot State Sensing: optical encoders, accelerometers, gyros, foot pressore se
sors, and so on. Provides local information about the phystate of the robot
to all other modules.

A complete humanoid robot would have all these components$,naany oth-
ers. In this paper, we focus our attention on component 3ioma@bntrol. That is,
we assume that the terrain has been sensed and a motion plaratgel, and the
task remaining is to compute a stabilizing feedback colarevhich achieves this
motion.

1.2 Motion Control for Walking Robots

The problem of motion control of a compass-gait walker hantapproached via
energy-shaping and passivity-based control techniquess €sg., [7, 8, 9]). How-
ever, it is not clear how such methods can be extended togettt more degrees
of freedom, or to walking on uneven terrain.

Most tools for underactuated walking make use of Poiecaap analysis (see,
e.g., [10, 11, 12, 13, 14, 15] and many others). For a mechbsyjstem of state
dimension B, one constructs Roinca® section a (2n — 1)-dimensional surface
transverse to the orbit under study (e5{0) in Fig. 2). By studying the behaviour
of the system only at times at which it passes through thifasey one obtains a
(2n—1)-dimensional discrete time system, tP@nca map

X, (k4+1) = 2[x (K)], x.(-) e R

which has a fixed point at the periodic orbi#?[x} | = X’ . Stability or instability

of this reduced system corresponds to orbital stability arital instability, re-

spectively, of the periodic orbit. Exponential orbitallsitay corresponds to all the
eigenvalues of the linearization 6P being inside the unit circle.

One disadvantage of the Poineanap is that it does not give a continuous rep-
resentation of the dynamics of the system transverse tatbettorbit, but focuses
only atonepoint on the orbit. This means it has limited use for congivecontrol
design.
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S(t)

Fig. 2 A visualization of Poincd surfaces and transverse linearization of a periodic orhet/fgr
and a trajectory converging to it (black).

However, the biggest problem for the present study is tieatrtbthod of Poincér
sections is only defined for periodic orbits. It can be usestudy biped walking on
flat ground or constant slopes, but on uneven ground whereawe o reasonable
expectation of periodic orbits it is not applicable.

With this as motivation, in this work we use instead tlensverse linearization
of the target trajectory, which has previously been usedratysis and stabilization
of periodicmotions of nonlinear systems including walking robots [18, 18, 19,
20].

This can be visualized via the related concept aghaving Poincaé section
introduced in [21]. This is a continuous family ¢2n — 1)-dimensional surfaces
transverse to the desired trajectory, with one member ofetimdly present aevery
point along the cycleq(t) for all t in Fig. 2).

In contrast to the classical Poinéamap, a transverse linearization (or mov-
ing Poincaé section) provides a continuous representation of théiaa&hip be-
tween controls and transverse coordinates, and can bedextém the study of non-
periodic motions.

Stabilizing only the transverse dynamics — as opposeddaq,afull-order linear
time-varying (LTV) approximation [22] — is particularly a&ul for underactuated
systems, which are often weakly controllable in the dimtalong the trajectory.

In this paper, we make use of this, and propose a comput#iidaasible feed-
back control strategy for the time-varying impulsive linggstem that results. Suc-
cessful experiments demonstrate the feasibility of our@gugh.

2 Impulsive M echanical Systems

The mathematical model we consider is that of a nonlineahan@cal system sub-
ject to instantaneous impacts. Legbe a vector of generalized coordinates, and
be a vector of forces and torques which can be assigned, lteettiynamics of the
system can be written like so [23, 24, 14]:
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M(9)4+C(a,4)q+G(a) =B(q)u  for q¢ 2

9" =440
ar =24(97)q"

1)
} whenever q- € 2,

whereM(q) is the inertia matrixC(q,q) is the matrix of Coriolis and centrifugal
terms,G(q) is the gradient of the potential energy field, aldh) describes the
effects of actuators on the generalized coordinates. Tth& sepresents switching
surfaces, e.g. for a walking robot, states at which the fétth® swing-leg hits the
ground, and a new step begins.

2.1 Representation of a Planned Motion

Consider am-degree-of-freedom impulsive mechanical system for wkmine de-
sired and feasible trajectory has been specified:

qit) =g (t) e R", t € [0,00).

Lett;, j = 1,2,... be the time moments at which an impact occurs, and/let=
tj,tj+1), j =1,2,... be the time intervals of smooth behaviour in between immulse
and let.% :=[0,t3).

Assumption 1 There existgy > 12 > 0 such thatry > tj1 —tj > 1o for all j.
That is, the footsteps do not get infinitely long or infinitslyort.

Assumption 2 For all tj, the vector[g*(t)"¢*(t)"]" is linearly independent of the
2n— 1 vectors spanning the tangent plane of the switching surda.cg(t).

That is, all impacts are “real” impacts, not grazing toucbithe switching surface.

For each interval?j, j =0,1,2, ..., choose one generalized coordinate or some
scalar function of the generalized coordinafes= ©;(q) which evolves monotoni-
cally along a desired trajectory.

Remark 1In the case of the compass-gait walker, which we will consideSec-
tions 5 and 6 we will takéd to be the “ankle angle”. It is a reasonable assumption
that for any useful walking motion, this angle evolves momatally over any given
step. This representation is common in walking robot cdfir.

O

Since it evolves monotonicall§ can then be considered as a reparametrization
of time, and hence the nominal trajectories of all other do@tes over each interval
#j can be given as well-defined functionséf
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di(t) = ¢l (8(t)),

oh(t) = @(8(t) Vte s

Having thus defined the functiorﬁ,...,qﬂ, one can define variables representing
deviations from the nominal trajectory:

Ya(t) := an(t) — @l(6(t) Vte .7,

whereyn(t) = 0 for all mimplies the system is on the nominal trajectory.

Consider now the quantitiéd y1, ..., yn. Thesen+ 1 quantities are excessive co-
ordinates for the system, and hence one can be dropped. Witss of generality,
let us assume we drop, and our new coordinates aye= [y, ....,Yn—1]' andé.

Remark 2When the conditiongy, = O for all m are enforced via feedback action,
the functionspl’, - qﬂ are often referred to agrtual holonomic constraintfl4, 11,
12]. Our control strategy does not require that these caimstoe strictly enforced to
guarantee stability, they are simply used as a set of comt@inHowever, we retain
the terminology “virtual constraints”.

]

3 Construction of the Transverse Linearization

A mechanical system’s dynamics along a target motion careberdposed into two
components: a scalar variabflerepresenting the positicgong the target motion,
and a vectox; of dimension & — 1 representing the dynamitsansverseto the
target motion.

A transverse linearization is a time-varying linear systepresenting of the dy-
namics ofx, close to the target motion. The stabilization of the transwdéineariza-
tion implies local exponential orbital stabilization oktleriginal nonlinear system
to the target motion [16]. The construction of a transvensearization for an im-
pulsive mechanical system such as a walking robot can beshrd&wn into two
parts: the continuous phases and the impacts maps.
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3.1 Construction of the Continuous Part of the Transverse
Linearization

A method for analytical construction of a transverse liigsion for continuous
mechanical systems was proposed in [25, 18]. We will usecthivistruction for the
continuous phases of the desired walking motion.

The representation of trajectories introduced in the previsection allows us to
analytically construct, at an§, a set of transversal coordinates without solving the
nonlinear differential equations of the system. The first 2 coordinates are given
by the coordinateg given in (2), and their derivatives:

. dgle), .
=0 — 6, i=1..,n-1
yl ql d9 ) IR
defined in each continuous interval. For a full set of transverse coordinates, one
more independent coordinate is required.
For the continuous phase of an underactuated mechani¢ahsyi§the relations
y = 0 are maintained then the dynamics of the coordifatke the following form:

a(0)8+pB(6)6%+y(6) =0 2)

wherea(-),B(-), y(-) are straightforward to compute. An important fact is that a
partial closed-form solution of the system (2) can be comgut

62 = p(6,60)02 + T (6, 60)

where(6p, 60) is any point on the desired trajectory of the reduced sysgnThat
is, 82 can be computed as a function@fanalytically.

The variable . _

| = 02— p(0,60)08 — I (8, 60)
is then a clear candidate for the final transverse coordiitaieindependent of/
andy and is zero when the system is on the target motion.
.
Our complete set of transverse coordinates are then= |1, y", y'| .

Now, for systems of underactuation degree one, there exigtstial feedback-
linearizing transformation of the form [26]:

u= N(y7 9)71[V_W(yv Gvy? 9)]

creating the dynamicg=v, | = f(8,0,y,y,v) wheref can be calculated analyti-
cally.

From this we construct the continuous part of the transverearization, withz
representing the state of the linearization of the dynawfics :

2(t) = At)z(t) + B(t)v(t) 3)
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whereA(t) andB(t) are

ana(t) awa(t) aus(t) ba(t)
At) = |On-1) On-12 ln-2) | B=|On_1y2 (4)
On-1) On-1)2 On-12 -1

wherel ,_j) is the(n— 1)-dimensional identity matrix, @_y) is an(n—1)-dimensional
column of zeros, and(Q ;2 is an(n—1) x (n— 1) matrix of zeros. The functions

N(y,8),R(y, 0,y,0),a11(t),a12(t),a13(t), and by (t) can be computed analytically,
see [25, 18].

3.2 Transverse Linearization of I mpacts

Certain care is required in linearizing the impact map. Thadversal surfaces are
orthogonal in phase space to the target motion, but the Iswgcsurfaces will not
be in general. Therefore, we must also introduce two prigjecperators.

Supposeal4; is the linearization of the impact map at tirjeabout the nominal
trajectory, then

Z(t") = Fiz(t) for t=tj,j=1.2,.. 5)
where Fj = Pj+dAj -

The construction oPJ-+ ande* is given in [20].
The complete hybrid transverse linearization system isrghy (3), (4), and (5).

Assumption 3 The hybrid transverse linearization system is uniformlsnptetely
controllable.

This assumption essentially states that there is suffichgmamical coupling be-
tween the unactuated and actuated links of the system. hvisya satisfied with
reasonable walking robot designs.

4 Receding-Horizon Control Design

Exponential stabilization of time-varying systems, evieredr systems, is a non-
trivial problem. For time-invariant or periodic linear $§s1s one can compute con-
stant or periodic gain matrices, respectively, which exgntially stabilize the sys-
tem. This is not true in general for time-varying systems.ofmon technique
which is computationally feasible is receding-horizontcoh also known as model
predictive control (see, e.g., [27, 22] and many others)his section we describe
a slightly modified version of receding-horizon controltabie for impulsive linear
systems.
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The basic strategy is to repeatedly solve a constrainetitfima linear quadratic
optimal control problem for the system (3), (4), (5). Thansnimize the following
cost function:

f N;j
3000) = [T QUEY ROV 205 Qa)
| J:

subject to the constraiafts) = 0.

Assumption 4 There existsr; > 0, i = 0,..,4, such thatogl < Q(t) < azl, a2l <
R(t) < asl,and0 < Qj < ayl for allt and j.

The traditional approach is to set a constant time horizanjrbthis work we
choose to look a fixedumber of footstepshead. Thus, every time the robot takes
a footstep, a new optimization is computed.

We propose the following receding-horizon strategy, laghi footsteps ahead,
beginning withi = 0:

1. Consider the union of intervalg , ;== % U.% 1 U...U 4. Lett; andt; denote
the beginning and end times of .

2. Compute this footstep’s optimal control by solving faliag jump-Riccati equa-
tion backwards in time frorty tot; with a final conditionZ(tf) = 0(,_1)2

—Z=-ZN —AZ+BR1B"-2Qz
-1
2(4) = {Fza) "/ +Q} forte 7 (6)

3. Over the intervals;, apply the following state-feedback controller:

U(y, 67y7 6) = N(yv 6)71[K(9 XJ_(y: evya 6) _W(yv e7yv 6)}7
K(6) = —RY(s)B(9)"Z(s) L, 5= 0~1(6) @)

where@~1:[6,,6_] — [ti,ti.1) is a projection operator, which is straightforward
to construct sincé is monotonic over each step.
4. for the next footstep, set=i+ 1 and return to stage 1.

Theorem 1. If Assumptions 1, 2, 3, and 4 are satisfied, then the contr@de (7) lo-
cally exponentially orbitally stabilizes the planned nootiof the original nonlinear
system.

The proof is given in Appendix A.

1 0r, more generally, a fixed number of impulses ahead.
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5 Experimental Setup

We have constructed a two-degree-of-freedom planar biplect with point feet, a
photograph and schematic of which are shown in Fig. 3. Thetrishmounted on a
boom arm with a counterweight, and thus walks in a circuldh pghe dynamical
effect of the boom is approximated by having different valoghip mass for inertial
(my) and gravitationalrfg) terms in the model. The robot is fitted with retractable
feet to avoid toe-scuffing, however we do not consider thedsadditional degrees
of freedom since their masses are negligible.

Fig. 3 Schematic and photograph of the experimental setup

The robot is modelled in the form of an impulsive mechanigastem (1), the
parameters of which were estimated via nonlinear systemtifdmtion. The full
equations for the model are given in Appendix B. Good fittiaguired the addition
of a friction model for the hip joint consisting of Coulombdaviscous parts:

Tr = Fesign(dy) + R .

The parameters of the model are given in Table 1.

The robot is fitted with optical encoders measuring the abgleveen the legs
and the absolute angle of the inner leg. From these measntemeandq, can be
calculated. The control law relies on velocities as well Hrese are estimated with
an observer. The observer structure we choose is one whilpreaiously been
used successfully in walking robot control, consisting afopy of the nonlinear
dynamics and a linear correction term [28]. Ledid g be the estimates of the
configuration states and velocities, then the observerendiy:

d g A By
dt M a [M(Q)_l(—C(G,Q)' —G(4) +B(G)u) +L(y—a),
6" =440, 4" =24(Q)6
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wherey is the measurement gf The gainL can be chosen ds= [1/¢ 2/¢?] plac-

ing the eigenvalues of the linearized error system &te. In our experiments we
found thate = 0.02 gave a reasonable compromise between speed of convergenc
and noise rejection.

Table1 Parameters of the compass-gait biped.

Parameters Values

Masses [kg] m=13,my =22,myg=-12
Inertia [kg nf] lc =0.0168

Lengths [m] | =0.32,Ic =1—0.0596
Gravitational constant [mf$ [g=9.81

Ratio current/input [A] k=11

Motor torque constant [Nm/Ak; = 0.0671

Coulomb friction [Nm] Fc =0.02

Viscous friction [Nm s] R/ =0.01

5.1 Polynomial Representation of Desired Motion

For the compass biped we taBe= qp, the “ankle” angle of the stance leg relative
to horizontal. Then to specify the path through configuraspace for each step
we need to specify only the inter-leg angjeas a function of the ankle anglg; =

@) (6). We chose to construct thg! functions as fourth-order &ier polynomials,
which can represent a wide range of useful motions with caitew number of
parameters, and furthermore admit simple representatibtiee constraints in the
previous section. For details, see [14, Ch. 6], in whidziBr polynomials were
used to design periodic trajectories. It is straightfoviar extended this method to
non-periodic trajectories and because of space restrcti@ omit the details.

6 Experimental Results

To test the controller experimentally, a relatively simfask was chosen: the robot
should walk flat for two steps, then down two “stairs”, andrtleentinue along the
flat. A video of a successful experiment has been placed®[2i9].

The control design was implemented as in Section 4 with emisteighting
matricesQ(t) = Q; = Iz andR(t) = 1 for allt and j. The look-ahead horizon was
chosen as three footsteps ahead.

For each step, the solution of the jump-Riccati equatiok egaproximately half
a second to compute using tbee45 solver in MATLAB running on a Pentium
11l desktop computer. This is roughly the time it takes foe ttobot to complete a
step, and it is reasonable to expect that highly optimisedde could perform this
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task much more quickly. Hence, one can say that the controttauld be feasibly
computed in real-time, as a part of a dynamic motion-plagaind control system.

Figure 4 depicts the results of one experiment. Figure 4¢/9 cartoon of the
biped’s motion generated from real data, showing the stag/d.3 seconds, with
the current stance leg always indicated in red.

04r
0.3F
A E oz2f
>
0.1
0
_O.l 1 1 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1 1.2
x[m]
_ ! ! ! \ ! !
T 041
B = 0.2F
o Or
1-0.2¢
 _04 ! | ! | )
c &
=
o~

O
dg 1/dt [rad/s]

m
dq2/dt [rad/s]

Fig. 4 Results from a successful experiment walking on uneven terragn Sgction 6 for discus-
sion.

In Fig. 4(B) the evolution of the “ankle anglej, is plotted vs time for one
experiment. During the continuous phasgsserves as our reparametrization of
time 6. We note here that, particularly on the second and fourtisstaere is some
jitter in the curve.

In Fig. 4(C) the inter-leg angleg; is plotted vs time in blue, along with the “nom-
inal” value of q; plotted in red. Note that, since the nominal valuegefis not a
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function of time but a function ofl, defined by the virtual constraint, the jitters in
theqg, measurement lead to jitters in the nominal valugfNevertheless, tracking
is quite good, and sufficient for the robot to maintain a sailking trajectory.

Figures 4(D) and (E) depict the joint velocitiesanddy, obtained from the same
observer used in the control system, along with their nohvalaes as functions of
the current value off,. Again, the jitter ingy leads to large noise in the velocity
estimates. Despite this, good tracking is maintained tjncall the planned steps.
Repeated experiments were performed with similar resalth ¢ime, indicating
good robustness of the control strategy.

7 Conclusions

In this paper we have described a novel method for stahdizaif trajectories of
impulsive mechanical systems. The method guaranteesdgpahential stability to
a target orbit under reasonable assumptions. The methodtésggneral, but a clear
target application is motions of underactuated walkingtslon rough and uneven
terrain. To the authors’ knowledge, this is the first systiger@ntrol method which
can provably stabilize such motions.

The proposed technique was experimentally verified usingngass-gait biped
walker. It was seen that, despite measurement errors aniaible uncertainties
in modelling, the controller reliably stabilized the targmeotions. The method of
transverse linearization can be applied to any “dynamiding! robot to design
stabilizing controllers, or to give certificates of stafyiland assist choice of gains
for existing control laws.

Future work will include application to robots with more degs of freedom on
more challenging terrain, and computation of basins oéetiwn. Furthermore, the
theoretical tools developed in this work also have appbicatio problems of motion
planning, which will be explored.

8 Appendix A: Proof of Local Stability

Some details are omitted to save space. We consider the hgagunction candi-
date
Y (X(),t, ) =x(t)TP()x(t)

whereP(t) = X(t)~1, the solution of the finite-time jump-Riccati equation. ilee
total “cost-to-go” from a state(t) with a feedback strategy?” definingu(t) =
—K(t)x(t)

We state the following three facts about this Lyapunov fiomctandidate:

1. It follows from Assumptions 1, 3, and 4 and standard argusm&om optimal
control [30] that there exist{8; > o > 0 such that
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Bol <P(t) <pul. 8

2. Throughout the continuous phase frgno t; 1,

%V(X(t),t,lfi) = —x()"[Q(t) + K (1) B(t)"Rt)B()K(t)]x(t) <O.
Therefore, it follows from the bounds @(t) in Assumption 4 that
d
g/ (K1), 24) < aolx(t)]] (9)
for all t.

3. Let.# refer to the strategy of using finite-time controller cafted at the begin-
ning of stepi. Under this strateg(ti.) = 0 and remains zero for &l> t,p,.
After stepi, the state ix(tj11). A feasible strategy from here would be to con-
tinue with control strategy#;. However, a new optimization is performed at step
i +1 over a new horizoit+ 1+ h. Since continuing with’ is a feasible strategy,
the new optimal strategy#; 1 must have a cost to go

Y (X(tiv1),tip1, A1) < ¥V (X(Mig1), by, ). (10)
i.e. the Lyapunov function is non-increasing when an impulscurs.

From the facts (8), (9), and (10) it follows that the timeywag impulsive linear
comparison system (3), (4), (5) is exponentially stabléngis generalization of
Lyapunov’s second method [31, Ch. 13].

Using Assumptions 1, 2, and 3 arguments similar to those ®f18, 20] prove
that exponential stability of the transverse linearizatimplies local orbital expo-
nential stability of the original nonlinear system to thegtt trajectory.

9 Appendix B: Compass Biped Model

The model of the experimental setup is given by (1) where

M(g)— P1 —p1+cogaa)p2
—p1+cogd1) P2 P3+2p1 —2C0Kq) P2 |’
. 0 —@2sin(ay) p2 kike
C — . L X : B=
(qu) |:_S|n(q1)(q1 —q2) P2 S|n(q1)q1p2 ’ 0 )

G(q) = [ Sin(—Gp + d1) Pa, —SiN(—Cz + 1) Pa — SiN(02) Ps — Sin(G2) pa | -

The coefficients are defined by the physical parameters obthat like so:
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pr= (I —lc)’m+Ig, p2 =mi(l —1¢), Pz = My 12 +2mll;
pg=mg(l —I¢), Ps = g(Mygl +2mlg) .

The impact model in (1) is derived under the assumption oiitggan instantaneous
and inelastic collision of the swing leg with the ground adoecurrence of slip or
rebound [24]:

Aq = {j 2] L Dq(q7) =Bq [H(q7)] T H (a7,

Hi7(07) = p1— 2psl +12p7,
Hio(a7) = Hiy(q7) = (1%pr-+ (—ps— 2p6)l + p2) cos(an) — 12p7 + 2pgl — pa.

Hy»(a7) = (—21%p7 + (2ps +4pe)| — 2p2) cos(ar) + 212 p7 + (—4ps — 2ps)| + p3
+2p1,

Hii(a) =pi—pel,  Hio(a) = ((—ps— ps)l + p2)cosdr) — p1+ pel,

H,1(a7) = (p2— pel) cog(ar) — p1+ Pel,

H22(07) = ((2Ps + pe)l —2p2) cOS(A1) + (—Ps — 2ps)! + P+ 2P
pe=ml—lc) pr=my+2m  pg=Ilcpr+my(l—Io).
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