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Abstract We propose a constructive control design for stabilizationof non-periodic
trajectories of underactuated mechanical systems. An important example of such
a system is an underactuated “dynamic walking” biped robot walking over rough
terrain. The proposed technique is to compute a transverse linearization about the
desired motion: a linear impulsive system which locally represents dynamics about
a target trajectory. This system is then exponentially stabilized using a modified
receding-horizon control design. The proposed method is experimentally verified
using a compass-gait walker: a two-degree-of-freedom biped with hip actuation but
pointed stilt-like feet. The technique is, however, very general and can be applied to
higher degree-of-freedom robots over arbitrary terrain and other impulsive mechan-
ical systems.

1 Introduction

It has long been a goal of roboticists to build a realistic humanoid robot. Clearly,
one of the most fundamental abilities such a robot must have is to walk around its
environment in a stable, efficient, and naturalistic manner.

When one examines the current state of the art, it seems that one can have either
stability and versatilityor efficiency and naturalism, but not all four. This paper
reports some recent efforts to bridge this gap.
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We propose a general method of exponentially stabilizing arbitrary motions of
underactuated mechanical systems. In particular, we develop a provably-stable feed-
back control strategy for efficient “dynamic walking” bipeds over uneven terrain,
and demonstrate experimentally that the method is feasibleand effective.

1.1 Bipedal Walking Robots

The world of bipedal walking robots can be divided into two broad classes. The
first, including well-known robots such as the Honda ASIMO and the HRP-2, are
based on the “zero moment point” (ZMP) principle (see, e.g.,[1] and references
therein). The main principle of stability and control is that the center of pressure
always remains within the polygon of the stance foot, and so the foot always remains
firmly planted on the ground. Satisfaction of this principleensures that all dynamical
degrees of freedom remain fully actuated at all times, and thus control design can
be performed systematically using standard tools in robotics. However, the motions
which are achievable are highly conservative, inefficient,and unnatural looking.

The second broad class consists of passive-dynamic walkersand limit-cycle
walkers. Inspired by the completely passive walkers of McGeer [2], these robots
forgo full actuation and allow gravity and the natural dynamics to play a large part
in the generation of motion. They may be completely passive,or partially actuated.
Even with partial actuation, the motions generated can be life-like and highly ef-
ficient energetically [3]. However, there is presently a lack of tools for systematic
control design and systems analysis.

Comparatively little work has been done as yet on walking over rough terrain, es-
pecially for underactuated dynamic walkers. The problem offootstep planning has
been approached using computational optimal control [4] and experimental stud-
ies have shown that a minimalistic open-loop control can achieve stability for the
compass-gait walker [5]. Recently, more complete planningand control systems
have been developed for quadruped walkers: see, e.g., [6].

To give the present paper context, in Fig. 1 we depict a possible organizational
structure for the perception and control of a dynamic walkeron rough terrain. The
main components are:

1. Terrain Perception: fusion of sensors such as vision, radar, and laser, perhaps
combined with pre-defined maps, generating a model of the terrain ahead.

2. Motion Planning: uses the terrain map, current robot state, and a model of the
robot’s dynamics to plan a finite-horizon feasible sequenceof footstep locations
and joint trajectories. Slow time-scale: motion plan mightbe updated once per
footstep.

3. Motion Control: feedback control to stabilize the planned motion in the faceof
inaccurate modelling, disturbances, time delays, etc. Fast time-scale: typically of
the order of milliseconds.
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Fig. 1 Possible organization of perception and control of a walking robot.

4. Robot State Sensing: optical encoders, accelerometers, gyros, foot pressure sen-
sors, and so on. Provides local information about the physical state of the robot
to all other modules.

A complete humanoid robot would have all these components, and many oth-
ers. In this paper, we focus our attention on component 3: motion control. That is,
we assume that the terrain has been sensed and a motion plan generated, and the
task remaining is to compute a stabilizing feedback controller which achieves this
motion.

1.2 Motion Control for Walking Robots

The problem of motion control of a compass-gait walker has been approached via
energy-shaping and passivity-based control techniques (see, e.g., [7, 8, 9]). How-
ever, it is not clear how such methods can be extended to robots with more degrees
of freedom, or to walking on uneven terrain.

Most tools for underactuated walking make use of Poincaré-map analysis (see,
e.g., [10, 11, 12, 13, 14, 15] and many others). For a mechanical system of state
dimension 2n, one constructs aPoincaŕe section: a (2n− 1)-dimensional surface
transverse to the orbit under study (e.g.S(0) in Fig. 2). By studying the behaviour
of the system only at times at which it passes through this surface, one obtains a
(2n−1)-dimensional discrete time system, thePoincaŕe map:

x⊥(k+1) = P[x⊥(k)], x⊥(·) ∈ R
2n−1

which has a fixed point at the periodic orbit:P[x⋆
⊥] = x⋆

⊥. Stability or instability
of this reduced system corresponds to orbital stability andorbital instability, re-
spectively, of the periodic orbit. Exponential orbital stability corresponds to all the
eigenvalues of the linearization ofP being inside the unit circle.

One disadvantage of the Poincaré map is that it does not give a continuous rep-
resentation of the dynamics of the system transverse to the target orbit, but focuses
only atonepoint on the orbit. This means it has limited use for constructive control
design.
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Fig. 2 A visualization of Poincaŕe surfaces and transverse linearization of a periodic orbit (grey)
and a trajectory converging to it (black).

However, the biggest problem for the present study is that the method of Poincaré
sections is only defined for periodic orbits. It can be used tostudy biped walking on
flat ground or constant slopes, but on uneven ground where we have no reasonable
expectation of periodic orbits it is not applicable.

With this as motivation, in this work we use instead thetransverse linearization
of the target trajectory, which has previously been used foranalysis and stabilization
of periodicmotions of nonlinear systems including walking robots [16,17, 18, 19,
20].

This can be visualized via the related concept of amoving Poincaŕe section,
introduced in [21]. This is a continuous family of(2n− 1)-dimensional surfaces
transverse to the desired trajectory, with one member of thefamily present atevery
point along the cycle (S(t) for all t in Fig. 2).

In contrast to the classical Poincaré map, a transverse linearization (or mov-
ing Poincaŕe section) provides a continuous representation of the relationship be-
tween controls and transverse coordinates, and can be extended to the study of non-
periodic motions.

Stabilizing only the transverse dynamics — as opposed to, e.g., a full-order linear
time-varying (LTV) approximation [22] — is particularly useful for underactuated
systems, which are often weakly controllable in the direction along the trajectory.

In this paper, we make use of this, and propose a computationally feasible feed-
back control strategy for the time-varying impulsive linear system that results. Suc-
cessful experiments demonstrate the feasibility of our approach.

2 Impulsive Mechanical Systems

The mathematical model we consider is that of a nonlinear mechanical system sub-
ject to instantaneous impacts. Letq be a vector of generalized coordinates, andu
be a vector of forces and torques which can be assigned, then the dynamics of the
system can be written like so [23, 24, 14]:
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M(q) q̈+C(q, q̇) q̇+G(q) = B(q)u for q 6∈ Q

q+ = ∆qq−

q̇+ = ∆q̇(q−) q̇−

}

whenever q− ∈ Q ,
(1)

whereM(q) is the inertia matrix,C(q, q̇) is the matrix of Coriolis and centrifugal
terms,G(q) is the gradient of the potential energy field, andB(q) describes the
effects of actuators on the generalized coordinates. The set Q represents switching
surfaces, e.g. for a walking robot, states at which the foot of the swing-leg hits the
ground, and a new step begins.

2.1 Representation of a Planned Motion

Consider ann-degree-of-freedom impulsive mechanical system for whichsome de-
sired and feasible trajectory has been specified:

q(t) = q⋆(t) ∈ R
n, t ∈ [0,∞).

Let t j , j = 1,2, ... be the time moments at which an impact occurs, and letI j :=
[t j , t j+1), j = 1,2, ... be the time intervals of smooth behaviour in between impulses,
and letI0 := [0, t1).

Assumption 1 There existsτ1 > τ2 > 0 such thatτ1 ≥ t j+1− t j ≥ τ2 for all j.

That is, the footsteps do not get infinitely long or infinitelyshort.

Assumption 2 For all t j , the vector[q̇⋆(t)T q̈⋆(t)T ]T is linearly independent of the
2n−1 vectors spanning the tangent plane of the switching surfaceat q⋆(t).

That is, all impacts are “real” impacts, not grazing touchesof the switching surface.
For each intervalI j , j = 0,1,2, ..., choose one generalized coordinate or some

scalar function of the generalized coordinatesθ := Θ j(q) which evolves monotoni-
cally along a desired trajectory.

Remark 1.In the case of the compass-gait walker, which we will consider in Sec-
tions 5 and 6 we will takeθ to be the “ankle angle”. It is a reasonable assumption
that for any useful walking motion, this angle evolves monotonically over any given
step. This representation is common in walking robot control [14].
�

Since it evolves monotonicallyθ can then be considered as a reparametrization
of time, and hence the nominal trajectories of all other coordinates over each interval
I j can be given as well-defined functions ofθ :
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q⋆
1(t) = φ j

1(θ(t)),

...

q⋆
n(t) = φ j

n(θ(t)) ∀ t ∈ I j .

Having thus defined the functionsφ j
1 , ...,φ j

n , one can define variables representing
deviations from the nominal trajectory:

y1(t) := q1(t)−φ j
1(θ(t)),

...

yn(t) := qn(t)−φ j
n(θ(t)) ∀ t ∈ I j ,

whereym(t) = 0 for all m implies the system is on the nominal trajectory.
Consider now the quantitiesθ ,y1, ...,yn. Thesen+1 quantities are excessive co-

ordinates for the system, and hence one can be dropped. Without loss of generality,
let us assume we dropyn, and our new coordinates arey = [y1, ....,yn−1]

T andθ .

Remark 2.When the conditionsym = 0 for all m are enforced via feedback action,
the functionsφ j

1 , ..,φ j
n are often referred to asvirtual holonomic constraints[14, 11,

12]. Our control strategy does not require that these constraint be strictly enforced to
guarantee stability, they are simply used as a set of coordinates. However, we retain
the terminology “virtual constraints”.
�

3 Construction of the Transverse Linearization

A mechanical system’s dynamics along a target motion can be decomposed into two
components: a scalar variableθ representing the positionalong the target motion,
and a vectorx⊥ of dimension 2n− 1 representing the dynamicstransverseto the
target motion.

A transverse linearization is a time-varying linear systemrepresenting of the dy-
namics ofx⊥ close to the target motion. The stabilization of the transverse lineariza-
tion implies local exponential orbital stabilization of the original nonlinear system
to the target motion [16]. The construction of a transverse linearization for an im-
pulsive mechanical system such as a walking robot can be broken down into two
parts: the continuous phases and the impacts maps.
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3.1 Construction of the Continuous Part of the Transverse
Linearization

A method for analytical construction of a transverse linearization for continuous
mechanical systems was proposed in [25, 18]. We will use thisconstruction for the
continuous phases of the desired walking motion.

The representation of trajectories introduced in the previous section allows us to
analytically construct, at anyθ , a set of transversal coordinates without solving the
nonlinear differential equations of the system. The first 2n−2 coordinates are given
by the coordinatesy given in (2), and their derivatives:

ẏi = q̇i −
dφ j

i (θ)

dθ
θ̇ , i = 1, ...,n−1

defined in each continuous intervalI j . For a full set of transverse coordinates, one
more independent coordinate is required.

For the continuous phase of an underactuated mechanical system, if the relations
y= 0 are maintained then the dynamics of the coordinateθ take the following form:

α(θ)θ̈ +β (θ)θ̇ 2 + γ(θ) = 0 (2)

whereα(·),β (·),γ(·) are straightforward to compute. An important fact is that a
partial closed-form solution of the system (2) can be computed:

θ̇ 2 = ψp(θ ,θ0)θ̇ 2
0 +Γ (θ ,θ0)

where(θ0, θ̇0) is any point on the desired trajectory of the reduced system (2). That
is, θ̇ 2 can be computed as a function ofθ , analytically.

The variable
I = θ̇ 2−ψp(θ ,θ0)θ̇ 2

0 −Γ (θ ,θ0)

is then a clear candidate for the final transverse coordinate: it is independent ofy
andẏ and is zero when the system is on the target motion.

Our complete set of transverse coordinates are then:x⊥ :=
[

I , yT , ẏT
]T

.

Now, for systems of underactuation degree one, there existsa partial feedback-
linearizing transformation of the form [26]:

u = N(y,θ)−1[v−W(y,θ , ẏ, θ̇)]

creating the dynamics ¨y = v, İ = f (θ , θ̇ ,y, ẏ,v) where f can be calculated analyti-
cally.

From this we construct the continuous part of the transverselinearization, withz
representing the state of the linearization of the dynamicsof x⊥:

ż(t) = A(t)z(t)+B(t)v(t) (3)
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whereA(t) andB(t) are

A(t) =





a11(t) a12(t) a13(t)
0(n−1) 0(n−1)2 I(n−1)

0(n−1) 0(n−1)2 0(n−1)2



B =





b1(t)
0(n−1)2

I(n−1)



 (4)

whereI(n−1) is the(n−1)-dimensional identity matrix, 0(n−1) is an(n−1)-dimensional
column of zeros, and 0(n−1)2 is an(n−1)× (n−1) matrix of zeros. The functions

N(y,θ),R(y,θ , ẏ, θ̇),a11(t),a12(t),a13(t), andb1(t) can be computed analytically,
see [25, 18].

3.2 Transverse Linearization of Impacts

Certain care is required in linearizing the impact map. The transversal surfaces are
orthogonal in phase space to the target motion, but the switching surfaces will not
be in general. Therefore, we must also introduce two projection operators.

Supposed∆ j is the linearization of the impact map at timet j about the nominal
trajectory, then

z(t+) = Fjz(t) for t = t j , j = 1,2, ... (5)

where Fj = P+
j d∆ jP

−
j

The construction ofP+
j andP−

j is given in [20].
The complete hybrid transverse linearization system is given by (3), (4), and (5).

Assumption 3 The hybrid transverse linearization system is uniformly completely
controllable.

This assumption essentially states that there is sufficientdynamical coupling be-
tween the unactuated and actuated links of the system. It is always satisfied with
reasonable walking robot designs.

4 Receding-Horizon Control Design

Exponential stabilization of time-varying systems, even linear systems, is a non-
trivial problem. For time-invariant or periodic linear systems one can compute con-
stant or periodic gain matrices, respectively, which exponentially stabilize the sys-
tem. This is not true in general for time-varying systems. A common technique
which is computationally feasible is receding-horizon control, also known as model
predictive control (see, e.g., [27, 22] and many others). Inthis section we describe
a slightly modified version of receding-horizon control suitable for impulsive linear
systems.
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The basic strategy is to repeatedly solve a constrained-final-time linear quadratic
optimal control problem for the system (3), (4), (5). That is, minimize the following
cost function:

J(x,u) =
∫ t f

ti
[z(t)TQ(t)z(t)+v(t)TR(t)v(t)]dt+

Nj

∑
j=1

z(t j)
TQ jz(t j)

subject to the constraintz(t f ) = 0.

Assumption 4 There existsαi > 0, i = 0, ..,4, such thatα0I ≤ Q(t) ≤ α1I ,α2I ≤
R(t) ≤ α3I , and0≤ Q j ≤ α4I for all t and j.

The traditional approach is to set a constant time horizon, but in this work we
choose to look a fixednumber of footstepsahead1. Thus, every time the robot takes
a footstep, a new optimization is computed.

We propose the following receding-horizon strategy, looking h footsteps ahead,
beginning withi = 0:

1. Consider the union of intervalsIi,h := Ii ∪Ii+1∪ ...∪Ii+h. Let ti andt f denote
the beginning and end times ofIi,h.

2. Compute this footstep’s optimal control by solving following jump-Riccati equa-
tion backwards in time fromt f to ti with a final conditionZ(t f ) = 0(n−1)2

−Ż = −ZAT −AZ+BR−1BT −ZQZ

Z(t j) =
{

FT
j Z(t+j )−1Fj +Q j

}−1
for t ∈ T j (6)

3. Over the intervalIi , apply the following state-feedback controller:

u(y,θ , ẏ, θ̇) = N(y,θ)−1[K(θ)x⊥(y,θ , ẏ, θ̇)−W(y,θ , ẏ, θ̇)],

K(θ) = −R−1(s)B(s)TZ(s)−1,s= Θ−1(θ) (7)

whereΘ−1 : [θ+,θ−]→ [ti , ti+1) is a projection operator, which is straightforward
to construct sinceθ is monotonic over each step.

4. for the next footstep, seti = i +1 and return to stage 1.

Theorem 1. If Assumptions 1, 2, 3, and 4 are satisfied, then the controller (6), (7) lo-
cally exponentially orbitally stabilizes the planned motion of the original nonlinear
system.

The proof is given in Appendix A.

1 Or, more generally, a fixed number of impulses ahead.
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5 Experimental Setup

We have constructed a two-degree-of-freedom planar biped robot with point feet, a
photograph and schematic of which are shown in Fig. 3. The robot is mounted on a
boom arm with a counterweight, and thus walks in a circular path. The dynamical
effect of the boom is approximated by having different values of hip mass for inertial
(mH ) and gravitational (mHg) terms in the model. The robot is fitted with retractable
feet to avoid toe-scuffing, however we do not consider the feet as additional degrees
of freedom since their masses are negligible.

m,Ic

q2

mH

q1

c
Fig. 3 Schematic and photograph of the experimental setup

The robot is modelled in the form of an impulsive mechanical system (1), the
parameters of which were estimated via nonlinear system identification. The full
equations for the model are given in Appendix B. Good fitting required the addition
of a friction model for the hip joint consisting of Coulomb and viscous parts:

τF = FC sign(q̇1)+FV q̇1.

The parameters of the model are given in Table 1.
The robot is fitted with optical encoders measuring the anglebetween the legs

and the absolute angle of the inner leg. From these measurementsq1 andq2 can be
calculated. The control law relies on velocities as well, and these are estimated with
an observer. The observer structure we choose is one which has previously been
used successfully in walking robot control, consisting of acopy of the nonlinear
dynamics and a linear correction term [28]. Let ˆq and ˆ̇q be the estimates of the
configuration states and velocities, then the observer is given by:

d
dt

[

q̂
ˆ̇q

]

=

[

ˆ̇q
M(q̂)−1(−C(q̂, ˆ̇q) ˆ̇q−G(q̂)+B(q̂)u)

]

+L(y− q̂),

q̂+ = ∆qq̂, ˆ̇q+ = ∆q̇(q̂) ˆ̇q,
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wherey is the measurement ofq. The gainL can be chosen asL = [1/ε 2/ε2] plac-
ing the eigenvalues of the linearized error system at−1/ε. In our experiments we
found thatε = 0.02 gave a reasonable compromise between speed of convergence
and noise rejection.

Table 1 Parameters of the compass-gait biped.

Parameters Values
Masses [kg] m= 1.3, mH = 2.2, mHg = −1.2
Inertia [kg m2] Ic = 0.0168
Lengths [m] l = 0.32, lc = l −0.0596
Gravitational constant [m/s2] g = 9.81
Ratio current/input [A] kI = 1.1
Motor torque constant [Nm/A]kτ = 0.0671
Coulomb friction [Nm] FC = 0.02
Viscous friction [Nm s] FV = 0.01

5.1 Polynomial Representation of Desired Motion

For the compass biped we takeθ = q2, the “ankle” angle of the stance leg relative
to horizontal. Then to specify the path through configuration space for each stepj,
we need to specify only the inter-leg angleq1 as a function of the ankle angle:q⋆

1 =
φ j(θ). We chose to construct theφ j functions as fourth-order B́ezier polynomials,
which can represent a wide range of useful motions with quitea low number of
parameters, and furthermore admit simple representationsof the constraints in the
previous section. For details, see [14, Ch. 6], in which Bézier polynomials were
used to design periodic trajectories. It is straightforward to extended this method to
non-periodic trajectories and because of space restrictions we omit the details.

6 Experimental Results

To test the controller experimentally, a relatively simpletask was chosen: the robot
should walk flat for two steps, then down two “stairs”, and then continue along the
flat. A video of a successful experiment has been placed online [29].

The control design was implemented as in Section 4 with constant weighting
matricesQ(t) = Q j = I3 andR(t) = 1 for all t and j. The look-ahead horizon was
chosen as three footsteps ahead.

For each step, the solution of the jump-Riccati equation took approximately half
a second to compute using theode45 solver in MATLAB running on a Pentium
III desktop computer. This is roughly the time it takes for the robot to complete a
step, and it is reasonable to expect that highly optimised C code could perform this



12 Ian R. Manchester, Uwe Mettin, Fumiya Iida, and Russ Tedrake

task much more quickly. Hence, one can say that the control law could be feasibly
computed in real-time, as a part of a dynamic motion-planning and control system.

Figure 4 depicts the results of one experiment. Figure 4(A) is a cartoon of the
biped’s motion generated from real data, showing the state every 0.3 seconds, with
the current stance leg always indicated in red.
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Fig. 4 Results from a successful experiment walking on uneven terrain. See Section 6 for discus-
sion.

In Fig. 4(B) the evolution of the “ankle angle”q2 is plotted vs time for one
experiment. During the continuous phases,q2 serves as our reparametrization of
timeθ . We note here that, particularly on the second and fourth steps, there is some
jitter in the curve.

In Fig. 4(C) the inter-leg angleq1 is plotted vs time in blue, along with the “nom-
inal” value of q1 plotted in red. Note that, since the nominal value ofq1 is not a
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function of time but a function ofq2, defined by the virtual constraint, the jitters in
theq2 measurement lead to jitters in the nominal value ofq1. Nevertheless, tracking
is quite good, and sufficient for the robot to maintain a stable walking trajectory.

Figures 4(D) and (E) depict the joint velocities ˙q1 andq̇2, obtained from the same
observer used in the control system, along with their nominal values as functions of
the current value ofq2. Again, the jitter inq2 leads to large noise in the velocity
estimates. Despite this, good tracking is maintained through all the planned steps.
Repeated experiments were performed with similar results each time, indicating
good robustness of the control strategy.

7 Conclusions

In this paper we have described a novel method for stabilization of trajectories of
impulsive mechanical systems. The method guarantees localexponential stability to
a target orbit under reasonable assumptions. The method is quite general, but a clear
target application is motions of underactuated walking robots on rough and uneven
terrain. To the authors’ knowledge, this is the first systematic control method which
can provably stabilize such motions.

The proposed technique was experimentally verified using a compass-gait biped
walker. It was seen that, despite measurement errors and inevitable uncertainties
in modelling, the controller reliably stabilized the target motions. The method of
transverse linearization can be applied to any “dynamic walking” robot to design
stabilizing controllers, or to give certificates of stability and assist choice of gains
for existing control laws.

Future work will include application to robots with more degrees of freedom on
more challenging terrain, and computation of basins of attraction. Furthermore, the
theoretical tools developed in this work also have application to problems of motion
planning, which will be explored.

8 Appendix A: Proof of Local Stability

Some details are omitted to save space. We consider the Lyapunov function candi-
date

V (x(t), t,K ) = x(t)TP(t)x(t)

whereP(t) = X(t)−1, the solution of the finite-time jump-Riccati equation. i.e. the
total “cost-to-go” from a statex(t) with a feedback strategyK defining u(t) =
−K(t)x(t)

We state the following three facts about this Lyapunov function candidate:

1. It follows from Assumptions 1, 3, and 4 and standard arguments from optimal
control [30] that there existsβ1 > β0 > 0 such that
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β0I ≤ P(t) ≤ β1I . (8)

2. Throughout the continuous phase fromti to ti+1,

d
dt

V (x(t), t,Ki) = −x(t)T [Q(t)+K(t)TB(t)TR(t)B(t)K(t)]x(t) < 0.

Therefore, it follows from the bounds onQ(t) in Assumption 4 that

d
dt

V (x(t), t,Ki) ≤ α0‖x(t)‖ (9)

for all t.
3. LetKi refer to the strategy of using finite-time controller calculated at the begin-

ning of stepi. Under this strategy,x(ti+h) = 0 and remains zero for allt > ti+h.
After stepi, the state isx(ti+1). A feasible strategy from here would be to con-
tinue with control strategyKi . However, a new optimization is performed at step
i +1 over a new horizoni +1+h. Since continuing withKi is a feasible strategy,
the new optimal strategyKi+1 must have a cost to go

V (x(ti+1), ti+1,Ki+1) ≤ V (x(ti+1), ti+1,Ki). (10)

i.e. the Lyapunov function is non-increasing when an impulse occurs.

From the facts (8), (9), and (10) it follows that the time-varying impulsive linear
comparison system (3), (4), (5) is exponentially stable, using a generalization of
Lyapunov’s second method [31, Ch. 13].

Using Assumptions 1, 2, and 3 arguments similar to those of [25, 18, 20] prove
that exponential stability of the transverse linearization implies local orbital expo-
nential stability of the original nonlinear system to the target trajectory.

9 Appendix B: Compass Biped Model

The model of the experimental setup is given by (1) where

M(q)=

[

p1 −p1 +cos(q1)p2

−p1 +cos(q1)p2 p3 +2p1−2cos(q1)p2

]

,

C(q, q̇)=

[

0 −q̇2sin(q1)p2

−sin(q1)(q̇1− q̇2)p2 sin(q1)q̇1p2

]

, B=

[

kI kτ
0

]

,

G(q)=
[

sin(−q2 +q1)p4, −sin(−q2 +q1)p4−sin(q2)p5−sin(q2)p4
]T

.

The coefficients are defined by the physical parameters of therobot like so:
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p1 = (l − lc)2m+ Ic , p2 = ml(l − lc) , p3 = mH l2 +2mllc
p4 = mg(l − lc) , p5 = g(mHgl +2mlc) .

The impact model in (1) is derived under the assumption of having an instantaneous
and inelastic collision of the swing leg with the ground and no occurrence of slip or
rebound [24]:

∆q =

[

−1 0
−1 1

]

, ∆q̇(q
−) = ∆q

[

H+(q−)
]−1

H−(q−),

where

H+
1,1(q

−) = p1−2p6l + l2p7,

H+
1,2(q

−) = H+
2,1(q

−) = (l2p7 +(−p8−2p6)l + p2)cos(q1)− l2p7 +2p6l − p1,

H+
2,2(q

−) = (−2l2p7 +(2p8 +4p6)l −2p2)cos(q1)+2l2p7 +(−4p6−2p8)l + p3

+2p1,

H−
1,1(q

−) = p1− p6l , H−
1,2(q

−) = ((−p6− p8)l + p2)cos(q1)− p1 + p6l ,

H−
2,1(q

−) = (p2− p6l)cos(q1)− p1 + p6l ,

H−
2,2(q

−) = ((2p6 + p8)l −2p2)cos(q1)+(−p8−2p6)l + p3 +2p1

p6 = m(l − lc) p7 = mH +2m, p8 = lcp7 +mH(l − lc).
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