
Robust Online Motion Planning

with Reachable Sets

by

Anirudha Majumdar

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2013

c© Massachusetts Institute of Technology 2013. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 22, 2013

Certified by. .
Russ Tedrake

Associate Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Chair, Department Committee on Graduate Theses

2

Robust Online Motion Planning

with Reachable Sets

by

Anirudha Majumdar

Submitted to the Department of Electrical Engineering and Computer Science
on May 22, 2013, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

In this thesis we consider the problem of generating motion plans for a nonlinear
dynamical system that are guaranteed to succeed despite uncertainty in the environ-
ment, parametric model uncertainty, disturbances, and/or errors in state estimation.
Furthermore, we consider the case where these plans must be generated online, be-
cause constraints such as obstacles in the environment may not be known until they
are perceived (with a noisy sensor) at runtime. Previous work on feedback motion
planning for nonlinear systems was limited to offline planning due to the computa-
tional cost of safety verification. Here we augment the traditional trajectory library
approach by designing locally stabilizing controllers for each nominal trajectory in the
library and providing guarantees on the resulting closed loop systems. We leverage
sums-of-squares programming to design these locally stabilizing controllers by explic-
itly attempting to minimize the size of the worst case reachable set of the closed-loop
system subjected to bounded disturbances and uncertainty. The reachable sets as-
sociated with each trajectory in the library can be thought of as “funnels” that the
system is guaranteed to remain within. The resulting funnel library is then used to
sequentially compose motion plans at runtime while ensuring the safety of the robot.
A major advantage of the work presented here is that by explicitly taking into ac-
count the effect of uncertainty, the robot can evaluate motion plans based on how
vulnerable they are to disturbances. We demonstrate our method on a simulation of
a plane flying through a two dimensional forest of polygonal trees with parametric
uncertainty and disturbances in the form of a bounded “cross-wind”. We further val-
idate our approach by carefully evaluating the guarantees on invariance provided by
funnels on two challenging underactuated systems (the “Acrobot” and a small-sized
airplane).

Thesis Supervisor: Russ Tedrake
Title: Associate Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

I would like to thank my advisor, Russ Tedrake, for giving me the opportunity to

work at the Robot Locomotion Group first as an undergrad visiting research student

and then as a PhD student. Russ’s deep insights into difficult problems, quick flashes

of intuition and positive outlook have been an inspiration for me through the last

three years. It has been an incredible pleasure to work with Russ and I look forward

to the years to come.

I would also like to thank Dan Koditschek, Dan Lee, and Vijay Kumar for being

advisors and mentors during my undergraduate years at UPenn. My four years at the

KodLab prepared me for a research career in ways that no course could have. I will

always be grateful to Dan K. for providing me with an atmosphere in which I could

thrive, patiently listening to my half-baked ideas, and gently guiding me through

the research path. I would also like to thank Hal Komsuoglu, Shai Revzen, Clark

Haynes and Kevin Galloway for mentorship during my four years at the KodLab.

My experience as a member of Dan Lee’s RoboCup team was absolutely invaluable.

Dan’s mentorship on RoboCup allowed me to work with state-of-the-art humanoid

robots and gave me a sense for all the different problems that need to be solved for a

robot to work. Vijay Kumar was officially my senior design advisor, but was a mentor

throughout my undergrad years. I will always remember the time he gave a guided

tour of the GRASP lab to a freshman who walked into his office with no appointment

on a busy day.

I would like to thank the members of the Robot Locomotion Group for inspi-

ration, advice, help and entertainment during my time here. It has been an honor

to work with people who will no doubt lead our field in years to come. In particu-

lar, I would like to thank Amir Ali Ahmadi for teaching me how to view problems

through the lens of computational complexity theory (and for telling me how to prove

Goldbach’s conjecture - maybe I’ll find time to do it one of these weekends), Mark

Tobenkin for writing my first sums-of-squares program for me and teaching me a lot

of math, and Ian Manchester, Zack Jackowski, Michael Levashov and Alec Shkolnik

5

for answering my incessant annoying questions during my first weeks at the lab and

teaching me about sums-of-squares programming. I have also had numerous enlight-

ening conversations with the rest of the members of the lab including Mike Posa,

Frank Permenter, Ram Vasudevan, Andy Barry, Tim Jenks, Scott Kuindersma, Joe

Moore, Hongkai Dai, Robin Deits, John Roberts, Zico Kolter, Elena Glassman, Jacob

Steinhardt, Kanako Miura and Jessy Grizzle. I would also like to thank Ned Burnell

for working with me as a UROP.

Andy Barry, Tim Jenks and Zack Jackowski also deserve particular thanks for

building the hardware platforms on which the experiments presented in the latter

parts of the thesis were performed (Andy and Tim build the “Wingeron” airplane

and Zack built the Acrobot). Without them, these experiments would have been

impossible.

I also want to express my gratitude towards Mieke Moran and Kathy Bates for

making my stay at the Robot Locomotion Group much easier in terms of adminis-

trative matters, be it making flight reservations for a conference or applying for a

visa.

Finally, I would like to thank my parents and sister for unconditional love over

the years. Without them, none of this would be possible.

6

Contents

1 Introduction 11

1.1 Related Work . 13

1.2 Contributions . 16

2 Computing Reachable Sets 19

2.1 Incorporating Actuator Limits . 23

2.2 Initializing V (x̄, ti) and ρ(ti) . 24

3 Funnel Libraries 27

3.1 Online Planning with Funnels . 29

3.2 Example . 32

4 Hardware Validation 37

4.1 Acrobot . 37

4.2 Wingeron Airplane . 41

5 Conclusion and Future Work 45

5.1 Modifying funnels with data . 45

5.2 Stochastic Verification . 45

5.3 Continuously Parameterized Families of Funnels 46

5.4 Sequence optimization for Large Funnel Libraries 47

5.5 Designing Funnel Libraries . 47

5.6 Conclusion . 48

5.7 Funding . 49

7

8

List of Figures

1-1 Not accounting for uncertainty while planning motions can lead to

disastrous consequences. 13

3-1 Visualization of the system showing the coordinate system, polygonal

obstacles, and “cross-wind”. 32

3-2 Trajectory and funnel libraries for the plane. 34

3-3 Robust online planning though a forest of polygonal obstacles. The

two subfigures show the plane flying through the same forest, but with

the cross-wind biased in different directions (the planner is not aware of

this difference). The eventual paths through the forest are significantly

different, but the plane navigates the forest safely in each case. 35

3-4 This figure shows the utility of explicitly taking uncertainty into ac-

count while planning. The intuitively more “risky” strategy of flying

in between two closely spaced obstacles is guaranteed to be safe, while

the path that avoids going in between obstacles is less robust to un-

certainty and could lead to a collision. 35

4-1 The “Acrobot” used for hardware experiments. 38

4-2 Results from experimental trials on Acrobot. 39

4-3 The “Wingeron” airplane used for hardware experiments. 41

4-4 The experimental setup used for experiments with the Wingeron plane. 42

4-5 Two dimensional slices of funnels computed for the Wingeron plane . 42

9

4-6 A plot showing V vs t for five experimental trials on the airplane. The

one sublevel set (indicated in red) defines the boundary of the funnel.

All trajectories stay within the computed funnel. 43

10

Chapter 1

Introduction

The ability to plan and execute dynamic motions under uncertainty is a critical

skill that our robots must have in order to perform useful tasks in the real world.

Whether the robot is an unmanned aerial vehicle (UAV) flying at high speeds through

a cluttered environment in the presence of wind gusts, a legged robot traversing rough

terrain, or a micro-air vehicle with noisy on-board sensing, the inability to take into

account disturbances, model uncertainty and state uncertainty can have disastrous

consequences.

Motion planning has been the subject of significant research in the last few decades

and has enjoyed a large degree of success in recent years. Planning algorithms like the

Rapidly-exploring Randomized Tree (RRT) [17], RRT? [16], and related trajectory

library approaches [18] [9] [37] can handle large state-space dimensions and complex

differential constraints. These algorithms have been successfully demonstrated on

a wide variety of hardware platforms [33] [32]. However, a significant limitation is

their inability to explicitly reason about uncertainty and feedback. Modeling errors,

state uncertainty and disturbances can lead to failure if the system deviates from the

planned nominal trajectories. This issue is sketched in Figure 1-1(a), where a UAV

attempting to fly through a forest with a heavy cross-wind gets blown off its planned

nominal trajectory and crashes into a tree.

Recently, planning algorithms which explicitly take into account feedback control

have been proposed. The LQR-Trees algorithm [39] creates a tree of locally sta-

11

bilizing controllers which can take any initial condition in some bounded region in

state space to the desired goal. The approach leverages sums-of-squares programming

(SOS) [29] for computing regions of finite time invariance for the locally stabilizing

controllers. However, LQR-Trees lack the ability to handle scenarios in which the

task and environment are unknown till runtime: the offline precomputation of the

tree does not take into account potential runtime constraints like obstacles, and an

online implementation of the algorithm is computationally infeasible.

In this thesis, we present a partial solution to this problem by combining trajectory

libraries, feedback control, and tools from Lyapunov theory and algorithmic algebra

in order to perform robust motion planning in the face of uncertainty. In particular, in

the offline computation stage, we first design a finite library of open loop trajectories.

For each trajectory in this library, we use sums-of-squares programming (SOS) to

design a controller that explicitly attempts to minimize the size of the worst case

reachable set of the system given a description of the uncertainty in the dynamics

and bounded external disturbances. This control design procedure yields an outer

approximation of the reachable set, which can be visualized as a “funnel” around the

trajectory, that the closed loop system is guaranteed to remain within. A cartoon of

such a funnel is shown in Figure 1-1(b). Once we have pre-computed such a funnel

library, we can sequentially compose these robust motion plans online in order to

operate in a provably safe manner. Given estimated positions of obstacles in some

finite sensing horizon, we can choose a funnel from our library that does not intersect

an obstacle. We can do this planning in a receding horizon fashion to achieve the

desired task.

One of the most important advantages that our approach affords us is the ability

to choose between the motion primitives in our library in a way that takes into

account the dynamic effects of uncertainty. Imagine a UAV flying through a forest

that has to choose between two motion primitives: a highly dynamic roll maneuver

that avoids the trees in front of the UAV by a large margin or a maneuver that involves

flying straight while avoiding the trees only by a small distance. An approach that

neglects the effects of disturbances and uncertainty may prefer the former maneuver

12

X

Y

Planned

Actual

(a) A plane deviating from its nominal planned
trajectory due to a heavy cross-wind.

X

Y

(b) The “funnel” of possible trajectories.

Figure 1-1: Not accounting for uncertainty while planning motions can lead to disas-
trous consequences.

since it avoids the trees by a large margin and is therefore “safer”. However, a more

careful consideration of the two maneuvers could lead to a different conclusion: the

dynamic roll maneuver is far more susceptible to wind gusts and state uncertainty

than the second one. Thus, it may actually be more robust to execute the second

motion primitive. Further, it may be possible that neither maneuver is guaranteed

to succeed and it is safer to abort the mission and simply transition to a hover mode.

Our approach allows robots to make these critical decisions, which are essential if

robots are to move out of labs and operate in real-world environments.

1.1 Related Work

The motion planning aspect of our approach draws inspiration from the vast body

of work that is focused on computing motion primitives in the form of trajectory

libraries. For example, trajectory libraries have been used in diverse applications

such as humanoid balance control [18], autonomous ground vehicle navigation [32],

13

and grasping [3] [8]. The Maneuver Automaton [9] attempts to capture the formal

properties of trajectory libraries as a hybrid automaton, thus providing a unifying

theoretical framework. Maneuver Automata have also been used for realtime motion

planning with static and dynamic obstacles [10]. Further theoretical investigations

have focused on the offline generation of diverse but sparse trajectories that ensure

the robot’s ability to perform the necessary tasks online in an efficient manner [12].

More recently, tools from sub-modular sequence optimization have been leveraged in

the optimization of the sequence and content of trajectories evaluated online [8].

The body of literature that deals with planning under uncertainty is also relevant

to the work presented here [5] [30]. While these approaches generate motion plans

that explicitly reason about the effect of uncertainty and disturbances on the behavior

of the system, distributions over states (“belief states”) are typically approximated as

Gaussians for computational efficiency and the true belief state is not tracked. Thus,

in general, one does not have robustness guarantees. The approach we take here is

to assume that disturbances/uncertainty are bounded and provide explicit bounds on

the reachable set to facilitate safe operation of the system.

Robust motion planning has also been a very active area of research in the robotics

community. Early work focused on the purely kinematic problem of planning paths

through configuration space with “tubes” of specified radii around them such that all

paths in the tube remain collision-free [13]. Recent work has focused on reasoning

more explicitly about the manner in which disturbances and uncertainties influence

the dynamics of the robot, and is closer in spirit to the work presented here. In

particular, [31] approaches the problem through dynamic programming on a model

with disturbances by making use of the Maneuver Automaton framework mentioned

earlier. However, the work does not take into account obstacles in the environment

and does not provide or make use of any explicit guarantees on allowed deviations

from the planned trajectories in the Maneuver Automaton. Another approach that

is closely related to ours is Model Predictive Control with Tubes [26]. The idea is to

solve the optimal control problem online with guaranteed “tubes” that the trajectories

stay in. However, the method is limited to linear systems and convex constraints.

14

In [11], the authors design motion primitives for making a quadrotor perform an

autonomous backflip. Reachable sets for the primitives are computed via a Hamilton-

Jacobi-Bellman differential game formulation. However, a predetermined controller

is employed for the reachability analysis instead of designing a controller that seeks

to minimize the size of the reachable set (it is possible in principle to do this, but

inconvenient in practice). More importantly, while their approach handles unsafe sets

that the system is not allowed to enter, it is assumed that these sets are specified a

priori. In this thesis, we are concerned with scenarios in which unsafe sets (such as

obstacles) are not specified until runtime and must thus be reasoned about online.

The approach that is perhaps most closely related to our work is the recent work

presented in [28]. The authors propose a randomized planning algorithm in the spirit

of RRTs that explicitly reasons about disturbances and uncertainty. Specifications

of input to output stability with respect to disturbances provide a parameterization

of “tubes” (analogous to our “funnels”) that can be composed together to generate

motion plans that are collision-free. The factors that distinguish the approach we

present in this thesis from the one proposed in [28] are our focus on the realtime

aspect of the problem and use of sums-of-squares programming as a way of computing

reachable sets. In [28], the focus is on generating safe motion plans when the obstacle

positions are known a priori. Further, we provide a general technique for computing

and explicitly minimizing the size of tubes.

A critical component of the work presented here is the computation of “funnels”

for nonlinear systems via Lyapunov functions. This idea, along with the metaphor

of a “funnel”, was introduced to the robotics community in [6], where funnels were

sequentially composed in order to produce dynamic behaviors in a robot. In recent

years, sums-of-squares programming has emerged as a way of checking the Lyapunov

function conditions associated with each funnel [29]. The technique relies on the abil-

ity to check nonnegativity of multivariate polynomials by expressing them as a sum of

squares of polynomials. This can be written as a semi-definite optimization program

and is amenable to efficient computational algorithms such as interior point methods

[29]. Assuming polynomial dynamics, one can check that a polynomial Lyapunov

15

candidate, V (x), satisfies V (x) > 0 and V̇ (x) < 0 in some region Br. Importantly,

the same idea can be used for designing controllers along time-indexed trajectories

of a system that attempt to maximize the size of the set of initial conditions that

are driven to a goal set [23]. In this thesis, we extend this approach to compute con-

trollers that explicitly minimize the size of reachable sets around trajectories. Thus,

we are guaranteed that if the system starts off in the set of given initial conditions, it

will remain in the computed “funnel” even if the model of the dynamics is uncertain

and the system is subjected to bounded disturbances and state uncertainty.

An alternative approach to computing outer approximations of reachable sets is

the one presented in [14]. The method relies on computing regions of finite time

invariance using locally valid “barrier functions”. Although the approach does not

involve computing controllers that attempt to minimize the size of the reachable set,

it is conceivable that the method could be extended to do so.

1.2 Contributions

This thesis makes three main contributions1. First, in Chapter 2 we provide a way of

designing controllers using sums-of-squares programming that explicitly seek to mini-

mize the effect that disturbances and uncertainties have on the system by minimizing

the size of the reachable set (“funnel”). These controllers and corresponding reach-

able set guarantees can be generated for time-varying polynomial systems subjected

to a broad class of uncertainties (bounded uncertainty in parameters entering poly-

nomially in the dynamics). This is an extension of results presented in [23], where

the control design approach seeks to maximize the size of the set of initial conditions

that are guaranteed to be driven to some predefined goal set. The present work ex-

tends this approach to handle disturbances/uncertainty and provide guarantees on

reachable sets rather than the set of initial conditions that are driven to the goal set.

Second, in Chapter 3 we show how a library of such funnels can be precomputed

offline and composed together at runtime in a receding horizon manner while ensuring

1Preliminary versions of these results have appeared in [24, 23, 25]

16

that the resulting closed loop system is “safe” (i.e. avoids obstacles and switches

between the planned sequence of funnels). This can be viewed as an extension of the

LQR-Trees algorithm [39] for feedback motion planning, which was limited to offline

planning due to the relatively large computational cost of computing the funnels. In

contrast to LQR-Trees, our algorithm is suitable for real-time, online planning. We

expect this framework to be useful in robotic tasks where the dynamics and perceptual

system of the robot are difficult to model perfectly and for which the robot does not

have access to the geometry of the environment until runtime. In Section 3.2, we

demonstrate our method on a simulation of a plane flying through a two dimensional

forest of polygonal trees with parametric uncertainty and disturbances in the form of

a bounded “cross-wind”.

Finally, in Chapter 4 we provide hardware validation of funnels computed using

sums-of-squares programming on two challenging underactuated systems. To our

knowledge, these experimental results constitute the first hardware validation of sums-

of-squares programming based funnels.

17

18

Chapter 2

Computing Reachable Sets

A considerable amount of research effort in the motion planning community has

focused on the design of trajectory libraries (see Section 1.1). Hence, here we assume

that we are provided with a trajectory library consisting of a finite set of nominal

feasible trajectories for the robot and concentrate our discussion on extending the

techniques for the computation of controllers and associated regions of finite time

invariance presented in [23] to compute reachable sets when there is uncertainty in

the dynamics and state. Let

ẋ = f(x(t), w(t)) + g(x(t), w(t))u(t)

be the control system under consideration. Here, x(t) ∈ Rn is the state, u(t) ∈ Rm

is the control input and w(t) ∈ Rd is the disturbance/uncertainty term. We assume

here that f and g are polynomials1 in x and w. We further assume that w(t) belongs

to a bounded semialgebraic set W = {w | Wk(w) ≥ 0,∀k = 1, . . . K}.

Let x0(t) : [0, T] 7→ Rn be a nominal trajectory in our library that we want

the system to follow and u0(t) : [0, T] 7→ Rm be the corresponding nominal open-

loop control input. Defining new coordinates x̄ = x − x0(t) and ū = u − u0(t), we

1With the right change of coordinates, one can express the dynamics of most robotic systems as
polynomials. For example, the dynamics of most rigid body systems can be transformed into poly-
nomials by introducing new variables, si and ci, for sin(θi) and cos(θi), and imposing the constraint
that s2i + c2i = 1 (this equality constraint is easily imposed in the sums-of-squares programming
framework). Another approach is to simply Taylor approximate the non-polynomial dynamics.

19

can rewrite the dynamics in these variables as ˙̄x = ẋ − ẋ0(t). Then, given a set

of initial conditions F (0), we seek to design a controller that attempts to minimize

the “size” of the time-varying reachable sets B(t) (we will formalize what we mean

by “size” soon). For a given controller, the reachable set B(t) is the set of states

that the system may be driven to at time t by some disturbance (i.e. some choice

of w(t) ∈ W), given that the initial condition lay in the set F (0). In general, we

will not be able to compute reachable sets exactly. Rather, we will compute outer

approximations of the reachable sets and design controllers to minimize the “size” of

the outer approximation. Checking the following invariance condition for all t ∈ [0, T]

is sufficient for establishing the sets F (t) as outer approximations of the reachable

sets B(t):

x̄(0) ∈ F (0) =⇒ x̄(t) ∈ F (t), ∀w : [0, T]→ W. (2.1)

Our task will be to design time-varying controllers that minimize the size of the

“funnel” described by the sets F (t). We describe the funnel as a time-varying sub-

level set of a function V (x̄, t):

F (t) = {x̄ | x̄ ∈ Rn, V (x̄, t) ≤ ρ(t)}.

This specification of the funnel allows us to use ρ(t) as a natural surrogate for the

“size” of the funnel at time t. We impose the following condition on V (x̄, t):

V (x̄, t) = ρ(t) =⇒ V̇ (x̄, t, w) < ρ̇(t), ∀w(t) ∈ W (2.2)

Letting F (0) = {x̄ | V (x̄, 0) ≤ ρ0}, it is easy to see that this condition implies the

invariance condition (2.1). Here, V̇ (x̄, t, w) is computed as:

V̇ (x̄, t, w) =
∂V (x̄, t)

∂x̄
˙̄x+

∂V (x̄, t)

∂t
.

In principle, we can parameterize our function V (x̄, t) as a polynomial in both t and

x and check (2.2) ∀t ∈ [0, T]. However, as described in [40], this leads to expensive

20

sums-of-squares programs. Instead, we can get large computational gains with little

loss in accuracy by checking (2.2) at sample points in time ti ∈ [0, T], i = 1 . . . N .

As discussed in [40], for a fixed V (x̄, t) and dynamics (and under mild conditions on

both), increasing the density of the sample points eventually recovers (2.2) ∀t ∈ [0, T].

This allows us to check the answers we obtain from the sums-of-squares program below

by sampling finely enough.

Thus, we parameterize V (x̄, t) and the controller ū by polynomials V (x̄, ti) and

ū(x̄, ti) respectively at each sample point in time. Using
∑N

i=1 ρ(ti) as the cost func-

tion, we can write the following sums-of-squares (SOS) program:

minimize
ρ(ti),L(x̄,ti,w),V (x̄,ti),ū(x̄,ti),Mk(x̄,ti,w)

N∑
i=1

ρ(ti) (2.3)

subject to:

V (x̄, ti) is SOS , ∀i = 1 . . . N (2.4)

−V̇ (x̄, ti, w) + ρ̇(ti) + L(x̄, ti, w)(V (x̄, ti)− ρ(ti)) . . .

−
K∑
k=1

Mk(x̄, ti, w)Wk(w) is SOS , ∀i = 1 . . . N (2.5)

Mk(x̄, ti, w) is SOS , ∀i = 1 . . . N (2.6)

ρ(ti) ≥ 0,∀i = 2 . . . N (2.7)

V (e, ti) = Vguess(e, ti), ∀i = 1 . . . N (2.8)

Here, L(x̄, ti, w) and Mk(x̄, ti, w) are “multiplier” terms that help to enforce the in-

variance condition. It is easy to see that condition (2.5) is a sufficient condition for

ensuring (2.2) at the sample points in time. This is because for all w ∈ W , we must

have
∑

kMk(x̄, ti, w)Wk(w) ≥ 0, since we have Mk(x̄, ti, w) ≥ 0 and Wk(w) ≥ 0.

Thus, when V (x̄, ti) = ρ(ti), condition (2.5) implies2 that V̇ (x̄, ti, w) < ρ̇(ti).

Condition (2.8) is a normalization constraint where e is the vector of all ones and

Vguess(x̄, t) is the candidate for V (x̄, t) that is used to initialize the alternation scheme

2SOS decompositions obtained from numerical solvers generically provide proofs of polynomial
positivity as opposed to mere non-negativity (see the discussion in [1, p.41]). This is why we claim
a strict inequality here.

21

outlined below for solving the above optimization program. (If we do not impose a

normalization constraint on V (x̄, ti),
∑N

i=1 ρ(ti) can be made arbitrarily small simply

by scaling the coefficients of V (x̄, ti)). We use a piecewise linear parameterization of

ρ(t) and can thus compute ρ̇(ti) = ρ(ti+1)−ρ(ti)
ti+1−ti . Similarly, we approximate ∂V (x̄,ti)

∂t
≈

V (x̄,ti+1)−V (x̄,ti)
ti+1−ti .

The above optimization program is not convex in general since it involves condi-

tions that are bilinear in the decision variables. However, the conditions are lin-

ear in L(x̄, ti, w), ū(x̄, ti), Mk(x̄, ti, w) for fixed V (x̄, ti), ρ(ti), and are linear in

V (x̄, ti), ρ(ti), Mk(x̄, ti, w) for fixed L(x̄, ti, w), ū(x̄, ti). Thus, in principle we could

use a bilinear alternation scheme for solving this optimization program by alternat-

ing between the two sets of decision variables, (L(x̄, ti, w), ū(x̄, ti),Mk(x̄, ti, w)) and

(V (x̄, ti), ρ(ti),Mk(x̄, ti, w)) and repeat until convergence in the following two steps:

(1) Fix (V (x̄, ti), ρ(ti)) and search for (L(x̄, ti, w), ū(x̄, ti),Mk(x̄, ti, w)), and (2) Fix

(L(x̄, ti, w), ū(x̄, ti)) and search for (V (x̄, ti), ρ(ti),Mk(x̄, ti, w)). However, in the first

step of this alternation, we cannot optimize the cost function
∑N

i=1 ρ(ti) since we

have to fix ρ(ti) (we can optimize the cost function in the second step). We could

simply make the first step a feasibility problem (instead of optimizing a cost func-

tion), but this prevents us from searching for a controller that explicitly seeks to

minimize the desired cost function since in the second step of the alternation, we do

not search for a controller. We get around this issue by introducing an additional

step in the alternation, in which we fix L(x̄, ti, w) and V (x̄, ti) and search for ū(x̄, ti),

ρ(ti) and Mk(x̄, ti, w), while minimizing
∑N

i=1 ρ(ti). The steps in the alternation are

summarized in Algorithm 1.

Each iteration of the alternations in Algorithm 1 is guaranteed to obtain an ob-

jective
∑N

i=1 ρ
?(ti) that is at least as small as the previous one since a solution to the

previous iteration is also valid for the current one. Hence, since the optimal cost is

lower bounded (by zero), the iterations are guaranteed to converge.

Section 2.2 discusses how to initialize V (x̄, ti) and ρ(ti) for Algorithm 1.

22

Algorithm 1 Robust Controller Design

Initialize V (x̄, ti) and ρ(ti), ∀i = 1 . . . N
ρprev(ti) = 0, ∀i = 1 . . . N .
converged = false;
while ¬converged do

STEP 1 : Solve feasibility problem by searching for L(x̄, ti, w), ū(x̄, ti),
Mk(x̄, ti, w), and fixing V (x̄, ti), ρ(ti).
STEP 2 : Minimize

∑N
i=1 ρ(ti) by searching for ū(x̄, ti), ρ(ti), Mk(x̄, ti, w), and

fixing L(x̄, ti, w), V (x̄, ti).
STEP 3 : Minimize

∑N
i=1 ρ(ti) by searching for V (x̄, ti), ρ(ti), Mk(x̄, ti, w), and

fixing L(x̄, ti, w), ū(x̄, ti).

if
∑N

i=1 ρ(ti)−
∑N

i=1 ρprev(ti)∑N
i=1 ρprev(ti)

< ε then

converged = true;
end if
ρprev(ti) = ρ(ti), ∀i = 1 . . . N .

end while

2.1 Incorporating Actuator Limits

Our method allows us to incorporate actuator limits into the control design procedure.

Although we examine the single-input case in this section, this framework is very

easily extended to handle multiple inputs.

Let the control law u(x) be mapped through the following control saturation

function:

s(u(x)) =


umax if u(x) ≥ umax

umin if u(x) ≤ umin

u(x) o.w.

where umax and umin are the maximum and minimum allowable inputs respectively.

Then, a piecewise analysis of V̇ (x̄, t) can be used to check the Lyapunov conditions

23

are satisfied even when the control input saturates. Defining:

V̇min(x̄, t, w) =
∂V (x̄, t)

∂x̄

T

[f(x̄+ x0(t), w) . . .

+ g(x̄+ x0, w)umin − ẋ0(t)] +
∂V (x̄, t)

∂t
(2.9)

V̇max(x̄, t, w) =
∂V (x̄, t)

∂x̄

T

[f(x̄+ x0(t), w) . . .

+ g(x̄+ x0, w)umax − ẋo(t)] +
∂V (x̄, t)

∂t
(2.10)

(2.11)

we must check the following conditions:

u(x̄) ≤ umin =⇒ V̇min(x̄, t) < ρ̇(t) (2.12)

u(x̄) ≥ umax =⇒ V̇max(x̄, t) < ρ̇(t) (2.13)

umin ≤ u(x̄) ≤ umax =⇒ V̇ (x̄, t) < ρ̇(t) (2.14)

Algorithm 1 can be modified to enforce these conditions with extra multipliers in a

manner identical to the one presented in [23]. This modification is relatively straight-

forward and we do not present it here.

2.2 Initializing V (x̄, ti) and ρ(ti)

Obtaining an initial guess for V (x̄, ti) and ρ(ti) is an important part of Algorithm

1. In [39], the authors use the Lyapunov function candidate associated with a time-

varying LQR controller. The control law is obtained by solving a Riccati differential

equation:

−Ṡ(t) = Q− S(t)B(t)R−1B(t)TS(t) + S(t)A(t) + A(t)TS(t)

with final value conditions S(t) = Sf . Here A(t) and B(t) describe the time-varying

linearization of the dynamics about the nominal trajectory x0(t). Q and R are

24

positive-definite cost-matrices. The function:

Vguess(x̄, t) = (x− x0(t))TS(t)(x− x0(t)) = x̄TS(t)x̄

is our initial Lyapunov candidate. Vguess(x̄, tN) = x̄TS(0)x̄, along with a choice of ρ0

can be used to determine the initial condition set, F (0), of the funnel:

F (0) = {x̄ | x̄ ∈ Rn, x̄TS(0)x̄ ≤ ρ0}.

We find that initializing ρ(ti) to an exponential function in time, eγti , works quite

well in practice. We can tune γ to obtain feasible solutions. Intuitively, higher values

of γ correspond to “larger” reachable sets and thus are more likely to be feasible.

We will demonstrate this control design procedure in Section 3.2 and Chapter 4.

25

26

Chapter 3

Funnel Libraries

The tools from Chapter 2 can be used to create libraries of funnels offline. Given a

trajectory library, T , consisting of finitely many trajectories xi(t), we can compute

robust controllers ui(x, t) and associated reachable sets (funnels) for each trajectory

in T . However, there is an important issue that needs to be addressed when designing

libraries of funnels and has an analogy in the traditional trajectory library approach.

In particular, trajectories in a traditional trajectory library need to be designed in

a way that allows them to be sequenced together. More formally, let P denote

the projection operator that projects a state, x, onto the subspace formed by the

non-cyclic dimensions of the system (i.e. the dimensions with respect to which the

dynamics of the system are not invariant). Then, for two trajectories xi(t) and xj(t)

to be executed one after another, we must have

P(xi(Ti)) = P(xj(0)).

Note that the cyclic coordinates do not pose a problem since one can simply “shift”

trajectories around in these dimensions. This issue is discussed thoroughly in [9]

and is addressed by having a trim trajectory of the system that other trajectories

(maneuvers) start from and end at (of course, one may also have more than one trim

trajectory).

In the case of funnel libraries, however, it is neither necessary nor sufficient for

27

the nominal trajectories to line up in the non-cyclic coordinates. It is the interface

between funnels that is important. Let xi(t) and xj(t) be two nominal trajectories

in our library and Fi(t) = {x | x ∈ Rn, Vi(x̄, t) ≤ ρi(t)} and Fj(t) = {x | x ∈

Rn, Vj(x̄, t) ≤ ρj(t)} be the corresponding funnels. Further, we write x = [xc, xnc],

where xc represent the cyclic dimensions and xnc the non-cyclic ones. We say that Fi

is sequentially composable with Fj if

P(Fi(Ti)) ⊂ P(Fj(0)) (3.1)

⇐⇒ ∀x = [xc, xnc] ∈ Fi(Ti), ∃x0,c s.t. [x0,c, xnc] ∈ Fj(0).

While (3.1) is a sufficient condition for two funnels to be executed one after another,

the dependence of x0,c on x makes searching for x0,c a non-convex problem in general.

Thus, we set x0,c to be the cyclic coordinates of xj(0), resulting in a stronger sufficient

condition that can be checked easily via a sums-of-squares program:

∀x = [xc, xnc] ∈ Fi(Ti), [x0,c, xnc] ∈ Fj(0). (3.2)

Intuitively, (3.2) corresponds to “shifting” the inlet of funnel Fj along the cyclic

dimensions so it lines up with xc. Note that not all pairs of funnels in the library will

be sequentially composable in general. Thus, as we discuss in Section 3.1, we must be

careful to ensure sequential composability when planning sequences of funnels online.

We further note the possibility of computing continuous families of funnels around

trajectories parameterized by “shifts” of a nominal funnel [25]. This can significantly

increase the richness of the funnel library and the chance that a collision-free funnel

can be found at runtime. One can also obtain continuously parameterized families

of funnels by ensuring that scalings of a funnel also result in a valid funnel. We can

visualize this as a continuously parameterized nested set of funnel.

28

3.1 Online Planning with Funnels

Having computed libraries of funnels in the offline pre-computation stage, we can

proceed to use these primitives to perform robust motion planning online. The robot’s

task specification may be in terms of a goal region that must be reached (as in the

case of a manipulator arm grasping an object), or in terms of a nominal direction the

robot should move in while avoiding obstacles (as in the case of a UAV flying through

a forest or a legged robot walking over rough terrain). For the sake of concreteness, we

adopt the latter task specification although one can easily adapt the contents of this

section to the former specification. We further assume that the robot is provided with

polytopic regions in configuration space that obstacles are guaranteed to lie in and

that the robot’s sensors only provide this information up to a finite (but receding)

spatial horizon. Our task is to sequentially compose funnels from our library in a

way that avoids obstacles while moving forwards in the nominal direction. The finite

horizon of the robot’s sensors along with the computational power at our disposal

determines how long the sequence of planned funnels can be at any given time.

The most important computation that needs to be performed at runtime is to

check whether a given funnel intersects an obstacle. For the important case in which

our Lyapunov functions are quadratic in x, this computation is a Quadratic Program

(QP) and can be solved very efficiently (as evidenced by the success of larger scale

QP formulations used in Model Predictive Control [7]). We denote x̄ = x− x0(t) as

before, where x0(t) is the nominal trajectory. Let a particular obstacle be defined

by half-plane constraints Ajx ≥ 0 for j = 1, ...,M . Note that Aj will typically be

sparse since it will contain zeros in places corresponding to non-configuration space

variables (like velocities). Then, for i = 1, . . . , N , we solve the following QP:

minimize
x̄

V (x̄, ti) (3.3)

subject to Ajx ≥ 0,∀j

Denoting the solution of (3.3) for a given ti as V ?(x̄?, ti), the funnel does not intersect

29

the obstacle if and only if V ?(x̄?, ti) > ρ(ti), ∀ti. Multiple obstacles are handled by

simply solving (3.3) for each obstacle. An important point that should be noted is

that we do not require the obstacle regions to be convex. It is only required that they

are represented as unions of convex sets. This allows us to handle situations where

multiple polytopic regions overlap to form a non-convex region.

For higher order polynomial Lyapunov functions, one could check the following

sums-of-squares conditions for all ti:

V (x̄, ti)− ρ(ti)−
∑
j

Lj(x̄)Aj(x̄+ x0(ti)) is SOS (3.4)

Lj(x̄) is SOS ,∀j = 1 . . .M

However, these provide only sufficient conditions for non-collision. Thus, if the condi-

tions in (3.4) are met, one is guaranteed that there is no intersection with the obstacle.

The converse is not true in general. Further, depending on the state-space dimension

of the robot, this optimization problem may be computationally expensive to solve

online. Hence, for tasks in which online execution speed is crucial, one may need to

restrict oneself to quadratic Lyapunov functions.

Algorithm 2 provides a sketch of the online planning loop. At every control cycle,

the robot updates its state in the world along with the obstacle positions. It then

checks to see if the sequence of funnels it is currently executing may lead to a collision

with an obstacle (which should only be the case if the sensors report new obstacles). If

so, it replans a sequence of funnels that can be executed from its current state and are

collision-free. The ReplanFunnels(x,O) subroutine assumes that funnel sequences

that are sequentially composable have been ordered by preference during the precom-

putation stage. For example, for a navigation task, sequences may be ordered by how

much progress the robot makes in some nominal direction. ReplanFunnels(x,O)

goes through funnel sequences and checks two things. First, it checks that its current

state is contained in the first funnel in the sequence (after appropriately shifting the

funnel in the cyclic dimensions). Second, it checks that the sequence leads to no

collisions with obstacles. The algorithm returns the first sequence of funnels that

30

satisfies both criteria. Finally, the online planing loop computes which funnel of the

current plan it is in and applies the corresponding control input ui(x, t.internal).

Of course, several variations on Algorithm 2 are possible. In general, the funnel

primitives provide a discrete action space which can be searched by any heuristic

planner - the primary considerations here are the additional constraint of sequen-

tial composability and the moderately more significant cost of collision checking. In

practice, it also may not be necessary to consider re-planning at the frequency of the

control loop. Instead, longer sections of the plan may be executed before re-planning.

Also, instead of choosing the most “preferred” collision-free sequence of funnels, one

natural cost function which could guide the search is the minimum over ti of V ?(x̄?,ti)
ρ(ti)

.

As before, V ?(x̄?, ti) is the solution of the QP (3.3). Since the 1-sublevel set of

V (x̄,ti)
ρ(ti)

corresponds to the funnel, maximizing this is a reasonable choice for choosing

sequences of funnels.

Algorithm 2 Online Planning

1: Initialize current planned funnel sequence, F = {F1, F2, . . . , Fn}
2: for t = 0, . . . do
3: O ⇐ Obstacles in sensor horizon
4: x⇐ Current state of robot
5: Collision ⇐ Check if F collides with O by solving QPs (3.3)
6: if Collision then
7: F ⇐ ReplanFunnels(x,O)
8: end if
9: F.current⇐ Fi ∈ F such that x ∈ Fi

10: t.internal⇐ Internal time of F.current
11: Apply control ui(x, t.internal)
12: end for

In order to initialize and replan the sequence of funnels F , it is required that the

current state be contained inside the first funnel in the sequence. Assuming perfect

state estimates are available, this is easily checked. However, if perfect state infor-

mation is not available, one needs to ensure that all possible states the system could

be in lie inside the funnel. Assuming that measurement errors are bounded, one can

use robust state estimation to provide worst-case bounds on the state estimate. For

example, [22] provides a way of doing robust state estimation for polynomial discrete

31

time systems via sums-of-squares programming. Given an outer approximation of the

set of states the system could be in, one can check that the entire set is contained

inside the funnel.

3.2 Example

X

Y

Figure 3-1: Visualization of the system showing the coordinate system, polygonal
obstacles, and “cross-wind”.

We demonstrate our approach on a model of an aircraft flying in two dimensions

through a forest of polygonal trees. A pictorial depiction of the model is provided

in Figure 3-1. The aircraft is constrained to move at a fixed forward speed and

can control the second derivative of its yaw angle. We introduce uncertainty into the

model by assuming that the speed of the plane is uncertain and time-varying and that

there is a time-varying “cross-wind” whose magnitude is instantaneously bounded.

32

The full non-linear dynamics of the system are then given by:

x =


x

y

ψ

ψ̇

 , ẋ =


−v(t) cosψ

v(t) sinψ

ψ̇

u

 +


w(t)

0

0

0

 . (3.5)

with the speed of the plane v(t) ∈ [9.5, 10.5]m/s and cross-wind w(t) ∈ [−0.3, 0.3]m/s.

The control input is bounded in the range [−350, 350].

The plane’s trajectory library, T , consists of 11 trajectories and is shown in Figure

3-2(a). The trajectories xi(t) : [0, Ti] 7→ R4 and the corresponding nominal open-loop

control inputs were obtained via the direct collocation trajectory optimization method

[4] by constraining xi(0) and xi(Ti) and locally minimizing a cost of the form:

J =

∫ Ti

0

[1 + u0(t)TR(t)u0(t)] dt.

Here, R is a positive-definite cost matrix. For each xi(t) in T we obtain controllers

and funnels using the method described in Chapter 2. Similar to [39], we perform

the verification on the time-varying nonlinear system by taking third-order Taylor-

approximations of the dynamics about the nominal trajectories. For each trajectory,

we use 11 sample points in time, ti, for the verification. A 4.1 GHz PC with 16 GB

RAM and 4 cores was used for the computations. The time taken for Step 1 of Algo-

rithm 1 during one iteration of the alternation was approximately 10 seconds. Steps

2 and 3 take approximately 45-50 seconds each. Convergence is typically observed

within 5 to 10 iterations of the algorithm. Three of the funnels in our library are

shown in Figure 3-2(b). Note that the funnels have been projected down from the

original four dimensional state space to the x-y plane for the sake of visualization.

Figure 3-3 demonstrates the use of the online planning algorithm in Section 3.1.

The plane plans two funnels in advance while nominally attempting to fly in the y-

direction and avoiding obstacles. The sensor range allows the plane to sense up to 5m

ahead. The projection of the full sequence of funnels executed by the plane is shown

33

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

y

(a) Trajectory library consisting of 11 locally
optimal trajectories.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

2.5

x

y

(b) Three funnels in our funnel library pro-
jected onto the x-y plane.

Figure 3-2: Trajectory and funnel libraries for the plane.

in the figure. Figures 3-3(a) and 3-3(b) show the plane flying through the same forest

with identical initial conditions. The only difference is that the cross-wind term is

biased in different directions. In Figure 3-3(a), the cross-wind is primarily blowing

towards the right, while in Figure 3-3(b), the cross-wind is biased towards the left.

Of course, the planner is not aware of this difference, but ends up following different

paths around the obstacles as it is buffeted around by the wind.

Finally, we demonstrate the utility of explicitly taking into account uncertainty in

Figure 3-4. There are two obstacles in front of the plane. The two options available

to the plane are to fly straight in between the obstacles or to bank right and attempt

to go around them. If the motion planner didn’t take uncertainty into account and

simply chose to maximize the average distance to the obstacles, it would choose

the trajectory that banks right and goes around the obstacles. However, taking

the funnels into account leads to a different decision: going straight in between the

obstacles is safer even though the distance to the obstacles is smaller. The utility of

safety guarantees in the form of funnels is especially important when the margins for

error are small and making the wrong decision can lead to disastrous consequences.

34

0 5 10 15 20 25
0

5

10

15

20

25

30

x

y

(a) Cross-wind biased towards the left.

0 5 10 15 20 25
0

5

10

15

20

25

30

x

(b) Cross-wind biased to the right.

Figure 3-3: Robust online planning though a forest of polygonal obstacles. The
two subfigures show the plane flying through the same forest, but with the cross-
wind biased in different directions (the planner is not aware of this difference). The
eventual paths through the forest are significantly different, but the plane navigates
the forest safely in each case.

−2 −1.5 −1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5

2

x

y

Figure 3-4: This figure shows the utility of explicitly taking uncertainty into account
while planning. The intuitively more “risky” strategy of flying in between two closely
spaced obstacles is guaranteed to be safe, while the path that avoids going in between
obstacles is less robust to uncertainty and could lead to a collision.

35

36

Chapter 4

Hardware Validation

The method proposed in this thesis is premised on the assumption that the formal

guarantees we compute in terms of funnels for challenging real-world robotic systems

are valid on the true hardware platforms for which they are computed (and not just

for the idealized model in simulation). This chapter aims to provide evidence that

this is in fact possible by carefully evaluating the validity of sums-of-squares (SOS)

based funnels on two very different challenging underactuated systems. As far as

we know, the results presented here constitute the first experimental validation of

sums-of-squares based funnels.

4.1 Acrobot

We first consider the “swing-up and balance” task on a severely torque limited un-

deractuated double pendulum (“Acrobot”) [35]. The hardware platform, shown in

Figure 4-1, has no actuation at the “shoulder” joint θ1 and is driven only at the “el-

bow” joint θ2. A friction drive is used to drive the elbow joint. While this prevents

the backlash one might experience with gears, it imposes severe torque limitations on

the system. This is due to the fact that torques greater than 5 Nm cause the friction

drive to slip. Thus, in order to obtain consistent performance, it is very important to

obey this input limit. Encoders in the joints report joint angles to the controller at

200 Hz and finite differencing and a standard Luenberger observer [21] are used to

37

Figure 4-1: The “Acrobot” used for hardware experiments.

compute joint velocities.

The prediction error minimization method in MATLAB’s System Identification

Toolbox [19] was used to identify parameters of the model presented in [35]. We

designed an open-loop motion plan for the swing-up task using direct collocation

trajectory optimization [4] by constraining the initial and final states to [0, 0, 0, 0]T

and [π, 0, 0, 0]T respectively. The dynamics were then Taylor expanded to degree

3 about the nominal trajectory in order to obtain a polynomial vector field.1 We

then designed a time-invariant nonlinear controller (cubic in the four dimensional

state x = [θ1, θ2, θ̇1, θ̇2]T) using SOS programming. A linear time-varying controller

was designed using the approach presented in Chapter 2 with the goal set given by

the verified region of attraction for the time-invariant controller. We modified the

1Taylor expanding the dynamics is not strictly necessary since sums-of-squares programming
can handle trigonometric as well as polynomial terms [27]. In practice, however, we find that the
Taylor expanded dynamics lead to trajectories that are nearly identical to the original ones and thus
we avoid the added overhead that comes with directly dealing with trigonometric terms.

38

(a) θ2−θ1 projection of experimental tra-
jectories superimposed on funnel.

(b) θ̇1−θ1 projection of experimental tra-
jectories superimposed on funnel.

(c) V (x̄, t) for 30 experimental trials (d) V (x̄, t) for 100 simulated trials

Figure 4-2: Results from experimental trials on Acrobot.

approach presented in Chapter 2 in two ways. First, we do not incorporate any

uncertainty in the dynamics. Second, we compute backwards reachable sets instead

of reachable sets since the goal set here is fixed (and not the set of initial conditions).

However, the computations are almost identical and we refer the reader to [23] for

more details. 105 sample points in time, ti, were used for the verification. For both

the time-invariant balancing controller and the time-varying swing-up controller, we

use Lyapunov functions, V , of degree 2. LQR controllers were used to initialize the

sums-of-squares programs for both controllers.

We implemented our sums-of-squares programs using the YALMIP toolbox [20],

and used SeDuMi [38] as our semidefinite optimization solver. A 4.1 GHz PC with

16 GB RAM and 4 cores was used for the computations. The time taken for Step 1

of Algorithm 1 during one iteration of the alternation was approximately 12 seconds.

39

Steps 2 and 3 took approximately 36 and 70 seconds (per iteration) respectively. 39

iterations of the alternation scheme were required for convergence, although we note

that a better method for initializing ρ(ti) than the one presented in Section 2.2 is

likely to decrease this number.

We validate the funnel for the controller obtained from SOS with 30 experimen-

tal trials of the Acrobot swinging up and balancing. The robot is started off from

random initial conditions drawn from within the SOS verified funnel and the time-

varying SOS controller is applied for the duration of the trajectory. At the end of

the trajectory, the robot switches to the cubic time-invariant balancing controller.

Figures 4-2(a) - 4-2(c) provide plots of this experimental validation. Plots 4-2(a) and

4-2(b) show the 30 trajectories superimposed on the funnel projected onto different

subspaces of the 4-dimensional state space. Note that remaining inside the projected

funnel is a necessary but not sufficient condition for remaining within the funnel in

the full state space. Plot 4-2(c) shows the value of V (x̄, t) achieved during the differ-

ent experimental trials (V (x̄, t) < ρ implies that the trajectory is inside the funnel at

that time). The plot demonstrates that for most of the duration of the trajectory, the

experimental trials lie within the verified funnel. However, violations are observed

towards the end. This can be attributed to state estimation errors and model inac-

curacies (particularly in capturing the slippage caused by the friction drive between

the two links) and also to the fact that the Lyapunov function has a large gradient

with respect to x̄ towards the end. Thus, even though the trajectories deviate from

the nominal trajectory only slightly in Euclidean distance (as plots 4-2(a) and 4-2(b)

demonstrate), these deviations are enough to cause a large change in the value of

V (x̄, t). We note that all 30 experimental trials resulted in the robot successfully

swinging up and balancing. Figure 4-2(d) plots V (x̄, t) for 100 simulated experiments

of the system started off from random initial conditions inside the funnel. All tra-

jectories remain inside the funnel, suggesting that the violations observed in Figure

4-2(c) are in fact due to modeling and state estimation errors.

40

Figure 4-3: The “Wingeron” airplane used for hardware experiments.

4.2 Wingeron Airplane

Next, we consider a more challenging system with 12 state space dimensions and

5 control inputs. The “Wingeron” airplane has been described in [2] and is shown

in Figure 4-3. The Wingeron does away with the traditional wing and aileron seen

on most aircraft in favor of a wing that is completely actuated; in other words, the

entire wing rotates to act as a control surface. This dramatically increases the range

of possible roll rates the plane can execute. The states of the plane are the aircraft

positions in a global coordinate frame, angles expressed in terms of Euler coordinates,

and derivatives of these configuration space variables. The five control inputs are the

throttle command, elevator angle, rudder angle, and left/right wingeron angles (the

wingerons are actuated independently).

The prediction error minimization method in MATLAB’s System Identification

Toolbox is again used to identify parameters for an aerodynamic model taken from

[34]. We designed an open-loop motion plan for a dynamic roll maneuver that lasts

0.32 seconds. A time-varying LQR controller is designed to stabilize this trajectory. A

funnel is computed for this fixed controller using the methods presented in Chapter

2, and is depicted in Figure 4.2. The funnel computation takes approximately 15

minutes.

We performed experiments in a motion capture arena and again use finite differ-

encing and a standard Luenberger observer to compute the derivative terms of the

state. The plane is launched at approximately 7.5m/s from a launcher and flies into

41

Figure 4-4: The experimental setup used for experiments with the Wingeron plane.

(a) Funnel slice in x-y subspace. (b) Funnel slice in x-roll subspace.

Figure 4-5: Two dimensional slices of funnels computed for the Wingeron plane

a net once the trajectory is completed. The experimental setup is shown in Figure

4-4.

Figure 4-6 plots the value of the Lyapunov function V with time t for 5 differ-

ent experimental trials on the hardware, each of which starts off inside the verified

funnel. Here, the one sublevel set defines the boundary of the funnel. As the plot

demonstrates, each of the 5 trajectories remains within the computed funnel for the

42

Figure 4-6: A plot showing V vs t for five experimental trials on the airplane. The
one sublevel set (indicated in red) defines the boundary of the funnel. All trajectories
stay within the computed funnel.

entire duration of the trajectory. While the number of trajectories considered here

is relatively small, these results are promising and provide evidence for the claim

that the online planning framework presented in this thesis can work on challenging

real-world hardware platforms with complicated nonlinear dynamics.

43

44

Chapter 5

Conclusion and Future Work

5.1 Modifying funnels with data

As we saw in Chapter 4, while the funnels we obtain from sums-of-squares program-

ming are largely faithful to the real hardware, there can still be some discrepancies.

One natural way to address this is to use the robust verification methods presented

in Chapter 2. However, in some cases, it may be difficult to explicitly parameterize

the set of disturbances/uncertainty. In this setting, another possible approach is to

use data obtained from real hardware to update a precomputed funnel. For example,

suppose one observes that a particular trajectory violates the computed funnel. Then,

we can incorporate this new piece of data by re-solving the sums-of-squares program

(2.3) in Chapter 2 with the additional constraint that this trajectory remains within

the new funnel. Implementing this data driven approach to adjusting funnels and

proving generalization bounds on such a scheme are the subject of current work.

5.2 Stochastic Verification

Throughout this thesis, we have assumed that all disturbances and uncertainty are

bounded with probability one. In practice, this assumption may either not be fully

valid or could lead to over-conservative performance. In such situations, it is more

natural to provide guarantees of reachability of a probabilistic nature. Recently,

45

results from classical martingale theory have been combined with sums-of-squares

programming in order to compute such probabilistic certificates of finite time invari-

ance [36], i.e. provide upper bounds on the probability that a stochastic nonlinear

system will leave a given region of state space. The results presented in [36] can be

directly combined with the approach presented in this work to perform robust online

planning on stochastic systems and will be the subject of future work.

5.3 Continuously Parameterized Families of Fun-

nels

As discussed in Chapter 2, we are currently partially exploiting invariances in the dy-

namics by shifting trajectories (and corresponding funnels) that we want to execute

next in the cyclic coordinates so they line up with the cyclic coordinates of the robot’s

current state. In our example from Section 3.2, this simply corresponds to translating

and rotating funnels so the beginning of the next trajectory lines up with the current

state’s x,y and yaw. However, we could further exploit invariances in the dynamics by

shifting funnels around locally to ensure that they don’t intersect an obstacle while

still maintaining the current state inside the funnel. One can then think of the nom-

inal trajectories and funnels being continuously parameterized by shifts in the cyclic

coordinates. Interestingly, it is also possible to use sums-of-squares programming to

compute conservative funnels for cases in which one shifts the nominal trajectory in

the non-cyclic coordinates [25]. Thus, one could potentially significantly improve the

richness of the funnel library by pre-computing continuously parameterized funnel

libraries instead of just a finite family. However, choosing the right “shift” to apply

at runtime is generally a non-convex problem (since the free-space of the robot’s en-

vironment is non-convex) and thus one can only hope to find “shifts” that are locally

optimal.

Another way to obtain continuously parameterized funnels is to ensure that scal-

ings of ρ(t) result in sub-level sets of V (x̄, t) that are invariant. This is equivalent to

46

computing outer approximations of reachable sets for scalings of the initial condition

set. Specifically, the SOS program (2.3) can be modified to guarantee that for some

ε > 0, ∀c ∈ [ε, 1] the sub-level sets defined by cρ(t) are invariant. One can visualize

this as a continuously parameterized nested set of funnels. At runtime, this allows us

to choose from scalings of our funnels. This could potentially reduce the number of

funnels we need in our library. However, in practice, it may be difficult to obtain con-

trollers and funnels that make guarantees of this form, especially if the disturbance

terms are large.

5.4 Sequence optimization for Large Funnel Li-

braries

For extremely large funnel libraries, it may be computationally difficult to search

all the funnels while planning online. This is a problem that traditional trajectory

libraries also face [8]. Advances in submodular sequence optimization were leveraged

in [8] to address this issue. The approach involves limiting the set of trajectories that

are evaluated online and optimizing the sequence in which trajectories are evaluated.

Guarantees are provided on the sub-optimality of the resulting strategy. This tech-

nique could be adapted to work in our framework too and will be addressed in future

work.

5.5 Designing Funnel Libraries

One issue that we have not addressed in this thesis is the choice of motion primitives in

our library. While there has been considerable work on designing trajectory libraries

(see Section 1.1), designing funnel libraries poses challenges that go beyond just

choosing a good set of nominal trajectories. The effect of uncertainty and feedback

must be taken into account while constructing the library. One interesting problem

domain in which it may be possible to design funnel libraries in a principled way is

the case where the statistics of obstacle positions are known a priori (but the actual

47

positions are unknown). An example of such a scenario is the task considered in this

thesis: autonomous UAV flight through a forest. It is known that the location of

trees in a forest is well modeled by Poisson distributions [15]. Another example is

legged robot locomotion on rough terrain, where the statistics of terrain variations

are known beforehand. In such scenarios, it may be possible to design a randomized

algorithm in the spirit of LQR-Trees [39] where one attempts to plan paths through

particular realizations of the environment by sequencing funnels together and adding

a funnel to the library every time a collision free sequence of funnels is not found in

the existing library. Under certain assumptions on the distributions of obstacles (e.g.

stationarity, ergodicity), it is conceivable that such a randomized algorithm may be

probabilistically complete.

5.6 Conclusion

In this thesis, we have presented an approach for motion planning in a priori unknown

environments with dynamic uncertainty in the form of bounded parametric model

uncertainty, disturbances, and state errors. The method augments the traditional

trajectory library approach by constructing stabilizing controllers around the nominal

trajectories that explicitly attempt to minimize the size of the reachable set of the

system subjected to disturbances and uncertainties. The precomputed set of reachable

sets (“funnels”) is then used to plan online by sequentially composing them together

in a manner that ensures obstacles are avoided. By explicitly taking into account

uncertainty and disturbances while making motion plans, we can evaluate trajectory

sequences based on how susceptible they are to disturbances. We have demonstrated

our approach on a simulation of a plane flying in two dimensions through a forest of

polygonal obstacles. We have further validated the approach by providing hardware

experiments on an Acrobot system and an airplane that evaluate the guarantees (in

terms of funnels) computed via sums-of-squares programming. Future work will focus

on generating funnel libraries automatically for environments with known obstacle

distributions (e.g. forests) and extending our results to scenarios in which a stochastic

48

description of uncertainty is more appropriate.

5.7 Funding

This work was supported by ONR MURI grant N00014-09-1-1051, the MIT Intelli-

gence Initiative, and a Siebel Foundation Scholarship.

49

50

Bibliography

[1] A. A. Ahmadi. Non-monotonic Lyapunov Functions for Stability of Nonlinear

and Switched Systems: Theory and Computation. Master’s thesis, Massachusetts

Institute of Technology, June 2008.

[2] Andrew J. Barry. Flying between obstacles with an autonomous knife-edge ma-

neuver. Master’s thesis, Massachusetts Institute of Technology, Sep 2012.

[3] D. Berenson, R. Diankov, K. Nishiwaki, S. Kagami, and J. Kuffner. Grasp

planning in complex scenes. In International Conference on Humanoid Robots,

pages 42–48. IEEE, 2007.

[4] John T. Betts. Practical Methods for Optimal Control Using Nonlinear Program-

ming. SIAM Advances in Design and Control. Society for Industrial and Applied

Mathematics, 2001.

[5] A. Bry and N. Roy. Rapidly-exploring random belief trees for motion plan-

ning under uncertainty. In Proceedings of the IEEE International Conference on

Robotics and Automation, Shanghai, China, 2011.

[6] R. R. Burridge, A. A. Rizzi, and D. E. Koditschek. Sequential composition

of dynamically dexterous robot behaviors. International Journal of Robotics

Research, 18(6):534–555, June 1999.

[7] E. F. Camacho and Carlos Bordons. Model Predictive Control. Springer-Verlag,

2nd edition, 2004.

51

[8] D. Dey, T.Y. Liu, B. Sofman, and D. Bagnell. Efficient optimization of control

libraries. Technical report, Technical Report (CMU-RI-TR-11-20), 2011.

[9] Emilio Frazzoli, Munther Dahleh, and Eric Feron. Maneuver-based motion plan-

ning for nonlinear systems with symmetries. IEEE Transactions on Robotics,

21(6):1077–1091, December 2005.

[10] Emilio Frazzoli, Munther A. Dahleh, and Eric Feron. Real-Time Motion Planning

for Agile Autonomous Vehicles. Journal of Guidance, Control, and Dynamics,

25(1):116–129, JanuaryFebruary 2002.

[11] J.H. Gillula, H. Huang, M.P. Vitus, and C.J. Tomlin. Design of guaranteed safe

maneuvers using reachable sets: Autonomous quadrotor aerobatics in theory

and practice. In IEEE International Conference on Robotics and Automation

(ICRA), pages 1649–1654. IEEE, 2010.

[12] Colin Green and Alonzo Kelly. Toward optimal sampling in the space of paths.

In 13th International Symposium of Robotics Research, November 2007.

[13] P. Jacobs and J. Canny. Robust motion planning for mobile robots. In Robotics

and Automation, 1990. Proceedings., 1990 IEEE International Conference on,

pages 2–7. IEEE, 1990.

[14] A. Agung Julius and George J. Pappas. Trajectory based verification using

local finite-time invariance. In HSCC ’09: Proceedings of the 12th International

Conference on Hybrid Systems: Computation and Control, pages 223–236, Berlin,

Heidelberg, 2009. Springer-Verlag.

[15] Karaman and Frazzoli. High-speed flight through an ergodic forest. In IEEE

Conference on Robotics and Automation, 2012.

[16] S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion

planning. Int. Journal of Robotics Research, 30:846–894, June 2011.

52

[17] J.J. Kuffner and S.M. Lavalle. RRT-connect: An efficient approach to single-

query path planning. In Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA), pages 995–1001, 2000.

[18] C. Liu and C.G. Atkeson. Standing balance control using a trajectory library.

In Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International

Conference on, pages 3031–3036. IEEE, 2009.

[19] L. Ljung. System identification toolbox for use with matlab. 2007.

[20] Johan Lofberg. Pre- and post-processing sum-of-squares programs in practice.

IEEE Transactions On Automatic Control, 54(5):1007–, May 2009.

[21] David Luenberger. An introduction to observers. Automatic Control, IEEE

Transactions on, 16(6):596–602, 1971.

[22] C. Maier and F. Allgower. A set-valued filter for discrete time polynomial systems

using sum of squares programming. In Decision and Control, 2009 held jointly

with the 2009 28th Chinese Control Conference. CDC/CCC 2009. Proceedings

of the 48th IEEE Conference on, pages 223–228. IEEE, 2009.

[23] Anirudha Majumdar, Amir Ali Ahmadi, and Russ Tedrake. Control design along

trajectories with sums of squares programming. In Proceedings of the 2013 IEEE

International Conference on Robotics and Automation (ICRA), 2013.

[24] Anirudha Majumdar and Russ Tedrake. Robust online motion planning with re-

gions of finite time invariance. In Proceedings of the Workshop on the Algorithmic

Foundations of Robotics, 2012.

[25] Anirudha Majumdar, Mark Tobenkin, and Russ Tedrake. Algebraic verification

for parameterized motion planning libraries. In Proceedings of the 2012 American

Control Conference (ACC), 2012.

[26] D.Q. Mayne, M.M. Seron, and SV Rakovic. Robust model predictive control of

constrained linear systems with bounded disturbances. Automatica, 41(2):219–

224, 2005.

53

[27] A. Megretski. Positivity of trigonometric polynomials. In Proceedings of the 42nd

IEEE Conference on Decision and Control, Dec 2003.

[28] J. Le Ny and G.J. Pappas. Sequential composition of robust controller specifica-

tions. In International Conference on Robotics and Automation (ICRA). IEEE,

2012.

[29] Pablo A. Parrilo. Structured Semidefinite Programs and Semialgebraic Geometry

Methods in Robustness and Optimization. PhD thesis, California Institute of

Technology, May 18 2000.

[30] R. Platt, R. Tedrake, L.P. Kaelbling, and T. Lozano-Perez. Belief space planning

assuming maximum likelihood observations. In Proceedings of Robotics: Science

and Systems, 2010.

[31] T. Schouwenaars, B. Mettler, E. Feron, and J.P. How. Robust motion planning

using a maneuver automation with built-in uncertainties. In American Control

Conference, 2003. Proceedings of the 2003, volume 3, pages 2211–2216. IEEE,

2003.

[32] Pierre Sermanet, Marco Scoffier, Chris Crudele, Urs Muller, and Yann LeCun.

Learning maneuver dictionaries for ground robot planning. In Proc. 39th Inter-

national Symposium on Robotics (ISR08), 2008.

[33] Alexander Shkolnik. Sample-Based Motion Planning in High-Dimensional and

Differentially-Constrained Systems. PhD thesis, MIT, February 2010.

[34] Sobolic and Frantisek M. Agile flight control techniques for a fixed-wing air-

craft. Master’s thesis, Massachusetts Institute of Technology, Department of

Aeronautics and Astronautics, Cambridge MA, June 2009.

[35] Mark Spong. The swingup control problem for the acrobot. IEEE Control

Systems Magazine, 15(1):49–55, February 1995.

54

[36] Jacob Steinhardt and Russ Tedrake. Finite-time regional verification of stochas-

tic nonlinear systems. In Proceedings of Robotics: Science and Systems (RSS)

2011, January 17 2011.

[37] M. Stolle and C.G. Atkeson. Policies based on trajectory libraries. In Interna-

tional Conference on Robotics and Automation (ICRA). IEEE, 2006.

[38] Jos F. Sturm. Using SeDuMi 1.02, a Matlab toolbox for optimization over sym-

metric cones. Optimization Methods and Software, 11(1-4):625 – 653, 1999.

[39] Russ Tedrake, Ian R. Manchester, Mark M. Tobenkin, and John W. Roberts.

LQR-Trees: Feedback motion planning via sums of squares verification. Inter-

national Journal of Robotics Research, 29:1038–1052, July 2010.

[40] Mark M. Tobenkin, Ian R. Manchester, and Russ Tedrake. Invariant fun-

nels around trajectories using sum-of-squares programming. Proceedings of the

18th IFAC World Congress, extended version available online: arXiv:1010.3013

[math.DS], 2011.

55

