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Abstract—In this paper we consider the problem of generating
motion plans for a nonlinear dynamical system that are
guaranteed to succeed despite uncertainty in the environment,
parametric model uncertainty, disturbances, and/or errors in
state estimation. Furthermore, we consider the case where these
plans must be generated online, because constraints such as
obstacles in the environment may not be known until they are
perceived (with a noisy sensor) at runtime. Previous work on
feedback motion planning for nonlinear systems was limited
to offline planning due to the computational cost of safety
verification. Here we augment the traditional trajectory library
approach by designing locally stabilizing controllers for each
nominal trajectory in the library and providing guarantees on
the resulting closed loop systems. We leverage sums-of-squares
programming to design these locally stabilizing controllers by
explicitly attempting to minimize the size of the worst case
reachable set of the closed-loop system subjected to bounded
disturbances and uncertainty. The reachable sets associated with
each trajectory in the library can be thought of as “funnels”
that the system is guaranteed to remain within. The resulting
funnel library is then used to sequentially compose motion plans
at runtime while ensuring the safety of the robot. A major
advantage of the work presented here is that by explicitly
taking into account the effect of uncertainty, the robot can
evaluate motion plans based on how vulnerable they are to
disturbances. We demonstrate our method on a simulation of a
plane flying through a two dimensional forest of polygonal trees
with parametric uncertainty and disturbances in the form of a
bounded “cross-wind”.

Note to Practitioners—We are motivated by the need for
planning algorithms for robots that are able to deal with
uncertainty in the form of unknown or unmodeled dynamics,
state estimation errors and obstacle positions that are unknown
until runtime. Existing approaches to this problem typically
either fail to provide formal guarantees on the behavior of the
system subjected to disturbances and uncertainty or are unable
to deal with a priori unknown environments. Our approach is to
compute a set of “motion primitives” for which we can provide
formal guarantees on the behavior of the closed-loop system. In
particular, for each motion primitive, we can provide bounds
on where the system may end up given that it starts off in
some set of initial conditions. One can visuzalize these sets as
“funnels” that the system is guaranteed to remain within (there
is one funnel associated with each motion primitive). At runtime,
when the robot encounters a novel environment, it can combine
these motion primitives in order to plan its way safely through
the environment. We provide an example of how this approach
may be used on a model of an unmanned aerial vehicle (UAV)
flying through a forest with unknown (but bounded) speed while
subjected to a cross-wind. There are two main challenges that
practitioners must overcome when applying this approach. First,
the computational tools used for computing “funnels” can often
run into numerical difficulties. Second, hardware implementation
of the approach requires one to have a reasonably accurate
model of the dynamics of the system and the uncertainty and
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disturbances it is subjected to. While not the focus here, examples
of applying related algorithms to physical systems can be found
in [19] and [25]. We are currently experimenting with this
approach for different application domains including humanoid
locomotion.

Index Terms—Motion planning, feedback motion planning,
robust control, reachability analysis, sums-of-squares program-
ming.

I. INTRODUCTION

THE ability to plan and execute dynamic motions under
uncertainty is a critical skill that our robots must have

in order to perform useful tasks in the real world. Whether
the robot is an unmanned aerial vehicle (UAV) flying at high
speeds through a cluttered environment in the presence of wind
gusts, a legged robot traversing rough terrain, or a micro-air
vehicle with noisy on-board sensing, the inability to take into
account disturbances, model uncertainty and state uncertainty
can have disastrous consequences.

Motion planning has been the subject of significant re-
search in the last few decades and has enjoyed a large
degree of success in recent years. Planning algorithms like
the Rapidly-exploring Randomized Tree (RRT) [16], RRT?

[15], and related trajectory library approaches [17] [8] [30] can
handle large state-space dimensions and complex differential
constraints. These algorithms have been successfully demon-
strated on a wide variety of hardware platforms [28] [27].
However, a significant limitation is their inability to explicitly
reason about uncertainty and feedback. Modeling errors, state
uncertainty and disturbances can lead to failure if the system
deviates from the planned nominal trajectories. This issue is
sketched in Figure 1(a), where a UAV attempting to fly through
a forest with a heavy cross-wind gets blown off its planned
nominal trajectory and crashes into a tree.

Recently, planning algorithms which explicitly take into
account feedback control have been proposed. The LQR-Trees
algorithm [31] creates a tree of locally stabilizing controllers
which can take any initial condition in some bounded region in
state space to the desired goal. The approach leverages sums-
of-squares programming (SOS) [23] for computing regions of
finite time invariance for the locally stabilizing controllers.
However, LQR-Trees lack the ability to handle scenarios in
which the task and environment are unknown till runtime: the
offline precomputation of the tree does not take into account
potential runtime constraints like obstacles, and an online
implementation of the algorithm is computationally infeasible.

In this paper, we present a partial solution to this problem
by combining trajectory libraries, feedback control, and tools
from Lyapunov theory and algorithmic algebra in order to
perform robust motion planning in the face of uncertainty.
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(a) A plane deviating from its nominal planned trajectory
due to a heavy cross-wind.
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(b) The “funnel” of possible trajectories.

Fig. 1. Not accounting for uncertainty while planning motions can lead to disastrous consequences.

In particular, in the offline computation stage, we first design
a finite library of open loop trajectories. For each trajectory
in this library, we use sums-of-squares programming (SOS)
to design a controller that explicitly attempts to minimize the
size of the worst case reachable set of the system given a
description of the uncertainty in the dynamics and bounded
external disturbances. This control design procedure yields
an outer approximation of the reachable set, which can be
visualized as a “funnel” around the trajectory, that the closed
loop system is guaranteed to remain within. A cartoon of such
a funnel is shown in Figure 1(b). Finally, we provide a way
of sequentially composing these robust motion plans online in
order to operate in a provably safe manner.

One of the most important advantages that our approach af-
fords us is the ability to choose between the motion primitives
in our library in a way that takes into account the dynamic
effects of uncertainty. Imagine a UAV flying through a forest
that has to choose between two motion primitives: a highly
dynamic roll maneuver that avoids the trees in front of the
UAV by a large margin or a maneuver that involves flying
straight while avoiding the trees only by a small distance.
An approach that neglects the effects of disturbances and
uncertainty may prefer the former maneuver since it avoids
the trees by a large margin and is therefore “safer”. However,
a more careful consideration of the two maneuvers could lead
to a different conclusion: the dynamic roll maneuver is far
more susceptible to wind gusts and state uncertainty than the
second one. Thus, it may actually be more robust to execute
the second motion primitive. Further, it may be possible that
neither maneuver is guaranteed to succeed and it is safer to
abort the mission and simply transition to a hover mode. Our
approach allows robots to make these critical decisions, which
are essential if robots are to move out of labs and operate in
real-world environments.

II. RELATED WORK

The motion planning aspect of our approach draws in-
spiration from the vast body of work that is focused on
computing motion primitives in the form of trajectory li-
braries. For example, trajectory libraries have been used in
diverse applications such as humanoid balance control [17],
autonomous ground vehicle navigation [27], and grasping [2]
[7]. The Maneuver Automaton [8] attempts to capture the
formal properties of trajectory libraries as a hybrid automaton,
thus providing a unifying theoretical framework. Maneuver
Automata have also been used for realtime motion planning
with static and dynamic obstacles [9]. Further theoretical
investigations have focused on the offline generation of diverse
but sparse trajectories that ensure the robot’s ability to perform
the necessary tasks online in an efficient manner [11]. More
recently, tools from sub-modular sequence optimization have
been leveraged in the optimization of the sequence and content
of trajectories evaluated online [7].

The body of literature that deals with planning under
uncertainty is also relevant to the work presented here [4] [24].
While these approaches generate motion plans that explicitly
reason about the effect of uncertainty and disturbances on
the behavior of the system, distributions over states (“belief
states”) are typically approximated as Gaussians for computa-
tional efficiency and the true belief state is not tracked. Thus,
in general, one does not have robustness guarantees. The ap-
proach we take here is to assume that disturbances/uncertainty
are bounded and provide explicit bounds on the reachable set
to facilitate safe operation of the system.

Robust motion planning has also been a very active area
of research in the robotics community. Early work focused
on the purely kinematic problem of planning paths through
configuration space with “tubes” of specified radii around
them such that all paths in the tube remained collision-free
[12]. Recent work has focused on reasoning more explicitly
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about the manner in which disturbances and uncertainties
influence the dynamics of the robot, and is closer in spirit
to the work presented here. In particular, [26] approaches
the problem through dynamic programming on a model with
disturbances by making use of the Maneuver Automaton
framework mentioned earlier. However, the work does not take
into account obstacles in the environment and does not provide
or make use of any explicit guarantees on allowed deviations
from the planned trajectories in the Maneuver Automaton.
Another approach that is closely related to ours is Model
Predictive Control with Tubes [21]. The idea is to solve the
optimal control problem online with guaranteed “tubes” that
the trajectories stay in. However, the method is limited to linear
systems and convex constraints.

In [10], the authors design motion primitives for making a
quadrotor perform an autonomous backflip. Reachable sets for
the primitives are computed via a Hamilton-Jacobi-Bellman
differential game formulation. However, a predetermined con-
troller is employed for the reachability analysis instead of
designing a controller that seeks to minimize the size of the
reachable set (it is possible in principle to do this, but incon-
venient in practice). More importantly, while their approach
handles unsafe sets that the system is not allowed to enter, it
is assumed that these sets are specified a priori. In this paper,
we are concerned with scenarios in which unsafe sets (such
as obstacles) are not specified until runtime and must thus be
reasoned about online.

The approach that is perhaps most closely related to our
work is the recent work presented in [22]. The authors propose
a randomized planning algorithm in the spirit of RRTs that
explicitly reasons about disturbances and uncertainty. Specifi-
cations of input to output stability with respect to disturbances
provide a parameterization of “tubes” (analogous to our “fun-
nels”) that can be composed together to generate motion plans
that are collision-free. The factors that distinguish the approach
we present in this paper from the one proposed in [22] are our
focus on the realtime aspect of the problem and use of sums-
of-squares programming as a way of computing reachable sets.
In [22], the focus is on generating safe motion plans when the
obstacle positions are known a priori. Further, we provide a
general technique for computing and explicitly minimizing the
size of tubes.

A critical component of the work presented here is the
computation of “funnels” for nonlinear systems via Lyapunov
functions. This idea, along with the metaphor of a “funnel”,
was introduced to the robotics community in [5], where
funnels were sequentially composed in order to produce dy-
namic behaviors in a robot. In recent years, sums-of-squares
programming has emerged as a way of checking the Lya-
punov function conditions associated with each funnel [23].
The technique relies on the ability to check nonnegativity
of multivariate polynomials by expressing them as a sum
of squares of polynomials. This can be written as a semi-
definite optimization program and is amenable to efficient
computational algorithms such as interior point methods [23].
Assuming polynomial dynamics, one can check that a poly-
nomial Lyapunov candidate, V (x), satisfies V (x) > 0 and
V̇ (x)< 0 in some region Br. Importantly, the same idea can be

used for designing controllers along time-indexed trajectories
of a system that attempt to maximize the size of the set of
initial conditions that are driven to a goal set [19]. In this paper,
we extend this approach to compute controllers that explicitly
minimize the size of reachable sets around trajectories. Thus,
we are guaranteed that if the system starts off in the set
of given initial conditions, it will remain in the computed
“funnel” even if the model of the dynamics is uncertain and
the system is subjected to bounded disturbances and state
uncertainty.

An alternative approach to computing outer approximations
of reachable sets is the one presented in [13]. The method
relies on computing regions of finite time invariance using
locally valid “barrier functions”. Although the approach does
not involve computing controllers that attempt to minimize
the size of the reachable set, it is conceivable that the method
could be extended to do so.

III. CONTRIBUTIONS

This paper makes two main contributions. First, we provide
a way of designing controllers using sums-of-squares program-
ming that explicitly seek to minimize the effect that distur-
bances and uncertainties have on the system by minimizing
the size of the reachable set (“funnel”). These controllers and
corresponding reachable set guarantees can be generated for
time-varying polynomial systems subjected to a broad class
of uncertainties (bounded uncertainty in parameters entering
polynomially in the dynamics). This is an extension of results
presented in [19], where the control design approach seeks to
maximize the size of the set of initial conditions that are guar-
anteed to be driven to some predefined goal set. The present
work extends this approach to handle disturbances/uncertainty
and provide guarantees on reachable sets rather than the set
of initial conditions that are driven to the goal set.

Second, we show how a library of such funnels can be
precomputed offline and composed together at runtime in a
receding horizon manner while ensuring that the resulting
closed loop system is “safe” (i.e. avoids obstacles and switches
between the planned sequence of funnels). This can be viewed
as an extension of the LQR-Trees algorithm [31] for feedback
motion planning, which was limited to offline planning due
to the relatively large computational cost of computing the
funnels. In contrast to LQR-Trees, our algorithm is suitable
for real-time, online planning. We expect this framework to
be useful in robotic tasks where the dynamics and perceptual
system of the robot are difficult to model perfectly and for
which the robot does not have access to the geometry of the
environment until runtime.

IV. COMPUTING REACHABLE SETS

A considerable amount of research effort in the motion
planning community has focused on the design of trajectory
libraries (see Section II). Hence, here we assume that we are
provided with a trajectory library consisting of a finite set of
nominal feasible trajectories for the robot and concentrate our
discussion on extending the techniques for the computation
of controllers and associated regions of finite time invariance
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presented in [19] to compute reachable sets when there is
uncertainty in the dynamics and state. Let

ẋ = f (x(t),w(t))+g(x(t),w(t))u(t)

be the control system under consideration. Here, x(t) ∈ Rn is
the state, u(t) ∈ Rm is the control input and w(t) ∈ Rd is the
disturbance/uncertainty term. We assume here that f and g are
polynomials1 in x and w. We further assume that w(t) belongs
to a bounded semialgebraic set W = {w | Wk(w) ≥ 0,∀k =
1, . . .K}.

Let x0(t) : [0,T ] 7→Rn be a nominal trajectory in our library
that we want the system to follow and u0(t) : [0,T ] 7→ Rm be
the corresponding nominal open-loop control input. Defining
new coordinates x̄ = x− x0(t) and ū = u− u0(t), we can
rewrite the dynamics in these variables as ˙̄x = ẋ− ẋ0(t). Then,
given a set of initial conditions F(0), we seek to design a
controller that attempts to minimize the “size” of the time-
varying reachable sets B(t) (we will formalize what we mean
by “size” soon). For a given controller, the reachable set B(t)
is the set of states that the system may be driven to at time t
by some disturbance (i.e. some choice of w(t)∈W ), given that
the initial condition lay in the set F(0). In general, we will
not be able to compute reachable sets exactly. Rather, we will
compute outer approximations of the reachable sets and design
controllers to minimize the “size” of the outer approximation.
Checking the following invariance condition for all t ∈ [0,T ] is
sufficient for establishing the sets F(t) as outer approximations
of the reachable sets B(t):

x̄(0) ∈ F(0) =⇒ x̄(t) ∈ F(t), ∀w : [0,T ]→W. (1)

Our task will be to design time-varying controllers that mini-
mize the size of the “funnel” described by the sets F(t). We
describe the funnel as a time-varying sub-level set of a function
V (x̄, t):

F(t) = {x̄ | x̄ ∈ Rn,V (x̄, t)≤ ρ(t)}.

This specification of the funnel allows us to use ρ(t) as a
natural surrogate for the “size” of the funnel at time t. We
impose the following condition on V (x̄, t):

V (x̄, t) = ρ(t) =⇒ V̇ (x̄, t,w)< ρ̇(t), ∀w(t) ∈W (2)

Letting F(0) = {x̄ | V (x̄,0) ≤ ρ0}, it is easy to see that this
condition implies the invariance condition (1). Here, V̇ (x̄, t,w)
is computed as:

V̇ (x̄, t,w) =
∂V (x̄, t)

∂ x̄
˙̄x+

∂V (x̄, t)
∂ t

.

In principle, we can parameterize our function V (x̄, t) as a
polynomial in both t and x and check (2) ∀t ∈ [0,T ]. However,
as described in [32], this leads to expensive sums-of-squares
programs. Instead, we can get large computational gains with
little loss in accuracy by checking (2) at sample points in

1With the right change of coordinates, one can express the dynamics of
most robotic systems as polynomials. For example, the dynamics of most
rigid body systems can be transformed into polynomials by introducing new
variables, si and ci, for sin(θi) and cos(θi), and imposing the constraint that
s2

i + c2
i = 1 (this equality constraint is easily imposed in the sums-of-squares

programming framework). Another approach is to simply Taylor approximate
the non-polynomial dynamics.

time ti ∈ [0,T ], i = 1 . . .N. As discussed in [32], for a fixed
V (x̄, t) and dynamics (and under mild conditions on both),
increasing the density of the sample points eventually recovers
(2) ∀t ∈ [0,T ]. This allows us to check the answers we obtain
from the sums-of-squares program below by sampling finely
enough.

Thus, we parameterize V (x̄, t) and ū by polynomials V (x̄, ti)
and ū(x̄, ti) respectively at each sample point in time. Using
∑

N
i=1 ρ(ti) as the cost function, we can write the following

sums-of-squares (SOS) program:

minimize
ρ(ti),L(x̄,ti,w),V (x̄,ti),ū(x̄,ti),Mk(x̄,ti,w)

N

∑
i=1

ρ(ti) (3)

subject to :
V (x̄, ti) is SOS , ∀i = 1 . . .N (4)
−V̇ (x̄, ti,w)+ ρ̇(ti)+L(x̄, ti,w)(V (x̄, ti)−ρ(ti)) . . .

−
K

∑
k=1

Mk(x̄, ti,w)Wk(w) is SOS , ∀i = 1 . . .N (5)

Mk(x̄, ti,w) is SOS , ∀i = 1 . . .N (6)
ρ(ti)≥ 0,∀i = 2 . . .N (7)
V (e, ti) =Vguess(e, ti), ∀i = 1 . . .N (8)

Here, L(x̄, ti,w) and Mk(x̄, ti,w) are “multiplier” terms that
help to enforce the invariance condition. It is easy to see that
condition (5) is a sufficient condition for ensuring (2) at the
sample points in time. This is because for all w ∈W , we must
have ∑k Mk(x̄, ti,w)Wk(w) ≥ 0, since we have Mk(x̄, ti,w) ≥ 0
and Wk(w) ≥ 0. Thus, when V (x̄, ti) = ρ(ti), condition (5)
implies2 that V̇ (x̄, ti,w)< ρ̇(ti).

Condition (8) is a normalization constraint where e is the
vector of all ones and Vguess(x̄, t) is the candidate for V (x̄, t)
that is used to initialize the alternation scheme outlined below
for solving the above optimization program. (If we do not
impose a normalization constraint on V (x̄, ti), ∑

N
i=1 ρ(ti) can

be made arbitrarily small simply by scaling the coefficients
of V (x̄, ti)). We use a piecewise linear parameterization of
ρ(t) and can thus compute ρ̇(ti) =

ρ(ti+1)−ρ(ti)
ti+1−ti

. Similarly, we

approximate ∂V (x̄,ti)
∂ t ≈ V (x̄,ti+1)−V (x̄,ti)

ti+1−ti
.

The above optimization program is not convex in general
since it involves conditions that are bilinear in the decision
variables. However, the conditions are linear in L(x̄, ti,w),
ū(x̄, ti), Mk(x̄, ti,w) for fixed V (x̄, ti), ρ(ti), and are linear in
V (x̄, ti), ρ(ti), Mk(x̄, ti,w) for fixed L(x̄, ti,w), ū(x̄, ti). Thus,
in principle we could use a bilinear alternation scheme for
solving this optimization program by alternating between the
two sets of decision variables, (L(x̄, ti,w), ū(x̄, ti),Mk(x̄, ti,w))
and (V (x̄, ti),ρ(ti),Mk(x̄, ti,w)) and repeat until convergence
in the following two steps: (1) Fix (V (x̄, ti),ρ(ti)) and search
for (L(x̄, ti,w), ū(x̄, ti),Mk(x̄, ti,w)), and (2) Fix (L(x̄, ti,w),
ū(x̄, ti)) and search for (V (x̄, ti),ρ(ti),Mk(x̄, ti,w)). However,
in the first step of this alternation, we cannot optimize the
cost function ∑

N
i=1 ρ(ti) since we have to fix ρ(ti) (we can

optimize the cost function in the second step). We could

2SOS decompositions obtained from numerical solvers generically pro-
vide proofs of polynomial positivity as opposed to mere non-negativity (see
the discussion in [1, p.41]). This is why we claim a strict inequality here.
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simply make the first step a feasibility problem (instead of
optimizing a cost function), but this prevents us from searching
for a controller that explicitly seeks to minimize the desired
cost function since in the second step of the alternation, we
do not search for a controller. We get around this issue by
introducing an additional step in the alternation, in which
we fix L(x̄, ti,w) and V (x̄, ti) and search for ū(x̄, ti), ρ(ti)
and Mk(x̄, ti,w), while minimizing ∑

N
i=1 ρ(ti). The steps in the

alternation are summarized in Algorithm 1.

Each iteration of the alternations in Algorithm 1 is guaran-
teed to obtain an objective ∑

N
i=1 ρ?(ti) that is at least as small

as the previous one since a solution to the previous iteration
is also valid for the current one.

Algorithm 1 Robust Controller Design
1: Initialize V (x̄, ti) and ρ(ti), ∀i = 1 . . .N
2: ρprev(ti) = 0, ∀i = 1 . . .N.
3: converged = false;
4: while ¬converged do
5: STEP 1 : Solve feasibility problem by searching for

L(x̄, ti,w), ū(x̄, ti), Mk(x̄, ti,w), and fixing V (x̄, ti), ρ(ti).
6: STEP 2 : Minimize ∑

N
i=1 ρ(ti) by searching for ū(x̄, ti),

ρ(ti), Mk(x̄, ti,w), and fixing L(x̄, ti,w), V (x̄, ti).
7: STEP 3 : Minimize ∑

N
i=1 ρ(ti) by searching for V (x̄, ti),

ρ(ti), Mk(x̄, ti,w), and fixing L(x̄, ti,w), ū(x̄, ti).
8: if ∑

N
i=1 ρ(ti)−∑

N
i=1 ρprev(ti)

∑
N
i=1 ρprev(ti)

< ε then
9: converged = true;

10: end if
11: ρprev(ti) = ρ(ti), ∀i = 1 . . .N.
12: end while

Section IV-B discusses how to initialize V (x̄, ti) and ρ(ti)
for Algorithm 1.

A. Incorporating Actuator Limits

Our method allows us to incorporate actuator limits into the
control design procedure. Although we examine the single-
input case in this section, this framework is very easily
extended to handle multiple inputs.

Let the control law u(x) be mapped through the following
control saturation function:

s(u(x)) =


umax if u(x)≥ umax

umin if u(x)≤ umin

u(x) o.w.

where umax and umin are the maximum and minimum allowable
inputs respectively. Then, a piecewise analysis of V̇ (x̄, t) can
be used to check the Lyapunov conditions are satisfied even

when the control input saturates. Defining:

V̇min(x̄, t,w) =
∂V (x̄, t)

∂ x̄

T

[ f (x̄+ x0(t),w) . . .

+g(x̄+ x0,w)umin− ẋ0(t)]+
∂V (x̄, t)

∂ t
(9)

V̇max(x̄, t,w) =
∂V (x̄, t)

∂ x̄

T

[ f (x̄+ x0(t),w) . . .

+g(x̄+ x0,w)umax− ẋo(t)]+
∂V (x̄, t)

∂ t
(10)

(11)

we must check the following conditions:

u(x̄)≤ umin =⇒ V̇min(x̄, t)< ρ̇(t) (12)
u(x̄)≥ umax =⇒ V̇max(x̄, t)< ρ̇(t) (13)
umin ≤ u(x̄)≤ umax =⇒ V̇ (x̄, t)< ρ̇(t) (14)

Algorithm 1 can be modified to enforce these conditions with
extra multipliers in a manner identical to the one presented in
[19]. This modification is relatively straightforward and we do
not present it here.

B. Initializing V (x̄, ti) and ρ(ti)

Obtaining an initial guess for V (x̄, ti) and ρ(ti) is an
important part of Algorithm 1. In [31], the authors use the
Lyapunov function candidate associated with a time-varying
LQR controller. The control law is obtained by solving a
Riccati differential equation:

−Ṡ(t) = Q−S(t)B(t)R−1B(t)T S(t)+S(t)A(t)+A(t)T S(t)

with final value conditions S(t) = S f . Here A(t) and B(t)
describe the time-varying linearization of the dynamics about
the nominal trajectory x0(t). Q and R are positive-definite cost-
matrices. The function:

Vguess(x̄, t) = (x− x0(t))T S(t)(x− x0(t)) = x̄T S(t)x̄

is our initial Lyapunov candidate. Vguess(x̄, tN) = x̄T S(0)x̄,
along with a choice of ρ0 can be used to determine the initial
condition set, F(0) (ref. Section IV):

F(0) = {x̄ | x̄ ∈ Rn, x̄T S(0)x̄≤ ρ0}.

We find that initializing ρ(ti) to an exponential function in
time, eγti , works quite well in practice. We can tune γ to obtain
feasible solutions. Intuitively, higher values of γ correspond to
“larger” reachable sets and thus are more likely to be feasible.

V. FUNNEL LIBRARIES

The tools from Section IV can be used to create libraries
of funnels offline. Given a trajectory library, T , consisting
of finitely many trajectories xi(t), we can compute robust
controllers ui(x, t) and associated reachable sets (funnels) for
each trajectory in T . However, there is an important issue that
needs to be addressed when designing libraries of funnels and
has an analogy in the traditional trajectory library approach.
In particular, trajectories in a traditional trajectory library need
to be designed in a way that allows them to be sequenced
together. More formally, let P denote the projection operator
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that projects a state, x, onto the subspace formed by the non-
cyclic dimensions of the system (i.e. the dimensions with
respect to which the dynamics of the system are not invariant).
Then, for two trajectories xi(t) and x j(t) to be executed one
after another, we must have

P(xi(Ti)) = P(x j(0)).

Note that the cyclic coordinates do not pose a problem since
one can simply “shift” trajectories around in these dimensions.
This issue is discussed thoroughly in [8] and is addressed by
having a trim trajectory of the system that other trajectories
(maneuvers) start from and end at (of course, one may also
have more than one trim trajectory).

In the case of funnel libraries, however, it is neither neces-
sary nor sufficient for the nominal trajectories to line up in the
non-cyclic coordinates. It is the interface between funnels that
is important. Let xi(t) and x j(t) be two nominal trajectories
in our library and Fi(t) = {x | x ∈ Rn, Vi(x̄, t) ≤ ρi(t)} and
Fj(t) = {x | x ∈ Rn, Vj(x̄, t) ≤ ρ j(t)} be the corresponding
funnels. Further, we write x = [xc,xnc], where xc represent the
cyclic dimensions and xnc the non-cyclic ones. We say that Fi
is sequentially composable with Fj if

P(Fi(Ti))⊂P(Fj(0)) (15)
⇐⇒ ∀x = [xc,xnc] ∈ Fi(Ti), ∃x0,c s.t. [x0,c,xnc] ∈ Fj(0).

While (15) is a sufficient condition for two funnels to be
executed one after another, the dependence of x0,c on x makes
searching for x0,c a non-convex problem in general. Thus, we
set x0,c to be the cyclic coordinates of x j(0), resulting in a
stronger sufficient condition that can be checked easily via a
sums-of-squares program:

∀x = [xc,xnc] ∈ Fi(Ti), [x0,c,xnc] ∈ Fj(0). (16)

Intuitively, (16) corresponds to “shifting” the inlet of funnel
Fj along the cyclic dimensions so it lines up with xc. Note
that not all pairs of funnels in the library will be sequentially
composable in general. Thus, as we discuss in Section VI,
we must be careful to ensure sequential composability when
planning sequences of funnels online.

VI. ONLINE PLANNING WITH FUNNELS

Having computed libraries of funnels in the offline pre-
computation stage, we can proceed to use these primitives
to perform robust motion planning online. The robot’s task
specification may be in terms of a goal region that must be
reached (as in the case of a manipulator arm grasping an
object), or in terms of a nominal direction the robot should
move in while avoiding obstacles (as in the case of a UAV
flying through a forest or a legged robot walking over rough
terrain). For the sake of concreteness, we adopt the latter task
specification although one can easily adapt the contents of this
section to the former specification. We further assume that
the robot is provided with polytopic regions in configuration
space that obstacles are guaranteed to lie in and that the
robot’s sensors only provide this information up to a finite (but
receding) spatial horizon. Our task is to sequentially compose
funnels from our library in a way that avoids obstacles while

moving forwards in the nominal direction. The finite horizon
of the robot’s sensors along with the computational power at
our disposal determines how long the sequence of planned
funnels can be at any given time.

The most important computation that needs to be performed
at runtime is to check whether a given funnel intersects
an obstacle. For the important case in which our Lyapunov
functions are quadratic in x, this computation is a Quadratic
Program (QP) and can be solved very efficiently (as evidenced
by the success of larger scale QP formulations used in Model
Predictive Control [6]). We denote x̄ = x− x0(t) as before,
where x0(t) is the nominal trajectory. Let a particular obstacle
be defined by half-plane constraints A jx ≥ 0 for j = 1, ...,M.
Note that A j will typically be sparse since it will contain zeros
in places corresponding to non-configuration space variables
(like velocities). Then, for i = 1, . . . ,N, we solve the following
QP:

minimize
x̄

V (x̄, ti) (17)

subject to A jx≥ 0,∀ j

Denoting the solution of (17) for a given ti as V ?(x̄?, ti),
the funnel does not intersect the obstacle if and only if
V ?(x̄?, ti)> ρ(ti),∀ti. Multiple obstacles are handled by simply
solving (17) for each obstacle. An important point that should
be noted is that we do not require the obstacle regions to
be convex. It is only required that they are represented as
unions of convex sets. This allows us to handle situations
where multiple polytopic regions overlap to form a non-convex
region.

For higher order polynomial Lyapunov functions, one could
check the following sums-of-squares conditions for all ti:

V (x̄, ti)−ρ(ti)−∑
j

L j(x̄)A j(x̄+ x0(ti)) is SOS (18)

L j(x̄) is SOS ,∀ j = 1 . . .M

However, these provide only sufficient conditions for non-
collision. Thus, if the conditions in (18) are met, one is
guaranteed that there is no intersection with the obstacle. The
converse is not true in general. Further, depending on the state-
space dimension of the robot, this optimization problem may
be computationally expensive to solve online. Hence, for tasks
in which online execution speed is crucial, one may need to
restrict oneself to quadratic Lyapunov functions.

Algorithm 2 provides a sketch of the online planning loop.
At every control cycle, the robot updates its state in the world
along with the obstacle positions. It then checks to see if the
sequence of funnels it is currently executing may lead to a
collision with an obstacle (which should only be the case if
the sensors report new obstacles). If so, it replans a sequence
of funnels that can be executed from its current state and are
collision-free. The ReplanFunnels(x,O) subroutine assumes
that funnel sequences that are sequentially composable in the
sense of Section V have been ordered by preference during
the precomputation stage. For example, for a navigation task,
sequences may be ordered by how much progress the robot
makes in some nominal direction. ReplanFunnels(x,O) goes
through funnel sequences and checks two things. First, it
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checks that its current state is contained in the first funnel
in the sequence (after appropriately shifting the funnel in the
cyclic dimensions). Second, it checks that the sequence leads
to no collisions with obstacles. The algorithm returns the first
sequence of funnels that satisfies both criteria. Finally, the
online planing loop computes which funnel of the current
plan it is in and applies the corresponding control input
ui(x, t.internal).

Of course, several variations on Algorithm 2 are possible. In
general, the funnel primitives provide a discrete action space
which can be searched by any heuristic planner - the primary
considerations here are the additional constraint of sequential
composability and the moderately more significant cost of
collision checking. In practice, it also may not be necessary
to consider re-planning at the frequency of the control loop.
Instead, longer sections of the plan may be executed before
re-planning. Also, instead of choosing the most “preferred”
collision-free sequence of funnels, one natural cost function
which could guide the search is the minimum over ti of
V ?(x̄?,ti)

ρ(ti)
. As before, V ?(x̄?, ti) is the solution of the QP (17).

Since the 1-sublevel set of V (x̄,ti)
ρ(ti)

corresponds to the funnel,
maximizing this is a reasonable choice for choosing sequences
of funnels.

Algorithm 2 Online Planning
1: Initialize current planned funnel sequence,

F = {F1,F2, . . . ,Fn}
2: for t = 0, . . . do
3: O ⇐ Obstacles in sensor horizon
4: x⇐ Current state of robot
5: Collision ⇐ Check if F collides with O by solving

QPs (17)
6: if Collision then
7: F ⇐ ReplanFunnels(x,O)
8: end if
9: F.current⇐ Fi ∈F such that x ∈ Fi

10: t.internal⇐ Internal time of F.current
11: Apply control ui(x, t.internal)
12: end for

In order to initialize and replan the sequence of funnels F ,
it is required that the current state be contained inside the
first funnel in the sequence. Assuming perfect state estimates
are available, this is easily checked. However, if perfect state
information is not available, one needs to ensure that all
possible states the system could be in lie inside the funnel.
Assuming that measurement errors are bounded, one can use
robust state estimation to provide worst-case bounds on the
state estimate. For example, [18] provides a way of doing ro-
bust state estimation for polynomial discrete time systems via
sums-of-squares programming. Given an outer approximation
of the set of states the system could be in, one can check that
the entire set is contained inside the funnel.

VII. EXAMPLE

We demonstrate our approach on a model of an aircraft
flying in two dimensions through a forest of polygonal trees.

X

Y

Fig. 2. Visualization of the system showing the coordinate system, polygonal
obstacles, and “cross-wind”.

A pictorial depiction of the model is provided in Figure 2.
The aircraft is constrained to move at a fixed forward speed
and can control the second derivative of its yaw angle. We
introduce uncertainty into the model by assuming that the
speed of the plane is uncertain and time-varying and that
there is a time-varying “cross-wind” whose magnitude is
instantaneously bounded. The full non-linear dynamics of the
system are then given by:

x =


x
y
ψ

ψ̇

 , ẋ =


−v(t)cosψ

v(t)sinψ

ψ̇

u

+


w(t)

0
0
0

 . (19)

with the speed of the plane v(t) ∈ [9.5,10.5] m/s and cross-
wind w(t) ∈ [−0.3,0.3] m/s. The control input is bounded in
the range [−350,350].

The plane’s trajectory library, T , consists of 11 trajectories
and is shown in Figure 3(a). The trajectories xi(t) : [0,Ti] 7→R4

and the corresponding nominal open-loop control inputs were
obtained via the direct collocation trajectory optimization
method [3] by constraining xi(0) and xi(Ti) and locally mini-
mizing a cost of the form:

J =
∫ Ti

0
[1+u0(t)T R(t)u0(t)]dt.

Here, R is a positive-definite cost matrix. For each xi(t) in T
we obtain controllers and funnels using the method described
in Section IV. Similar to [31], we perform the verification
on the time-varying nonlinear system by taking third-order
Taylor-approximations of the dynamics about the nominal
trajectories. For each trajectory, we use 11 sample points in
time, ti, for the verification. A 4.1 GHz PC with 16 GB
RAM and 4 cores was used for the computations. The time
taken for Step 1 of Algorithm 1 during one iteration of the
alternation was approximately 10 seconds. Steps 2 and 3 take
approximately 45-50 seconds each. Convergence is typically
observed within 5 to 10 iterations of the algorithm. Three
of the funnels in our library are shown in Figure 3(b). Note
that the funnels have been projected down from the original



8

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

y

(a) Trajectory library consisting of 11 locally optimal trajectories.
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(b) Three funnels in our funnel library projected onto the x-y
plane.

Fig. 3. Trajectory and funnel libraries for the plane.

four dimensional state space to the x-y plane for the sake of
visualization.

Figure 4 demonstrates the use of the online planning
algorithm in Section VI. The plane plans two funnels in
advance while nominally attempting to fly in the y-direction
and avoiding obstacles. The sensor range allows the plane to
sense up to 5m ahead. The projection of the full sequence of
funnels executed by the plane is shown in the figure. Figures
4(a) and 4(b) show the plane flying through the same forest
with identical initial conditions. The only difference is that
the cross-wind term is biased in different directions. In Figure
4(a), the cross-wind is primarily blowing towards the right,
while in Figure 4(b), the cross-wind is biased towards the left.
Of course, the planner is not aware of this difference, but
ends up following different paths around the obstacles as it is
buffeted around by the wind.

Finally, we demonstrate the utility of explicitly taking into
account uncertainty in Figure 5. There are two obstacles in
front of the plane. The two options available to the plane
are to fly straight in between the obstacles or to bank right
and attempt to go around them. If the motion planner didn’t
take uncertainty into account and simply chose to maximize
the average distance to the obstacles, it would choose the
trajectory that banks right and goes around the obstacles.
However, taking the funnels into account leads to a different
decision: going straight in between the obstacles is safer even
though the distance to the obstacles is smaller. The utility of
safety guarantees in the form of funnels is especially important
when the margins for error are small and making the wrong
decision can lead to disastrous consequences.

VIII. DISCUSSION AND FUTURE WORK

A. Stochastic Verification

Throughout this paper, we have assumed that all distur-
bances and uncertainty are bounded with probability one. In
practice, this assumption may either not be fully valid or could
lead to over-conservative performance. In such situations, it
is more natural to provide guarantees of reachability of a

−2 −1.5 −1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5

2

x

y

Fig. 5. This figure shows the utility of explicitly taking uncertainty into
account while planning. The intuitively more “risky” strategy of flying in
between two closely spaced obstacles is guaranteed to be safe, while the path
that avoids going in between obstacles is less robust to uncertainty and could
lead to a collision.

probabilistic nature. Recently, results from classical martingale
theory have been combined with sums-of-squares program-
ming in order to compute such probabilistic certificates of
finite time invariance [29], i.e. provide upper bounds on the
probability that a stochastic nonlinear system will leave a given
region of state space. The results presented in [29] can be
directly combined with the approach presented in this work to
perform robust online planning on stochastic systems and will
be the subject of future work.

B. Continuously Parameterized Families of Funnels

As discussed in Section V, we are currently partially exploit-
ing invariances in the dynamics by shifting trajectories (and
corresponding funnels) that we want to execute next in the
cyclic coordinates so they line up with the cyclic coordinates of
the robot’s current state. In our example from Section VII, this
simply corresponds to translating and rotating funnels so the
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(a) Cross-wind biased towards the left.
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(b) Cross-wind biased to the right.

Fig. 4. Robust online planning though a forest of polygonal obstacles. The two subfigures show the plane flying through the same forest, but with the
cross-wind biased in different directions (the planner is not aware of this difference). The eventual paths through the forest are significantly different, but the
plane navigates the forest safely in each case.

beginning of the next trajectory lines up with the current state’s
x,y and yaw. However, we could further exploit invariances in
the dynamics by shifting funnels around locally to ensure that
they don’t intersect an obstacle while still maintaining the cur-
rent state inside the funnel. One can then think of the nominal
trajectories and funnels being continuously parameterized by
shifts in the cyclic coordinates. Interestingly, it is also possible
to use sums-of-squares programming to compute conservative
funnels for cases in which one shifts the nominal trajectory
in the non-cyclic coordinates [20]. Thus, one could potentially
significantly improve the richness of the funnel library by pre-
computing continuously parameterized funnel libraries instead
of just a finite family. However, choosing the right “shift” to
apply at runtime is generally a non-convex problem (since the
free-space of the robot’s environment is non-convex) and thus
one can only hope to find “shifts” that are locally optimal.

Another way to obtain continuously parameterized funnels
is to ensure that scalings of ρ(t) result in sub-level sets of
V (x̄, t) that are invariant. This is equivalent to computing
outer approximations of reachable sets for scalings of the
initial condition set. Specifically, the SOS program (3) can
be modified to guarantee that for some ε > 0, ∀c ∈ [ε,1] the
sub-level sets defined by cρ(t) are invariant. One can visualize
this as a continuously parameterized nested set of funnels. At
runtime, this allows us to choose from scalings of our funnels.
This could potentially reduce the number of funnels we need
in our library. However, in practice, it may be difficult to
obtain controllers and funnels that make guarantees of this
form, especially if the disturbance terms are large.

C. Sequence optimization for Large Funnel Libraries

For extremely large funnel libraries, it may be computation-
ally difficult to search all the funnels while planning online.
This is a problem that traditional trajectory libraries also
face [7]. Advances in submodular sequence optimization were
leveraged in [7] to address this issue. The approach involves
limiting the set of trajectories that are evaluated online and
optimizing the sequence in which trajectories are evaluated.
Guarantees are provided on the sub-optimality of the resulting
strategy. This technique could be adapted to work in our
framework too and will be addressed in future work.

D. Designing Funnel Libraries

One issue that we have not addressed in this paper is the
choice of motion primitives in our library. While there has
been considerable work on designing trajectory libraries (see
Section II), designing funnel libraries poses challenges that go
beyond just choosing a good set of nominal trajectories. The
effect of uncertainty and feedback must be taken into account
while constructing the library. One interesting problem domain
in which it may be possible to design funnel libraries in a prin-
cipled way is the case where the statistics of obstacle positions
are known a priori (but the actual positions are unknown).
An example of such a scenario is the task considered in this
paper: autonomous UAV flight through a forest. It is known
that the location of trees in a forest is well modeled by Poisson
distributions [14]. Another example is legged robot locomotion
on rough terrain, where the statistics of terrain variations are
known beforehand. In such scenarios, it may be possible to
design a randomized algorithm in the spirit of LQR-Trees
[31] where one attempts to plan paths through particular
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realizations of the environment by sequencing funnels together
and adding a funnel to the library every time a collision
free sequence of funnels is not found in the existing library.
Under certain assumptions on the distributions of obstacles
(e.g. stationarity, ergodicity), it is conceivable that such a
randomized algorithm may be probabilistically complete.

IX. CONCLUSION

In this paper, we have presented an approach for motion
planning in a priori unknown environments with dynamic
uncertainty in the form of bounded parametric model uncer-
tainty, disturbances, and state errors. The method augments the
traditional trajectory library approach by constructing stabiliz-
ing controllers around the nominal trajectories that explicitly
attempt to minimize the size of the reachable set of the system
subjected to disturbances and uncertainties. The precomputed
set of reachable sets (“funnels”) is then used to plan online
by sequentially composing them together in a manner that
ensures obstacles are avoided. By explicitly taking into account
uncertainty and disturbances while making motion plans, we
can evaluate trajectory sequences based on how susceptible
they are to disturbances. We have demonstrated our approach
on a simulation of a plane flying in two dimensions through
a forest of polygonal obstacles. Future work will focus on
generating funnel libraries automatically for environments
with known obstacle distributions (e.g. forests) and extending
our results to scenarios in which a stochastic description of
uncertainty is more appropriate.
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