
Algebraic Verification for Parameterized Motion Planning Libraries

Anirudha Majumdar, Mark Tobenkin, and Russ Tedrake

Abstract— Recent progress in algorithms for estimating re-
gions of attraction and invariant sets of nonlinear systems has
led to the application of these techniques to motion planning
in complex environments. In most instances, the verification
occurs offline as the algorithms are still too computationally
demanding for realtime implementation; as a result any online
planner is restricted to applying the finite set of motion
plans that were verified offline. In this paper we attempt to
present a partial remedy by algebraically verifying families
of parameterized feedback controllers. We provide a specific
example using LQR controllers parameterized by their goal
or nominal motion. We formulate this verification using robust
region of attraction techniques in sums-of-squares optimization,
and show that perturbations of a Lyapunov or Riccati equation
can be used to provide algebraically parameterized Lyapunov
candidates. The resulting verified “funnels” then provide a
parameterized motion library that can be used efficiently in
online planning. We present a number of numerical examples
to demonstrate the effectiveness of our approach.

I. INTRODUCTION

Imagine an unmanned aerial vehicle (UAV) flying at
high speeds through an uncharted forest, or a bipedal robot
walking on rough terrain with limited information about the
terrain ahead, or a manipulator arm trying to grasp an object
without exact prior knowledge of where the object has been
placed. Each of these scenarios requires motion planning
in complex environments with dynamic goal specifications.
This area of research has been the subject of significant
focus, and has enjoyed much success over the last few
decades. Traditional approaches to the problem considered
the planning task purely in the kinematic domain, ignoring
constraints and complexities arising from the potentially
nonlinear dynamics of the system ( [5], [7]). However, recog-
nition of the challenges that arise from underactuation and
input saturations have spurred research in feedback motion
planning algorithms, which explicitly take into account the
dynamics of the system during the offline planning stage (
[6], [14], [3]).

These advances have in part been made possible by recent
progress in the direct algebraic verification of regions of
attraction and invariant sets (“funnels”) for nonlinear systems
[10]. For example, the LQR-Trees algorithm [14] constructs
a family of linear controllers around locally optimal trajecto-
ries of the system with corresponding “funnels”, composed
together in a tree structure. The “funnels” are computed using
sums-of-squares programming that check the conditions for
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local Lyapunov stability by verifying positive definiteness of
polynomials by expressing them as “sums of squares”.

Since the sums-of-squares verification procedure is still
too expensive for online implementation, in order to adapt
to dynamic task specifications one is restricted to a set
of motion plans that are verified offline. In this paper, we
address this problem by computing regions of attraction that
are parametrized by the goal state. Thus, in the offline pre-
computation stage, we compute an entire family of “funnels”
that an online planner can use in order to adapt to changing
goal states.

An important aspect of our approach is that we avoid
discretizing the goal set in any way, and instead compute
regions of attraction for the entire continuum of goal states
via a single sums-of-squares program. There are multiple
advantages to this approach. First, solving separate sums-
of-squares programs for a discrete set of goal states is
prohibitively expensive, and scales exponentially with the
dimension of the goal set. Second, we avoid issues that
arise when choosing how finely to discretize the set. Finally,
an online planner that uses our parameterized regions of
attraction has the ability to drive the system to any goal
state in the continuum of goals.

II. RELATED WORK

The use of sums-of-squares (SOS) programming to auto-
mate Lyapunov analysis of polynomial vector fields has seen
many recent successes (see [10] and [4]). These techniques
provide sufficient conditions to verify Lyapunov inequalities
using semidefinite programming which can be addressed via
modern interior point optimization techniques [9]. Our work
analyzes vector fields depending on an uncertain parameter
using parameter dependent Lyapunov functions similar to
[1]. We also provide extensions of finite-time invariance
conditions explored in [14] and [15] to the parameter depen-
dent case. An alternative branch-and-bound based method
for addressing parameter dependent vector fields using SOS
programming has been suggested in [17].

This paper uses formal power series expansions to ap-
proximate the solution of Riccati equations to find parameter
dependent stabilizing control laws. Similar perturbation type
techniques have been applied in the state-dependent Riccati
equation (SDRE) literature (see [2]) to derive approximately
optimal nonlinear state feedback control laws for a fixed
nonlinear vector field. By contrast the approximations in
this work are used to find parameter-dependent linear con-
trol laws to stabilize a vector field at a parameter-varying
equilibrium.



We anticipate applications of our work to feedback motion
planning algorithms such as the Maneuver Automaton [3]
and the LQR-Trees algorithm [14]. In particular, the goal-
parameterized control laws we compute can serve as “maneu-
vers” for the Maneuver Automaton while our parameterized
ROAs can be used by LQR-Trees for online planning.

III. PARAMETERIZED FAMILY OF CANDIDATE LYAPUNOV
FUNCTIONS

A. Parameterized Lyapunov equations

We consider a parametric family of differential equations:

ẋ = fδ(x) (1)

where x ∈ Rn is the state of the system and δ ∈ P ⊂ Rp
is a parameter which varies the vector field. We assume the
dependence of fδ(x) on δ and x is polynomial. We further
assume we are given a polynomial map xg : P 7→ Rn such
that xg(δ) is an exponentially stable equilibrium of fδ(x).
We take Xg = xg(P ), the set of such equilibria. Finally, for
simplicity, we assume 0 ∈ P .

Our goal is to simultaneously estimate the region of
attraction of each xg(δ) for δ ∈ P . To do so, we search
for a family of Lyapunov functions parameterized by δ. A
locally valid quadratic Lyapunov function of the form:

Vδ(x) = (x− xg(δ))TS?δ (x− xg(δ))

is guaranteed to exist. A candidate S?δ is given by the solution
of the Lyapunov equation:

0 = Q+ATδ S
?
δ + S?δAδ (2)

where:
Aδ =

∂fδ
∂x

(xg(δ))

i.e. the Jacobian of the dynamics at the equilibrium, and Q
is an arbitrary positive definite, symmetric matrix in Rn×n.

For our class of fδ(·), the dependence of Aδ on δ is
polynomial, however the dependence of the solution S?δ
on Aδ can be non-polynomial. To find Lyapunov functions
amenable to SOS programming we seek to find a polynomial
approximation of S?δ , which we arrive at through a formal
power series expansion 1 about A0.

For k ∈ Nn2

we use the notation:

ak := ak11 . . . a
kn2

n2 . (3)

For k, k̄ ∈ Nn2

we write k ≤ k̄ if ki ≤ k̄i for all
i ∈ {1, . . . , n2}. Finally we define ei to be those vectors
with their i-th component being one and the remaining
components being zero and let E = {ei}n

2

i=1.
We examine variations in A in affine coordinates about

A0:

A(a) = A0 +

n2∑
i=1

aiEei = A0 +
∑
e∈E

aeEe (4)

1An alternative is to take the expansion of the (2) equation directly with
respect to the parameters δ.

where a ∈ Rn2

and {Eei}n
2

i=1 are a set of linearly indepen-
dent matrices spanning all of Rn×n. We now examine the
solutions S(a) defined by the Lyapunov equation:

0 = Q+A(a)TS + SA(a) (5)

in the neighborhood of the symmetric positive definite solu-
tion S0 of (5) with a = 0.

To compute a local approximation of S(a) about a = 0
we write S(a) as a formal power series:

S(a) := S0 +
∑
k∈Nn2

akSk (6)

We substitute S(a) into (5) and for each k ∈ Nn2

take the
term which multiplies ak to be zero:

0 = Q+ S0A0 +AT0 S0, (7)

0 = SkA0 +AT0 Sk +
∑
e∈E
e≤k

ETe Sk−e + Sk−eEe. (8)

We see that (7) is the Lyapunov equation for a = 0. Each
equation (8) is a Lyapunov equation in Sk which depends
only on Sk′ where k′ has smaller total degree, defined as∑
i ki. As a result, these equations can be efficiently solved

recursively for increasing total degree.
To complete the analysis we compose the function S(a)

with the map from δ to Aδ by finding the unique function
a : P 7→ Rn2

such that:

Aδ = A0 +

n2∑
i=1

ai(δ)Eei . (9)

Thus, we have achieved our goal of deriving a power
series representation of the Lyapunov function candidate as
a function of the goal state parametrization δ. For each goal
state,

Vδ(x) = (x− xg(δ))TS(a(δ))(x− xg(δ))

is a locally valid Lyapunov function candidate. In practice,
one must use a trunction of the map S(a) by fixing some
maximal degrees k̄ ∈ Nn2

and ignoring higher power terms.
We denote by Sδ the map:

Sδ = S0 +
∑
k≤k̄

a(δ)kSk

i.e. the truncation of the map S(·) composed with the map
a(δ). The terms in the truncation can be computed offline
using equations (7) and (8). This provides us with a compact
algebraic approximation of the candidate Lyapunov equation
for each goal state parametrized by δ ∈ P .

B. Parameterized Riccati Equations

A very similar approach can be used to approximate
the solution of a family of Riccati equations parameterized
by δ. We restrict our attention here to the design of a
Linear Quadratic Regulator (LQR) solution for each δ ∈ P ,
though similar approaches could be applied to robust state



feedback design [11]. Suppose that we have a nonlinear
control system:

ẋ = fδ(x, u)

where u ∈ Rm is the control input. We assume now the
existence of two polynomial maps, ug : P 7→ Rm and xg :
P 7→ Rn such that for each δ ∈ P , xg(δ) is an exponentially
stabilizable equilibrium of fδ(x, ug(δ) + ū) with the input
ū ∈ Rm. For each δ we can calculate a locally stabilizing
controller and Lyapunov function for the closed loop system
by examining the linearization:

Aδ =
∂fδ
∂x

(xg(δ), ug(δ)), Bδ =
∂fδ
∂u

(xg(δ), ug(δ)).

For any particular choice of cost matrices Q = Q′ ≥ 0 and
R = R′ > 0 with Q ∈ Rn×n and R ∈ Rm×m we can com-
pute an affine feedback law u(x) = ug(δ)−K?

δ (x− xg(δ))
via the positive definite solution of the Riccati equation:

0 = Q− S?δBδR−1BTδ S
?
δ + S?δAδ +ATδ S

?
δ (10)

and the relationship:

K?
δ = R−1BTδ S

?
δ .

Both S?δ and K?
δ have a potentially complicated, though

smooth, dependence on δ. Our objective again is to find a
polynomial approximation of S?δ (which in turn gives us an
approximation of K?

δ ) and we again turn to a formal power
series. By assuming fδ(x, u) has polynomial dependence
on δ, x and u we again are concerned primarily how the
solutions of (12) vary as a function of Aδ and Bδ directly.
Let A(a) be as in equation (4) and define:

G(b) = B0R
−1BT0 +

∑
ē∈F

bēFē, (11)

where b ∈ Rn(n+1)/2, F is the set of all standard basis
vectors for R(n+1)n/2, and {Fē}ē∈F are linearly independent
matrices spanning the space of symmetric matrices in Rn×n
(c.f. the definition of A(a) in (4)). Then we would like to
examine the solutions S(a, b) of the equation:

0 = Q− SA(a) +A(a)TS + SG(b)S, (12)

in the neighborhood of the positive definite symmetric solu-
tion S0 found with a = 0 and b = 0.

To approximate the map S(a, b) we again write it as a
formal power series:

S(a, b) = S0 +
∑

k∈Nn2 ,`∈Nn(n+1)/2

akb`Sk,` (13)

where ak and b` are defined as in (3).
Substituting this expansion of S(a, b) into the equation

(12) and again setting terms multiplied by (k, `) ∈ Nn2 ×

N(n+1)n/2 to zero we arrive at the following equations:

0 =Q+ S0A0 +AT0 S0 − S0B0R
−1BT0 S0 (14)

0 =Sk,`A0 +AT0 Sk,` +
∑
e∈E
e≤k

Sk−e,`Ee + ETe Sk−e,` (15)

−
∑

0≤κ≤k

[ ∑
0≤λ≤`

Sκ,λB0R
−1BT0 Sk−κ,`−λ

+
∑
ē∈F

∑
ē≤λ≤`

Sκ,λ−ēFēSk−κ,`−λ + Sκ,λFēSk−κ,`−λ−ē

]
.

We see that (14) is the exact Riccati equation for (a, b) =
(0, 0). Further each (15) is affine in Sk,` and the linear term
of each such equation is given by:

Sk,`(A0 −B0R
−1BT0 S0) + (A0 −B0R

−1BT0 S0)TSk,`,

and the constant term depends only on Sk′,`′ for (k′, `′) of
smaller total degree (here

∑
i k
′
i +
∑
j `
′
j <

∑
i ki +

∑
j `j).

Thus these equations can be solved in order of increasing
total degree. As A0 − B0R

−1BT0 S0 is Hurwitz, each such
equation will have a unique solution.

To complete the mapping from δ to S we find the unique
functions a : P 7→ Rn2

as in (9) and b : P 7→ R(n+1)n/2

such that:

BδR
−1BTδ = B0R

−1BT0 +

(n+1)n/2∑
i=1

bi(δ)Fēi ,

with ēi being the vector in R(n+1)n/2 with one in its i-th
component and zero otherwise.

The approximate Lyapunov candidate and control law are
then given by:

K(δ) = R−1BTδ S(a(δ), b(δ))

and:

Vδ(x) = (x− xg(δ))TS(a(δ), b(δ))(x− xg(δ))

respectively. Just as in the previous section, we define Sδ in
this context to be a fixed order truncation of the map S(a, b)
composed with the map (a(δ), b(δ)). Similarly, we denote
Kδ to be the fixed order truncation of K(δ).

Note that Sδ may not be positive definite for all δ. As
mentioned in Section IV, the positive definiteness condition
should be checked via a sums-of-squares program for all δ
of interest.

IV. COMPUTATION OF REGIONS OF ATTRACTION

Using the algebraic representation of the parameterized
Lyapunov function candidate (derived in Section III), we now
provide conservative estimates of the region of attraction as-
sociated with each xg(δ), using techniques from verification
with sums-of-squares optimization [16].

For the remainder of the paper, when examining controlled
vector fields we use fδ(x) to denote the closed loop dynamics
using the state feedback law from Section III-B. We use the



parameterized candidate Lyapunov functions from Section
III-B:

Vδ(x) = (x− xg(δ))TSδ(x− xg(δ))

with the derivative along solutions given by:

V̇δ(x) = 2(x− xg(δ))TSδfδ(x).

For each δ ∈ P , we aim to find a maximal ρ : P 7→ R+

such that:

Vδ(x) ≤ ρ(δ) =⇒ V̇δ(x) ≤ −cVδ(x)

which verifies exponential stability (here c > 0 is a fixed
positive constant).

By construction Sδ and Kδ are polynomials in δ. When
fδ(x) and xg are polynomials and P is a semialgebraic set
defined by polynomial equations and inequalities:

P = {δ | max
i
gi(δ) ≤ 0, h(δ) = 0},

with g : Rp 7→ Rpg and h : Rp 7→ Rph , we can directly
address this problem using sums-of-squares programming.
Section VI-A gives further examples of classes of systems
which can be addressed using SOS programming.

We parameterize ρ(δ) as a fixed degree polynomial in δ.
We additionally search over a “multiplier” polynomial ν :
Rn × Rp 7→ R of fixed degree. The ideal form of the SOS
program is:

maximize
ρ,ν

∫
P

ρ(δ) dδ (16)

subject to ‖x− xg(δ)‖2(Vδ(x)− ρ(δ))

− ν(x, δ)
(
V̇δ(x) + cVδ(x)

)
≥ 0

ρ(δ) ≥ 0 ∀δ ∈ P, x ∈ Rn

Enforcing these constraints only for δ ∈ P is handled
by introducing further multipliers [10]. Depending on the
complexity of P , the integral may need to be numerically
approximated.

One can verify that any feasible solution of the above
satisfies that for δ ∈ P we have ρ(δ) ≥ 0 and Vδ(x) ≥ ρ(δ)
whenever V̇δ(x) + cVδ(x) = 0 and x 6= xg(δ). Combined
with the knowledge that Sδ is positive definite ∀δ ∈ P ,
and the Hessian of V̇δ(x) + cVδ(x) is negative definite in
a neighborhood about xg(δ), this certifies the exponential
stability of the closed loop system. Similar SOS programs
can be used to easily verify these conditions. If either
program is infeasible, P must be reduced in size.

Note that although the feedback and Lyapunov candidates
are approximations of the local optimal control solutions, the
verification procedure here is exact. Thus, issues such as con-
vergence of the Taylor series used to represent the Lyapunov
functions do not affect the validity of the guarantees obtained
from the SOS program. However, it should be noted that the
size of the regions of attraction could be adversely affected
by the approximate nature of the Lyapunov candidate. This
is further explored in Section V.

V. NUMERICAL RESULTS

For the results in the current work, we use the SPOT
toolbox [8] to cast SOS programs a semidefinite programs
which we solve using SeDuMi [13]. In this section, we
present results of the application of the theoretical framework
presented above to a simple numerical example: the Van der
Pol oscillator. The dynamics of the oscillator are described
by the following equation:

ẍ = ẋ(1− x2) + x+ u.

Using the notation from Sections III and IV, we take P =
[−0.5, 0.5], xg(δ) = [δ, 0]T and ug(δ) = −δ. Thus, our goal
is to compute LQR controllers and corresponding regions of
attraction (ROAs) for the set represented by the black line
segment along the x-axis in Figure 1. Figure 1 compares the
ROAs obtained using the techniques described in this paper
(green ellipses) with ROAs obtained from standard SOS-
verification procedures ( [16]) (red ellipses). Note that while
our verification program provides us with ROA estimates
for the entire continuum of goal states in Xg by solving
a single SOS program, standard SOS procedures require
that a separate SOS program be solved for each goal state
considered in the plot (thus providing only a finite set
of ROAs at the sampled points). Hence, for the sake of
comparison, we sample a discrete set of points along the
goal set and compare the ROAs at these points.
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Fig. 1: Comparison of regions of attraction for the Van der
Pol oscillator obtained from standard SOS verification and
our method.

Figure 2 provides a numerical comparison of the volume
of the ROAs obtained using our method versus standard
SOS verification. The set of discrete red points represent
the volumes of the ROAs using standard SOS verification.
The blue curve represents the ROA volumes obtained from
a 0th order expansion of the power series (13), i.e. Sδ = S0.
The green curve represents a 1st order expansion. As is
evident from the plot, the performance (as measured by the
volume of the ROAs) is better for the higher order (1st order)
expansion than it is for the 0th order expansion. Note that
this may not be true in general since a better approximation



of the LQR controller is not guaranteed to produce larger
ROAs.
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Fig. 2: Comparison of volumes of regions of attraction for
the Van der Pol oscillator

Note that it is important to distinguish between two
sources of the approximation errors we observe in the size
of the ROAs that result from using our method: (i) the
approximation of the LQR controller via the power series in
(13), and (ii) the requirement that ρ(δ) be a polynomial (see
Section IV). The relatively poor approximation of the ROA
around the middle of the goal set is due to approximation
(ii) (ρ(δ) was chosen to be a 4th order polynomial). Using
a polynomial of higher degree results in a better approxi-
mation, but results in a longer running time for the SOS
verification program.

Approximation (i) is illustrated in Figure 3. Here, standard
SOS verification was used to compute ROAs for a discrete set
of goal states in the goal set. The optimal LQR controller
(calculated individually for each goal state) was used for
the red points, while a 1st order power series approximation
for the controller was used for the green points and a 0th

order expansion was used for the blue points. As is clear,
the controller is optimal for the nominal goal state, the
origin, since this is the point about which the power series is
expanded. The controller approximation gets poorer as one
moves away from this point, resulting in smaller regions of
attraction.

VI. EXTENSIONS TO BASIC FRAMEWORK

A. Goal Set Parametrization

In the derivations provided in Sections III and IV, it
was assumed that a goal set parametrization was available.
Although this is often the case, a simple parametrization may
not always suffice in describing the set of stabilizable goal
states that one wants to compute regions of attraction for.
In such cases, additional constraints can often be introduced
into the SOS verification program in order to ensure that all
the points in the goal set are in fact stabilizable.

For example, consider the following non-linear control
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Fig. 3: Volumes of regions of attraction for the Van der Pol
oscillator for various order expansions of the control. All
verifications are exact.

system:

ẋ1 = x2 − x2
1

ẋ2 = (x2 − x2
1)x2 + x2

1 + u. (17)

The set of stabilizable points of this system is S =
{(x1, x2)|x2−x2

1 = 0}. Defining the perturbation parameter
δ as the vector [δ1, δ2]T , we take xg(δ) = δ. We can then let
δ vary freely in some range, for example δ1 ∈ [−0.2, 0.2],
d2 ∈ [0, 0.04]. However, this parametrization of the goal
set will lead to the SOS conditions in (16) being checked
outside the one-dimensional manifold S. In order to check
the Lyapunov conditions only for the states in S, we can
apply the S-procedure verify the conditions only when δ2 =
δ2
1 . The SOS program then becomes:

maximize
ρ,ν,L

∫
P

ρ(δ) dδ (18)

subject to ‖x− xg(δ)‖2(Vδ(, x)− ρ(δ))

− ν(x, δ)

(
d

dt
Vδ(, x) + cVδ(, x)

)
+ L(δ)(δ2 − δ2

1) ≥ 0

ρ(δ) ≥ 0 ∀δ ∈ P, x ∈ Rn

where L(δ) is a polynomial multiplier. Results from this SOS
program are shown in Figure 4, which plots the ROAs for
the goal set depicted by the black curve.

For many mechanical and robotic systems, the set of
stabilizable points is, in general, a complicated, disconnected
manifold in the configuration space (derivative variables are
always zero at a stabilizable point of a mechanical system),
defined by 0 = f(x, u), plus any input and state constraints.
As in the example above, this constraint can be simplified
to a tractable form. For (potentially over- or under-actuated)
robots defined by the manipulator equations:

H(q)q̈ + C(q, q̇)q̇ +G(q) = Bu,

the constraint reduces to

Bu = G(q), q̇ = 0.
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Fig. 4: Regions of attraction for the non-linear system (17)
obtained by constraining the goal set to the stabilizable
manifold using a SOS equality constraint.

These can be folded into the SOS verification program by
adding equality constraints via multipliers exactly as was
done for the system (17).

B. Input Constraints

The basic SOS program presented in Section IV can be
augmented in order to handle systems with input saturations.
Although we examine the single-input case in this section,
this framework is very easily extended to handle multiple
inputs.

Let the control law u(x) = u0 −Kx be mapped through
the following control saturation function:

s(u(x)) =


u+ if u(x) ≥ u+

u− if u(x) ≤ u−
u(x) o.w.

Then, [14] provides a solution to this problem in the case
where one is trying to compute a ROA for a single goal
state. This solution involves a simple application of the S-
procedure for a piecewise-polynomial analysis of V̇ , and can
be used to augment the SOS program (16) in order to obtain
ROAs ∀δ ∈ P with the given input saturations.

A plot of ROAs obtained from applying this procedure to
a pendulum with torque limits is shown in Figure 5. The goal
states, shown in the figure as a black line segment, were in
the range [π−0.3, π+ 0.3]. As one would expect, the ROAs
get smaller as one moves away from the upright position (i.e.
θ = π) and become vanishingly small when the maximum
torque that the pendulum can exert exceeds the torque due
to gravity.

C. Time-Varying Finite-time Invariance Around Trajectories

So far in this paper, we have restricted our attention
to computing regions of attraction around stabilizable goal
states for time-invariant systems. However, an important ex-
tension to this problem is that of computing regions of finite-
time invariance (funnels) around time-varying trajectories of
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Fig. 5: Regions of attraction for a torque-saturated pendulum.

a system. [14] uses SOS verification to compute time-varying
regions, B(ρ(t), t) for which the closed-loop system obeys:

x(t) ∈ B(ρ(t), t) =⇒ x(tf ) ∈ BG.

In a manner similar to the results presented previously in
the present work, we extend the results in [14] in order
to compute funnels for a set of trajectories around some
nominal trajectory. We constrain our perturbations to “shifts”
of the nominal trajectory. i.e. If x0(t) : [t0, tf ] 7→ Rn is the
nominal trajectory, x(t; δ) = x0(t) + δ is a shifted trajectory
(with δ ∈ P a constant, and P ⊂ Rn ). We see that generally
x(t; δ) will not be a solution of dynamical equations but, as
shown in [15], one can still make guarantees of invariance
over finite time intervals.

Further, note that it is considerably more difficult to
approximate the optimal time-varying LQR controller for a
“shifted” trajectory as a function of δ than it was for the
stabilizable goals in Section III. Thus, in this section, we
simply use the LQR controller computed for the nominal
trajectory for computing funnels for the set of “shifted”
trajectories. Hence, our candidate Lyapunov function for
each trajectory in the set is given by:

V (x, t; δ) = (x− x(t; δ))TS(t)(x− x(t; δ)

where S(t) is the time-varying solution to the differential
Riccati equation:

−Ṡ(t) = Q−S(t)B(t)R−1BTS(t)+S(t)A(t)+A(t)TS(t)

with final value conditions S(t) = S0. (Here A(t), B(t) de-
scribe the time-varying linearization of the dynamics around
the nominal trajectory).

As described in [14], we want to compute ρ(t; δ) such
that:

V̇ (x, t; δ) ≤ d

dt
ρ(t; δ).

This will provide us with funnels for each δ (of course δ must
be constrained to lie in some bounded set). As in Section IV,
this can be easily checked using SOS programming. Figure 6
shows the results of the SOS verification on the Van der Pol
oscillator. A nominal trajectory (shown in blue), x(t; [0, 0]T ),



of the system was computed, and a family of funnels were
computed for “shifted” trajectories around it. The blue funnel
was obtained by evaluating V (x; t; [0, 0]T ) (i.e. the funnel for
the nominal trajectory), while the green funnel was obtained
from V (x; t; [0.07,−0.07]T ).

Fig. 6: Regions of Finite-Time Invariance for two trajectories
of the Van der Pol oscillator. The blue trajectory is the
nominal one, while the black one is the “shifted” one.

Figure 7 compares the funnel for the shifted trajectory
x(t; [0.07, 0.07]T ) obtained using our method (i.e. by evalu-
ating V (x; t; δ) at δ = [0.07, 0.07]T ) with a funnel computed
directly on the “shifted” trajectory using standard SOS meth-
ods. As the plot illustrates, our funnel is slightly conservative,
though the results are quite close. Of course, as in Section IV,
it should be noted that our method provides us with funnels
for a continuum of “shifted” trajectories, while the standard
SOS method only gives us a single funnel.

Fig. 7: Comparison of funnels computed on a “shifted”
trajectory (δ = [0.07, 0.07]T ). The red funnel was com-
puted using Standard SOS methods directly on the shifted
trajectory. The green funnel was computed by evaluating our
family of funnels at δ = [0.07, 0.07]T .

VII. DISCUSSION

A. Planning Under Goal State Uncertainty

Our method for computing regions of attraction (and possi-
bly LQR controllers) for a continuum of goal states allows for

compact representation and efficient computation. Further,
since the goal state is considered a continuous variable in our
method, we avoid discretization and computation issues that
arise if one attempts to apply standard region-of-attraction
SOS optimization. Instead of having to sample a discrete
set of points in the goal set and solving a separate SOS
optimization program for each point - a computationally
expensive operation - we can simply solve a single SOS
program that provides us with ROAs for all points in the
goal set. This provides us with a powerful tool for feedback
motion planning when dealing with situations in which the
desired goal state is not determined before runtime. For
example, imagine a scenario in which the start state, xs of the
system is known before runtime, but the goal state is declared
only at runtime, but is known to lie in a certain goal set, Xg .
Using our approach, we can compute regions of attraction
for each state in Xg in the pre-computation stage (i.e.
before runtime). If Xg is “large” or disconnected, we could
divide it into several subsets and compute parameterized
ROAs for each subset separately. Further, using trajectory
optimization methods [12], we can compute a trajectory, x(t)
that starts at xs and passes through each region of attraction
(corresponding to each goal state in Xg). At runtime, when
the desired goal state, xg , is declared, we can simply follow
our pre-computed trajectory x(t) and switch to the LQR
controller corresponding to xg when we enter its ROA. This
will drive our system to xg .

These ideas can also be used in order to extend the capabil-
ities of LQR-Trees, a feedback motion planning algorithm,
presented in [14]. This algorithm computes a randomized
tree of trajectories and stabilizing controllers that grab initial
conditions from a bounded set in state space and drive
them to the desired goal state. Using our approach, the
algorithm can be extended to handle cases where the goal
state is not declared before runtime, thus allowing for a multi-
query version of the algorithm. Such an algorithm would be
extremely important in robotics applications such as walking
over rough terrain, or flying through a dense forest - scenarios
in which the exact geometry of the environment is not known
till runtime.

B. Future Considerations

There are still a few outstanding issues that need to be
addressed in future work. First, there is the question of
convergence of the power series (13). Results from [18],
written in the context of the State Dependent Riccati Equa-
tion (SDRE) approach, prove local convergence of the power
series (13) when the matrices A(a) and B(b) (in Section III)
are continuous functions of a and b respectively. The exact
radius of convergence and the rate of convergence of the
series will, however, depend on how non-linear the system
is, thus varying from system to system.

As was observed in Figure 3, the performance of the
controller becomes worse as moves away from the nominal
state. Clearly, at some distance from the nominal state, the
controllers and resulting ROAs will become unacceptably
sub-optimal. Thus, the size of the goal set for which the



controllers and ROAs are computed will need to be curtailed
accordingly. This needs to be done on a system by system
basis. One general heuristic could be to curtail the size
of the goal set (or equivalently, the size of the parameter
set P in Section III-B) by setting a threshold for the sub-
optimality of the controllers as measured by the matrix norm
of the difference between the optimal controller and the
sub-optimal power series approximation. This will require
solving the LQR problem exactly for a discrete set of points
and evaluating the matrix norm of the difference at these
points. However, this approach still does not guarantee that
the resulting ROAs will be acceptably close to optimal, since
the relationship between sub-optimality of the controller and
sub-optimality of the ROAs is not a simple linear one.

Having mentioned these points, however, it is important
to note that although the radius of convergence and sub-
optimality of our approximated controller affect the size
of the ROAs we obtain, they do not affect the validity of
the ROAs. The computed results are still valid estimates of
regions of attraction for the sub-optimal controllers.

VIII. CONCLUSION

In this paper, we have presented a method for applying
sums-of-squares optimization in order to compute parameter-
ized regions of attraction (ROAs) for a set of stabilizable goal
states and regions of finite time invariance parameterized
by “shifts” to some nominal time-varying trajectory. We
are able to compute ROAs for an entire continuum of goal
states or trajectories, using a single sums-of-squares program.
Hence, we avoid issues that arise if one tries to discretize the
space of goal states/trajectories. We expect this framework
to be useful for online planning in exciting application
domains such as UAV flight through cluttered environments
and legged locomotion over rough terrain.
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