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Abstract

Humans have a strong intuitive understanding of the physical world. We observe and
interact with the environment through multiple sensory modalities and build a mental model
that predicts how the world would change if we applied a specific action (i.e., intuitive
physics). This dissertation presents my research that draws on insights from humans and
develops model-based reinforcement learning (RL) agents. The agents learn from their
interactions and build predictive models of the environment that generalize widely across
a range of objects made with different materials. The core idea behind my research is to
introduce novel representations and integrate structural priors into the learning systems
to model the dynamics at different levels of abstraction. I will discuss how we can make
structural inferences about the underlying environment. I will also show how such structures
can make model-based planning algorithms more effective and help robots to accomplish
complicated manipulation tasks (e.g., manipulating an object pile, pouring a cup of water,
and shaping deformable foam into a target configuration). Beyond visual perception, touch
also plays a vital role when humans perform physical interactions. I will discuss how we
bridge the sensing gap between humans and robots by building multi-modal sensing platforms
with dense tactile sensors in various forms (e.g., gloves, socks, vests, and robot sleeves) and
how they can lead to more structured and physically grounded models of the world.

This dissertation consists of three parts. In Part I, we show how we can learn world models
at different levels of abstractions and how the learned models allow model-based planning to
accomplish challenging robotic manipulation tasks both in simulation and in the real world.
Part II investigates the use of a learned structured world model for physical inference that
infers the causal relationships between different components within the environment and
performs state and parameter estimations. Part III goes beyond the previous two parts that
only assume vision as input by considering touch as an additional sensory modality. I will
discuss the novel tactile sensors we developed and how they can be used in understanding
hand-object and human-environment physical interactions.

Thesis Supervisor: Antonio Torralba
Title: Delta Electronics Professor of Electrical Engineering and Computer Science

Thesis Supervisor: Russ Tedrake
Title: Toyota Professor of Electrical Engineering and Computer Science,
Aeronautics and Astronautics, and Mechanical Engineering
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Chapter 1

Introduction

Figure 1-1: Learning to perform
physical interactions. Humans per-
ceive the world via multiple sensory
modalities (e.g., vision and touch), and
through interactions, we build a mental
model of the world that predicts how the
environment would change if we apply a
specific action. We then use the learned
predictive model in our brain to plan our
actions to achieve specific goals.

Humans have a strong intuitive understanding of

their surrounding physical world (Figure 1-1). We ob-

serve and interact with the environment through mul-

tiple sensory modalities, including vision and touch.

During the interactions, our brains process the sensory

data, build a mental model of the world, and predict

how the environment would change if we applied a

specific action (i.e., intuitive physics). This predictive

ability does not rely on analytical physics equations

yet applies to objects of different materials (e.g., rigid

bodies, deformable objects, and fluids), enabling a

tremendous amount of interactive skills far superior

to those of current robotic systems [Lake et al., 2017].

It is, therefore, desirable to build predictive models

of the environment from observations to help the

robots understand the effect of their actions and make

effective plans to achieve a given task goal. Physics-

based models [Hogan and Rodriguez, 2016, Zhou et al., 2019] have excellent generalization

ability yet typically require full-state information of the environment, which is hard and

sometimes impossible to obtain in complicated robotic (manipulation) tasks. Learning-based

dynamics modeling circumvents the problem by learning a predictive model directly from
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raw sensory observations, and recent successes are rooted in the use of deep neural networks

(DNNs) as the functional class [Finn and Levine, 2017, Ha and Schmidhuber, 2018].

This thesis aims to significantly expand upon the direction of learning world models from

observations. I will show how we can develop robotic systems that learn from their physical

interactions and build predictive models of the environment that can generalize widely across

a diverse set of problems. To accomplish this kind of generalization, I will discuss how to

bring together the flexibility of deep neural network models with structured inductive biases,

which enables broad generalization to a variety of tasks and environments. In doing so, I

will present a series of my works that have been among the first to take robot learning from

the manipulation of rigid objects to the manipulation of a variety of dynamic and flexible

objects (e.g., fluids and deformable or granular materials), unlocking a fundamentally new

set of capabilities. The research theme, learning structured world models from and

for physical interactions, requires learning algorithms and infrastructures vastly different

from traditional model-based pipelines and unstructured reinforcement learning systems.

Significant challenges exist in building inductive biases at the correct level of abstraction

across sensing, perception, dynamics modeling, and optimization that form a coherent system

for effective training and real-world deployment.

1.1 Problem Statement

To make the problem more concrete and more formally characterize the benefits of the

proposed methods, we define the problem we aim to solve as the following. The goal is to

minimize an objective function
∑︀

𝑡 𝑐(𝑦𝑡, 𝑢𝑡) defined on the observation 𝑦𝑡 and the action 𝑢𝑡

over some time horizon. 𝑦𝑡 is the raw sensory observation we get from different types of

sensors at time 𝑡, which is potentially very high-dimensional in the form of RGBD/tactile

images. 𝑢𝑡 is the action we input to the system like the robot actions:

min
𝜋

E𝜋

[︃∑︁
𝑡

𝑐(𝑦𝑡, 𝑢𝑡)

]︃
(1.1)

𝑧𝑡 = 𝑔(𝑦1:𝑡, 𝑢1:𝑡−1) (1.2)

𝑧𝑡+1 = 𝑓(𝑧𝑡, 𝑢𝑡, 𝜃) (1.3)

𝑢𝑡 = 𝜋(𝑧𝑡). (1.4)
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The problem definition contains three very important constraints, and the interpretation of

it requires us to think deeply through the following four aspects.

• Sensing: 𝑦𝑡 denotes the raw sensory information we obtain, which is essentially

a (partial) observation of the environment. The sensory data can contain multiple

modalities (e.g., RGB images, depth, tactile/audio data) and should include all necessary

information to accomplish the downstream interaction tasks. Determining the set of

information we need and constructing the data capturing systems are no easy tasks,

as many of the critical sensory information (e.g., tactile data) cannot be captured

by off-the-shelf sensors. Therefore, besides assembling existing sensors, we are also

tasked to develop novel multi-modal perception systems with innovations at both

the hardware and software levels that provide detailed and sufficient modeling of the

physical interaction process.

• Perception (Equation 1.2): The perception module 𝑧𝑡 = 𝑔(𝑦1:𝑡, 𝑢1:𝑡−1) maps the

observation 𝑦1:𝑡 and the action 𝑢1:𝑡−1 into a latent representation of the environment

𝑧𝑡 at time 𝑡. And you should notice from the problem formulation that the choice of 𝑧𝑡

has a profound impact on the structure of the overall system. We should be asking the

question: what specific forms should 𝑧𝑡 be, and at what levels of abstraction should

we represent the objects and the environment. The representation should contain

information about the underlying environment sufficient to accomplish the downstream

planning/control tasks.

• Dynamics (Equation 1.3): The third aspect is the dynamics module 𝑧𝑡+1 = 𝑓(𝑧𝑡, 𝑢𝑡, 𝜃)

that takes the current representation 𝑧𝑡 and the physical parameters 𝜃 (e.g., friction

coefficient, stiffness, or latent vectors) as inputs. When given an external action 𝑢𝑡,

it predicts the changes in the scene representation that describes the evolution of the

system. To achieve better generalization, we should think carefully about how we can

characterize the structures of the underlying physical world and what model class we

should use (e.g., linear models, convolutional neural networks, or graph neural networks),

especially when modeling the dynamics for objects of a diverse set of materials. To

adapt the models to scenarios where the underlying structure and parameters are not

directly observable, we will also have to formulate an inference problem and perform

continual structural and parameter estimation from data in an online fashion.
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• Control (Equation 1.4): Then is the control module 𝑢𝑡 = 𝜋(𝑧𝑡) that derives the control

signal based on the scene representation to minimize the task objective (Equation 1.1).

To solve the optimization problem, we need to leverage the structure introduced by

the representation and the learned dynamics model while considering the trade-off

between effectiveness and efficiency. We will also need to investigate how to close

the perception-control loop and consider all practical constraints when deploying the

system on real robots.

Making progress in solving these problems requires a lot of systematic thinking, careful

design of the connections between different components, and a thorough understanding of the

advantages and limitations of various modeling choices. This is also an interdisciplinary area

requiring knowledge/advances from multiple disciplines. The following section will provide

an overview of the systems I built to advance the robots’ capabilities and how I approach

the problem by decomposing it into three main attacking angles.

1.2 Approach: Learning Structured World Models

To construct the system and answer the questions above, my approach leverages advances

in robotics, computer vision, and machine learning, integrating structural priors into

deep neural networks to capture the structure of the physical system and provide better

generalization ability outside the training distribution (Figure 1-2). For example, my

research has been the first to combine particle-based scene representation with novel graph-

structured neural networks for the dynamics modeling of complicated objects, such as

fluids and deformable foam. Leveraging the structures embedded in the learned models, I

constructed and solved the model-based planning problem that enables robots to accomplish

complicated manipulation tasks (e.g., manipulating a pile of boxes, pouring a cup of

water, and shaping deformable foam into a target configuration; Figure 1-3), which goes far

beyond the capabilities of prior systems. We have also built dense tactile sensors in various

forms (e.g., gloves, socks, vests, and robot sleeves), constructed multi-modal sensing

and learning platforms to study human-environment interactions, and shown success in

full-body pose estimation and hand-object dynamics modeling (Figure 1-4). These sensing

platforms allow for more scalable and expressive modeling of the interaction process in the

natural environment, which can inject the desired physical priors into our system and build
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Figure 1-2: Scene representation and dynamics modeling. My research investigates repre-
sentations of the environment at different levels of abstraction, ranging from object-centric models
to keypoints and particles, and has demonstrated success in modeling objects of various materials,
including rigid bodies, deformable objects, granular materials, and fluids.

more structured and physically grounded models of the world.

1.2.1 Scene Representation and Dynamics Modeling

As I have discussed before, unlike physics-based models, we humans are not constantly

calculating analytical physics equations, such as 𝐹 = 𝑚𝑎, in our brains. Instead, we build

an intuitive model of the environment that predicts the system’s evolution purely from

sensory observations. Such predictive ability, while intrinsic to humans and applicable to

a wide variety of systems, remains challenging for state-of-the-art computational models.

For example, representations commonly used in the literature, such as the 6-DoF pose and

abstract latent vectors learned only from 2D supervisions, cannot handle deformable and

compositional scenes because they are not expressive enough and generalize very poorly. We

need representations that can capture the complexity of these scenes and impose inductive

biases grounded to the underlying system (Equation 1.2).

My research introduced models that transform high-dimensional sensory data into struc-

tural representations at different levels of abstraction and exploit the structure for dynamics

modeling (Equation 1.3). The learned dynamics models are more sample efficient and allow

the modeling of dynamic and flexible objects, such as fluids and deformable foams, with a

performance that goes far beyond what was possible before.

Keypoints. In Li et al. [2020b] and Manuelli et al. [2021], we proposed the use of object

keypoints, which are learned in a self-supervised manner and tracked over time (Figure 1-2b).

These keypoints anchor our model-based predictions, and through concrete experimental

evidence, we showed that keypoints provide the following appealing properties: (i) the output

is interpretable and in 3D space, allowing us to analyze the visual model separately from the

predictive model, and (ii) they can apply to deformable objects and (iii) achieve category-level
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generalization.

Particles. Keypoints are useful as a low-dimensional structural representation but

cannot model objects with higher degrees of freedom, such as fluids. In Li et al. [2018,

2020a], we proposed dynamic particle interaction networks (DPI-Nets) to learn a particle-

based simulator using graph neural networks (GNNs). Combining GNNs with particle-based

systems acts broadly across objects of different materials and injects a strong inductive bias for

learning: particles of the same type are governed by the same dynamics (Figure 1-2a). Such

structural prior embedded in the model allows more effective training and better extrapolation

generalization performance. We showed that our model can predict the dynamics of a wide

variety of objects, including rigid bodies and challenging objects such as plasticine and fluids,

and generalize to physical systems that are much larger than what the model was originally

trained on.

Object-centric and hierarchical representations. For tasks that operate on the ob-

ject level, we have also investigated object-centric representations and graph-based dynamics

models for neuro-symbolic reasoning [Yi et al., 2019]. We further extended it to hierarchical

graph representations by mapping visual inputs to Physical Scene Graphs (PSGs) [Bear

et al., 2020]. Within the learned graph, nodes represent objects or their parts, and edges

represent relationships, in which many aspects of physical understanding become natural to

encode, e.g., object permanence and shape constancy.

Latent and implicit representations. Prior works have shown impressive performance

in learning world models in abstract latent space from visual observations yet are limited

in generalization ability. Therefore, we incorporated the graph-based structural priors into

the latent dynamics model and proposed propagation networks (PropNets) [Li et al., 2019b]

that assume access only to partial observations and represent the system’s state as a graph

to capture the underlying compositionality to enable better generalization. Inspired by

Koopman operator theory [Koopman, 1931], we took a step further in Li et al. [2019a] by

enforcing linear constraints on the latent-space dynamics model in the PropNets for more

efficient system identification and model-based optimization.

Besides the structures imposed on the dynamics model, we also seek to incorporate into our

model inductive bias in the form of a learning-based differentiable renderer. In a recent paper

selected for an oral presentation at a premier robot learning conference (i.e., CoRL) [Li et al.,

2022], we drew inspirations from advances in neural implicit representations [Mildenhall et al.,

26



Figure 1-3: Physical inference and model-based control. We tackled various downstream
tasks by leveraging the structures in the learned dynamics models and powerful optimization tools
from learning and control communities, and we demonstrated success in (d) physical scene reasoning
and (a–c) manipulating objects made of different materials.

2020]; we combined the differentiable volumetric renderer with an autoencoding framework

and a latent dynamics model (Figure 1-2c). The resulting system greatly expands the model’s

capability and allows for (i) future prediction, (ii) out-of-distribution viewpoint generalization,

and (iii) novel view synthesis in dynamic scenes involving complicated interactions between

fluids and rigid objects.

Structured representations at different abstraction levels imply different modeling and

generalization capabilities. Therefore, it is essential to understand their advantages and

limitations and select the one that suits the best with the task at hand. I will also show in the

thesis how a suitable choice of representation and structure can lead to better generalization

and sample efficiency.

1.2.2 Physical Inference and Model-Based Control

In the previous section, we discussed how representations could be derived from sensory

observations and used to learn the dynamics model, which can then be used for downstream

inverse tasks, such as physical inference (i.e., estimating the structure and the parameters 𝜃

in Equation 1.3) and model-based control (i.e., deriving the action signals in Equation 1.4).

For example, we humans can estimate the weight of an object using the discrepancy between

our mental model’s prediction and the actual observation. We can also plan our behavior

by imagining how our actions would change the environment and choosing the actions that

produce the desired outcome. Although using forward models for inverse problems is not new

and has been the subject of study in the robotics literature for a long time, it has proven

challenging to find a general-purpose solution that is flexible and powerful enough to solve

contact-rich and dynamic robotic manipulation tasks. In this thesis, I will show that with an

appropriate choice of model, we can leverage the structures in the learned dynamics models

27



and powerful insights gained from stochastic optimization to solve complex physical inference

and model-based control problems from raw sensory observations.

Physical inference. In Li et al. [2020b], we considered the task of causal discovery

from videos in an end-to-end fashion and without supervision on the ground-truth graph

structure (Figure 1-3d), effectively estimating the structure and parameters required by

the dynamics model in Equation 1.3. Our experiments show that, without retraining, the

causal structure assumed by the model allows it to make counterfactual predictions and

extrapolate to systems of unseen interaction graphs or graphs of different sizes from training.

Beyond structural reasoning, we have also built a neuro-symbolic framework integrated

with learned object-based dynamics models for temporal and causal reasoning about videos,

which demonstrates significantly better performance in answering the following four types of

questions about physical interaction systems: descriptive (e.g., “What shape?”), explanatory

(e.g., “What is responsible for event X?”), predictive (e.g., “What will happen next?”), and

counterfactual (e.g., “What would have happened if X disappeared?”) [Yi et al., 2019].

Model-based control. In Manuelli et al. [2021] and Li et al. [2022], we leveraged

the parallel computing power of GPUs and applied sampling-based trajectory optimization

methods to compute the control signals (Equation 1.4). Our model closes the control

loop by taking the feedback from the environment and adjusting its planned behavior to

compensate for the modeling error. We took a step further in Li et al. [2018, 2019b] by using

the gradients from the learned model to achieve more efficient optimization of the action

sequences. Through both simulated and real-world experiments, our robots have achieved

success that greatly exceeds prior works in complex manipulation tasks, such as manipulating

a deformable foam (Figure 1-3a), a pusher-slider system (Figure 1-3b), and a cup of water

with floating ice cubes (Figure 1-3c). In Li et al. [2019a], we traded off the expressiveness

and efficiency of the model by assuming a linear structure over the latent state space, where

we could apply quadratic programming to derive the control signals to manipulate ropes and

control soft robots.

1.2.3 Multi-Modal Sensing of Physical Interactions via Vision and Touch

To build structured dynamics models grounded in the underlying physical world, it is

essential to think thoroughly about what sensory information 𝑦𝑡 we need to obtain, how

different sensing modalities complement each other, and what unique value a specific modality
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Figure 1-4: Multi-modal sensing platforms using vision and touch. To build better structured
models of the world, we need expressive multi-modal sensing platforms that include the desired
physical priors (e.g., contact and force constraints). Thus, we built scalable, deformable, and flexible
tactile sensors in the form of gloves, socks, vests, and robot sleeves to obtain more detailed modeling
of physical interactions and study the dynamic interactive behaviors of diverse physical activities.
(a) A flexible glove capable of recording tactile information during hand-object interaction. (b)
Tactile image and vision-enabled hand-object dynamics modeling. (c) Vision-supervised tactile
learning for estimating 3D human poses. (d) 3D conformal tactile sensing garments for learning
human-environment interactions.

brings. Specifically in physical interactions, besides vision, touch also plays a critical role in

obtaining detailed contact information and injecting physical constraints, such as contacting

modes, force, and local contact patterns. Therefore, in papers accepted to Nature and

Nature Electronics, we built multiple low-cost multi-modal sensing platforms to obtain

synchronized data from vision and touch that constrain the models used for describing the

physical interactions. The systems enable efficient learning frameworks of human-environment

interactions, laying the foundation for more expressive structured dynamics modeling.

Specifically, we have developed a set of scalable, high-resolution, conformal tactile sensor

arrays that can be automatically manufactured with inexpensive materials [Sundaram et al.,

2019, Luo et al., 2021b]; for example, we have designed scalable tactile gloves (Figure 1-4a),

which, when coupled with tools from the deep learning community, can learn to discover

the signatures of human grasps [Sundaram et al., 2019]. Based on the same working

mechanism, we have successfully developed various tactile sensing systems, including a

large-scale intelligent carpet [Luo et al., 2021a] (Figure 1-4c) and other wearable tactile sensor

arrays (Figure 1-4d). The developed prototypes allowed us to record synchronized vision
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and tactile data from various human activities and human-object interactions [Zhang et al.,

2021], which can significantly facilitate the development of self-supervised learning systems

and enable the building of models that capture the correlation between different sensory

modalities and incorporate the constraints in the underlying physical world. For example,

using the developed tactile glove, we have been able to demonstrate the ability to (i) identify

objects, (ii) learn grasping patterns, (iii) identify weights of grasped objects [Sundaram

et al., 2019], and (iv) model the dynamics of hand-object interactions by predicting the 3D

locations of both the hand and the object purely from the tactile data (Figure 1-4b) [Zhang

et al., 2021]. The wearable garments further allow us to collect tactile information through

human-environment interactions, enabling learning systems to identify 3D human poses,

activities, and postures.

Insights from the multi-modal sensing platforms—through the lens of automatically

manufactured dense tactile arrays—can aid in the future design of new prosthetics and

robot grasping/interaction tools. It can also enable more effective robotic manipulation and

human-robot interactive capabilities by learning physically grounded predictive models for

more expressive and structured modeling of the interactive dynamics.

1.3 Dissertation Structure

This dissertation consists of three parts, circling around the key questions of what

representation we should use to describe the environment and what functional class we

should use to model the scene dynamics (Equation 1.2 and 1.3). Specifically, I want to learn

structured world models from the observation of the environment and show how the models

can be learned from robots’ interactions with their surroundings and help the robots to make

better physical interactions, especially with objects with complicated physical properties.

Part I of this thesis will discuss the use of structured world models in model-based

control tasks. I will first discuss the problem of a pusher-slider system in the face of external

disturbances in Chapter 2. Being robust to external perturbations puts a strong emphasis

on the efficiency of the model and requires the system to take real-time feedback from the

environment. We thus propose to use keypoints as representations to learn efficient models

capable of performing closed-loop real-time model-predictive control. This chapter was

previously published as Manuelli et al. [2021]. Then, Chapter 3 will present my work on
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using particles as the representations to learn the dynamics at a finer level of granularity for

objects of different materials (e.g., rigid bodies, deformable objects, and fluids) and show

how we can formulate the model-based control problem to manipulate these objects both in

the simulation and the real world. This chapter was previously published as Li et al. [2018].

Moving forward, for objects with extremely high degrees of freedom like fluids, estimating

the particle set from raw visual observations is hard, and keypoints won’t be able to capture

the variability of the object. I thus propose to learn latent-space dynamics models augmented

with differentiable volume rendering in Chapter 4 to model the fluid dynamics purely from

visual observations. This chapter is primarily based on Li et al. [2022]. On top of this, I

will discuss our initial attempts to learn a linear approximation of the latent-space dynamics

model with the aim to improve the system identification and model-based optimization

performance by drawing insights from Koopman operator theory in Chapter 5 with materials

previously published in Li et al. [2019a].

Part II of this thesis will discuss the use of structured world models for the physical

inference tasks that aim to identify the latent causal structure and perform state and

parameter estimation from observation data. Specifically, Chapter 6 (originally published

as Li et al. [2020b]) will discuss how I perform structural inference of the underlying system

and understand the Granger causal relationship between the constituting components by

representing the environment using unsupervised keypoints. Then, Chapter 7 takes a

step forward by focusing on more complicated systems involving the interactions between

deformable objects, fluids, and rigid bodies. Based on the work published as Li et al. [2020a],

the proposed method can perform state and parameter estimation that estimates the object

particle positions, object segmentations, and the physical parameters that, when coupled

with a learned particle-based dynamics model, can best explain the visual observations and

make future predictions.

Part III of this thesis aims to bridge the sensing gap between humans and robots

by introducing multi-model sensing and learning platforms. Chapter 8 will discuss

the work initially published in Nature by Sundaram et al. [2019] that proposes a way of

manufacturing dense tactile gloves capable of capturing the detailed tactile information

between hand-object interactions. Based on similar technology that leverages piezoresistive

force-sensitive materials, Chapter 9 will discuss how we construct tactile textiles in the form

of gloves, socks, vests, and robot sleeves to capture the interactions between humans, robots,
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and the environments. This chapter was previously published as Luo et al. [2021b]. I will

show a range of applications made possible by the tactile sensors and the corresponding

multi-modal sensing platforms. I will also demonstrate how such platforms can lead to better

physically-grounded modeling of the physical interaction process.
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Part I

Learning Structured World Models for

Model-Based Control
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Chapter 2

Learning Keypoint Dynamics via

Self-Supervised Dense Correspondence

As discussed in the previous chapter, predictive models have been at the core of many

robotic systems, showing promising results ranging from quadrotors to walking robots.

However, developing and applying such models to practical robotic manipulation tasks

has been challenging due to high-dimensional sensory observations such as images. In

this chapter, we introduce model-based prediction with self-supervised keypoints learned

from dense visual correspondence. We show that not only is this indeed possible, but

we demonstrate that these types of predictive models are extremely efficient and show

compelling performance improvements over alternative methods for vision-based reinforcement

learning (RL) with autoencoder-type vision training that does not incorporate explicit 3D

structures. Through simulation experiments, we demonstrate that our models provide better

generalization precision, particularly in 3D scenes, scenes involving occlusion, and in category-

generalization. Additionally, we validate that our method effectively transfers to the real

world through hardware experiments. Video illustrations can be found on our project website:

https://sites.google.com/view/keypointsintothefuture.

This chapter includes materials previously published as Manuelli et al. [2021] in the

Conference on Robot Learning (CoRL) 2020 with co-authors Lucas Manuelli, Pete Florence,

and Russ Tedrake, in which Lucas Manuelli has made major contributions to the content of

this chapter.
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2.1 Introduction

This chapter aims to build models that can approximately predict how an object will

move if we interact with it, and then use the models for planning purposes, with a focus on

pusher-slider systems involving external disturbances. Traditional model-based robotics has

successfully leveraged such predictive models, oftentimes derived from first principles, to solve

challenging planning and control problems [Moore et al., 2014, Mellinger et al., 2012]. In the

area of practical vision-based robotic manipulation, however, it has been particularly hard to

leverage such predictive models, due to varied and novel objects and the high-dimensional

observation spaces involved (e.g., RGB or RGBD images). Alternative approaches, such

as imitation learning or model-free reinforcement learning, sidestep the task of building a

predictive model and directly learn a policy. Although this can be appealing, model-based

techniques offer several benefits. They can be sample efficient compared to model-free

methods and, in contrast to behavior cloning techniques, can leverage off-policy non-expert

data. Once a model has been acquired, it can be used together with a planner to achieve a

wide variety of tasks and goals. One of the main challenges for model learning applied to

robotic manipulation is determining the state representation on which the dynamics model

should be learned. Prior work has used approaches ranging from full image space dynamics

[Finn et al., 2016, Ebert et al., 2017, Yen-Chen et al., 2020, Suh and Tedrake, 2020] to a

variety of autoencoder formulations [Agrawal et al., 2016, Hafner et al., 2019b].

In this chapter, we propose to use object keypoints, which are tracked over time, as

the latent state in which to learn the dynamics. These keypoints anchor our model-based

predictions, and provide various advantages over alternatives: (i) the output is interpretable,

which enables the ability to analyze the performance of the visual model separately from the

predictive model. (ii) The representation is 3D and hence can naturally handle changing

general off-axis 3D camera positions. (iii) As demonstrated in Florence et al. [2018, 2019],

the visual models we use, Dense Object Nets, have demonstrated reliable performance in a

variety of real-world settings and are able to generalize at the category level. We found that

autoencoder approaches particularly struggled with category-level generalization. And as

discussed in prior works [Florence et al., 2018, Manuelli et al., 2019], keypoints and dense

correspondences provide advantages over using 6D object poses: they can apply to deformable

objects and represent category-level generalization.
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Figure 2-1: Learning keypoint dynamics for model-predictive control. (a) Shows the initial
pose (blue keypoints) and goal pose (green keypoints) along with the demonstration trajectory. (b) -
(d) show the MPC at different points along the episode. Current keypoints are in blue, white lines
and purple keypoints show the optimized trajectory from the MPC algorithm, using the learned
dynamics model. Goal keypoints are still shown in green. (e) shows the demonstration trajectory
in a 3D visualizer. (f) Illustrates a dynamics model on a category level task. The actual keypoint
trajectory is shown in green; the predicted trajectory using the learned model shown in blue. (g)
Overview of our hardware setup. (h) Example of visual clutter.

We show that this formulation enables reliable, sample-efficient learning capable of precise

visual-feedback-based manipulation in the real world – and is trained with nothing other

than a small amount of interaction data (10 minutes) and a single demonstration for goal

specification. In our approach to acquiring keypoints, we extract them as descriptors, which

are tracked from a dense descriptor model – while multiple approaches could be used to

acquire keypoints, this route can be entirely self-supervised. As opposed to Florence et al.

[2019] that uses keypoints from a dense-correspondence model in an imitation learning

framework, the use of keypoints as input to a model-based RL system presents several unique

challenges. In particular, the keypoints need to be both informative for the task at hand and

be able to be tracked accurately. In this chapter, we explore these challenges and propose

solutions.

Contributions: Our primary contribution is (i) a novel formulation of predictive model-

learning using learned dense visual descriptors as the state representation. We use this

approach to perform closed-loop visual feedback control via model-predictive control (MPC).

(ii) Using simulated manipulation experiments we demonstrate that this approach offers

performance benefits over a variety of baselines, and (iii) we validate our approach in
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real-world robot experiments.

2.2 Related Work

We focus our related work on methods that target robotic manipulation with learned

predictive models. The Introduction (Section 2.1) discussed alternative approaches to

synthesizing closed-loop feedback controllers without predictive models, via imitation learning

or model-free reinforcement learning.

Model-based RL in robotic manipulation. These methods can be classified by whether

they use first-principles-based or data-driven models, and whether they consume raw visual

inputs (such as RGBD images) or they consume ground truth state information (from a

simulator or an external perception system). First-principles-based models (e.g., Hogan and

Rodriguez [2016], Zhou et al. [2019]) rely on known object models and thus don’t generalize

to novel or unknown objects, and also rely on external vision systems. Given this, the tasks

we consider are out of scope for these approaches. In the area of methods that use external

vision systems but learn data-driven models, Hogan et al. [2018] learns a dynamics model

for a closed-loop-controlled planar pushing task, however, the approach is tailored to the

specifics of the pusher-slider task and doesn’t readily generalize to other tasks, or to novel

objects within the same task. Nagabandi et al. [2020] learns deep dynamics models for a

variety of different simulated dexterous manipulation tasks, using ground truth object states,

and one task on real hardware, using an external camera-based 3D object position tracker.

Although Hogan et al. [2018] and Nagabandi et al. [2020] achieve impressive results, their

reliance on ground truth object state and/or specialized visual trackers limits their general

applicability in more diversified real-world manipulation tasks.

There also exists a large literature on model-based RL for robotic manipulation that

operates in the more challenging problem class of directly consuming image observations.

Methods can be broadly categorized into whether they predict the image-space dynamics

of the entire image [Finn et al., 2016, Ebert et al., 2018, 2017, Yen-Chen et al., 2020, Suh

and Tedrake, 2020], or predict the dynamics of a low-dimensional latent state [Yan et al.,

2021, Watter et al., 2015, Agrawal et al., 2016, Hafner et al., 2019b]. Although image-space

dynamics approaches are general, they require large training datasets. For latent-space

dynamics approaches, to avoid a trivial solution where all observations get mapped to a
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constant vector, a regularization strategy is needed for the latent state 𝑧. Watter et al. [2015]

and Hafner et al. [2019b] use an autoencoder architecture and regularize the latent state 𝑧

using a reconstruction loss. Agrawal et al. [2016] regularize the latent space by simultaneously

training both forward and inverse dynamics models while Yan et al. [2021] uses a contrastive

loss on the latent state. In contrast to these approaches we use visual-correspondence

pretraining to produce a latent state which is physically grounded and interpretable as the

3D locations of keypoints on the object(s).

Visual representation learning. For more related-work in self-supervised visual learning

for robotics, we refer the reader to Florence et al. [2018]. Approaches that use autoencoders

[Watter et al., 2015, Hafner et al., 2019b] or full image-space dynamics [Finn et al., 2016,

Ebert et al., 2018, 2017, Yen-Chen et al., 2020] rely on image reconstruction as their source

of visual supervision. Kulkarni et al. [2019] is perhaps most related to ours, in that they

first learn a visual model which is then used for a downstream task, and they show that

freezing the visual model and using a keypoint-type representation as an input to model-free

RL algorithms improves performance on Atari ALE [Bellemare et al., 2013]. Our approach

is distinct in that (i) we use a predictive model-based method rather than a model-free

method, (ii) we use a correspondence-based training loss, while Kulkarni et al. [2019] uses an

image-reconstruction-based loss with a specialized pixel-space transport mechanism, and (iii)

we demonstrate results with real-world hardware. As a baseline, we try using their vision

model as an input to the same model-based RL algorithm used by our own method.

2.3 Self-Supervised Correspondence in Model-Based RL

This section describes our approach to model-based RL using visual observations. The

goal is to learn a dynamics model that can then be used to perform online planning for

closed-loop control.

2.3.1 Model-Based Reinforcement Learning

Our setting consists of an environment with states 𝑥 ∈ 𝒳 , observations 𝑜 ∈ 𝒪, actions

𝑎 ∈ 𝒜 and transition dynamics 𝑥′ = 𝑓state(𝑥,𝑎). The task is specified by a reward function

𝑟(𝑥, 𝑎) and the goal is to choose actions to maximize the expected reward over a trajectory.
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We approach this problem by first learning an approximate dynamics model 𝑓𝜃dyn , which is

trained to minize the dynamics prediction error on the observed data 𝒟. The learned model

is then used to perform online planning to obtain a feedback controller.

Typical example environments are depicted in Figures 2-1 and 2-3. The state 𝑥 contains

information about the underlying pose and physical properties of the object, but we only

have access to the observation 𝑜. The observation typically consists of both the robot’s

proprioceptive information 𝒪robot (such as joint angles, end-effector poses, etc.) and high-

dimensional images 𝒪image ∈ R𝑊×𝐻×𝐶 for a 𝐶-channel image of height 𝐻 and width 𝑊 .

Hence the full observation space is 𝒪 = 𝒪robot ×𝒪image. For the purposes of our approach

we will assume that 𝑥 is fully observable from 𝑜 (or a short history of 𝑜 in order to infer

velocity information). Note that this still allows for the object to undergo significant partial

occlusion as long as it is not completely occluded, see Figure 2-3c for an example. While

our work focuses on addressing partial occlusion, future work may address full occlusion via

models with longer time horizons or higher-level planning.

Rather than learn the dynamics directly in the observation space, as in Finn et al. [2016]

and Ebert et al. [2018], we instead learn a mapping 𝑔 : 𝒪 → 𝒵 from the high-dimensional

observation space 𝒪 to a low-dimensional latent space 𝒵 together with a dynamics model

𝑧𝑡+1 = 𝑓𝜃𝑑𝑦𝑛(𝑧𝑡−𝑙:𝑡,𝑎𝑡) in this latent space, where 𝑧𝑡−𝑙:𝑡 = (𝑧𝑡, 𝑧𝑡−1, . . . ,𝑧𝑡−𝑙) encodes a

short history (we use 𝑙 = 1 in all experiments). This latent state should capture sufficient

information about the true state 𝑥 such that driving 𝑧 → 𝑧* sufficiently well achieves the

goal of driving 𝑥 to 𝑥* (where 𝑧* is the latent state corresponding to 𝑥*). Given the current

latent state and a sequence of actions {𝑎𝑡,𝑎𝑡+1, . . .} we can predict future latent states 𝑧

by repeatedly applying our learned dynamics model. The forward model is then trained to

minimize the dynamics prediction error (also know as simulation error) over a horizon 𝐻

ℒdynamics =
𝐻∑︁
ℎ=1

||𝑧𝑡+ℎ − 𝑧𝑡+ℎ||22, 𝑧𝑡+ℎ+1 = 𝑓𝜃dyn(𝑧𝑡−𝑙:𝑡,𝑎𝑡+ℎ), 𝑧𝑡 = 𝑧𝑡 (2.1)

2.3.2 Learning a Visual Representation

The objective of the visual model 𝑔 : 𝒪 → 𝒵 is to produce a low-dimensional feature

vector 𝑧 which serves as a suitable latent state in which to learn the dynamics. For the

types of tasks and environments that we are interested in, spatial information about object
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locations is a critical piece of information. Pose estimation has played a critical role in

classical manipulation pipelines, and was also used in dynamics learning approaches such as

Hogan et al. [2018] and Nagabandi et al. [2020]. In general, producing pose information from

high-dimensional observations (such as RGBD images) requires a dedicated perception system.

Although pose can be a powerful state representation when dealing with a single known

object, as noted in Florence et al. [2018], Manuelli et al. [2019] and Florence et al. [2019], it

has several drawbacks that limit its usefulness in more general manipulation scenarios. In

particular it doesn’t readily (i) extend to the case of deformable objects, (ii) generalize to

novel objects or (iii) extend to category-level tasks.

Our strategy is to leverage visual-correspondence pre-training to track points on the

object of interest. The locations of these tracked points can then serve as the latent state

on which we learn the dynamics. Similar to the approach taken in Florence et al. [2018,

2019], we use visual-correspondence learning, which is trained in a completely self-supervised

fashion, to train a visual model which that can be used to find correspondences across RGB

images. We then propose several approaches to produce a low-dimensional latent 𝑧 using the

pre-trained dense-correspondence model.

First we give a bit of background on dense correspondence models [Florence, 2019,

Florence et al., 2018]. Given an image observation 𝑜image ∈ R𝑊×𝐻×𝐶 (where 𝐶 denotes the

number of channels), the dense-correspondence model 𝑔𝜃dc outputs a full-resolution descriptor

image ℐ𝐷 ∈ R𝑊×𝐻×𝐷. Since we want to learn a dynamics model on a low-dimensional state,

we need a way to construct 𝑧 from the descriptor image ℐ𝐷. The idea, similar to Florence et al.

[2019], is for 𝑧 to be a set of points on the object(s) that are localized in either image-space or

3D space. These points are represented as a set {𝑑𝑖}𝐾𝑖=1 of K descriptors, where each 𝑑𝑖 ∈ R𝐷

is a vector in the underlying descriptor space. A parameterless correspondence function

𝑔𝑐(ℐ𝐷, 𝑑𝑖)∗ extracts the location of the keypoint 𝑦𝑖 ∈ R𝐵 from the current observation.

Combining our learned correspondences together with the reference descriptors, we have a

function that maps image observations 𝑜image to keypoint locations 𝑦 = {𝑦𝑖}𝐾𝑖=1. We propose

four methods for constructing the latent state 𝑧 = 𝑔𝜃𝑧(𝑦) from 𝑦, where 𝜃𝑧 denotes the

(potentially empty) set of trainable parameters in this mapping.

Descriptor Set (DS): In our simplest variant the latent state 𝑧 is simply made up of keypoint

locations 𝑦𝑖 for a set of descriptor keypoints randomly sampled from the object. Specifically,

∗see Appendix A.1.2 for more details on the visual-correspondence model
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we sample 𝐾 (we use 𝐾 = 50 in all experiments) descriptors {𝑑𝑖}𝐾𝑖=1 corresponding to pixels

from a masked reference descriptor image in our training set. Thus

𝑧 = (𝑧object,𝑜robot) = (𝑦,𝑜robot) = ({𝑦𝑖}𝐾𝑖=1,𝑜robot) (2.2)

Spatial Descriptor Set (SDS): Rather than randomly sampling descriptors, as in (DS),

this method attempts to choose descriptors 𝑑 = {𝑑𝑖}𝐾𝑖=1 having specific properties. In

particular we would like the descriptors {𝑑𝑖}𝐾𝑖=1 to be (i) reliable, and (ii) spatially separated.

By reliable we mean that they can be localized with high accuracy and don’t become occluded

during the typical operating conditions, see Figure 2-2 for an example. Spatially separated

means that the chosen descriptors aren’t all clustered around the same physical location on

the object(s) of interest, but rather are sufficiently spread out (either in 3D space or pixel

space) to provide meaningful information about both object position and orientation. Our

dense descriptor model can provide a confidence score associated with descriptors and their

associated correspondences.† Figure 2-2 shows a clear example of high confidence for a valid

match and low-confidence when no valid correspondence exists due to an occlusion. We use

this feature of our visual model to compute a confidence score 𝑐𝑖 for each each descriptor

𝑑𝑖 according to what fraction of images in the training set 𝒟 contain a high probability

correspondence for 𝑑𝑖. The intuition is that descriptors 𝑑𝑖 corresponding to points on the

object that are easy to localize and remain unoccluded will have a high confidence score. As

in the DS method we initially select a large number of descriptors (𝐾 = 100) corresponding

to points on the object. We then select the 𝐾* descriptors with the highest average confidence

on the training set and which additionally satisfy a threshold on minimum separation distance

(typically 25 pixels in a 640× 480 image). In the experiments we use 𝐾* = 4 or 𝐾* = 5.

Weighted Descriptor Set (WDS): One problem that can arise when learning the dynamics

of a latent state 𝑧 is that some component of 𝑧 may be noisy or unreliable, which can make

it difficult or impossible to learn a dynamics model 𝑧′ = 𝑓(𝑧,𝑎). This problem doesn’t arise

in the imitation learning setting of Florence et al. [2019] which performs supervised learning

from 𝑧𝑡 → 𝑎expert
𝑡 , and thus can learn to ignore components of the latent state 𝑧𝑡 that aren’t

useful for predicting the action 𝑎expert
𝑡 . The fundamental difference of our dynamics learning

formulation compared to the imitation learning setup of Florence et al. [2019] is that the

†see Appendix for more details
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Figure 2-2: Visualization of the learned visual-correspondence model on a reference image
(left) and target image (right). Colored numbers in the target image represent the probability that the
detected correspondence is valid. Green reticle shows a valid correspondence with a high confidence
score, red reticle shows a case where no correspondence exists in the target image due to occlusion,
hence the low confidence probability. Confidence heatmap shown in bottom right.

latent 𝑧𝑡 appears directly in the cost function (Equation 2.1). There are a variety of reasons

that one or more of the tracked descriptors could be unreliable (e.g., occlusions, regions of

the object where the correspondence model has less accurate) and thus we would like our

dynamics learning framework to be robust to this. We achieve this by defining a learnable

mapping 𝜑 : 𝑦 → 𝑧 which maps the keypoint locations 𝑦 to the latent state 𝑧, where the

keypoints 𝑏𝑚𝑦 are as in our DS method. A regularization strategy is needed to ensure that

𝜑 doesn’t collapse to the trivial solution 𝜑 ≡ 0. We introduce learnable weights 𝛼 ∈ R𝐾×𝐾

and define 𝑤𝑘,𝑖 =
exp(𝛼𝑘,𝑖)∑︀𝐾

𝑗=1 exp(𝛼𝑘,𝑗)
. Let 𝑊 ∈ R𝐾×𝐾 be the matrix with entries 𝑤𝑘,𝑖, where the

parameterization guarantees that 𝑤𝑘,𝑖 ≥ 0 and
∑︀𝐾

𝑖=1𝑤𝑘,𝑖 = 1. 𝜑 is defined as

𝑦𝑘 =

𝐾∑︁
𝑖=1

𝑤𝑘,𝑖𝑦𝑖, 𝜑(𝑦;𝛼) = 𝑦 = {𝑦𝑘}𝐾𝑘=1 (2.3)

Note that each 𝑦𝑖 is a keypoint location in R𝐵. Thus 𝑦 is simply a convex combination of

the keypoints in 𝑦. The latent state 𝑧 is then defined as

𝑧 = (𝑧object,𝑜robot) = (𝑦,𝑜robot) = (𝜑(𝑦, 𝛼),𝑜robot) (2.4)
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The learnable weights 𝛼 are trained jointly with the parameters 𝜃dyn of the dynamics model,

and are fixed at test time. The fact that 𝑧object is gotten from 𝑦 by taking a weighted linear

combination preserves the interpretation of 𝑧 as tracking keypoints on the object, while

allowing some flexibility to ignore unreliable keypoints.

Weighted Spatial Descriptor Set (WSDS): This method is simply the combination of

(SDS) and (WDS).

2.3.3 Learning the Dynamics

We adopt a standard dynamics learning framework where we aim to predict the evolution

of the latent state 𝑧. We train our dynamics model to minimize the prediction error in

Equation 2.1 where 𝑧𝑡 = 𝑔𝜃𝑧(𝑜𝑡). Our proposed methods differ in the structure of the

mapping 𝑔 : 𝒪 → 𝒵 and the set of trainable parameters Θ.‡ For all of our methods we keep

the weights of the visual-correspondence network, 𝜃𝑑𝑐, fixed.

2.3.4 Online Planning for Closed-Loop Control

Once we have learned a dynamics model 𝑧′ = 𝑓(𝑧,𝑎), we use online planning with

MPC to select an action. Given a goal latent state 𝑧*, we want to find an action sequence

{𝑎𝑡′}𝑡+𝐻−1
𝑡′=𝑡 that maximizes the reward 𝑅 =

∑︀𝑡+𝐻−1
𝑡′=𝑡 𝑟(𝑧𝑡′ ,𝑎𝑡′). Our dynamics learning

approach is agnostic to the type of optimizer used to solve the MPC problem and the focus

of our work is on the visual and dynamics learning, rather than the specifics of the MPC.

Many model-based RL approaches [Yen-Chen et al., 2020, Ebert et al., 2017, Nagabandi

et al., 2020, Hafner et al., 2019b, Finn et al., 2016] use a random-sampling based planner

(e.g., cross-entropy method) to solve the underlying MPC problem. We experimented with

random shooting, gradient based shooting, cross-entropy and model-predictive path integral

(MPPI) planners and found that MPPI worked best in our scenarios.§

2.4 Results

We perform experiments aimed at answering the following questions: (1) Is it possible

to successfully use self-supervised descriptors as the latent state for a model-based RL

‡see Appendix A.2.2 for details
§See Appendix A.3 for more details.
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system? (2) What is the effect of various design decisions in our algorithm? (3) How does

visual-correspondence learning compare to several benchmark methods in terms of enabling

effective model-based RL policies? (4) Can we apply the method on real hardware?

Our main contribution is on the formulation of the visual model and dynamics learning

problem rather than the specifics of the MPC. However, to accurately compare our approach

to various baselines, we need to perform experiments in which the dynamics model is used

in closed-loop to solve a manipulation task. Our formulation of dynamics learning is very

general, and in principle can handle a wide variety of manipulation scenarios. However, even

with an accurate model (whether it comes from first principles or is learned), using this

model to perform closed-loop feedback control remains a challenging problem. Thus, for our

closed-loop experiments, we limit ourselves to pushing tasks that can adequately be solved

by the planners outlined in Section 2.3.4.

Tasks: Extended experimental details are provided in the Appendix but we provide a brief

overview of the tasks here. We perform experiments with four simulated tasks (depicted in

Figure 2-3) and one hardware task. All tasks involve pushing an object to a desired goal state.

The first three simulation tasks, denoted as top-down, angled, occlusions involve pushing a

single object. top-down has cameras in a top-down orientation while they are angled at 45

degrees in angled. Task occlusions keeps the angled camera positions but the box is resting

on a different face, resulting in significant self-occlusions. Task mugs involves pushing many

different objects from a category, in this case mugs with different size, shape and textures.

The hardware task is essentially identical to the angled sim task.

2.4.1 Visual-Correspondence Performance

Figures 2-1 and 2-2 show the performance of our dense visual-correspondence model. In

particular, Figure 2-1 shows the localization performance on real data along a trajectory while

Figure 2-2 shows an example of the confidence scores used as in the SDS method. Figure 2-3

shows the descriptors used in the SDS method for each of our simulation tasks. In particular

Figure 2-3d-e shows the ability of the descriptors to accurately find correspondences across

different object instances within a category, despite differences in color and shape.
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(a) (b) (c) (d) (e)
top-down camera angled camera occlusions mugs (category) mugs (category)

Figure 2-3: This figure shows reference descriptors {𝑑𝑖}𝐾𝑖=1 of the Spatial Descriptor Set variant
for our different simulation environments. In particular in (c) the sides of the object undergo
occlusions as the box rotates about the vertical axis. (d)-(e) show two different mugs from the
category-level mugs (category) task.

Task top-down camera angled camera occlusions mugs (category)

Method / task
data

pos, cm angle, ∘ pos, cm angle, ∘ pos, cm angle, ∘ pos, cm angle, ∘

Avg. trajectory 11.32 32.05 11.32 32.05 10.36 31.81 11.28 56.25

GT 3D 1.14 4.01 1.14 4.01 1.29 5.45 – –
SDS 1.19 3.88 1.10 3.97 1.46 6.77 1.20 15.03
WDS 1.16 4.43 1.30 5.12 1.49 8.64 1.00 13.29
DS 1.12 4.07 1.45 5.50 3.66 12.27 1.19 11.73
WSDS 1.19 4.00 1.18 4.86 1.28 5.59 1.39 18.18

Table 2.1: Ablations and comparison with ground-truth – quantitative results for various
ablations of our method on four simulated tasks. Each method was evaluated on the same set of 200
different initial and goal states. The pos and angle columns denote the translational (in cm) and
rotational (in degrees) deviations of the object from the goal position, averaged across all trials for a
specific method and task. Avg. trajectory denotes the average translation and rotation between the
initial and goal poses for each task.

2.4.2 Ablations on Visual-Correspondence for Dynamics Learning

Ablation studies show that the choice of what to track can have a substantial impact

on model performance, especially in the case of partial occlusions. Quantitative results are

detailed in Table 2.1. On tasks top-down and angled camera all methods perform reasonably

well, almost matching the performance of the GT 3D baseline that uses ground truth state

information. Intuitively this is because there are minimal occlusions in these settings, and so

almost all keypoints can be tracked reliably using dense-visual-correspondence. In contrast

the occlusions introduces the potential for significant occlusions. Given the camera angle as

shown in Figure 2-3c and the fact that the object rotates through the full 360 degrees of yaw

during the task, only the top face of the box remains unoccluded while the 4 side faces are

alternately occluded and visible. This task exposes significant differences in performance

among our various ablations. In particular SDS, WDS and WSDS perform significantly

better than DS. We believe that this is due to the fact that some of the descriptors {𝑑𝑖}𝐾𝑖=1

that are tracked in DS correspond to locations on the object that become occluded during
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Task top-down camera angled camera occlusions mugs (category)

Method pos, cm angle, ∘ pos, cm angle, ∘ pos, cm angle, ∘ pos, cm angle, ∘

SDS (ours) 1.19 3.88 1.10 3.97 1.46 6.77 1.20 15.03
WDS (ours) 1.16 4.43 1.30 5.12 1.49 8.64 1.00 13.29
Transporter 3D 2.01 15.95 4.36 25.14 3.72 20.65 2.81 61.22
Transporter 2D 2.08 13.59 3.60 23.60 2.74 18.86 2.33 60.18
Autoencoder 2.18 14.79 2.85 13.79 3.08 14.20 9.05 56.84

Table 2.2: Comparisons with baselines – quantitative results of our method compared to various
baselines on our four simulated tasks. Each method was evaluated on the same set of 200 different
initial and goal states. pos and angle denote the translational (in cm) and rotational (in degrees)
deviations of the object from the goal position, averaged across all trials for a specific method and
task.

an episode. The dense visual-correspondence model is not able to track keypoints through

occlusions, and when trying to localize an occluded point our dense-correspondence model

maps it to the closest point in descriptor space, which is not the location of the true

correpondence. Hence the keypoint locations that makeup the latent state 𝑧object for DS

suffer reduced accuracy, leading to a less accurate dynamics model and ultimately lower

performance when used for closed-loop MPC.

On the category-level task mugs the camera is in a top-down position and thus occlusions

are no longer an issue. However because the task involves different objects from a category

there is shape variation among the different objects. Thus the methods that use 𝐾 = 50

keypoints, namely DS and WDS, perform better than the sparser variants SDS, WSDS

that use only 𝐾 = 4, 5 keypoints. We believe that this is due to the fact that having a larger

number of keypoints better captures the shape variation across object instances and allows

for a more accurate dynamics model.

2.4.3 Comparison of Visual-Correspondence Pretraining With Baselines

In our comparisons against baselines, our model outperforms alternatives on all exper-

imental tasks. The largest differences are apparent in tasks occlusions and mugs which

involve partial occlusions and category-level generalization, respectively. The transporter

baseline uses the keypoint locations from Kulkarni et al. [2019] as the latent state 𝑧 , while

the autoencoder baseline jointly trains an autoencoder with a forward dynamics model. For

a detailed discussion of the baselines see Appendix A.4.3. Quantitative results are detailed

in Table 2.2.

On task top-down camera, the transporter [Kulkarni et al., 2019] model was able
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to achieve performance that was only slightly worse than WDS and SDS, while the

autoencoder performed significantly worse. The top-down setting is ideally suited for the

feature transport approach of the transporter model.

On tasks angled camera and occlusions, which have angled camera positions as opposed to

the top-down task, the performance of our methods remained consistent while transporter

suffered. This is potentially due to the fact that the feature transport mechanism of

transporter is not well-suited to off-axis camera positions in 3D worlds. The performance

of the autoencoder baseline remainded consistent, but worse than our approach, across

tasks without category-level generalization.

Task mugs contains a variety of different mug shapes with varied visual appearances and

hence tests category-level generalization of both the perception and dynamics models. As

discussed in Section 2.4.1, our dense-correspondence model is able to find correspondences

across these variations in appearance using only self-supervision, which allows us to learn a

dynamics model that is effective for completing the task. This task is significantly harder

than the other tasks not only because of the presence of novel objects, but because the

goal states involve much larger rotations, as detailed in the first row of Table 2.1. Both

the transporter and autoencoder baselines perform poorly in this task. We hypothesize

that this is due to the fact that there is much more variance in the visual appearance of

the objects as compared to the other tasks and thus the latent state 𝑧 produced by these

baselines is not amenable to dynamics learning.

2.4.4 Hardware

Experimental Setup: We used a Kuka IIWA LBR robot with a custom cylindrical pusher

attached to the end-effector to perform our hardware experiments, see Figure 2-1. RGBD

sensing was provided by two RealSense D415 cameras rigidly mounted offboard the robot

and calibrated to the robot’s coordinate frame. To enable effective correspondence learning

between views, it is ideal to have views with some overlap such that correspondences exist,

but still maintain different-enough views. At test time only a single camera is used to localize

the dense-descriptor keypoints. The robot is controlled by commanding end-effector velocity

in the 𝑥𝑦 plane at 5Hz.

Hardware Results: For visual learning we collected a small dataset of the object in

different positions to provide a diverse set of views for training the dense-correspondence
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Traj 4

Figure 2-4: Hardware results. Left image shows demonstration for trajectory 4. Scatter plots
show results of our approach on the four different reference trajectory tracking tasks. The axes of
the plots show the deviation of the object starting pose from the initial pose of the demonstration.
Color indicates the distance between final and goal poses, lower cost is better. The various reference
trajectories are of different difficulties, as reflected by the different regions of attraction of the MPC
controller. More details can be found in Appendix A.5 and videos are on our project page.

model. For dynamics learning, we collected a dataset of the robot randomly pushing the

object around. This amounted to approximately 10 minutes of interaction time and was

used to train the dynamics model. All hardware experiments used the SDS method. To

enable our MPC controller to accomplish long-horizon tasks, we supplied the controller with

a reference trajectory for the object keypoints that came from a single demonstration, see

Figure 2-1a-d. The MPC controller then tracked this reference trajectory using a 2 second

MPC horizon, which corresponds to 𝐻 = 10 since we are commanding actions at 5 Hz. We

collected 4 different reference trajectories¶ and ran multiple rollouts for each trajectory,

varying the initial condition of the object pose during each run to test the region of attraction

of our controller. In all cases our controller showed the ability to stabilize the system to the

reference trajectory in spite of perturbations to the initial condition. Quantitative results

are detailed in Figure 2-4. In particular, we see that the ability of the controller to stabilize

the trajectory in the face of disturbances in the initial condition depends on the trajectory.

For trajectory (1) the controller is able to stabilize disturbances of up to 60 degrees, while

trajectory (4) has a much smaller region of attraction. As can be seen in Appendix A.5,

trajectory (1) is a relatively simple trajectory with minimal orientation change between

start and goal, while trajectory (4) involves a challenging 180-degree orientation change and

requires the robot to operate at the edge of its kinematic workspace, reducing its control

authority. Overall, our system exhibits impressive feedback and is able to track a trajectory

in the keypoint latent space, enabling one-shot imitation learning. We encourage the reader

to watch the videos on our project page to see the system in action.

¶see Appendix A.5 for details on the reference trajectories
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2.5 Discussion

We presented a method for using self-supervised visual-correspondence learning as input

to a predictive dynamics model. Our approach produces interpretable latent states that

outperform competing baselines on a variety of simulated manipulation tasks. Additionally,

we demonstrated how the category-level generalization of our visual-correspondence model

enables learning of a category-level dynamics model, resulting in large performance gains over

baselines. Finally, we demonstrated our approach on a real hardware system, and showed its

ability to stabilize complex long-horizon plans by tracking the latent state trajectory from a

single demonstration.
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Chapter 3

Learning Particle Dynamics for

Manipulating Rigid Bodies,

Deformable Objects, and Fluids

The previous chapter discussed the use of keypoint representations for pusher-slider

systems, focusing on the manipulation of primarily rigid objects. However, real-life control

tasks involve matters of various substances—soft bodies, granular materials, liquid, gas—each

with distinct physical behaviors and having high degrees of freedom, making keypoints

insufficient to capture the variations of the objects. Particle-based simulators have been

developed to model the dynamics of these complex scenes; however, relying on approximation

techniques, their simulation often deviates from real-world physics, especially in the long

term. In this chapter, we propose to take an alternative approach by learning a particle-

based simulator directly from data for complex control tasks. Combining learning with

particle-based systems brings in two major benefits: first, the learned simulator, just like other

particle-based systems, acts widely on objects of different materials; second, the particle-based

representation poses a strong inductive bias for learning: particles of the same type have the

same dynamics within. This enables the model to learn models of complicated interacting

systems from a relatively small amount of data and generalize better than baselines that do

not exploit the underlying structure. We demonstrate robots achieving complex manipulation

tasks using the learned simulator, such as manipulating fluids and deformable foam, with

experiments both in simulation and in the real world. Our study helps lay the foundation for
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robot learning of dynamic scenes with particle-based representations. Please see our project

page for video illustrations: http://dpi.csail.mit.edu.

This chapter was previously published as Li et al. [2018] in the International Conference on

Learning Representations (ICLR) 2019 with Jiajun Wu, Russ Tedrake, Joshua B. Tenenbaum,

and Antonio Torralba as co-authors.

3.1 Introduction

Objects have distinct dynamics. Under the same push, a rigid box will slide, modeling

clay will deform, and a cup full of water will fall with water spilling out. The diverse

behavior of different objects poses challenges to traditional rigid-body simulators used in

robotics [Todorov et al., 2012, Tedrake and the Drake Development Team, 2019]. Particle-

based simulators aim to model the dynamics of these complex scenes [Macklin et al., 2014];

however, relying on approximation techniques for the sake of perceptual realism, their

simulation often deviates from real world physics, especially in the long term. Developing

generalizable and accurate forward dynamics models directly from observation data is of

critical importance for robot manipulation of distinct real-life objects.

We propose to learn a differentiable, particle-based simulator for complex control tasks

based on neural networks, drawing inspiration from recent development in learning-based

physical engines [Battaglia et al., 2016, Chang et al., 2017]. In robotics, the use of simula-

tors capable of producing gradients, together with continuous and symbolic optimization

algorithms, has enabled planning for increasingly complex whole-body motions with multi-

contact and multi-object interactions [Toussaint et al., 2018]. Yet most of the work in

this direction has only tackled interactions within rigid body systems. We use particles as

the representation for the environment and develop dynamic particle interaction networks

(DPI-Nets) for learning particle dynamics, focusing on capturing the dynamic, hierarchical,

and long-range interactions of particles (Figure 3-1a-c). DPI-Nets can then be combined

with classic perception and gradient-based optimization algorithms for robot manipulation

of deformable objects (Figure 3-1d).

Learning a particle-based simulator brings in two major benefits. First, the learned

simulator, just like other particle-based systems, acts widely on objects of different states.

DPI-Nets have successfully captured the complex behaviors of deformable objects, fluids, and
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rigid-bodies. With learned DPI-Nets, our robots have achieved success in manipulation tasks

that involve deformable objects of complex physical properties, such as molding plasticine to

a target shape.

Second, the particle-based representation poses a strong inductive bias for learning:

particles of the same type have the same dynamics within. This enables the model to share

the parameters of neural modules that are used to compute the interactions between particles.

As a result, the model can learn from a relatively small amount of data and extrapolate to

testing environments that are larger or smaller than the training distribution. Experiments

suggest that DPI-Nets quickly learn to characterize a novel object of unknown physical

properties. The learned model also helps the robot to successfully manipulate deformable

objects in the real world.

DPI-Nets combine three key features for effective particle-based simulation and control:

multi-step spatial propagation, hierarchical particle structure, and dynamic interaction

graphs. In particular, it employs dynamic interaction graphs, built on the fly throughout

manipulation, to capture the meaningful interactions among particles of deformable objects

and fluids. The use of dynamic graphs allows neural models to focus on learning meaningful

interactions among particles, and is crucial for obtaining good simulation accuracy and high

success rates in manipulation. As objects deform when robots interact with them, a fixed

interaction graph over particles is insufficient for robot manipulating non-rigid objects.

Experiments demonstrate that DPI-Nets significantly outperform interaction networks

[Battaglia et al., 2016], HRN [Mrowca et al., 2018], and a few other baselines. More

importantly, unlike previous papers that focused only on forward simulation, we have applied

our model to downstream control tasks. Our DPI-Nets enable complex manipulation tasks for

deformable objects and fluids and adapt to scenarios with unknown physical parameters that

need to be identified online. We have also performed real-world experiments to demonstrate

our model’s generalization ability.

3.2 Related Work

Physics simulators with analytical gradients. Researchers have developed techniques

to differentiate through physics-based simulators and sought to provide analytical gradi-

ents [Ehrhardt et al., 2017, Degrave et al., 2019, Todorov et al., 2012, Tedrake and the Drake
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Perception Prediction Target

Gradient-Based 
Optimization

Loss

(a)

Dynamic Interaction Graph

(b)

Local Propagation Hierarchical Propagation

(c) Multi-Step Effect
Propagation

Figure 3-1: Learning particle dynamics for control. (a) DPI-Nets learn particle interaction
while dynamically building the interaction graph over time. (b) Build hierarchical graph for multi-
scale effect propagation. (c) Multi-step message passing for handling instantaneous force propagation.
(d) Perception and control with the learned model. Our system first reconstructs the particle-based
shape from visual observation. It then uses gradient-based trajectory optimization to search for the
actions that produce the most desired output.

Development Team, 2019]. In particular, Battaglia et al. [2016] and Chang et al. [2017] have

explored learning a simulator from data by approximating object interactions with neural

networks. Li et al. [2019b] proposed learning to propagate signals along the interaction graph

and extended to partially observable scenarios. These methods mostly focus on modeling

rigid body dynamics.

Simulators capable of providing analytical gradients for deformable objects have been

less studied. Recently, Schenck and Fox [2018b] proposed SPNets to extract gradients from

position-based simulation of fluids [Macklin and Müller, 2013]. An inspiring concurrent work

from Mrowca et al. [2018] explored learning to approximate particle dynamics of deformable

shapes with the Hierarchical Relation Network (HRN). Compared with these papers, we

introduce state-specific modeling and dynamic graphs for accurate forward prediction for

different states of matter (rigid bodies, deformable shapes, fluids). We also demonstrate how

the learned dynamics model can be used for control in both simulation and real world.

Our approach is also complementary to some recent work on learning to discover the

interaction graphs [van Steenkiste et al., 2018, Kipf et al., 2018]. Our model can also be

naturally augmented with a perception module to handle raw visual input, as suggested by

Watters et al. [2017], Wu et al. [2017], and Fragkiadaki et al. [2016].
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Model-predictive control with gradient-based optimization. Many recent papers

have studied model-predictive control with deep networks [Lenz et al., 2015, Gu et al., 2016,

Nagabandi et al., 2018, Farquhar et al., 2018, Srinivas et al., 2018]. They often learn an

abstract state transition function, instead of an explicit account of the environment [Silver

et al., 2017, Oh et al., 2017], and then use the learned function to facilitate training of

a policy network. A few recent papers have employed the analytical gradients from the

simulators [de Avila Belbute-Peres et al., 2018, Schenck and Fox, 2018b] for control problems,

such as tool manipulation and tool-use planning [Toussaint et al., 2018]. Our model builds

on and extends these approaches by learning a general physics simulator that takes raw

object observations (e.g., positions, velocities) of each particle as input. We then integrate it

into classic trajectory optimization algorithms for control. Compared with pure analytical

simulators, our learned simulator can better generalize to novel testing scenarios where the

governing equations and object/environment parameters are unknown.

A few papers have explored using interaction networks for planning and control. They

often learn a policy based on interaction networks’ rollouts [Racanière et al., 2017, Hamrick

et al., 2017, Pascanu et al., 2017]. In contrast, our model learns a dynamics simulator and

directly optimizes trajectories for continuous control. Recently, Sanchez-Gonzalez et al. [2018]

have applied interaction networks for control, and Li et al. [2019b] have further extended

interaction nets to handle instance signal propagation for controlling multiple rigid bodies

under partial observations. Compared with them, our dynamic particle interaction networks

simulate and control deformable, particle-based objects, using dynamic graphs to tackle

scenes with complex object interactions.

3.3 Approach

3.3.1 Preliminaries

We first describe how interaction networks [Battaglia et al., 2016] represent the physical

system; we then extend them for particle-based dynamics.

The interactions within a physical system are represented as a directed graph, 𝐺 =

⟨𝑂,𝑅⟩, where vertices 𝑂 = {𝑜𝑖} represent objects and edges 𝑅 = {𝑟𝑘} represent relations.

Specifically, 𝑜𝑖 = ⟨𝑥𝑖, 𝑎𝑜𝑖 ⟩, where 𝑥𝑖 = ⟨𝑞𝑖, 𝑞𝑖⟩ is the state of object 𝑖, containing its position

𝑞𝑖 and velocity 𝑞𝑖. 𝑎𝑜𝑖 denotes its attributes (e.g., mass, radius). For relation, we have
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𝑟𝑘 = ⟨𝑢𝑘, 𝑣𝑘, 𝑎𝑟𝑘⟩, 1 ≤ 𝑢𝑘, 𝑣𝑘 ≤ |𝑂|, where 𝑢𝑘 is the receiver, 𝑣𝑘 is the sender, and both are

integers. 𝑎𝑟𝑘 is the type and attributes of relation 𝑘 (e.g., collision, spring connection).

The goal is to build a learnable physical engine to capture the underlying physical

interactions using function approximators 𝜑. The learned model can then be used to infer the

system dynamics and predict the future from the current interaction graph as 𝐺𝑡+1 = 𝜑(𝐺𝑡),

where 𝐺𝑡 denotes the scene state at time 𝑡.

Interaction networks. Battaglia et al. [2016] proposed interaction networks (IN), a

general-purpose, learnable physics engine that performs object- and relation-centric reasoning

about physics. INs define an object function 𝑓𝑂 and a relation function 𝑓𝑅 to model objects

and their relations in a compositional way. The future state at time 𝑡 + 1 is predicted

as 𝑒𝑘,𝑡 = 𝑓𝑅(𝑜𝑢𝑘,𝑡, 𝑜𝑣𝑘,𝑡, 𝑎
𝑟
𝑘)𝑘=1...|𝑅|, 𝑜𝑖,𝑡+1 = 𝑓𝑂(𝑜𝑖,𝑡,

∑︀
𝑘∈𝒩𝑖

𝑒𝑘,𝑡)𝑖=1...|𝑂|, where 𝑜𝑖,𝑡 = ⟨𝑥𝑖,𝑡, 𝑎𝑜𝑖 ⟩

denotes object 𝑖 at time 𝑡, 𝑢𝑘 and 𝑣𝑘 are the receiver and sender of relation 𝑟𝑘 respectively,

and 𝒩𝑖 denotes the relations where object 𝑖 is the receiver.

Propagation networks. A limitation of INs is that at every time step 𝑡, it only con-

siders local information in the graph 𝐺 and cannot handle instantaneous changes in

forces/accelerations in other bodies, which however is a common phenomenon in rigid-body

dynamics. Li et al. [2019b] proposed propagation networks to approximate the instantaneous

force changes by doing multi-step message passing. Specifically, they first employed the

ideas on fast training of RNNs [Lei and Zhang, 2017, Bradbury et al., 2017] to encode the

shared information beforehand and reuse them along the propagation steps. The encoders

for objects are denoted as 𝑓 enc
𝑂 and the encoder for relations as 𝑓 enc

𝑅 , where we denote

𝑐𝑜𝑖,𝑡 = 𝑓 enc
𝑂 (𝑜𝑖,𝑡), 𝑐

𝑟
𝑘,𝑡 = 𝑓 enc

𝑅 (𝑜𝑢𝑘,𝑡, 𝑜𝑣𝑘,𝑡, 𝑎
𝑟
𝑘).

At time 𝑡, denote the propagating influence from relation 𝑘 at propagation step 𝑙 as 𝑒𝑙𝑘,𝑡,

and the propagating influence from object 𝑖 as ℎ𝑙𝑖,𝑡. For step 1 ≤ 𝑙 ≤ 𝐿, propagation can be

described as

Step 0: ℎ0𝑖,𝑡 = 0, 𝑖 = 1 . . . |𝑂|, (3.1)

Step 𝑙 = 1, . . . , 𝐿: 𝑒𝑙𝑘,𝑡 = 𝑓𝑅(𝑐
𝑟
𝑘,𝑡, ℎ

𝑙−1
𝑢𝑘,𝑡

, ℎ𝑙−1
𝑣𝑘,𝑡

), 𝑘 = 1 . . . |𝑅|, (3.2)

ℎ𝑙𝑖,𝑡 = 𝑓𝑂(𝑐
𝑜
𝑖,𝑡,

∑︁
𝑘∈𝒩𝑖

𝑒𝑙𝑘,𝑡, ℎ
𝑙−1
𝑖,𝑡 ), 𝑖 = 1 . . . |𝑂|, (3.3)

Output: 𝑜𝑖,𝑡+1 = 𝑓output
𝑂 (ℎ𝐿𝑖,𝑡), 𝑖 = 1 . . . |𝑂|, (3.4)
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where 𝑓𝑂 denotes the object propagator, and 𝑓𝑅 denotes the relation propagator.

3.3.2 Dynamic Particle Interaction Networks

Particle-based system is widely used in physical simulation due to its flexibility in

modeling various types of objects [Macklin et al., 2014]. We extend existing systems that

model object-level interactions to allow particle-level deformation. Consider object set {o𝑖},

where each object o𝑖 = {𝑜𝑘𝑖 }𝑘=1...|o𝑖| is represented as a set of particles. We now define the

graph on the particles and the rules for influence propagation.

Dynamic graph building. The vertices of the graph are the union of particles for all

objects 𝑂 = {𝑜𝑘𝑖 }𝑖=1...|𝑂|,𝑘=1...|o𝑖|. The edges 𝑅 between these vertices are dynamically

generated over time to ensure efficiency and effectiveness. The construction of the relations

is specific to environment and task, which we’ll elaborate in Section 3.4. A common choice is

to consider the neighbors within a predefined distance.

An alternative is to build a static, complete interaction graph, but it has two major

drawbacks. First, it is not efficient. In many common physical systems, each particle is only

interacting with a limited set of other particles (e.g., those within its neighborhood). Second,

a static interaction graph implies a universal, continuous neural function approximator;

however, many physical interactions involve discontinuous functions (e.g., contact). In

contrast, using dynamic graphs empowers the model to tackle such discontinuity.

Hierarchical modeling for long-range dependence. Propagation networks [Li et al.,

2019b] require a large 𝐿 to handle long-range dependence, which is both inefficient and hard

to train. Hence, we add one level of hierarchy to efficiently propagate the long-range influence

among particles [Mrowca et al., 2018]. For each object that requires modeling of the long-range

dependence (e.g., rigid-body), we cluster the particles into several non-overlapping clusters.

For each cluster, we add a new particle as the cluster’s root. Specifically, for each object o𝑖

that requires hierarchical modeling, the corresponding roots are denoted as õ𝑖 = {𝑜𝑘𝑖 }𝑘=1...|õ𝑖|,

and the particle set containing all the roots is denoted as �̃� = {𝑜𝑘𝑖 }𝑖=1...|𝑂|,𝑘=1...|õ𝑖|. We then

construct an edge set 𝑅LeafToRoot that contains directed edges from each particle to its root,

and an edge set 𝑅RootToLeaf containing directed edges from each root to its leaf particles. For

each object that need hierarchical modeling, we add pairwise directed edges between all its
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roots, and denote this edge set as 𝑅RootToRoot.

We employ a multi-stage propagation paradigm: first, propagation among leaf nodes,

𝜑LeafToLeaf(⟨𝑂,𝑅⟩); second, propagation from leaf nodes to root nodes, 𝜑LeafToRoot(⟨𝑂 ∪

�̃�, 𝑅LeafToRoot⟩); third, propagation between roots, 𝜑RootToRoot(⟨�̃�, 𝑅RootToRoot⟩); fourth,

propagation from root to leaf, 𝜑RootToLeaf(⟨𝑂 ∪ �̃�, 𝑅RootToLeaf⟩). The signals on the leaves

are used to do the final prediction.

Applying to objects of various materials. We define the interaction graph and the

propagation rules on particles for different types of objects as follows:

• Rigid bodies. All the particles in a rigid body are globally coupled; hence for each rigid

object, we define a hierarchical model to propagate the effects. After the multi-stage

propagation, we average the signals on the particles to predict a rigid transformation

(rotation and translation) for the object. The motion of each particle is calculated

accordingly. For each particle, we also include its offset to the center-of-mass to help

determine the torque.

• Elastic/Plastic objects. For elastically deforming particles, only using the current

position and velocity as the state is not sufficient, as it is not clear where the particle will

be restored after the deformation. Hence, we include the particle state with the resting

position to indicate the place where the particle should be restored. When coupled with

plastic deformation, the resting position might change during an interaction. Thus,

we also infer the motion of the resting position as a part of the state prediction. We

use hierarchical modeling for this category but predict next state for each particles

individually.

• Fluids. For fluid simulation, one has to enforce density and incompressibility, which can

be effectively achieved by only considering a small neighborhood for each particle [Mack-

lin and Müller, 2013]. Therefore, we do not need hierarchical modeling for fluids. We

build edges dynamically, connecting a fluid particle to its neighboring particles. The

strong inductive bias leveraged in the fluid particles allows good performance even

when tested on data outside training distributions.

For the interaction between different materials, two directed edges are generated for any

pairs of particles that are closer than a certain distance.
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3.3.3 Control on the Learned Dynamics

Model-based methods offer many advantages when comparing with their model-free

counterparts, such as generalization and sample efficiency. However, for cases where an

accurate model is hard to specify or computationally prohibitive, a data-driven approach

that learns to approximate the underlying dynamics becomes useful.

Function approximators such as neural networks are naturally differentiable, and off-the-

shelf toolboxes for neural networks have emphasized the speed and ease of use of analytical

gradients. We can thus rollout using the learned dynamics and optimize the control inputs

by minimizing a loss between the simulated results and a target configuration via gradient

descent. In cases where certain physical parameters are unknown, we can perform online

system identification by minimizing the difference between the model’s prediction and the

reality. An outline of our algorithm can be found in Section B.1.

Model predictive control using shooting methods. Let’s denote 𝒢𝑔 as the goal and

�̂�1:𝑇 be the control inputs, where 𝑇 is the time horizon. The control inputs are part of the

interaction graph, such as the velocities or the initial positions of a particular set of particles.

We denote the resulting trajectory after applying �̂� as 𝒢 = {𝐺𝑖}𝑖=1:𝑇 . The task here is to

determine the control inputs as to minimize the distance between the actual outcome and

the specified goal ℒgoal(𝒢,𝒢𝑔).

Our dynamic particle interaction network does forward simulation by taking the dynamics

graph at time 𝑡 as input, and produces the graph at next time step, �̂�𝑡+1 = Φ(𝐺𝑡), where

Φ is implemented as DPI-Net as described in the previous section. Let’s denote the the

history until time 𝑡 as 𝒢 = {𝐺𝑖}𝑖=1...𝑡, and the forward simulation from time step 𝑡 as

𝒢 = {�̂�𝑖}𝑖=𝑡+1...𝑇 . The loss ℒgoal(𝒢 ∪ 𝒢,𝒢𝑔) can be used to update the control inputs by

doing stochastic gradient descent (SGD). This is known as the shooting method in trajectory

optimization [Tedrake, 2009].

The learned model might deviate from the reality due to accumulated prediction errors.

We use Model-Predictive Control (MPC) [Camacho and Alba, 2013] to stabilize the trajectory

by doing forward simulation and updating the control inputs at every time step to compensate

the simulation error.
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Online adaptation. In many real-world cases, without actually interacting with the

environment, inherent attributes such as mass, stiffness, and viscosity are not directly

observable. DPI-Nets can estimate these attributes on the fly with SGD updates by minimizing

the distance between the predicted future states and the actual future states ℒstate(�̂�𝑡, 𝐺𝑡).

3.4 Experiments

We evaluate our method on four different environments containing different types of

objects and interactions. We will first describe the environments and show simulation results.

We then present how the learned dynamics helps to complete control tasks in both simulation

and the real world.

3.4.1 Environments

FluidFall (Figure 3-2a). Two drops of fluids are falling down, colliding, and merging. We

vary the initial position and viscosity for training and evaluation.

BoxBath (Figure 3-2b). A block of fluids are flushing a rigid cube. In this environment, we

have to model two different materials and the interactions between them. We randomize the

initial position of the fluids and the cube to test the model’s generalization ability.

FluidShake (Figure 3-2c). We have a box of fluids and the box is moving horizontally, The

speed of the box is randomly selected at each time step. We vary the size of the box and

volume of the fluids to test generalization.

RiceGrip (Figure 3-2d). We manipulate an object with both elastic and plastic deformation

(e.g., sticky rice). We use two cuboids to mimic the fingers of a parallel gripper, where the

gripper is initialized at a random position and orientation. During the simulation of one

grip, the fingers will move closer to each other and then restore to its original positions. The

model has to learn the interactions between the gripper and the “sticky rice”, as well as the

interactions within the “rice” itself.

We use all four environments in evaluating our model’s performance in simulation. We use

the rollout MSE as our metric. We further use the latter two for control, because they involve

fully actuated external shapes that can be used for object manipulation. In FluidShake,

the control task requires determining the speed of the box at each time step, in order to

make the fluid match a target configuration within a time window; in RiceGrip, the control
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task corresponds to select a sequence of grip configurations (position, orientation, closing

distance) to manipulate the deformable object as to match a target shape. The metric for

performance in control is the Chamfer distance between the manipulation results and the

target configuration.

3.4.2 Physical Simulation

We present implementation details for dynamics learning in the four environment and

perform ablation studies to evaluate the effectiveness of the introduced techniques.

Implementation details. For FluidFall, we dynamically build the graph by connecting

each particle to its neighbors within a certain distance 𝑑. No hierarchical modeling is used.

For BoxBath, we model the rigid cube as in Section 3.3.2, using multi-stage hierarchical

propagation. Two directed edges will be constructed between two fluid particles if the

distance between them is smaller than 𝑑. Similarly, we also add two directed edge between

rigid particles and fluid particles when their distance is smaller than 𝑑.

For FluidShake, we model fluid as in Section 3.3.2. We also add five external particles to

represent the walls of the box. We add a directed edge from the wall particle to the fluid

particle when they are closer than 𝑑. The model is a single propagation network, where the

edges are dynamically constructed over time.

For RiceGrip, we build a hierarchical model for rice and use four propagation networks

for multi-stage effect propagation (Section 3.3.2). The edges between the “rice” particles are

dynamically generated if two particles are closer than 𝑑. Similar to FluidShake, we add two

external particles to represent the two “fingers” and add an edge from the “finger” to the

“rice” particle if they are closer than the distance 𝑑. As “rice” can deform both elastically

and plastically, we maintain a resting position that helps the model restore a deformed

particle. The output for each particle is a 6-dim vector for the velocity of the current observed

position and the resting position. More training details for each environment can be found

in Section B.4. Details for data generation are in Section B.3.

Results. Qualitative and quantitative results are in Figure 3-2 and Table 3.1. We compare

our method (DPI-Net) with three baselines, Interaction Networks [Battaglia et al., 2016],

HRN [Mrowca et al., 2018], and DPI-Net without hierarchy. Note that we use the same set

of hyperparameters in our model for all four testing environments.
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(a) FluidFall

(b) BoxBath
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Figure 3-2: Qualitative results on forward simulation. We compare the ground truth (GT)
and the rollouts from HRN [Mrowca et al., 2018] and our model (DPI-Net) in four environments
(FluidFall, BoxBath, FluidShake, and RiceGrip). The simulations from our DPI-Net are significantly
better. We provide zoom-in views for a few frames to show details. Please see our video for more
empirical results.
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Methods FuildFall BoxBath FluidShake RiceGrip

IN [Battaglia et al., 2016] 2.74 ± 0.56 N/A N/A N/A
HRN [Mrowca et al., 2018] 0.21 ± 0.04 3.62 ± 0.40 3.58 ± 0.77 0.17 ± 0.11
DPI-Net w/o hierarchy 0.15 ± 0.03 2.64 ± 0.69 1.89 ± 0.36 0.29 ± 0.13
DPI-Net 0.15 ± 0.03 2.03 ± 0.41 1.89 ± 0.36 0.13 ± 0.07

Table 3.1: Quantitative results on forward simulation. MSE (×10−2) between the ground
truth and model rollouts. The hyperparameters used in our model are fixed for all four environments.
FluidFall and FluidShake involve no hierarchy, so DPI-Net performs the same as the variant without
hierarchy. DPI-Net significantly outperforms HRN [Mrowca et al., 2018] in modeling fluids (BoxBath
and FluidShake) due to the use of dynamic graphs.

Specifically, Interaction Networks (IN) consider a complete graph of the particle system.

Thus, it can only operate on small environments such as FluidFall; it runs out of memory

(12GB) for the other three environments. IN does not perform well, because its use of a

complete graph makes training difficult and inefficient, and because it ignores influence

propagation and long-range dependence.

Without a dynamic graph, modeling fluids becomes hard, because the neighbors of a

fluid particle changes constantly. Table 3.1 shows that for environments that involve fluids

(BoxBath and FluidShake), DPI-Net performs better than those with a static interaction

graph. Our model also performs better in scenarios that involve objects of multiple states

(BoxBath, Figure 3-2b), because it uses state-specific modeling. Models such as HRN [Mrowca

et al., 2018] aim to learn a universal dynamics model for all states of matter. It is therefore

solving a harder problem and, for this particular scenario, expected to perform not as well.

When augmented with state-specific modeling, HRN’s performance is likely to improve, too.

Without hierarchy, it is hard to capture long-range dependence, leading to performance drop

in environments that involve hierarchical object modeling (BoxBath and RiceGrip).

Appendix B.2 includes results on scenarios outside the training distribution (e.g., more

particles). DPI-Net performs well on these out-of-sample cases, successfully leveraging the

inductive bias.

Ablation studies. We also test our model’s sensitivity to hyperparameters. We consider

three of them: the number of roots for building hierarchy, the number of propagation steps

𝐿, and the size of the neighborhood 𝑑. We test them in RiceGrip. As can be seen from the

results shown in Figure 3-3a, DPI-Nets can better capture the motion of the “rice” by using

fewer roots, on which the information might be easier to propagate. Longer propagation
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Figure 3-3: Ablation studies. We perform ablation studies to test our model’s robustness to
hyperparameters. The performance is evaluated by the mean squared distance (×10−2) between the
ground truth and model rollouts. (a) We vary the number of roots when building hierarchy, the
propagation step 𝐿 during message passing, and the size of the neighborhood 𝑑. (b) In BoxBath,
DPI-Nets use separate motion predictors for fluids and rigid bodies. Here we compared with a unified
motion predictor.

steps do not necessarily lead to better performance, as they increases training difficulty.

Using larger neighborhood achieves better results, but makes computation slower. Using one

TITAN Xp, each forward step in RiceGrip takes 30ms for 𝑑 = 0.04, 33ms for 𝑑 = 0.08, and

40ms for 𝑑 = 0.12.

We also perform experiments to justify our use of different motion predictors for objects

of different states. Figure 3-3b shows the results of our model vs . a unified dynamics predictor

for all objects in BoxBath. As there are only a few states of interest (solids, liquids, and

soft bodies), and their physical behaviors are drastically different, it is not surprising that

DPI-Nets, with state-specific motion predictors, perform better, and are equally efficient as

the unified model (time difference smaller than 3ms per forward step).

3.4.3 Control

We leverage dynamic particle interaction network for control tasks in both simulation

and real world. Because trajectory optimization using shooting method can easily stuck to

a local minimum, we first randomly sample 𝑁sample control sequences, and select the best

performing one according to the rollouts of our learned model. We then optimize it via

shooting method using our model’s gradients. We also use online system identification to

further improve the model’s performance. Figure 3-4 and Figure 3-5 show qualitative and

quantitative results, respectively. More details of the control algorithm can be found in

Section B.5.
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Figure 3-4: Qualitative results on control. (a) FluidShake - Manipulating a box of fluids to
match a target shape. The Result and Target indicate the fluid shape when viewed from the cutaway
view. (b) RiceGrip - Gripping a deformable object and molding it to a target shape. (c) RiceGrip in
Real World - Generalize the learned dynamics and the control algorithms to the real world by doing
online adaptation. The last two columns indicate the final shape viewed from the top.

FluidShake. We aim to control the speed of the box to match the fluid particles to a target

configuration. We compare our method (RS+TO) with random search over the learned

model (without trajectory optimization - RS) and Model-free Deep Reinforcement Learning

(Actor-Critic method optimized with PPO [Schulman et al., 2017] (RL). Figure 3-5a suggests

that our model-based control algorithm outperforms both baselines with a large margin. Also

RL is not sample-efficient, requiring more than 10 million time steps to converge while ours

requires 600K time steps.

RiceGrip. We aim to select a sequence of gripping configurations (position, orientation,

and closing distance) to mold the “sticky rice” to a target shape. We also consider cases

where the stiffness of the rice is unknown and need to be identified. Figure 3-5b shows that

our dynamic particle interaction network with system identification performs the best, and

is much more efficient than RL (150K vs. 10M time steps).
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Figure 3-5: Quantitative results on control. We show the results on control (as evaluated by
the Chamfer distance (×10−2) between the manipulated result and the target) for (a) FluidShake
and (b) RiceGrip by comparing with four baselines. RL: Model-free deep reinforcement learning
optimized with PPO; RS: Random search the actions from the learned model and select the best
one to execute; RS + TO: Trajectory optimization augmented with model predictive control; RS +
TO + ID: Online system identification by estimating uncertain physical parameters during run time.

RiceGrip in the real world. We generalize the learned model and control algorithm

for RiceGrip to the real world. We first reconstruct object geometry using a depth camera

mounted on our Kuka robot using TSDF volumetric fusion [Curless and Levoy, 1996]. We

then randomly sampled 𝑁fill particles within the object mesh as the initial configuration

for manipulation. Figure 3-4c and Figure 3-5b shows that, using DPI-Nets, the robot

successfully adapts to the real world environment of unknown physical parameters and

manipulates a deformable foam into various target shapes. The learned policy in RiceGrip

does not generalize to the real world due to domain discrepancy, and outputs invalid gripping

configurations.

3.5 Discussion

We have demonstrated that a learned particle dynamics model can approximate the

interaction of diverse objects, and can help to solve complex manipulation tasks of deformable

objects. Our system requires standard open-source robotics and deep learning toolkits, and

can be potentially deployed in household and manufacturing environments. Robot learning

of dynamic scenes with particle-based representations shows profound potential due to the

generalizability and expressiveness of the representation. Our study helps lay the foundation

for it.
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Chapter 4

Learning Latent-Space Dynamics with

Neural Radiance Field

Now we move forward by considering the modeling and manipulation of dynamical

systems with extremely high degrees of freedom (DoF) purely from visual observations, like

manipulating a box of fluid with ice cubes floating on it (i.e., fluid-body interactions). In

this case, it is hard to estimate the full state information of the particle set when the only

inputs are the RGB images. We also do not know how to use keypoints (typically a sparse

set of points attached to semantically-meaningful parts of an object) in this case, as the fluid

is of extremely high DoF and constantly changes its shape during interactions.

This chapter takes on this challenge and aims to learn models for highly dynamic 3D scenes

purely from 2D visual observations. Our model combines Neural Radiance Fields (NeRF) and

time contrastive learning with an autoencoding framework, which learns viewpoint-invariant

3D-aware scene representations (𝑧𝑡 in Equation 1.2, but in this chapter, we overwrite its

notation as 𝑠𝑡). We show that a dynamics model, constructed over the learned representation

space, enables visuomotor control for challenging manipulation tasks involving both rigid

bodies and fluids, where the target can be specified in a viewpoint different from what the

robot operates on. Moreover, when coupled with an auto-decoding framework, it can even

support goal specification from camera viewpoints that are outside the training distribution.

We further demonstrate the richness of the learned 3D dynamics model by performing future

prediction and novel view synthesis. Finally, we provide detailed ablation studies regarding

different system designs and qualitative analysis of the learned representations. Video
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illustrations can be found on our project page: https://3d-representation-learning.

github.io/nerf-dy/.

This chapter was originally published as Li et al. [2022] in the Conference on Robot

Learning (CoRL) 2021 as Oral Presentation, in which Shuang Li has also made signifi-

cant contributions along with co-authors Vincent Sitzmann, Pulkit Agrawal, and Antonio

Torralba.

4.1 Introduction

Existing state-of-the-art model-based systems operating from vision typically treat images

as 2D grids of pixels [Ebert et al., 2018, Hafner et al., 2019a, Schrittwieser et al., 2020]. The

world, however, is three-dimensional. Modeling the environment from 3D enables amodal

completion and allows the agents to operate from different views. Therefore, it is desirable

to obtain good 3D-aware representations of the environment from 2D observations to achieve

better task performance when an accurate inference of 3D information is essential, which

can further make it easier to specify tasks, learn from third-person videos, etc.

One of the core questions of model learning in robotic manipulation is how to determine

the state representation for learning the dynamics model. The desired representation should

make it easy to capture the environment dynamics, exhibit a good 3D understanding of the

objects in the scene, and be applicable to diverse object sets such as rigid or deformable

objects and fluids. One line of prior work learns the dynamics model directly in the image

pixel space [Finn et al., 2016, Ebert et al., 2017, Yen-Chen et al., 2020, Suh and Tedrake,

2020]. However, modeling dynamics in such a high-dimensional space is challenging, and

these methods typically generate blurry images when performing the long-horizon future

predictions. As has been exemplified in Chapter 2, another line of work focused on only

predicting task-relevant features identified as keypoints [Manuelli et al., 2019, 2021, Wang

et al., 2020, Gao and Tedrake, 2021, Li et al., 2020b]. Such models perform well in terms of

category-level generalization, i.e., the same set of keypoints can represent different instances

within the same category, but are not sufficient to model objects with large variations like

fluids and granular materials. Other methods learn dynamics in the latent space [Watter

et al., 2015, Agrawal et al., 2016, Hafner et al., 2019b,a, Schrittwieser et al., 2020]. However,

the majority of these methods learn dynamics models using 2D convolutional neural networks
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Figure 4-1: Comparison of the control results between a 2D-based baseline and our
3D-aware approach. The task here is to achieve the configuration shown on the left, observed
from a viewpoint that is outside the training distribution. The agent only takes a single-view visual
observation as input (images with blue frames) from a viewpoint that is vastly different from the goal.
Our method generalizes well in this scenario and outperforms the 2D-based baseline, demonstrating
the benefits of the learned 3D-aware scene representations.

and reconstruction loss – which has the same problem as predicting dynamics in the image

space, i.e., their learned representations lack equivariance to 3D transformations. Time

contrastive networks [Sermanet et al., 2018], on the other hand, aim to learn viewpoint-

invariant representations from multi-view inputs, but do not require detailed modeling of

3D contents. As a result, previously unseen scene configurations and camera poses are

out-of-distribution samples for the state estimator. As we will see, this leads to wrong state

estimates and results in faulty control trajectories.

Meanwhile, recent work in computer vision has made impressive progress in the learning

of 3D-structured neural scene representations. These approaches allow inference of 3D

structure and appearance, trained only given 2D observations, either by overfitting on a

single scene [Sitzmann et al., 2019a, Lombardi et al., 2019, Mildenhall et al., 2020] or by

generalizing across scenes [Sitzmann et al., 2019b, Tung et al., 2019, 2020]. Through their 3D

inductive bias, the scene representations inferred by these models encode the scene contents

with better accuracy and are invariant to changes in camera perspectives. It is desirable

to push these ideas further to obtain a deeper understanding of how these methods, which

directly reason over 3D, can bring in new characteristics and how they can be beneficial for

dynamics modeling and complicated control tasks.

In this chapter, we aim to leverage recently proposed 3D-structure-aware implicit neural

scene representations for visuomotor control tasks. We thus propose to embed neural radiance

fields [Mildenhall et al., 2020] in an auto-encoder framework, enabling tractable inference of
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the 3D-structure-aware scene state for dynamic environments. By additionally enforcing a

time contrastive loss on the estimated states, we ensure that the learned state representations

are viewpoint-invariant. We then train a dynamics model that predicts the evolution of

the state space conditioned on the input action, enabling us to perform control in the

learned state space. Though the representation itself is grounded in the 3D implicit field,

the convolutional encoder is not. At test time, we overcome this limitation by performing

inference-via-optimization [Park et al., 2019, Sitzmann et al., 2019b], enabling accurate state

estimation even for out-of-distribution camera poses and, therefore, control of tasks where the

goal view is specified in an entirely unseen camera perspective. These contributions enable

us to perform model-based visuomotor control of complex scenes, modeling 3D dynamics

of both rigid objects and fluids. Through comparison with various baselines, the learned

representation from our model is more precise at describing the contents of 3D scenes, which

allows it to accomplish control tasks involving rigid objects and fluids with significantly

better accuracy (Figure 4-1). Please see our supplementary video for better visualization.

We summarize our contributions as follows: (i) We extend an autoencoding framework

with a neural radiance field rendering module and time contrastive learning that allows us to

learn 3D-aware scene representations for dynamics modeling and control purely from visual

observations. (ii) By incorporating the auto-decoder mechanism at test time, our framework

can adjust the learned representation and accomplish the control tasks with the goal specified

from camera viewpoints outside the training distribution. (iii) We are the first to augment

neural radiance fields using a time-invariant dynamics model, supporting future prediction

and novel view synthesis across a wide range of environments with different types of objects.

4.2 Related Work

3D scene representation learning. Prior work leverages the latent spaces of autoencoder-

like models as learned representations of the underlying 3D scene to enable novel view synthesis

from a single image [Worrall et al., 2017, Tatarchenko et al., 2015]. Eslami et al. [2018]

embed this approach in a probabilistic framework. To endow models with 3D structure,

voxelgrids can be leveraged as neural scene representations [Rezende et al., 2016, Nguyen-

Phuoc et al., 2018, Sitzmann et al., 2019a, Tung et al., 2019, Zhu et al., 2018], while others

have tried to predict particle sets from images [Li et al., 2020a] (which will be discussed in
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Figure 4-2: Overview of the training procedure. Left: an encoder that maps the input images
into a latent scene representation. The images are first sent to an image encoder to generate the
image feature representations 𝑣. Then we combine the image features from the same time step using
a state encoder to obtain the state representation 𝑠𝑡. A time contrastive loss is applied to enable our
model to be invariant to camera viewpoints. Middle: a decoder that takes the scene representation
as input and generates the visual observation conditioned on a given viewpoint. We use an L2 loss to
ensure the reconstructed image to be similar to the ground truth image. Right: a dynamics model
that predicts the future scene representations 𝑠𝑡+1 by taking in the current representation 𝑠𝑡 and
action 𝑎𝑡. We use an L2 loss to enforce the predicted latent representation to be similar to the scene
representation 𝑠𝑡+1 extracted from the true visual observation 𝐼𝑡+1.

more detail in Chapter 7) or embed an explicit 3D representation to enable inference from

never-before-seen viewpoints [Saponaro et al., 2019]. Sitzmann et al. [2019b] propose to

learn neural implicit representations of 3D shape and appearance supervised with posed 2D

images via a differentiable renderer. Generalizing across neural implicit representations can

also be realized by local conditioning on CNN features [Saito et al., 2019, Trevithick and

Yang, 2020, Yu et al., 2020], but this does not learn a global representation of the scene

state. Alternatively, gradient-based meta-learning has been proposed for faster inference of

implicit neural representations [Sitzmann et al., 2020]. Deformable scenes can be modeled

by transporting input coordinates to neural implicit representations with an implicitly

represented flow field or time-variant latent code [Niemeyer et al., 2019, Park et al., 2020,

Pumarola et al., 2020, Tretschk et al., 2020, Li et al., 2020c, Du et al., 2020, Xian et al.,

2021, Ost et al., 2021, Li et al., 2021]; however, they typically fit one trajectory and cannot

handle different initial conditions and external action inputs, limiting their use in control.

Model-based RL in robotic manipulation. We can categorize model-based RL methods

by whether they use physics-based or data-driven models, and whether they assume full state
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access or only visual observation. Methods that rely on physics-based models typically assume

full-state information of the environment [Hogan and Rodriguez, 2016, Zhou et al., 2019]

and require the knowledge of the object models, making them hard to generalize to novel

objects or partially observable scenarios. For data-driven models, people have attempted

to learn a dynamics model for closed-loop planar pushing [Bauza et al., 2018] or dexterous

manipulation [Nagabandi et al., 2020]. Schenck and Fox [2017, 2018a] tackle a similar fluid

pouring task via closed-loop simulation. Although they have achieved impressive results,

they rely on state estimators customized for specific tasks, limiting their applicability to

more general and diversified manipulation tasks.

Various model-based RL methods have been proposed to learn state representations

from visual observations, such as image-space dynamics [Finn et al., 2016, Ebert et al.,

2017, 2018, Suh and Tedrake, 2020], keypoint representation [Kulkarni et al., 2019, Manuelli

et al., 2021, Li et al., 2020b], and low-dimensional latent space [Watter et al., 2015, Hafner

et al., 2019b,a, Schrittwieser et al., 2020]. Some works learn a meaningful representation

space using reconstruction loss [Hafner et al., 2019b,a]. Others jointly train the forward and

inverse dynamics models [Agrawal et al., 2016], or use time contrastive loss to regularize the

latent embedding [Sermanet et al., 2018]. We differ from the previous methods by explicitly

incorporating a 3D volumetric rendering process during training.

4.3 3D-Aware Representation Learning for Dynamics Modeling

Inspired by Neural Radiance Fields (NeRF) [Mildenhall et al., 2020], we propose a

framework that learns a viewpoint-invariant model for dynamic environments. As shown

in Figure 4-2, our framework has three parts: (1) an encoder that maps the input images

into a latent state representation, (2) a decoder that generates an observation image under a

certain viewpoint based on the state representation, and (3) a dynamics model that predicts

the future state representations based on the current state and the input action.

4.3.1 3D-Aware Scene Representation Learning

Neural radiance field. Given a 3D point 𝑥 ∈ R3 in a scene and a viewing direction unit

vector 𝑑 ∈ R3 from a camera, NeRF learns to predict a volumetric radiance field. This is

represented using a differentiable rendering function 𝑓NeRF that predicts the corresponding
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density 𝜎 and RGB color 𝑐 using 𝑓NeRF(𝑥,𝑑) = (𝜎, 𝑐). To render the color of an image pixel,

NeRF integrates the information along the camera ray using �̂�(𝑟) =
∫︀ ℎfar
ℎnear

𝑇 (ℎ)𝜎(ℎ)𝑐(ℎ)𝑑ℎ,

where 𝑟(ℎ) = 𝑜+ℎ𝑑 is the camera ray with its origin 𝑜 ∈ R3 and unit direction vector 𝑑 ∈ R3,

and 𝑇 (ℎ) = exp(−
∫︀ ℎ
ℎnear

𝜎(𝑠)𝑑𝑠) is the accumulated transparency between the pre-defined

near depth ℎnear and far depth ℎfar along that camera ray. The mean squared error between

the reconstructed color �̂� and the ground truth 𝐶 is:

ℒrec =
∑︁
𝑟

‖�̂�(𝑟)−𝐶(𝑟)‖22. (4.1)

Neural radiance field for dynamic scenes. One key limitation of NeRF is that it

assumes the scene is static. For a dynamic scene, it must learn a separate radiance field

𝑓NeRF for each time step. This severely limits the ability of NeRF to be used in planning and

control, as it is unable to handle dynamic scenes with different initial configurations or input

action sequences. While other models have shown generalization across scenes [Sitzmann

et al., 2019b, Niemeyer et al., 2020], it’s unclear how they can be used in visuomotor control.

To enable 𝑓NeRF to model dynamic scenes, we learn an encoding function 𝑓enc that maps the

visual observations to a feature representation 𝑠 for each time step and learn the volumetric

radiance field decoding function based on 𝑠. Let {𝐼𝑡} denotes the set of 2D images that

capture a 3D scene at time 𝑡 from one or more camera viewpoints. The image taken from

the 𝑖th viewpoint is represented as 𝐼𝑖𝑡 . We use ResNet-18 [He et al., 2016] to extract a

feature vector for each image. We take the output of ResNet-18 before the pooling layer

and send it to a fully-connected layer, resulting in a 256 dimension image feature 𝑣𝑖𝑡. This

image feature is concatenated with the corresponding camera viewpoint information (a 16-D

vector obtained by flattening the camera view matrix) and processed using a small multilayer

perceptron (MLP) to generate the final image feature. The scene representation 𝑠𝑡 at time 𝑡

is generated by first averaging the image features across multiple camera viewpoints, then

being encoded using another small MLP and normalized to have a unit L2 norm.

Given a 3D point 𝑥, a viewing direction unit vector 𝑑, and a scene representation 𝑠𝑡,

we learn a function 𝑓dec(𝑥,𝑑, 𝑠𝑡) = (𝜎𝑡, 𝑐𝑡) to predict the radiance field represented by the

density 𝜎𝑡 and RGB color 𝑐𝑡. Similar to NeRF, we use the integrated information along the

camera ray to render the color of image pixels from an input viewpoint and then compute the

image reconstruction loss using Equation 4.1. During each training iteration, we render two

images from different viewpoints to calculate more accurate gradient updates. 𝑓dec depends
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Figure 4-3: Forward prediction and viewpoint extrapolation. (a) We first feed the input
image(s) at time 𝑡 to the encoder to derive the scene representation 𝑠𝑡. The dynamics model then
takes 𝑠𝑡 and the corresponding action sequence as input to iteratively predict the future. The
decoder synthesizes the visual observation conditioned on the predicted state representation and an
input viewpoint. (b) We propose an auto-decoding inference-via-optimization framework to enable
extrapolated viewpoint generalization. Given an input image 𝐼𝑡 taken from a viewpoint outside
the training distribution, the encoder first predicts the scene representation 𝑠𝑡. Then the decoder
reconstructs the observation 𝐼𝑡 from 𝑠𝑡 and the camera viewpoint from 𝐼𝑡. We calculate the L2
distance between 𝐼𝑡 and 𝐼𝑡 and backpropagate the gradient through the decoder to update 𝑠𝑡. The
updating process is repeated for 𝐾 iterations, resulting in a more accurate 𝑠𝑡 of the underlying 3D
scene.

on the scene representation 𝑠𝑡, forcing it to encode the 3D contents of the scene to support

rendering from different camera poses.

Time contrastive learning. To enable the image encoder to be viewpoint invariant, we

regularize the feature representation of each image 𝑣𝑖𝑡 using multi-view time contrastive loss

(TCN) [Sermanet et al., 2018] (see Figure 4-2a). The TCN loss encourages features of images

from different viewpoints at the same time step to be similar, while repulsing features of

images from different time steps to be dissimilar. More specifically, given a time step 𝑡,

we randomly select one image 𝐼𝑖𝑡 as the anchor and extract its image feature 𝑣𝑖𝑡 using the

image encoder. Then we randomly select one positive image from the same time step but

different camera viewpoint 𝐼𝑖′𝑡 and one negative image from a different time step but the

same viewpoint 𝐼𝑖𝑡′ . We use the same image encoder to extract their image features 𝑣𝑖
′
𝑡 and

𝑣𝑖𝑡′ . Similar to Sermanet et al. [2018], we minimize the following time contrastive loss:

ℒtc = max (‖𝑣𝑖
𝑡 − 𝑣𝑖′

𝑡 ‖22 − ‖𝑣𝑖
𝑡 − 𝑣𝑖

𝑡′‖22 + 𝛼, 0), (4.2)

where 𝛼 is a hyper-parameter denoting the margin between the positive and negative pairs.

4.3.2 Learning the Predictive Model

After we have obtained the latent state representation 𝑠, we use supervised learning

to estimate the forward dynamics model, 𝑠𝑡+1 = 𝑓dyn(𝑠𝑡,𝑎𝑡). Given 𝑠𝑡 and a sequence of

actions {𝑎𝑡,𝑎𝑡+1, . . . }, we predict 𝐻 steps in the future by iteratively feeding in actions into
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the one-step forward model. We implement 𝑓dyn as an MLP network which is trained by

optimizing the following loss function:

ℒdyn =

𝐻∑︁
ℎ=1

‖𝑠𝑡+ℎ − 𝑠𝑡+ℎ‖22, where 𝑠𝑡+ℎ = 𝑓dyn(𝑠𝑡+ℎ−1,𝑎𝑡+ℎ−1), 𝑠𝑡 = 𝑠𝑡. (4.3)

We define the final loss as a combination of the image reconstruction loss, the time contrastive

loss, and the dynamics prediction loss: ℒ = ℒrec + ℒtc + ℒdyn. We first train the encoder

𝑓enc and decoder 𝑓dec together using stochastic gradient descent (SGD) by minimizing ℒrec

and ℒtc, which makes sure that the learned scene representation 𝑠 encodes the 3D contents

and is viewpoint-invariant. We then fix the encoder parameters, and train the dynamics

model 𝑓dyn by minimizing ℒdyn using SGD. Please see the supplementary materials for the

network architecture and training details.

4.4 Visuomotor Control

4.4.1 Online Planning for Closed-Loop Control

When given the goal image 𝐼goal and its associated camera pose, we can feed them through

the encoder 𝑓enc to get the state representation for the goal configuration 𝑠goal. We use the

same method to compute the state representation for the current scene configuration 𝑠1. The

goal of the online planning problem is to find an action sequence 𝑎1, . . . ,𝑎𝑇−1 that minimizes

the distance between the predicted future representation and the goal representation at time

𝑇 . As shown in Figure 4-3a, given a sequence of actions, our model can iteratively predict a

sequence of latent state representations. The latent-space dynamics model can then be used

for downstream closed-loop control tasks via online planning with model-predictive control

(MPC). We formally define the online planning problem as follows:

min
𝑎1,...,𝑎𝑇−1

‖𝑠goal − 𝑠𝑇 ‖22, s.t. 𝑠1 = 𝑠1, 𝑠𝑡+1 = 𝑓dyn(𝑠𝑡,𝑎𝑡). (4.4)

Many existing off-the-shelf model-based RL methods can be used to solve the MPC prob-

lem [Ebert et al., 2017, Nagabandi et al., 2020, Hafner et al., 2019b, Finn et al., 2016,

Manuelli et al., 2021, Li et al., 2019a,b]. We experimented with random shooting, gradient-

based trajectory optimization, cross-entropy method, and model-predictive path integral

(MPPI) planners [Williams et al., 2015a] and found that MPPI performed the best. In
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Figure 4-4: Qualitative control results of our method on three types of testing scenarios.
The image on the right shows the target configuration we aim to achieve. The left three columns
show the control processes, which are also the input images to the agent. The fourth column is
the control results from the same viewpoint as the goal image. Trial #1 specifies the goal using a
different viewpoint from the agent’s but has been encountered during training. Trial #2 uses a goal
view that is an interpolation of training viewpoints. Trial #3 uses an extrapolated viewpoint that is
outside the training distribution. Our method performs well in all settings.

our experiments, we specify the action space as the position and orientation of the arm’s

end-effector. Then, the joint angle of the arm is calculated via inverse kinematics. Please

check our supplementary materials for more details on how we solve the planning task.

4.4.2 Auto-Decoder for Viewpoint Extrapolation

End-to-end visuomotor agents can undergo significant performance drop when the test-

time visual observations are captured from camera poses outside the training distribution.

The convolutional image encoder suffers from the same problem as it is not equivariant to

changes in the camera pose, meaning it has a hard time generalizing to out-of-distribution

camera views. As shown in Figure 4-3b, when encountered an image from a viewpoint outside

training distribution, with a pixel distribution vastly different from what the model is trained

on, passing it through the encoder 𝑓enc will give us an amortized estimation of the scene

representation 𝑠𝑡. It has a high chance that the decoded image is different from the ground

truth as the viewpoint has never been encountered during training.

We fix this problem at test time by applying the inference-by-optimization (also named as

an auto-decoding) framework that backpropagates through the volumetric renderer and the

neural implicit representation into the state estimate [Park et al., 2019, Sitzmann et al., 2019b].
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Figure 4-5: Qualitative comparisons between our method and baseline approaches
on control tasks. We show the closed-loop control results on the FluidPour and FluidShake
environments. The goal image viewpoint (top-left image of each block) is outside the training
distribution and is different from the viewpoint observed by the agent (bottom-left image of each
block). Our final control results are much better than a variant that does not perform auto-decoding
test-time optimization (Ours w/o AD) and the best-performing baseline (TC+AE), both of which
fail to accomplish the task and their control results (blue points) exhibit an apparent deviation from
the target configuration (red points) when measured in the 3D points space of the fluids and floating
cube.

This is inspired by the fact that the rendering function, 𝑓dec(𝑥,𝑑, 𝑠𝑡) = (𝜎𝑡, 𝑐𝑡) is viewpoint

equivariant, where the output only depends on the state representation 𝑠𝑡, the location 𝑥,

and the ray direction 𝑑, meaning that the output is invariant to the camera position along

the camera ray, i.e., even we move the camera closer or farther away along the camera ray,

𝑓dec still tends to generate the same results. We leverage this property and calculate the

L2 distance between the input image and the reconstructed image ℒad = ‖𝐼𝑡 − 𝐼𝑡‖22, and

then update the scene representation 𝑠𝑡 using stochastic gradient descent. We repeat this

updating process 𝐾 times to derive the state representation of the underlying 3D scene.

Note that this update only changes the scene representation while keeping the parameters in

the decoder fixed. The resulting representation is used as 𝑠goal in Equation 4.4 to solve the

online planning problem.

4.5 Experiments

Environments. We consider the following four environments involving both fluid and

rigid objects to evaluate the proposed model and baseline approaches. The environments

are simulated using NVIDIA FleX [Macklin et al., 2014]. (1) FluidPour (Figure 4-7a):

This environment contains a fully-actuated cup that pours fluids into a container at the
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Figure 4-6: Quantitative comparisons between our method and baselines on the FluidPour
and FluidShake. In each environment, we compare the results using three different evaluation
metrics under three settings, i.e., (1) the target image view seen during training, (2) the target image
view is inside the training distribution but not seen during training (interpolation), and (3) the target
image view is outside the training distribution (extrapolation). The height of the bars indicates
the mean, and the error bar denotes the standard error. Our model significantly outperforms all
baselines under all testing settings.

bottom. (2) FluidShake (Figure 4-7b): A fully-actuated container moves on a 2D plane.

Inside the container are fluids and a rigid cube floating on the surface. (3) RigidStack

(Figure 4-7c): Three rigid cubes form a vertical stack and are released from a certain height

but in different horizontal positions. They fall down and collide with each other and the

ground. (4) RigidDrop (Figure 4-7d): A cube falls down from a certain height. There is a

container fixed at a random position on the ground. The cube either falls into the container

or bounces out. We use 20 camera views for all environments and generated 1, 000 trajectories

of 300 time steps for both FluidPour and FluidShake as an offline dataset to train the model,

800 trajectories of 80 time steps for RigidStack, and 1, 000 trajectories of 50 time steps for

RigidDrop.

Evaluation metrics. We use the first two environments, i.e., FluidPour and FluidShake, to

measure the control performance, where we specify the target configuration of the control task

using images from (1) one of the viewpoints encountered during training, (2) an interpolated

viewpoint between training viewpoints, and (3) an extrapolated viewpoint outside the training

distribution (Figure 4-4).

We provide quantitative evaluations on the control performance in FluidPour and Fluid-

Shake by extracting the particle set from the simulator, and measuring the Chamfer distance

between the result and the goal, which we denote as “Chamfer Dist.”. In FluidPour, we

provide additional measurements on the L2 distance of the position/orientation of the cup

towards the goal, denoting as “Position Error” and “Angle Error” respectively. In FluidShake,

we calculate the L2 distance of the container and cube’s position towards the goal and denote
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Figure 4-7: Forward prediction and novel view synthesis on four environments. Given
a scene representation and an input action sequence, our dynamics model predicts the subsequent
latent scene representation, which is used as the input of our decoder model to reconstruct the
corresponding visual observation based on different viewpoints. In each block, we render images
based on the open-loop future dynamic prediction from left to right. Images in the dotted box
compare our model’s novel view synthesis results in the last time step with the ground truth from
three different viewpoints.

them as “Container Error” and “Cube Error” respectively.

4.5.1 Baseline Methods

For comparison, we consider the following three baselines: TC: Similar to TCN [Sermanet

et al., 2018], it only uses time contrastive loss for learning the image feature without having

to reconstruct the scene. We learn a dynamics model directly on the image features for

control. TC+AE: Instead of using Neural Radiance Fields to reconstruct the image, this

method uses the standard convolutional decoder to reconstruct the target image when given

a new viewpoint. This would then be similar to GQN [Eslami et al., 2018] augmented with a

time contrastive loss. NeRF: This method is a direct adaptation from the original NeRF

paper [Mildenhall et al., 2020] and is the same as ours except that it does not include the

time contrastive loss during training and the auto-decoding test-time optimization. We

use the same dynamics model shown in Figure 4-2b and train the model for each baseline

respectively for dynamic prediction. We use the same feedback control method, i.e., MPPI

[Williams et al., 2015a], for our model and all the baselines.
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4.5.2 Control Results

Goal specification from novel viewpoints. Figure 4-4c shows the goal configuration,

and we ask the learned model to perform three control trials where the goal is specified

from different types of viewpoints. The left three columns show the MPC control process

from the agent’s viewpoint. The fourth column visualizes the final configuration the agent

achieves from the same viewpoint as the goal image. Trial #1 specifies the goal using a

different viewpoint from the agent’s but has been encountered during training. Trial #2 uses

a goal view that is an interpolation of training viewpoints. Our agent can achieve the target

configuration with decent accuracy. For trial #3, we specify the goal view by moving the

camera closer, higher, and more downwards with respect to the container. Note this goal

image view is outside the distribution of training viewpoints. With the help of test-time

auto-decoding optimization introduced in Section 4.4.2, our method can successfully achieve

the target configuration, as shown in the figure.

Baseline comparisons. We benchmark our model with the baselines by assessing their

performance on the downstream control tasks. Figure 4-5 shows the qualitative comparison

between our model (Ours), a variant of our model that does not perform the auto-decoding

test-time optimization (Ours w/o AD), and the best-performing baseline (TC+AE) introduced

in Section 4.5.1. We find that when the target view is outside the training distribution and

vastly different from the agent view, our full method shows a much better performance in

achieving the target configuration. The variant without auto-decoding optimization and

TC+AE fail to accomplish the task and exhibit an apparent deviation from the ground

truth in the 3D points space of the fluids and floating cube. We also provide quantitative

comparisons on the control results. Figure 4-6 shows the performance in the FluidPour and

FluidShake environments. We find our full model significantly outperforms the baseline

approaches in both environments under all scenarios and evaluation metrics. The results

effectively demonstrate the advantages of the learned 3D-aware scene representations, which

contain a more precise encoding of the contents in the 3D environments and are capable of

extrapolation viewpoint generalization.
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4.5.3 Dynamic Prediction and Novel View Synthesis

Conditioned on a scene representation and an input action sequence, our dynamics model

𝑓dyn can iteratively predict the evolution of the scene representations. Our decoder can then

take the predicted state representation and reconstruct the corresponding visual observation

from a query viewpoint. Figure 4-7 shows that our model can accurately predict the future

and perform novel view synthesis on four environments involving both fluid and rigid objects,

suggesting its usefulness in trajectory optimization. Please check our video results in the

supplementary material for better visualization.

4.6 Discussion

In this chapter, we proposed to learn viewpoint-invariant 3D-aware scene representations

from visual observations using an autoencoding framework augmented with a neural radiance

field rendering module and time contrastive learning. We show that the learned 3D repre-

sentations perform well on the model-based visuomotor control tasks. When coupled with

an auto-decoding test-time optimization mechanism, our method allows goal specification

from a viewpoint outside the training distribution. We demonstrate the applicability of the

proposed framework in a range of complicated physics environments involving rigid objects

and fluids, which we hope can facilitate future works on visuomotor control for complex and

dynamic 3D manipulation tasks.
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Chapter 5

Learning Compositional Linear

Dynamics with Koopman Operators

Previous chapters consider dynamics models represented using neural networks, where

the dynamics transition goes through highly nonlinear computations. Despite their strong

generalization power, they are not as efficient in system identification and control, because

deep nets are heavily over-parameterized, making optimization time-consuming and sample-

inefficient. On the other hand, finding an embedding space for a linear approximation of a

nonlinear dynamical system will enable much more efficient system identification and control

synthesis. The Koopman operator theory lays the foundation for identifying the nonlinear-

to-linear coordinate transformations with data-driven methods. Recently, researchers have

proposed to use deep neural networks as a more expressive class of basis functions for

calculating the Koopman operators. These approaches, however, assume a fixed dimensional

state space; they are therefore not applicable to scenarios with a variable number of objects.

In this chapter, we continue the momentum of incorporating structures into the learning

systems and propose to learn compositional Koopman operators, using graph neural networks

to encode the state into object-centric embeddings and using a block-wise linear transition

matrix to regularize the shared structure across objects. The learned dynamics can quickly

adapt to new environments of unknown physical parameters and produce control signals to

achieve a specified goal. Our experiments on manipulating ropes and controlling soft robots

show that the proposed method has better efficiency and generalization ability than existing

baselines.

83



This chapter contains materials previously published by Li et al. [2019a] in the Interna-

tional Conference on Learning Representations (ICLR) 2020 as Spotlight Presentation,

in which Hao He has also made significant contributions along with co-authors Jiajun Wu,

Dina Katabi, and Antonio Torralba.

5.1 Introduction

Simulating and controlling complex dynamical systems, such as ropes or soft robots,

relies on two key features of the dynamics model: first, it needs to be efficient for system

identification and motor control; second, it needs to be generalizable to a complex, constantly

evolving environments.

In practice, computational models for complex, nonlinear dynamical systems are often

not efficient enough for real-time control [Mayne, 2000]. The Koopman operator theory

suggests that identifying nonlinear-to-linear coordinate transformations allows efficient linear

approximation of nonlinear systems [Williams et al., 2015b, Mauroy and Goncalves, 2016].

Fast as they are, however, existing papers on Koopman operators focus on a single dynamical

system, making it hard to generalize to cases where there are a variable number of components.

In this chapter, we propose compositional Koopman operators, integrating Koopman

operators with graph networks discussed in detail in Chapter 3 for generalizable and efficient

dynamics modeling. We build on the idea of encoding states into object-centric embeddings

with graph neural networks, which ensures generalization power. But instead of using

over-parameterized neural nets to model state transition, we identify the Koopman matrix

and control matrix from data as a linear approximation of the nonlinear dynamical system.

The linear approximation allows efficient system identification and control synthesis.

The main challenge of extending Koopman theory to multi-object systems is scalability.

The number of parameters in the Koopman matrix scales quadratically with the number of

objects, which harms the learning efficiency and leads to overfitting. To tackle this issue,

we exploit the structure of the underlying system and use the same block-wise Koopman

sub-matrix for object pairs of the same relation. This significantly reduces the number of

parameters that need to be identified by making it independent of the size of the system.

Our experiments include simulating and controlling ropes of variable lengths and soft

robots of different shapes. The compositional Koopman operators are significantly more
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Figure 5-1: Overview of compositional Koopman operators. A graph neural network 𝜑 takes
in the current state of the physical system 𝑥𝑡, and generates object-centric representations in the
Koopman space 𝑔𝑡. We then use the block-wise Koopman matrix 𝐾 and control matrix 𝐿 identified
from Equation 5.6 or Equation 5.8 to predict the Koopman embeddings in the next time step 𝑔𝑡+1.
Note that in 𝐾 and 𝐿, object pairs of the same relation share the same sub-matrix. Another graph
neural network 𝜓 maps 𝑔𝑡+1 back to the original state space, i.e., 𝑥𝑡+1. The mapping between 𝑔𝑡

and 𝑔𝑡+1 is linear and is shared across all time steps, where we can iteratively apply 𝐾 and 𝐿 to
the Koopman embeddings and roll multiple steps into the future. The formulation enables efficient
system identification and control synthesis.

accurate than the state-of-the-art learned physics engines [Battaglia et al., 2016, Li et al.,

2019b], and faster when adapting to new environments of unknown physical parameters.

Our method also outperforms vanilla deep Koopman methods [Lusch et al., 2018, Morton

et al., 2018] and Koopman models with manually-designed basis functions, which shows the

advantages of using a structured Koopman matrix and graph neural networks. Please see

our project page for demonstrating videos: http://koopman.csail.mit.edu/.

5.2 Related Work

Koopman operators. The Koopman operator formalism of dynamical systems is rooted

in the seminal works of Koopman and Von Neumann in the early 1930s [Koopman, 1931,

Koopman and Neumann, 1932]. The core idea is to map the state of a nonlinear dynamical

system to an embedding space, over which we can linearly propagate into the future.

Researchers have proposed various algorithms to explore the Koopman spectral properties

from data. A large portion of them are in the class of dynamic mode decomposition

(DMD) [Rowley et al., 2009, Schmid, 2010, Tu et al., 2014, Williams et al., 2015b, Arbabi

and Mezic, 2017]. The linear representation will enable efficient prediction, estimation, and

control using tools from linear dynamical systems [Williams et al., 2016, Proctor et al., 2018,

Mauroy and Goncalves, 2019, Korda and Mezić, 2018]. People have been using hand-designed

Koopman observables for various modeling and control tasks [Brunton et al., 2016, Kaiser

et al., 2017, Abraham et al., 2017, Bruder et al., 2019b, Arbabi et al., 2018]. Some recent
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works have applied the method to the real world and successfully control soft robots with

great precision [Bruder et al., 2019a, Mamakoukas et al., 2019].

However, hand-crafted basis functions sometimes fail to generalize to more complex

environments. Learning these functions from data using neural nets turns out to generate a

more expressive invariant subspace [Lusch et al., 2018, Takeishi et al., 2017] and has achieved

successes in fluid control [Morton et al., 2018]. Morton et al. [2019] has also extended

the framework to account for uncertainty in the system by inferring a distribution over

observations. Our model differs by explicitly modeling the compositionality of the underlying

system with graph networks. It generalizes better to environments of a variable number of

objects or soft robots of different shapes.

Learning-based physical simulators. Battaglia et al. [2016] and Chang et al. [2017] first

explored learning a simulator from data by approximating object interactions with neural

networks. These models are no longer bounded to hard-coded physical rules, and can adapt

to scenarios where the underlying physics is unknown. Please refer to Battaglia et al. [2018]

for a full review. As discussed in detail in Chapter 3, Mrowca et al. [2018] and Li et al.

[2019a] extended these models to approximate particle dynamics of deformable shapes and

fluids. Flexible as they are, these models become less efficient during model adaptation in

complex scenarios, because the optimization of neural networks usually needs a lot of samples

and compute, which limits its use in an online setting. Nagabandi et al. [2019a,b] proposed to

use meta-learning for online adaptation, and have shown to be effective in simulated robots

and a real legged millirobot. However, it is not clear whether their methods can generalize to

systems with variable numbers of instances. The use of graph nets and Koopman operators

in our model allows better generalization ability and enables efficient system identification as

we only need to identify the transition matrices, which is essentially a least-square problem

and can be solved very efficiently.

The previous chapters have shown examples of using the learned physics engines, together

with model-predictive control (MPC), for various manipulation tasks. Some more examples

including Sanchez-Gonzalez et al. [2018], Li et al. [2019b], and Janner et al. [2019]. Many

previous papers in this direction also jointly learn a latent dynamics model and a policy in

a model-based reinforcement learning setup [Racanière et al., 2017, Hamrick et al., 2017,

Pascanu et al., 2017, Hafner et al., 2019b]. In this chapter, we leverage the fact that the
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embeddings in the Koopman space are propagating linearly through time, which allows us to

formulate the control problem as quadratic programming and optimize the control signals

much more efficiently.

5.3 Approach

We first present the basics of Koopman operators: for a nonlinear dynamical system, the

Koopman observation functions can map the state space to an embedding space where the

dynamics become linear. We then discuss the compositional nature of physical systems and

show how graph networks can be used to capture the compositionality.

5.3.1 The Koopman Operators

Let 𝑥𝑡 ∈ 𝒳 ⊂ R𝑛 be the state vector for the system at time step 𝑡. We consider

a non-linear discrete-time dynamical system described by 𝑥𝑡+1 = 𝐹 (𝑥𝑡). The Koopman

operator [Koopman, 1931], denoted as 𝒦 : ℱ → ℱ , is a linear transformation defined by

𝒦𝑔 ≜ 𝑔 ∘ 𝐹 , where ℱ is the collection of all functions (also referred to as observables) that

form an infinite-dimensional Hilbert space. For every function 𝑔 : 𝒳 → R belonging to ℱ , we

have

(𝒦𝑔)(𝑥𝑡) = 𝑔(𝐹 (𝑥𝑡)) = 𝑔(𝑥𝑡+1), (5.1)

making the function space ℱ invariant under the action of the Koopman operator.

Although the theory guarantees the existence of the Koopman operator, its use in practice

is limited by its infinite dimensionality. Most often, we assume there is an invariant subspace

𝒢 of the Koopman operator. It spans by a set of base observation functions {𝑔1, · · · , 𝑔𝑚}

and satisfies that 𝒦𝑔 ∈ 𝒢 for any 𝑔 ∈ 𝒢. With a slightly abuse of the notation, we now use

𝑔(𝑥𝑡) : R𝑛 → R𝑚 to represent [𝑔1(𝑥
𝑡), · · · , 𝑔𝑚(𝑥𝑡)]𝑇 . By constraining the Koopman operator

on this invariant subspace, we get a finite-dimensional linear operator 𝐾 ∈ R𝑚×𝑚 that we

refer as the Koopman matrix.

Traditionally, people hand-craft base observation functions from the knowledge of under-

lying physics. The system identification problem is then reduced to finding the Koopman

matrix 𝐾, which can be solved by linear regression given historical data of the system.

Recently, researchers have also explored data-driven methods that automatically find the
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Koopman invariant subspace via representing the base observation functions 𝑔(𝑥) via deep

neural networks.

Although the original Koopman theory does not consider the system with external

control inputs, researchers have found that linearly injecting control signals to the Koopman

observation space can give us good numerical performance [Brunton et al., 2016, Bruder

et al., 2019a]. Mathematically, considering a dynamical system, 𝑥𝑡+1 = 𝐹 (𝑥𝑡,𝑢𝑡), with an

external control input 𝑢𝑡, we aim to find the Koopman observation functions and the linear

dynamics model in the form of

𝑔(𝑥𝑡+1) = 𝐾𝑔(𝑥𝑡) + 𝐿𝑢𝑡, (5.2)

where the coefficient matrix 𝐿 is referred to as the control matrix.

5.3.2 Compositional Koopman Operators

The dynamics of a physical system are governed by physical rules, which are usually

shared across different subcomponents in the system. Explicitly modeling such composition-

ality enables more efficient system identification and control synthesis and provides better

generalization ability.

Motivating example. Consider a system with 𝑁 balls moving in a 2D plane, each pair

connected by a linear spring. Assume all balls have mass 1 and all springs share the same

stiffness coefficient 𝑘. We denote the 𝑖’s ball’s position as (𝑥𝑖, 𝑦𝑖) and its velocity as (�̇�𝑖, �̇�𝑖).

For ball 𝑖, Equation 5.3 describes its dynamics, where 𝑥𝑖 ≜ [𝑥𝑖, 𝑦𝑖, �̇�𝑖, �̇�𝑖]
𝑇 denotes ball 𝑖’s

state:

�̇�𝑖 =

⎡⎢⎢⎢⎢⎢⎢⎣
�̇�𝑖

�̇�𝑖

�̈�𝑖

𝑦𝑖

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
�̇�𝑖

�̇�𝑖∑︀𝑁
𝑗=1 𝑘(𝑥𝑗 − 𝑥𝑖)∑︀𝑁
𝑗=1 𝑘(𝑦𝑗 − 𝑦𝑖)

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 1 0

0 0 0 1

𝑘 −𝑁𝑘 0 0 0

0 𝑘 −𝑁𝑘 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
⏟  ⏞  

≜𝐴

⎡⎢⎢⎢⎢⎢⎢⎣
𝑥𝑖

𝑦𝑖

�̇�𝑖

�̇�𝑖

⎤⎥⎥⎥⎥⎥⎥⎦+
∑︁
𝑗 ̸=𝑖

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 0

0 0 0 0

𝑘 0 0 0

0 𝑘 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
⏟  ⏞  

≜𝐵

⎡⎢⎢⎢⎢⎢⎢⎣
𝑥𝑗

𝑦𝑗

�̇�𝑗

�̇�𝑗

⎤⎥⎥⎥⎥⎥⎥⎦ .

(5.3)

We can represent the state of the whole system using the union of every ball’s state, where

𝑥 = [𝑥1, · · · ,𝑥𝑁 ]𝑇 . Then the transition matrix is essentially a block matrix, where the matrix
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parameters are shared among the diagonal or off-diagonal blocks as shown in Equation 5.4:

�̇� =

⎡⎢⎢⎢⎢⎢⎢⎣
�̇�1

�̇�2

...

�̇�𝑁

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
𝐴 𝐵 · · · 𝐵

𝐵 𝐴 · · · 𝐵
...

...
. . .

...

𝐵 𝐵 · · · 𝐴

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
𝑥1

𝑥2

...

𝑥𝑁

⎤⎥⎥⎥⎥⎥⎥⎦ . (5.4)

Based on the linear spring system, we make three observations for multi-object systems.

• The system state is composed of the state of each individual object. The

dimension of the whole system scales linearly with the number of objects. We formulate

the system state by concatenating the state of every object, corresponding to an object-

centric state representation.

• The transition matrix has a block-wise substructure. After assuming an object-

centric state representation, the transition matrix naturally has a block-wise structure as

shown in Equation 5.4.

• The same physical interactions share the same transition block. The blocks in

the transition matrix encode actual interactions and generalize across systems. 𝐴 and

𝐵 govern the dynamics of the linear spring system, and are shared by systems with a

different number of objects.

These observations inspire us to exploit the structure of multi-object systems, instead of

learning separate models for systems that contains different numbers of balls.

Compositional Koopman operators. Motivated by the linear spring system, we want

to inject a good inductive bias to incorporate compositionality when applying the Koopman

theory. This allows better generalization ability and more efficient system identification and

better controller design. Figure 5-1 shows an overview of our model.

Considering a system with 𝑁 objects, we denote 𝑥𝑡 as the system state at time 𝑡 and

𝑥𝑡𝑖 is the state of the 𝑖’th object. We further denote 𝑔𝑡 ≜ 𝑔(𝑥𝑡) as the embedding of the

state in the Koopman invariant space. In the rest of the paper, we call 𝑔𝑡 the Koopman

embedding. Based on the observation we made in the case of linear spring system, we propose

the following assumptions on the compositional structure of the Koopman embedding and

the Koopman matrix.
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• The Koopman embedding of the system is composed of the Koopman embedding

of every objects. Similar to the decomposition in the state space, we assume the Koopman

embedding can be divided into object-centric sub-embeddings, i.e. 𝑔𝑡 ∈ R𝑁𝑚 denoting the

concatenation of 𝑔𝑡1, · · · , 𝑔𝑡𝑁 , where we use 𝑔𝑡𝑖 = 𝑔𝑖(𝑥
𝑡) ∈ R𝑚 as the Koopman embedding

for the 𝑖’th object.

• The Koopman matrix has a block-wise structure. It is natural to think the

Koopman matrix is composed of block matrices after assuming an object-centric Koopman

embeddings. In Equation 5.5, 𝐾𝑖𝑗 ∈ R𝑚×𝑚 and 𝐿𝑖𝑗 ∈ R𝑚×𝑙 are blocks of the Koopman

matrix and the control matrix, where 𝑙 is the dimension of the action for each object and

𝑢𝑡 ∈ R𝑁𝑙 is the concatenation of 𝑢𝑡1, · · · ,𝑢𝑡𝑁 denoting the total control signal at time 𝑡:

⎡⎢⎢⎢⎣
𝑔𝑡+1
1

...

𝑔𝑡+1
𝑁

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
𝐾11 · · · 𝐾1𝑁

...
. . .

...

𝐾𝑁1 · · · 𝐾𝑁𝑁

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝑔𝑡1
...

𝑔𝑡𝑁

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
𝐿11 · · · 𝐿1𝑁

...
. . .

...

𝐿𝑁1 · · · 𝐿𝑁𝑁

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝑢𝑡1
...

𝑢𝑡𝑁

⎤⎥⎥⎥⎦ . (5.5)

As we have seen in the case of linear spring system, those matrix blocks are not independent,

but some of them share the same set of values.

• The same physical interactions shall share the same transition block. The

equivalence between the blocks should reflect the equivalence of the interactions, where we

use the same transition sub-matrix for object pairs of the same relation. For example, if

the system is composed of 𝑁 identical objects interacting with the same relation, then, by

symmetry, all the diagonal blocks should be the same, while all the off-diagonal blocks

should also be the same. The repetitive structure allows us to efficiently identify the values

using least squares regression.

5.3.3 Learning the Koopman Embeddings Using Graph Neural Networks

For a physical system that contains 𝑁 objects, we represent the system at time 𝑡 using

a directed graph 𝐺𝑡 = (𝑂𝑡, 𝑅), where vertices 𝑂𝑡 = {𝑜𝑡𝑖}𝑁𝑖=1 represent objects and edges

𝑅 = {𝑟𝑘}𝑁
2

𝑘=1 represent pair-wise relations. Specifically, 𝑜𝑡𝑖 = (𝑥𝑡𝑖,𝑎
𝑜
𝑖 ) , where 𝑥𝑡𝑖 is the state

of object 𝑖 and 𝑎𝑜𝑖 is a one-hot vector indicating the object type, e.g., fixed or movable. For

relation, we have 𝑟𝑘 = (𝑢𝑘, 𝑣𝑘,𝑎
𝑟
𝑘), 1 ≤ 𝑢𝑘, 𝑣𝑘 ≤ 𝑁 , where 𝑢𝑘 and 𝑣𝑘 are integers denoting

the end points of this directed edge, and 𝑎𝑟𝑘 is a one-hot vector denoting the type of the
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relation 𝑘.

We use a graph neural network similar to Interaction Networks (IN) [Battaglia et al.,

2016] to generate object-centric Koopman embeddings. IN defines an object function 𝑓𝑂 and

a relation function 𝑓𝑅 to model objects and their relations in a compositional way. Similar to

a message passing procedure, we calculate the edge effect 𝑒𝑡𝑘 = 𝑓𝑅(𝑜
𝑡
𝑢𝑘
,𝑜𝑡𝑣𝑘 ,𝑎

𝑟
𝑘)𝑘=1...𝑁2 , and

node effect 𝑔𝑡𝑖 = 𝑓𝑂(𝑜
𝑡
𝑖,
∑︀

𝑘∈𝒩𝑖
𝑒𝑡𝑘)𝑖=1...𝑁 , where 𝒩𝑖 denotes the relations that point to the

object 𝑖 and {𝑔𝑡𝑖} are the derived Koopman embeddings. We use this graph neural network,

denoted as 𝜑, to represent our Koopman observation function.

System identification. For a sequence of observations ̃︀𝑥 = [𝑥1, · · · ,𝑥𝑇 ] from time 1

to time 𝑇 , we first map them to the Koopman space as ̃︀𝑔 = [𝑔1, · · · , 𝑔𝑇 ] using the graph

encoder 𝜑, where 𝑔𝑡 = 𝜑(𝑥𝑡). We use 𝑔𝑖:𝑗 to denote the sub-sequence [𝑔𝑖, · · · , 𝑔𝑗 ]. To identify

the Koopman matrix, we solve the linear regression min𝐾 ‖𝐾𝑔1:𝑇−1 − 𝑔2:𝑇 ‖2. As a result,

𝐾 = 𝑔2:𝑇 (𝑔1:𝑇−1)† will asymptotically approach the Koopman operator 𝒦 with an increasing

𝑇 . For cases where there are control inputs ̃︀𝑢 = [𝑢1, · · · ,𝑢𝑇−1], the calculation of the

Koopman matrix and the control matrix is essentially solving a least squares problem w.r.t.

the objective

min
𝐾,𝐿
‖𝐾𝑔1:𝑇−1 + 𝐿̃︀𝑢− 𝑔2:𝑇 ‖2. (5.6)

As we mentioned in the Section 5.3.2, the dimension of the Koopman space is linear to the

number of objects in the system, i.e., ̃︀𝑔 ∈ R𝑁𝑚×𝑇 and 𝐾 ∈ R𝑁𝑚×𝑁𝑚. If we do not enforce

any structure on the Koopman matrix 𝐾, we will have to identify 𝑁2𝑚2 parameters. Instead,

we can significantly reduce the number by leveraging the assumption on the structure of 𝐾.

Assume we know some blocks ({𝐾𝑖𝑗}) of the matrix 𝐾 are shared and in total there are ℎ

different kinds of blocks, which we denote as �̂� ∈ Rℎ×𝑚×𝑚. Then, the number of parameter

to be identified reduce to ℎ𝑚2. Usually, ℎ does not depend on 𝑁 , and is much smaller than

𝑁2. Now, for each block 𝐾𝑖𝑗 , we have a one-hot vector 𝜎𝑖𝑗 ∈ {0, 1}ℎ indicating its type, i.e.,

𝐾𝑖𝑗 = 𝜎𝑖𝑗�̂� ∈ R𝑚×𝑚. Finally, as shown in Equation 5.7, we represent the Koopman matrix

as the product of the index tensor 𝜎 and the parameter tensor �̂�:

𝐾 = 𝜎 ⊗ �̂� =

⎡⎢⎢⎢⎣
𝜎11�̂� · · · 𝜎1𝑁�̂�

...
. . .

...

𝜎𝑁1�̂� · · · 𝜎𝑁𝑁�̂�

⎤⎥⎥⎥⎦ ,where 𝜎 =

⎡⎢⎢⎢⎣
𝜎11 · · · 𝜎1𝑁
...

. . .
...

𝜎𝑁1 · · · 𝜎𝑁𝑁

⎤⎥⎥⎥⎦ ∈ R𝑁×𝑁×ℎ. (5.7)
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Similar to the Koopman matrix, we assume the same block structure in the control matrix 𝐿

and denote its parameter as �̂� ∈ Rℎ×𝑚×𝑙. The least squares problem of identifying �̂� and �̂�

becomes

min
�̂�,�̂�
‖(𝜎 ⊗ �̂�)𝑔1:𝑇−1 + (𝜎 ⊗ �̂�)̃︀𝑢− 𝑔2:𝑇 ‖2, (5.8)

where 𝜎⊗ �̂� ∈ R𝑁𝑚×𝑁𝑚, 𝜎⊗ �̂� ∈ R𝑁𝑚×𝑁𝑙, 𝑔1:𝑇−1 ∈ R𝑁𝑚×(𝑇−1) and ̃︀𝑢 ∈ R𝑁𝑙×(𝑇−1). Since

the linear least squares problems described in Equation 5.6 and Equation 5.8 have analytical

solutions, performing system identification using our method is very efficient.

Training GNN models. To make predictions on the states, we use a graph decoder 𝜓

to map the Koopman embeddings back to the original state space. In total, we have three

losses to train the graph encoder and decoder. The first term is the auto-encoding loss

ℒae =
1

𝑇

𝑇∑︁
𝑖

‖𝜓(𝜑(𝑥𝑖))− 𝑥𝑖‖. (5.9)

The second term is the prediction loss. To calculate it, we rollout in the Koopman space

and denote the embeddings as 𝑔1 = 𝑔1, and 𝑔𝑡+1 = 𝐾𝑔𝑡 + 𝐿𝑢𝑡, for 𝑡 = 1, · · · , 𝑇 − 1. The

prediction loss is defined as the difference between the decoded states and the actual states,

i.e.,

ℒpred =
1

𝑇

𝑇∑︁
𝑖=1

‖𝜓(𝑔𝑖)− 𝑥𝑖‖. (5.10)

Third, we employ a metric loss to encourage the Koopman embeddings preserving the distance

in the original state space. The loss is defined as the absolute error between the distances

measured in the Koopman space and that in the original space, i.e.,

ℒmetric =
∑︁
𝑖𝑗

⃒⃒
‖𝑔𝑖 − 𝑔𝑗‖ − ‖𝑥𝑖 − 𝑥𝑗‖

⃒⃒
. (5.11)

Having Koopman embeddings that perserves the distance in the state space is important as

we are using the distance in the Koopman space to define the cost function for downstream

control tasks.

The final training loss is simply the combination of all the terms above: ℒ = ℒae +

𝜆1ℒpred + 𝜆2ℒmetric. We then minimize the loss ℒ by optimizing the parameters in the graph
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encoder 𝜑 and graph decoder 𝜓 using stochastic gradient descent. Once the model is trained,

it can be used for system identification, future prediction, and control synthesis.

5.3.4 Control

For a control task, the goal is to synthesize a sequence of control inputs 𝑢1:𝑇 that minimize

𝐶 =
∑︀𝑇

𝑡=1 𝑐𝑡(𝑥
𝑡,𝑢𝑡), the total incurred cost, where 𝑐𝑡(𝑥𝑡,𝑢𝑡) is the instantaneous cost. For

example, considering the control task of reaching a desired state 𝑥* at time 𝑇 , we can design

the following instantaneous cost, 𝑐𝑡(𝑥𝑡,𝑢𝑡) = 1[𝑡=𝑇 ]‖𝑥𝑡 − 𝑥*‖22 + 𝜆‖𝑢𝑡‖22. The first term

promotes the control sequence that matches the state to the goal, while the second term

regularizes the control signals.

Open-loop control via quadratic programming (QP). Our model maps the original

nonlinear dynamics to a linear dynamical system. We can then solve the control task by

solving a linear control problem. With the assumption that the Koopman embeddings preserve

the distance measure, we define the control cost as 𝑐𝑡(𝑔𝑡,𝑢𝑡) = 1[𝑡=𝑇 ]‖𝑔𝑡−𝑔*‖22+𝜆‖𝑢𝑡‖22. As

a result, we reduce the problem to minimizing a quadratic cost function 𝐶 =
∑︀𝑇

𝑡=1 𝑐𝑡(𝑔
𝑡,𝑢𝑡)

over variables {𝑔𝑡,𝑢𝑡}𝑇𝑡=1 under linear constrains 𝑔𝑡+1 = 𝐾𝑔𝑡 + 𝐿𝑢𝑡, where 𝑔1 = 𝜑(𝑥1) and

𝑔* = 𝜑(𝑥*).

Model predictive control (MPC). Solving the QP gives us control signals, which might

not be good enough for long-term control as the prediction error accumulates. We can

combine it with Model Predictive Control, assuming feedback from the environment every 𝜏

steps.

5.4 Experiments

Environments. We evaluate our method by assessing how well it can simulate and control

ropes and soft robots. Specifically, we consider three environments. (1) Rope (Figure 5-2a):

the top mass of a rope is fixed to a specific height. We apply force to the top mass to move it

in a horizontal line. The rest of the masses are free to move according to internal force and

gravity. (2) Soft (Figure 5-2b): we aim to control a soft robot that is consist of soft blocks.

Blocks in dark grey are rigid and those in light blue are soft blocks. Each one of the dark

blue blocks is soft but have an actuator inside that can contract or expand the block. One of
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Figure 5-2: Qualitative results. Top: our model prediction matches the ground truth over a long
period. Bottom: for control, we use red dots or frames to indicate the goal. We apply the control
signals generated from our identified model to the original simulator, which allows the agent to
achieve the goal accurately. Please refer to our supplementary video in the website for more results.

the blocks is pinned to the ground, as shown using the red dots. (3) Swim (Figure 5-2c):

instead of pinning the soft robot to the ground, we let the robot swim in fluids. The colors

shown in this environment have the same meaning as in Soft.

Observation space. In the Rope environment, each mass on the rope is considered as an

object. The observation of each mass is its position and velocity in the 2D plane, which has

a dimension of 4. In total, a rope with 𝑁 masses has an observation space of dimension 4𝑁 .

In both the Soft and the Swim environments, each quadrilateral is considered as an object.

For each quadrilateral, we have access to the positions and velocities of the four corners.

Thus for a soft robot containing 𝑁 quadrilaterals, we have a 4× 4×𝑁 = 16𝑁 dimensional

observation.
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Baselines. We compare our model to the following baselines: Interaction Networks [Battaglia

et al., 2016] (IN), Propagation Networks [Li et al., 2019b] (PN), and Koopman method

with hand-crafted Koopman base functions (KPM). IN and PN are the state-of-the-art

learning-based physical simulators, and we evaluate their adaptation ability by finetuning

their parameters on a small sequence of observations from the testing environment. Similar

to our method, KPM fits a linear dynamics in the Koopman space. Instead of learning

Koopman observations from data, KPM uses polynomials of the original states as the basis

functions. In our setting, we set the maximum order of the polynomials to be three to make

the dimension of the hand-crafted Koopman embeddings match our model’s.

Data generation. We generate 10,000 episodes for Rope and 50,000 episodes for Soft and

Swim. Among them, 90% are used for training, and the rest for testing. Each episode has

100 time steps. In the dataset, the physical systems have a various number of objects from 5

to 9, i.e., the ropes have 5 to 9 masses while the soft robots in Soft and Swim environments

have 5 to 9 quadrilaterals. To evaluate the model’s extrapolating generalization ability, for

each environment, we generate an extra dataset with the same size as the test set while

containing systems consist of 10 to 14 objects.

Training and evaluation protocols. All models are trained using Adam optimizer [Kingma

and Ba, 2015] with a learning rate of 10−4 and a batch size of 8. 𝜆1 and 𝜆2 are 1.0 and 0.3,

respectively, for our model. For both our model and the baselines, we apply 400K iterations

of gradient steps in the Rope environment and 580K iterations in the Soft and Swim

environment. Our model is trained on the sub-sequence of length 64 from the training set,

and IN/PN aims at minimizing the L1 distance between their prediction and the ground

truth. During test time, the models have to adapt to a new environment of unknown physical

parameters, where they have access to a short sequence of observations and the opportunity

to adjust their models’ parameters. Our model uses 8 episodes to identify the transition

matrix via least-square regression. IN/PN update the model’s parameters by minimizing the

distance between the model’s prediction and the actual observation using a gradient step

of length 10−4 for 5 iterations. For evaluation, we use two metrics: simulation error and

control error. For a given episode, the simulation error at time step 𝑡 is defined as the

mean squared error between the model prediction �̂�𝑡 and the ground truth 𝑥𝑡. For control,
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Figure 5-3: Quantitative results on simulation. The 𝑥 axis shows time steps. The solid lines
indicate medians and the transparent regions are the interquartile ranges of simulation errors. Our
method significantly outperforms the baselines in all testing environments.
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Figure 5-4: Quantitative results on control and ablation studies on model hyperparame-
ters. Left: box-plots show the distributions of control errors. The yellow line in the box indicates
the median. Our model consistently achieves smaller errors in all environments against KPM. Right:
our model’s simulation errors with different amount of data for system identification (d) and different
dimensions of the Koopman space (e).

we pick the initial frame 𝑥0 and the 𝑡’th frame 𝑥𝑡 from a episode. Then we ask the model to

generate a control sequence of length 𝑡 to transfer the system from the initial state 𝑥0 to

the target state 𝑥𝑡. The control error is defined as the mean squared distance between the

target state and the state of the system at time 𝑡.

5.4.1 Simulation

Figure 5-2 shows qualitative results on simulation. Our model accurately predicts system

dynamics for more than 100 steps. For Rope, the small prediction error comes from the slight

delay of the force propagation inside the rope; hence, the tail of the rope usually has a larger

error. For Soft, our model captures the interaction between the body parts and generates

accurate prediction over the global movements of the robot. The error mainly comes from

the misalignment of some local components.

We evaluate the models by predicting 100 steps into the future on 500 trajectories and
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Figure 5-3 shows quantitative results. IN and PN do not work well in the Rope and Swim

environments due to insufficient system identification ability. The KPM baseline performs

poorly in the Rope and Soft environments indicating the limited power of polynomial

Koopman base functions. Our model significantly outperforms all the baselines.

5.4.2 Control

We compare our model with KPM, the Koopman baseline using polynomial basis. In

Rope, we ask the models to perform open-loop control where it only solves the QP once at

the beginning. The length of the control sequence is 40. When it comes to Soft/Swim, each

model is asked to generate control signals of 64 steps, and we allow the model to receive

feedback after 32 steps. Thus every model has a second chance to correct its control sequence

by solving the QP again at the time step 32.

As shown in Figure 5-2, our model leverages the inertia of the rope and matches the

target state accurately. As for controlling a soft body swinging on the ground or swimming in

the water, our model can move each part (the boxes) of the body to the exact target position.

The small control error comes from the slight misalignment of the orientation and the size of

the body parts. Figure 5-4 shows that quantitatively our model outperforms KPM, too.

5.4.3 Ablation Study

Simulation Control

Diag 0.133 (0.174) 2.337 (2.809)

None 0.117 (0.083) 1.522 (1.288)

Block 0.105 (0.075) 0.854 (1.101)

Table 5.1: Ablation study results on the
Koopman matrix structure (Rope environ-
ment). For simulation, we show the Mean Squared
Error between the prediction and the ground truth
at 𝑇 = 100. For control, we show the performance
with a horizon of length 40. The numbers in paren-
theses show the performance on extrapolation.

Structure of the Koopman matrix. We

explore three different structures of the Koop-

man matrix, Block, Diag and None, to un-

derstand its effect on the learned dynamics.

None assumes no structure in the Koopman

matrix. Diag assumes a diagonal block struc-

ture of 𝐾: all off-diagonal blocks (𝐾𝑖𝑗 where

𝑖 ̸= 𝑗) are zeros and all diagonal blocks share

the same values. Block predefines a block-

wise structure, decided by the relation be-

tween the objects as introduced in Section 5.3.3.

Table 5.1 includes our model’s simulation error and control error with different Koopman

matrix structures in Rope. All models are trained in the Rope environment with 5 to 9
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masses. Besides the result on the test set, we also report models’ extrapolation performance

in parentheses, where the model is evaluated on systems with more masses than training,

i.e., 10 to 14 masses.

Our model with Block structure consistently achieves a smaller error in all settings. Diag

assumes an overly simplified structure, leading to larger errors and failing to make reasonable

controls. None has comparable simulation errors but larger control errors. Without the

structure in the Koopman matrix, it overfits the data and makes the resulting linear dynamics

less amiable to the control.

Hyperparameters. In our main experiments, we set the dimension of the Koopman em-

bedding to 𝑚 = 32 per object. Online system identification requires 800 data samples for each

training/test case. To understand our model’s performance under different hyperparameters,

we vary the dimension of the Koopman embedding from 8 to 64 and the number of data

samples used for system identification from 200 to 1,600. Figure 5-4d shows that more data

for system identification leads to better simulation results. Figure 5-4e shows that dimension

16 gives the best results on simulation. It may suggest that the intrinsic dimension of the

Koopman invariant space of the Rope system is around 16 per object.

5.5 Discussion

Compositionality is common in our daily life. Many ordinary objects contain repetitive

subcomponents: ropes and soft robots (as shown in this chapter), granular materials such

as coffee beans and lego blocks, and deformable objects such as cloth and modeling clay.

Although these objects are known to be very challenging to manipulate using traditional

methods, this and previous chapters have made steady progress in constructing systems

advancing the robots’ capability to interact with these objects.

The specific formulation proposed in this chapter opens up a new direction by combining

deep Koopman operators with graph neural networks. By leveraging the compositional

structure in the Koopman operator via graph neural nets, our model can efficiently manipulate

deformable objects such as ropes and soft robots, and generalize to systems with variable

numbers of components. We hope this work could encourage more endeavors in modeling

larger and more complex systems by integrating the power of the Koopman theory and the

expressiveness of neural networks.
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Chapter 6

Learned Structured World Models for

Causal Discovery From Videos

Starting the first chapter of Part II of this thesis, I will discuss the use of structured

world models for physical inference, specifically for the inference of state, parameter, and

latent scene structure of the underlying environment. In this chapter, I will focus on the

task of causal discovery of physical systems from videos.

Causal discovery is at the core of human cognition. It enables us to reason about the

environment and make counterfactual predictions about unseen scenarios that can vastly

differ from our previous experiences. We consider the task of causal discovery from videos in

an end-to-end fashion without supervision on the ground-truth graph structure. In particular,

our goal is to discover the structural dependencies among environmental and object variables:

inferring the type and strength of interactions that have a causal effect on the behavior

of the dynamical system. Our model consists of (a) a perception module that extracts a

semantically meaningful and temporally consistent keypoint representation from images,

(b) an inference module for determining the graph distribution induced by the detected

keypoints, and (c) a dynamics module that can predict the future by conditioning on the

inferred graph. We assume access to different configurations and environmental conditions,

i.e., data from unknown interventions on the underlying system; thus, we can hope to discover

the correct underlying causal graph without explicit interventions. We evaluate our method

in a planar multi-body interaction environment and scenarios involving fabrics of different

shapes like shirts and pants. Experiments demonstrate that our model can correctly identify
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the interactions from a short sequence of images and make long-term future predictions. The

causal structure assumed by the model also allows it to make counterfactual predictions and

extrapolate to systems of unseen interaction graphs or graphs of various sizes. Please refer

to our project page for video illustrations: https://yunzhuli.github.io/V-CDN/.

This chapter was originally published as Li et al. [2020b] in the Conference on Neural

Information Processing Systems (NeurIPS) 2020 along with co-authors Antonio Torralba,

Animashree Anandkumar, Dieter Fox, and Animesh Garg.

6.1 Introduction

Causal understanding of the world around us is part of the bedrock of intelligence.

This ability enables counterfactual reasoning, which often distinguishes algorithmic models

from intelligent behavior in humans. This ability to discover latent causal mechanisms

from data poses an important technical question towards building intelligent and interactive

systems [Spirtes et al., 2000, Peters et al., 2017, Glymour et al., 2019]. For instance, Figure 6-1

shows an example of a multi-body system. While the images may convey the identity and

position of balls, the structural causal mechanism is latent. Each pair of balls is connected

to each other through an edge (say a spring, a rigid rod, or be free). Further, each edge may

have a set of hidden confounders, like the rest length of a spring or the rigid rod, that causally

affect the physical interaction behavior. The underlying causal structure and governing

functional mechanism may not be apparent if observations, such as images, are implicit

measurements of ground-truth variables [Zhang et al., 2017]. Furthermore, they can also

vary across different configurations and scenarios within a domain. Hence, we need few-shot

causal discovery algorithms purely from image data.

In a special case, where the entities are all disconnected and the only interactions are of

collision-type, there have been a number of models proposed to employ an object-centric

formulation in recent literature to directly predict the future from images [Watters et al.,

2017, Janner et al., 2019, Santoro et al., 2017]. In such cases, model discovery may not even

be necessary given these solutions. However, these associative models crumble in the face of

more complex stationary underlying generative structures such as different types of latent

edges and edge mechanisms [Gong et al., 2017]. Moreover, they are insufficient to capture

novel generative structures and make counterfactual predictions at test time.
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Figure 6-1: Causal discovery in physical systems from videos. The left figure shows balls,
connected by invisible physical relations (shown in grey), moving around. Hidden confounding
variables like edge type and edge parameters have a causal effect on the behavior of the underlying
system. We humans can observe balls, infer the existence and variables on the edges between
the balls, and predict the future. Similarly, in the cloth environment shown on the right, we can
find a reduced-order representation by placing temporally consistent keypoints on the images and
determining the causal relationships between them to reflect the cloth’s topology.

In this work, we aim to discover the structural causal model (SCM) to predict the future

and reason over counterfactuals. To recover an SCM only from images, we need to first

learn a compact state representation, infer a causal graph among these variables as well as

identify hidden confounders, finally learn the functional mechanism of dynamics. This is a

particularly challenging task in that we only have images and do not have explicit knowledge

of the node variables. Furthermore, we neither assume access to ground truth causal graph,

nor the hidden confounders and the dynamics that characterize the effect of the physical

interactions. In order to tackle this end-to-end causal discovery problem in an unsupervised

manner, we learn from datasets that contain episodes generated from different causal graphs

but with a shared dynamics model.

Summary of results. The main contributions of this work lie in the one-shot discovery

of unseen causal mechanisms in new environments from partially observed visual data in a

continuous state space. This entails jointly performing model class estimation, parameter

inference, and thereby building a predictive model for new latent structures at test time in a

meta-learning framework.

The proposed Visual Causal Discovery Network (V-CDN) consists of three modules for

visual perception, structure inference, and dynamics prediction (Figure 6-2). Specifically, we

train the perception module that extracts unsupervised keypoints from the images to enable

node discovery, building upon Kulkarni et al. [2019]. The inference module then takes the

predicted keypoints and infers the exogenous variables that govern the interactions between
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each pair of keypoints using graph neural networks. Conditioned on the inferred graph, the

dynamics module learns to predict the future movements of the keypoints. We consider a

variety of configurations and scenarios, which gives us different combinations of variables, i.e.,

data from unknown interventions on the underlying system. Thus, we can hope to discover

the correct underlying causal graph without explicit interventions.

Experiments show that our proposed model is robust to input noise and works well

on multi-body interactions with varying degrees of complexity. Notably, our method can

facilitate counterfactual predictions and extrapolate to cases with a variable number of objects

and scenarios where the underlying interaction graphs are never seen before. Experiments

in a fabric environment also demonstrate the generalization ability of our method, where

the same model can handle fabrics of different types and shapes, accurately identifying the

dependency structure and modeling the underlying dynamics even when state variables are a

reduced-order keypoint-based representation of the original system.

6.2 Visual Causal Discovery in Physical Systems: V-CDN

In this section, we present the details of our model, which extracts structured representa-

tions from videos, discovers the causal relationships, infers the hidden confounding variables

on the directed edges, and then predicts the future. Our model directly learns from raw

videos, which recovers the underlying causal graph without any ground truth supervision.

Problem formulation. We consider a dataset of 𝑀 trajectories observed from a latent

generative dynamical system, where each datapoint is generated with unknown interventions

on both the underlying causal graph structure and parameters affecting the mechanism.

The generative process of each episode follows a causal summary graph [Peters et al., 2017],

𝒢𝑚 = (𝒱1:𝑇𝑚 , ℰ𝑚),𝑚 = 1 . . .𝑀 , where 𝒱1:𝑇𝑚 contains the subcomponents underlying the

system at different time steps and ℰ𝑚, which we assume is invariant over time, denotes the

causal relationships between the constituting components. Specifically, for each directed edge

(𝑣𝑚,𝑖, 𝑣𝑚,𝑗) ∈ ℰ𝑚, there are both discrete and continuous hidden confounders denoting the

type and parameters of the relationship that determines the computation of the underlying

structural causal model (SCM) [Pearl, 2009] and affects the behavior of the dynamical system.

We further assume that in the dynamical system, there are no instantaneous edges or edges

that go back in time. Note that the causal summary graph may contain cycles, but when
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Figure 6-2: Model overview. Visual Causal Discovery Network (V-CDN) consists of three
components: (a) a perception module to process the images and extract unsupervised keypoints as
the state representation, (b) an inference module that observes the movements of the keypoints and
determines the existence of the causal relations as well as the associated hidden confounders, and (c)
a dynamics module that predicts the future by conditioning on the current state and the inferred
causal summary graph.

spanning over time, the derived causal full time graph is a directed acyclic graph (DAG), as

shown in Figure 6-2.

In this work, we consider the case where we only have access to the data in the form of

image sequences, I𝑚 = {𝐼1:𝑇𝑚 }, without any knowledge of the ground truth causal structure

and the intervention being applied, where 𝐼𝑡𝑚 is an image of dimension 𝐻 ×𝑊 , denoting the

data we received at time 𝑡 of episode 𝑚. The goal is to perform a one-shot recovery of the

causal summary graph from a short sequence of images and simultaneously learn a shared

dynamics model that operates on the identified graph to make counterfactual predictions

into the future. This is a particularly challenging task and our method serves as a first step

for tackling this problem in an end-to-end fashion using unsupervised intermediate keypoint

representations.

Overview of Visual Causal Discovery Network (V-CDN). We aim to find a

temporally-consistent (and possibly reduced-order) keypoint-based representation from images

using a perception module trained in an unsupervised way,

𝒱𝑡𝑚 = 𝑓𝒱𝜃 (𝐼
𝑡
𝑚), 𝑡 = 1, . . . , 𝑇, (6.1)

where the function 𝑓𝒱𝜃 , parameterized by 𝜃, takes raw images as input and outputs a set

of keypoints in 2-D coordinates, 𝒱𝑡𝑚 = {𝑜𝑡𝑚,𝑖|𝑜𝑡𝑚,𝑖 ∈ R2}𝑁𝑖=1, that reflect the constituting

components in the system. Then, we use an inference module, 𝑓ℰ𝜑 , parameterized by 𝜑, that
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takes the sequence of detected keypoints as input and predicts the edge set, ℰ̃𝑚,

ℰ̃𝑚 = 𝑓ℰ𝜑 (𝒱1:𝑇𝑚 ), (6.2)

where ℰ̃𝑚 = {(𝑜𝑚,𝑖,𝑜𝑚,𝑗 , 𝑔𝑚,𝑖𝑗)}. 𝑔𝑚,𝑖𝑗 includes 𝑔d
𝑚,𝑖𝑗 and 𝑔c

𝑚,𝑖𝑗 , denoting the latent discrete

and continuous confounders associated with the directed edge from 𝑗 to 𝑖 at episode 𝑚. 𝒱1:𝑇𝑚
and ℰ̃𝑚 together constitute our discovered causal summary graph, conditioned on which, a

dynamics module, 𝑓𝒟𝜓 , parameterized by 𝜓, aims to predict the state of the keypoints at

time 𝑇 + 1,

𝒱𝑇+1
𝑚 = 𝑓𝒟𝜓 (𝒱1:𝑇𝑚 , ℰ̃𝑚). (6.3)

By iteratively applying 𝑓𝒟𝜓 , we are able to make long-term future predictions.

The perception module, 𝑓𝒱𝜃 , the inference module, 𝑓ℰ𝜑 , and the dynamics modules, 𝑓𝒟𝜓 ,

are shared among all episodes in the dataset consisting of various causal graphs with different

discrete and continuous hidden confounders, which enables one-shot adaptation to an unseen

graph at test time and allows counterfactual predictions by intervening on the identified

graph and rolling into the future using the dynamics module.

To train the system, we take an unsupervised keypoint detection algorithms [Kulkarni

et al., 2019] as our perception module and train it on the image set, I, for extracting

temporally-consistent keypoints. The inference module and the dynamics module are trained

together by minimizing the following objective:

min
𝜑,𝜓

∑︁
𝑚

∑︁
𝑡

ℒ(𝒱𝑡+1
𝑚 , 𝑓𝒟𝜓 (𝒱1:𝑡𝑚 , ℰ̃𝑚)) + 𝜆𝑅(ℰ̃𝑚), (6.4)

where 𝑅(·) is a regularizer imposed on the identified graph, e.g., to encourage sparsity.

6.2.1 Unsupervised Keypoint Detection From Videos

The perception module’s task is to transform the images into a keypoint representation

in an unsupervised way. In this work, we leverage the technique developed by Kulkarni

et al. [2019]. In particular, we use reconstruction loss over the pixels to encourage the

keypoints to disperse over the foreground of the image. During training, it takes in a source

image 𝐼src and a target image 𝐼tgt sampled from the dataset, and passes them through a

feature extractor 𝑓𝒱𝜔 and a keypoint detector 𝑓𝒱𝜃 . The method then uses an operation called
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transport to construct a new feature map, Φ(𝐼src, 𝐼tgt), using a set of local features indicated

by the detected keypoints. A refiner network takes in the feature map and generates the

reconstruction, 𝐼tgt. The module optimizes the parameters in the feature extractor, keypoint

detector and refiner by minimizing a pixel-wise 𝐿2 loss, ℒrec = ‖𝐼tgt − 𝐼tgt‖, using stochastic

gradient descent.

By combining the keypoint-based bottleneck layer and the downstream reconstruction

task, the model extracts temporally-consistent keypoints spreading over the foreground of

the images. We denote the detected keypoints at time 𝑡 as 𝒱𝑡𝑚 ≜ 𝑓𝒱𝜃 (𝐼
𝑡
𝑚), where 𝒱𝑡𝑚 =

{𝑜𝑡𝑚,𝑖|𝑜𝑡𝑚,𝑖 ∈ R2}𝑁𝑖=1.

6.2.2 Graph Neural Networks As the Spatial Encoder

We use graph neural networks as a building block to model the interactions between

different keypoints and generate object- and relation-centric embeddings. Both the inference

and the dynamics modules will have the graph neural networks as a submodule to capture

the underlying inductive bias.

Specifically, for a set of 𝑁 keypoints, we construct a directed graph 𝒢 = (𝒱, ℰ), where

vertices 𝒱 = {𝑜𝑖} represent the information on the keypoints and edges ℰ = {(𝑜𝑖,𝑜𝑗 , 𝑔𝑖𝑗)}

represent the directed relation pointing to 𝑖 from 𝑗, where 𝑔𝑖𝑗 denotes the associated edge

attributes.

We employ a graph neural network with a similar structure as the Interaction Networks

(IN) [Battaglia et al., 2016] as our spatial encoder, denoted as 𝜑, to generate the embeddings

for the objects and the relations: ({ℎ𝑖}, {ℎ𝑖𝑗}) = 𝜑(𝒱, ℰ).

6.2.3 Inferring the Directed Edge Set of the Causal Summary Graph

After we obtain the keypoints from the images, we use an inference module to discover

the edge set of the causal summary graph and infer the parameters associated with the

directed edges. The inference module takes the detected keypoints over a small time window

within the same episode as input and outputs a posterior distribution over the structure of

the graph. More specifically, we denote the keypoint sequence as 𝒱1:𝑇𝑚 = {𝑜1:𝑇
𝑚,𝑖}𝑁𝑖=1. Our goal

is to predict the distribution of the edge set conditioned on the keypoint sequence using the

parameterized inference function, 𝑝𝜑(ℰ̃𝑚|𝒱1:𝑇𝑚 ) ≜ 𝑓ℰ𝜑 (𝒱1:𝑇𝑚 ).

To achieve our goal, we first use a graph neural network, as discussed in Section 6.2.2, to
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propagate information spatially for each frame, which gives us both node and edge embeddings

for each keypoint at each frame. We then aggregate the embeddings over the temporal

dimension for each node and edge using a 1-D convolutional neural network. Another graph

neural network takes in the temporal aggregations and predicts a discrete distribution over

the edge types, where the first edge type denotes “null edge”. Conditioned on a sample

from the discrete distribution, the model will then predict the continuous edge parameters.

The edge type and edge parameters together constitute the causal summary graph, which

determines the existence and the actual mechanism of the interactions between different

constituent components.

In particular, we first propagate the information spatially by feeding the keypoints through

a graph neural network 𝜑enc, which gives us node and edge embeddings at each time step,

({ℎ𝑡𝑚,𝑖}, {ℎ𝑡𝑚,𝑖𝑗}) = 𝜑enc(𝒱𝑡𝑚, ℰ̃ fc), (6.5)

where the edge set, ℰ̃ fc, denotes a fully connected graph that contains an edge between each

pair of keypoints with the edge attributes being zero. We then aggregate the information

over the temporal dimension for each node and edge using 1-D convolutional neural networks

(CNN):

ℎ̄𝑚,𝑖 = CNNobj(ℎ1:𝑇
𝑚,𝑖), ℎ̄𝑚,𝑖𝑗 = CNNrel(ℎ1:𝑇

𝑚,𝑖𝑗), (6.6)

which allows our model to handle input sequences of variable lengths.

Taking in the aggregated node and edge embeddings, we use another graph neural network,

𝜑d, that only makes predictions over the edges to predict the categorical distribution over

the edge type:

{𝑔d
𝑚,𝑖𝑗} = 𝜑d(𝒱𝑚, ℰ̃d

𝑚), (6.7)

where 𝒱𝑚 = {ℎ̄𝑚,𝑖}𝑁𝑖=1 and ℰ̃d
𝑚 = {(ℎ̄𝑚,𝑖, ℎ̄𝑚,𝑗 , ℎ̄𝑚,𝑖𝑗)|1 ≤ 𝑖, 𝑗 ≤ 𝑁, 𝑖 ̸= 𝑗}. The output

{𝑔d
𝑚,𝑖𝑗} represents the probabilistic distribution over the type of each edge. When an edge

is classified as the first type, i.e., 𝑔d
𝑚,𝑖𝑗 = 1 is true, which we denote as “null edge”, it will

be removed in subsequent computation and no information will pass through it. Sampling

from this discrete distribution is straightforward, but we cannot backpropagate the gradients

through this operation. Instead, we employ the Gumbel-Softmax [Jang et al., 2016, Maddison

et al., 2016] technique, a continuous approximation of the discrete distribution, to get the
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biased gradients, which makes end-to-end training possible.

Conditioned on the inferred edge type {𝑔d
𝑚,𝑖𝑗}, we would like to predict the continuous

parameter on each one of the edges. For this purpose, we construct another edge set

ℰ̃c
𝑚 = {(ℎ̄𝑚,𝑖, ℎ̄𝑚,𝑗 , ℎ̄𝑚,𝑖𝑗)|1 ≤ 𝑖, 𝑗 ≤ 𝑁, 𝑖 ̸= 𝑗, 𝑔d

𝑚,𝑖𝑗 ≠ 1}, and use a new graph neural

network, 𝜑c, to predict the continuous parameters:

{𝑔c
𝑚,𝑖𝑗} = 𝜑c(𝒱𝑚, ℰ̃c

𝑚). (6.8)

We denote the resulting edge set as ℰ̃𝑚 = {(𝑜𝑚,𝑖,𝑜𝑚,𝑗 , 𝑔𝑚,𝑖𝑗)|1 ≤ 𝑖, 𝑗 ≤ 𝑁, 𝑖 ̸= 𝑗, 𝑔d
𝑚,𝑖𝑗 ̸=

1}, where 𝑔𝑚,𝑖𝑗 = (𝑔d
𝑚,𝑖𝑗 , 𝑔

c
𝑚,𝑖𝑗), indicating the topology of the causal summary graph with

both the type and the continuous parameter of the edge effect. The inferred causal summary

graph is then represented as 𝒢𝑚 = (𝒱1:𝑇𝑚 , ℰ̃𝑚).

6.2.4 Future Prediction Using the Forward Dynamics Module

The dynamics module, 𝑓𝒟𝜓 , predicts the future movements of the keypoints by conditioning

on the current state and the inferred causal graph: 𝑝𝜓(𝒱𝑇+1
𝑚 |𝒱1:𝑇𝑚 , ℰ̃𝑚) ≜ 𝑓𝒟𝜓 (𝒱1:𝑇𝑚 , ℰ̃𝑚), where

we instantiate 𝑓𝒟𝜓 as a graph recurrent network, 𝜑dy
𝜓 .

Since we are directly operating on the predicted keypoints from the perception module,

the detected keypoints contain noise and introduce uncertainty on the actual locations.

Hence, in practice, we represent the position in the future steps using a multivariate Gaussian

distribution, where we predict both the mean and the covariance matrix of the next state for

each keypoint.

6.2.5 Optimizing the Model

The perception module is trained independently using the reconstruction loss, ℒrec. To

train the inference module and the dynamics module jointly, we instantiate the objective

function shown in Equation 6.4 by making an analogy to the ELBO objective [Kingma and

Welling, 2013]:

ℒ = E𝑝𝜑(ℰ̃𝑚|𝒱1:𝑇
𝑚 )[log 𝑝𝜓(𝒱

𝑇+1
𝑚 |𝒱1:𝑇𝑚 , ℰ̃𝑚)]−𝐷KL(𝑝𝜑(ℰ̃𝑚|𝒱1:𝑇𝑚 )‖𝑝𝜓(ℰ̃𝑚)), (6.9)
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For the prior 𝑝𝜓(ℰ̃𝑚), we assume that each edge is independent and use a factorized distribu-

tion over the edge types as the prior, where 𝑝𝜓(ℰ̃𝑚) =
∏︀
𝑖𝑗 𝑝𝜓(ℰ̃𝑚,𝑖𝑗). The inference module

and the dynamics module are then trained end-to-end using stochastic gradient descent to

maximize the objective ℒ.

6.3 Experiments

The goal of our experimental evaluation is to answer the following questions: (1) Can

the model perform one-shot discovery of the causal summary graph and identify the hidden

confounders, including both discrete and continuous variables? (2) How well can the model

extrapolate to graphs of different sizes that are not seen during training? (3) How well

can the learned model facilitate counterfactual prediction via intervening on the identified

summary graph?

Environment. We study our model in two environments: one includes masses, connected

by invisible physical constraints, moving around in a 2-D plane, and the other one contains a

fabric of various shapes where we are applying forces to deform it over time (Figure 6-3).

• Multi-Body Interaction. There are 5 balls of different colors moving around. At the

beginning of each episode, we sample the invisible physical relations between each pair of

balls independently, giving us the ground truth ℰ𝑚 that is fixed throughout the episode.

For each pair of balls, there is a one-third probability that they are not connected or linked

by a rigid rod or a spring. We also sample the continuous parameters for each existing

edge and fix them within the episode, e.g., the length of the rigid relation or the rest length

of the spring.

• Fabric Manipulation. We set up fabrics of three different types: a shirt, pants, and a

towel, where we also vary the shape of the fabrics like the length of the pant leg or the

height and width of the towel (Figure 6-5). We also apply forces on the contour of the

fabric to deform and move it around. Our goal is to produce one single model that can

handle fabrics of different types and shapes, instead of training separate models for each

one of them.
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Figure 6-3: Unsupervised keypoint detection. The first row shows the input images, and the
second row shows an overlay between the predicted keypoints and the image. The perception module
assigns keypoints over the foreground of the images and consistently tracks the objects over time
across different frames.
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Figure 6-4: Results on discovering the Causal Summary Graph. Shown in (a) and (b), the
accuracy of edge-type classification increases as the inference module observes more frames, which
also effectively decreases the uncertainty, calculated as the entropy of the predicted distribution. As
exhibited in (c) and (d), there is a strong correlation between the inferred continuous variable and
the ground truth hidden confounder.

6.3.1 Results on Unsupervised Keypoint Detection

We employ the same architecture and training procedure described in Kulkarni et al.

[2019] to train our perception module, 𝑓𝒱𝜃 . Figure 6-3 shows some qualitative results. Our

perception module can spread the keypoints over the foreground of the image and consistently

track the object. Please refer to our project page for video illustrations.

6.3.2 Discovery of the Causal Summary Graph and the Hidden Con-

founders

The inference module, 𝑓ℰ𝜑 , takes in a short sequence of the detected keypoints and aims

to discover whether there is a causal relation, i.e., a physical connection, between each pair of

keypoints and identifies the hidden confounders like the edge type and the edge parameters.
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Figure 6-5: Qualitative results on predicting the Causal Summary Graph and the future.
Our inference module observes a short sequence of images and performs one-shot discovery of the
causal summary graph, which recovers the ground truth graph in the Multi-Body environment and
captures the underlying connectivity structures in the Cloth environment. The unfilled circles in the
right four columns indicate the model’s prediction into the future. We overlay the predicted future
keypoints with the truth future for comparison.
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The predicted graph will be conditioned by the dynamics module, 𝑓𝒟𝜓 , for future prediction.

The optimization procedure does not require any supervision on the attributes associated

with the edges, which allows us to infer the hidden confounders in an unsupervised way.

In the Multi-Body environment, the perception module accurately tracks the location

of balls, which allows us to perform a systematic evaluation of the model’s performance by

comparing its prediction with the ground truth causal summary graph used to generate the

episodes. Because we are working in an unsupervised regime, where the predicted edge type

is in a discrete latent space distinguishing between null edge, spring, and rigid relation, we

need to find a global one-on-one mapping between the prediction, {𝑔d
𝑚}, and the ground

truth. We pick the one that gives us the highest accuracy, with the constraint that the first

type, where there is no information passing through in the subsequent dynamics prediction,

always corresponds to null edge. After the mapping, we evaluate the model’s ability to

predict the continuous confounder, {𝑔c
𝑚}, by computing its correlation with the ground truth

physical parameters like rest length of the spring connection.

The results are shown in Figure 6-4. As the model observes more frames, the classification

accuracy increases, and the uncertainty decreases, which correlates with our intuition that

as we obtain more observations from the environment, we have a better estimate of the

exogenous variables that govern the behavior of the system. We also show the comparison

with a baseline that is the same as our method except that it does not have the inference

module. Our model significantly outperforms the baseline, indicating the importance of the

correct modeling of the causal mechanism (Figure 6-6d). Figure 6-5 shows some qualitative

results, where we include side-by-side comparisons between the identified causal summary

graph and the ground truth.

For the cloth environment, the keypoints on the fabrics act as a reduced-order represen-

tation of the original system, where we do not know the ground truth causal summary graph.

We encode the action as a 6-dimensional vector: the first three are the coordinates of the

dragged point, and the other three indicate the movement, which will then be concatenated

with the embedding of every keypoint. As shown in Figure 6-5, the same inference module

produces different causal graphs for different types of fabrics that reflect the underlying

connectivity patterns, which illustrates the model’s ability to recognize the underlying

dependency structure.
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(a) Accuracy on edge type:
{null edge, spring, rigid}

(b) Correlation on the rest 
length of the spring relation

(c) Correlation on the length
of the rigid relation 

(d) Mean squared error on 
future prediction

Figure 6-6: Results on extrapolating to unseen graphs of different sizes. Our inference
module and dynamics module are trained only in environments containing 5 bodies. Thanks to the
inductive bias captured by the graph neural networks in our model, it automatically generalizes
to scenarios with different numbers of bodies from training. The blue bars in the figures show the
performance on the test set in the same distribution we trained on, and the orange bars illustrate
results on extrapolation. Surprisingly, the model has a better performance in environments with 3
and 4 balls, even if the model has never seen them before.

6.3.3 Extrapolation to Unseen Causal Graphs of Different Sizes

To evaluate our model’s performance on extrapolation, we also create another 4 test

sets in the Multi-Body environment, including 3, 4, 6, and 7 bodies, respectively, for which

we need to train separate perception modules to reflect the number of moving components.

However, the inference module and the dynamics module do not require retraining; instead,

they can directly generalize to systems of different numbers of bodies. As shown in Figure 6-6,

the blue bar shows the performance on the test set that has the same number of balls as

the training set, while the other bars illustrate the model’s ability to perform extrapolation.

Interestingly, for environments with fewer balls, e.g., 3 or 4 balls, even if the model is not

directly trained on these scenarios, the performance is yet better.

6.3.4 Counterfactual Prediction and Extrapolation on Parameter Change

In our experiment, we make counterfactual predictions by intervening on the estimated

hidden confounders and evaluate how well the model predicts the future by making the same

intervention on the ground truth simulator. The estimated confounders are in the latent

space, which requires a mapping function to get the corresponding parameters in the original

simulator. We use the same mapping as described in Section 6.3.2 to find the corresponding

discrete variables, and train a simple linear regressor for transforming the continuous variable.

Figure 6-7 shows the performance on counterfactual predictions, which illustrates our model’s

ability to answer “what if” questions and extrapolate to parameter ranges that are outside
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(a) Intervention on the rest length in spring (b) Intervention on the length of the rigid relation (c) Intervention on edge type 

Figure 6-7: Results on counterfactual prediction. We make counterfactual predictions by
intervening on the identified causal summary graph and evaluate the performance by comparing
the predicted future with the original simulator undergoing the same intervention at 𝑇 + 30. The
modeling of the causal mechanism allows it to extrapolate to parameter ranges outside the training
distribution.

the training distribution.

6.4 Related Work

Causal discovery. Methods for causal inference from observations can broadly be catego-

rized into three classes. Constraint-based methods (such as PC and FCI) rely on conditional

independence tests as constraint-satisfaction to recover Markov-Equivalent Graphs [Entner

and Hoyer, 2010, Spirtes et al., 2000, Colombo et al., 2011]. Score-based methods (such as

GES) assign a score to each DAG, and perform searching in this score space [Chickering,

2002, Zheng et al., 2018]. The third class of methods exploits such asymmetries or causal

footprints to uniquely identify a DAG [Shimizu, 2014, Kalainathan et al., 2018, Goudet

et al., 2017, Zhang and Hyvärinen, 2009]. Further, causal discovery from a combination of

observational and interventional data has been studied in the literature [Hyttinen et al., 2013,

Ghassami et al., 2018, Kocaoglu et al., 2017, Wang et al., 2017a, Shanmugam et al., 2015,

Peters et al., 2016, Rothenhäusler et al., 2015, Ke et al., 2019]. Many of these approaches

either assume full knowledge of the intervention, make strong assumptions about the model

class, or have scalability limitations.

Relational neural models. Including Chapter 3 and 5, many recent works have attempted

modeling multi-body dynamics with graphs [Santoro et al., 2017, Battaglia et al., 2018, 2016]

and attention [Goyal et al., 2019, Vaswani et al., 2017]. However, these methods assume the

latent generative causal graph is stationary, resulting in poor generalization to variations in

either graph structure or its functional parameters. A few recent works [Kipf et al., 2018, Alet

et al., 2019] have tried to infer the relationship between different entities in the system using
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a variational or meta-learning framework, where Kipf et al. [2018] also discussed connection

to Granger causality. Still, we differ from them by directly working with image data and

modeling not only the discrete but also the continuous hidden confounding variables.

Dynamics from videos. Video modeling and prediction have found much attention

recently [Ye et al., 2019, Hsieh et al., 2018, Kumar et al., 2019, Yi et al., 2019]. The idea

of learned latent space embeddings for unsupervised loss computation has also enjoyed

recent success in prediction: Watter et al. [2015], Hafner et al. [2019b,a], and Li et al. [2022]

(detailed in Chapter 4). Other people have employed keypoints (or particles) to provide more

succinct and generalizable representations across a variety of use cases: keypoint/particle

representation [Macklin et al., 2014, Mrowca et al., 2018, Ummenhofer et al., 2020, Sanchez-

Gonzalez et al., 2020, Kulkarni et al., 2019, Minderer et al., 2019, Dundar et al., 2020]

(including works [Manuelli et al., 2021, Li et al., 2018] discussed in detail in Chapter 2

and 3), deformable object modeling [Jakab et al., 2018, Suwajanakorn et al., 2018], instance

independent class templates [Manuelli et al., 2019]. The work presented in this chapter

builds on ideas from unsupervised visual representation learning and leverages it for visual

causal discovery wherein the underlying model components use relational modeling to output

a Causal Summary Graph, which has not been achieved in prior work for complex video

datasets.

6.5 Discussion

Our method extracts a structured keypoint-based representation from videos, identifies

the causal relationships between different constituting components, and makes predictions

into the future. The model neither assumes access to the ground truth causal graph, nor the

hidden confounders, nor the dynamics that describes the effect of the physical interactions;

instead, we learn to discover the dependency structures and model the causal mechanisms

end-to-end from images in an unsupervised way, which we hope can facilitate future studies

of more generalizable visual reasoning systems.
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Chapter 7

Learned Structured World Models for

State and Parameter Estimations

In the second chapter of Part II, we dig deeper by considering physical inference tasks in

more complicated systems involving the interactions between deformable objects, fluids, and

rigid bodies. The ability to perform physical reasoning and to adapt to new environments is

intrinsic to humans that we can intuitively recognize objects’ physical properties and predict

their motion, even when the objects are engaged in complicated interactions. Yet, such

abilities still remain challenging to state-of-the-art computational models.

To handle systems involving objects of a diverse set of materials, in this chapter, we

follow Chapter 3 to represent the scene using particles but build on top of it by presenting a

neural framework that simultaneously reasons about system states from image observations

and makes future predictions. The framework consists of a visual prior, a dynamics prior,

and an inference module. The visual prior predicts a particle-based representation of the

system from visual observations. An inference module operates on those particles, predicting

and refining estimates of particle locations, object states, and physical parameters, subject

to the constraints imposed by the dynamics prior (instantiated as the DPI-Nets presented

in Chapter 3). We refer to the whole process as visual grounding. We demonstrate the

effectiveness of our method in environments involving rigid objects, deformable materials,

and fluids. Experiments show that our model can infer the physical properties within a few

observations, which allows the model to quickly adapt to unseen scenarios and make accurate

predictions into the future.
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Figure 7-1: Overview of Visually Grounded Physics Learner (VGPL). The model takes
a sequence of image frames as input, reasons about the underlying physical properties, and makes
future predictions. The input frames first go through the perception module (visual prior), which
reconstructs the input scene in particle representation by giving a proposal on particle positions
and instance groupings. The inference module then refines the proposal by updating the particle
positions, estimating the rigidness of each instance, and predicting the physical parameters of the
scene. The dynamics module (dynamics prior) takes in outputs from the inference module and
predicts particle positions into the future. Please check our project page for video illustrations:
http://visual-physics-grounding.csail.mit.edu/.

This chapter was previously published as Li et al. [2020a] in the International Conference

on Machine Learning (ICML) 2020 along with co-authors Toru Lin, Kexin Yi, Daniel M.

Bear, Daniel L. K. Yamins, Jiajun Wu, Joshua B. Tenenbaum, and Antonio Torralba.

7.1 Introduction

Understanding the physical properties of interacting objects has been a long-standing

goal in computer vision, robotics, and artificial intelligence. As humans, by merely watching

objects interact, we are able to distinguish between different object instances, reason about

their physical properties, and make predictions on their future motion. More impressively,

our ability to recognize, model, and predict the dynamics of physical systems applies to not

only rigid bodies, but also deformable objects such as elastic materials and fluids [Bates

et al., 2019]. Given the example shown in Figure 7-1, humans can automatically identify the

separation between liquid (water) and solid (floating cube), estimate their properties such

as gravity, density, and viscosity, and predict key features of their future motion through

mental simulation [Battaglia et al., 2013, Hamrick et al., 2016].

For computational systems, physical reasoning on interacting deformable objects has been
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a highly challenging task, due to the diverse dynamical characteristics of different materials

and their interactions. Take fluid as an example: fluids can deform, separate, merge, compress,

and oscillate into arbitrary shapes, and some are hard to perceive due to their transparent

nature. Prior works on system identification for robotics usually make strong assumptions

on the structure of the underlying system [Ljung, 2001], or require a lot of data to train a

forward model [Finn and Levine, 2017], and therefore have a hard time modeling complex

deformable objects like fluids and adapting to new scenarios. The DPI-Nets [Li et al., 2018]

presented in Chapter 3, on the other hand, have achieved strong results in modeling a variety

of rigid and deformable object dynamics based on particle representations. Particles provide

a dense and flexible representation that is well-suited for representing objects with diverse

material and dynamical properties. Particles also facilitate relational inductive biases for

more generalizable dynamics modeling. The learned dynamics model is able to accurately

predict the forward evolution of the particle set based on their pre-designated grouping and

physical parameters (stiffness, viscosity, gravity, etc.). However, inference of these essential

properties directly from visual observations remains a challenging research problem, which

limits DPI-Nets’ applicability in more complicated real-world scenarios.

In this work, we focus on the problem of physical reasoning about interacting deformable

objects and build on top of DPI-Nets by proposing a particle-based framework that jointly

refines the particle locations and estimates their physical properties based on learned visual

and dynamic priors. Our model, named Visually Grounded Physics Learner (VGPL), first

generates a coarse proposal of particle positions and grouping from raw visual observations

(visual prior). It then uses a learned dynamics model (dynamics prior) to guide the

inference of several essential system properties such as refinement of particle positions,

object rigidness, and physical parameter estimation (dynamics-guided inference). With those

inferred quantities, our model can predict the future evolution of the system.

We evaluate our model in environments involving interactions between rigid objects, elastic

materials, and fluids. Experiments demonstrate that our model, within a few observation

steps, is able to refine the particle positions proposed by the visual prior, accurately predict

the rigidness of the objects, and infer the physical parameters, which enables quick adaptation

to new scenarios with unknown physical properties and making predictions into the future.
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7.2 Related Work

Researchers have long been using neural networks to learn physical simulators [Chen

et al., 1990, Wan et al., 2001]. Recently, including our works presented in Chapters 3, 5,

and 6, people have demonstrated better generalization performance by using graph neural

networks to capture the compositionality in dynamical systems [Battaglia et al., 2016, Chang

et al., 2017, Sanchez-Gonzalez et al., 2018, Mrowca et al., 2018, Li et al., 2019b, Ummenhofer

et al., 2020, Sanchez-Gonzalez et al., 2020]. These works make very few assumptions on the

structure of the underlying systems, making them both general and flexible. Still, it remains

as a question that how well they can handle raw visual inputs and adapt to environments of

unknown physical properties.

Wu et al. [2015] introduced a method of inferring physical properties using MCMC,

while others have tried differentiating through physics-based simulators to extract gradi-

ents [Todorov et al., 2012, Tedrake and the Drake Development Team, 2019, Degrave et al.,

2019, Schenck and Fox, 2018b, Hu et al., 2019b, de Avila Belbute-Peres et al., 2018, Hu et al.,

2019a, Liang et al., 2019], which showed strong results in solving inverse problems of various

physical environments. However, their optimization process for dealing with the inverse

problems is usually both time-consuming and prone to local optimum. Also, most of them

directly operate on the state information of dynamical systems, lacking a way of handling raw

visual inputs. This work aims to bridge the perception gap, enable physical reasoning from

visual perception, and perform dynamics-guided inference to directly predict the optimization

results, which allows quick adaptation to environments with unknown physical properties.

Including our work discussed in Chapter 4, people also have studied ways of reasoning

about the physics and learning forward model directly from visual inputs [Finn and Levine,

2017, Babaeizadeh et al., 2018, Hafner et al., 2019b, Ha and Schmidhuber, 2018, Wu et al.,

2017]. However, these works either directly learn dynamics model over pixels or operate on a

latent space, which limits their ability to reason about the physical properties explicitly and

make accurate long time future predictions. Other researchers have shown better performance

with intermediate representations like instance masks [Fragkiadaki et al., 2016, Watters

et al., 2017, Janner et al., 2019, Yi et al., 2019] or dense visual descriptors [Xu et al., 2019].

Instead, our model assumes a particle-based intermediate representation [Macklin and Müller,

2013], allowing us to model interactions between objects of different materials, including
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rigid bodies, deformable objects, and fluids.

7.3 Approach

We present the Visually Grounded Physics Learner (VGPL), a model that learns to

infer the properties of a complex physical system guided by a learned dynamics model and

grounded to visual inputs. VGPL uses particles as the underlying state representation for

physical modeling and inference. As shown in Figure 7-1, VGPL first generates a coarse

proposal of the particle states from input visual observations via a perception module (visual

prior), including the positions and groupings of the particles. Our model then applies an

inference module on these proposals, generating the refined positions of the particles, and

estimating other physical properties such as object rigidity and physical parameters. Finally,

we use a dynamics module (dynamics prior) to guide inference of these properties, which can

predict future particle states from historical trajectories, conditioned on these properties.

We describe details of VGPL below.

7.3.1 Problem Formulation

Consider a system that contains 𝑀 objects and 𝑁 particles in its state representation.

Given the visual observation 𝑂 = {𝑜𝑡}𝑇𝑡=1, our model first obtains a proposal of the particle

position �̂� ′ and the grouping information �̂� for each particle, which is a probability dis-

tribution over the object instances, via a learned visual prior 𝑓𝑉 . VGPL also incorporates

a learned dynamics prior 𝑓𝐷 that predicts future states based on the history of particle

positions and physical properties of the system. These properties, including the rigidness

of each object instance �̂� and the environmental physical parameters 𝑃 , are inferred by an

inference module 𝑓𝐼 . The inference module also generates a refinement Δ�̂� to the proposed

particle locations. Our full model is summarized by the following equations:

(�̂� ′, �̂�) = 𝑓𝑉 (𝑂), (7.1)

(𝑃 , �̂�,Δ�̂�) = 𝑓𝐼(�̂�
′, �̂�), (7.2)

�̂� = �̂� ′ +Δ�̂�, (7.3)

�̂�𝑇+1 = 𝑓𝐷(�̂�, �̂�, 𝑃 , �̂�). (7.4)
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The main objective of visual grounding is to infer the physical properties (𝑃 , �̂�) and refine

positions Δ�̂� from the visual proposals of the states, such that the dynamics model predicts

the most accurate particle trajectories. Our inference module 𝑓𝐼 is tuned to minimize the

following objective, constrained by fixed visual and dynamical priors 𝑓𝑉 , 𝑓𝐷:

(𝑃 *, �̂�*,Δ�̂�*) = argmin
𝑃 ,�̂�,Δ�̂�

‖�̂�𝑇+1 −𝑋𝑇+1‖. (7.5)

In practice, the dynamics model iteratively predicts multiple steps into the future and this

loss is computed over a finite time window.

7.3.2 Visual Prior

The visual prior proposes the particle state representation (position and grouping) from

visual observations. The model architecture is built upon the point set generation network

from Fan et al. [2017]. Given a sequence of visual observation images 𝑂 = {𝑜𝑡}𝑇𝑡=1, the model

first uses a convolutional encoder for extracting latent features and then applies two fully

connected heads for predicting the position and grouping of the particles. The model outputs

the normalized particle positions in each frame, as well as the probability distribution over

all object instances that the particle might belong to, (�̂� ′, �̂�) = 𝑓𝑉 (𝑂). In particular, the

particles are in the 3-dimensional space, �̂� ′ = {(𝑥𝑡′𝑖 , 𝑦𝑡′𝑖 , 𝑧𝑡′𝑖 )}
𝑁,𝑇
𝑖=1,𝑡=1 and �̂� = {𝐺𝑡𝑖}

𝑁,𝑇
𝑖=1,𝑡=1 is a

set of probability distributions over the object instances.

The visual prior is trained on the ground-truth particle states acquired from the physics

engine. The full loss function is written as

ℒ𝒱 =
1

𝑇𝑁

𝑇,𝑁∑︁
𝑡=1,𝑖=1

[︁
‖�̂�𝑡′

𝑖 −𝑋𝑡
𝑖‖2 +𝐻(�̂�𝑡𝑖, 𝐺

𝑡
𝑖)
]︁
, (7.6)

where 𝐻 stands for the cross entropy loss.

In practice, in order to impose temporal consistency across different time steps, the

network inputs a short sequence of images, and predicts the particle states over the same

time window within a single pass.
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7.3.3 Dynamics Prior

We adopt a particle-based dynamics model as the prior knowledge for guiding inference

of the physical properties. At each time step, the positions of the particles 𝑋 define a point

cloud that indicates the spatial span of the objects in the environment. The particles form

groups 𝐺 to represent different object instances. Each particle has a binary rigidity label 𝑄

that indicates whether the object it belongs to is a rigid body. Finally, the environment also

has a set of real-valued physical parameters 𝑃 , e.g., viscosity, gravity, stiffness, etc.

Physical state representation. To better model the time evolution of individual particle

states and their interactions, we represent the physical state of the system with a graph

⟨𝑉,𝐸⟩. Each vertex 𝑣𝑖 ∈ 𝑉 contains the position information of a single particle concatenated

with the physical parameters, 𝑣𝑖 = (𝑋𝑖, 𝑃 ). Each edge (𝑠, 𝑟) ∈ 𝐸 contains a binary value

𝑎𝑠𝑟 ∈ {0, 1} that indicates whether the sender 𝑣𝑠 and the receiver 𝑣𝑟 belong to the same

object. Since the underlying interactions between the particles are local, at each time step

the particles are connected to their neighbors within a specified distance threshold 𝑑𝑒.

Spatial message passing. At each time step 𝑡, we use a graph neural network to perform

the following updates on the graph representing the current physical state

𝑔𝑡𝑖𝑗 = 𝜑𝑒(𝑣
𝑡
𝑖 , 𝑣

𝑡
𝑗 , 𝑎𝑖𝑗) (𝑖, 𝑗) ∈ 𝐸 (7.7)

ℎ𝑡𝑖 = 𝜑𝑣(𝑣
𝑡
𝑖 ,
∑︁
𝑗∈𝒩𝑖

𝑔𝑡𝑗𝑖) 𝑖 = 1, 2, . . . , 𝑁. (7.8)

Here 𝒩𝑖 is the set of all “neighbors” of vertex 𝑖 with edges pointing to it. This process,

which we refer to as spatial message passing, also employed by many other physics modeling

systems [Battaglia et al., 2016, Sanchez-Gonzalez et al., 2018], generates a particle-centric

encoding of the physical state ℎ𝑡𝑖 at each vertex and time step. The same type of message

passing on graph is also used in the inference module as we will discuss in Section 7.3.4.

Dynamics prediction. We use the dynamic particle interaction network (DPI-Nets)

introduced in Chapter 3 [Li et al., 2018] to perform dynamical updates on the particle state

based on the vertex embeddings obtained from spatial message passing. To incorporate

temporal information, the network inputs multiple historical steps of the encoded physical
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(a) Rigidness - MassRope (b) Rigidness - FluidCube (c) Position Refinement

Figure 7-2: Quantitative results on rigidness estimation and position refinement. In
(a) and (b), we show our model’s performance on the rigidness estimation task in MassRope and
FluidBox environments respectively. We use the mean probability of the ground truth rigidness
label as the metric. The inference module was trained on inputs with only 10 time steps (the orange
dashed line), but can extrapolate to both shorter and longer input sequence. Longer observation
sequence leads to higher confidence, which is in line with our intuition. In (c), we show our model’s
performance on the position refinement task by comparing particle positions proposed by visual prior
(in blue color) and after refinement by inference module (in orange color). We use the Mean Squared
Error (MSE) between ground truth and predicted positions as the evaluation metric, scaled by 104.
In all environments, MSE decreases after refinement.

state and predicts the particle positions one step ahead. The model handles rigid and

non-rigid objects differently, therefore the update rules depend on the particles’ grouping

and rigidness:

�̂�𝑇+1
𝑖 = 𝜑({ℎ𝑡𝑖}𝑇𝑡=1|𝐺𝑖, 𝑄𝑖). (7.9)

If a particle belongs to a rigid body, its motion can be decomposed into the translation of the

body center plus the rotation of the particle with respect to the center. The update rule will

apply a rigid body transformation (i.e., translation + rotation) to all particles belonging the

same object to enforce the rigidity condition. For particles belonging to non-rigid objects,

their position updates are independently computed per particle by a predictor network.

Please refer to Chapter 3 or Li et al. [2018] for further details.

7.3.4 Dynamics-Guided Inference

The key step of grounding a learned dynamics model to visual inputs is to infer the

physical properties underlying the observed system, in our case, the rigidness of the objects

𝑄, and the environmental physical parameters 𝑃 . We apply an inference module 𝑓𝐼 to

predict these properties from the observed particle proposals generated by the visual prior

(Equation 7.3). The module also outputs refinement on the particles’ positions Δ�̂�. Since

these properties are not directly accessible to the model, we use the learned dynamics prior
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Figure 7-3: Qualitative results on particle position refinement. For each environment, we
show side-by-side comparisons of two frames from the outputs of the visual prior, two frames from
the outputs of position refinement, and two frames from the ground truth. For each output frame,
we provide a zoom-in view to illustrate details of the particles. After refinement, (a) the fluids can
better preserve the density constraint, (b) the rigid object is closer to the correct shape, and (c) the
rope becomes less bumpy. The predicted particle positions after refinement all become closer to the
ground truth.

to guide the inference of these properties. Details of the module are presented below.

Spatiotemporal message passing. Given a sequence of length 𝑇 of the proposed particle

positions and grouping �̂� ′, �̂�, our inference module generates an embedding via spatiotemporal

message passing. Similar to the dynamics prior, the input physical state is represented by

a graph ⟨𝑉,𝐸⟩, where at each vertex 𝑣𝑖 = (�̂� ′, �̂�) and the edges are connected between

particles within a distance threshold 𝑑𝑒.

At each time step 𝑡, we first perform spatial message passing on the graph representation

as described in Section 7.3.3 to obtain the vertex embeddings {ℎ𝑡𝑖}𝑁𝑖=1 (Equations 7.7, 7.8). We

then pass information on these embeddings along the temporal direction via a bi-directional

recurrent network:

𝑢𝑡𝑖 = 𝜑𝜏 ({ℎ𝜏𝑖 }𝑇𝜏=1)
𝑡 𝑡 = 1, 2, . . . , 𝑇. (7.10)

In practice, we use the multi-layer perceptron (MLP) for 𝜑𝑒 and 𝜑𝜏 , and the bi-directional

Gated Recurrent Unit (GRU) [Chung et al., 2014] for 𝜑𝜏 . The weights of 𝜑𝜏 are shared

across all vertices.
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Particle position refinement. We apply a refinement head 𝜑𝑥 on the spatiotemporal

embedding 𝑢𝑡𝑖 to predict refinement Δ�̂� on each particle’s position at each time step

Δ�̂�𝑡
𝑖 = 𝜑𝑥(𝑢

𝑡
𝑖). (7.11)

In our model, 𝜑𝑥 is chosen to be a MLP whose weights are shared across all particles and

time steps.

Object rigidness estimation. To estimate the rigidness of each object in the system, a

principled way is to start from embeddings that are associated with each object instances in

the system. This is obtained by gathering the vertex embeddings from all particles belonging

to the object and take the element-wise average to obtain an embedding vector of the object

𝑤𝑡𝑗 =
∑︁
𝑖∈𝒪𝑗

𝑢𝑡𝑖/|𝒪𝑗 |, 𝑗 = 1, 2, . . . ,𝑀, (7.12)

where 𝑀 is the number of objects in the system and 𝒪𝑗 is the set of all particles belonging

to the 𝑗th object, 𝒪𝑗 := {𝑖|𝐺𝑖 = 𝑗}. This object embedding is then sent to a neural network

to estimate the probability distribution on the rigidness

�̂�𝑡𝑗 = 𝜑𝑞(𝑤
𝑡
𝑗). (7.13)

In our model, 𝜑𝑞 is a MLP with sigmoid output, shared across all object instances and time

steps.

Physical parameter estimation. Finally, we estimate the environmental physical pa-

rameters. Since the parameters are global, we use the full embeddings of all particles from

all time steps and feed them together into a network 𝜑𝑝 to output a set of real numbers

representing the estimated mean of the parameters, via 𝑃 = 𝜑𝑝({𝑢𝑡𝑖}
𝑁,𝑇
𝑖=1,𝑡=1). In practice, we

set 𝜑𝑝 to be an MLP with hyperbolic tangent output.

Training. We use the pre-trained dynamics prior to guide the training of the inference mod-

ule without access to the ground-truth of the inferred quantities. As shown in Equation 7.4,

the dynamics model inputs the inferred quantities, including the refined position, grouping,

rigidness, and physical parameters, and predicts the future positions of the particles. We
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take the ℒ1 distance between the predicted positions and ground truth as the loss function.

The inference module is trained by stochastic gradient descent whose gradients are computed

by back-propagating through the dynamics prior. Parameters of the dynamics prior stay

frozen during training.

7.4 Experiments

We study our framework under three environments that incorporate different types of

objects and facilitate rich interactions. In this section, we show results and present ablation

studies on various inference and prediction tasks.

7.4.1 Environment

We use NVIDIA FleX [Macklin et al., 2014], a particle-based physics engine to generate

all data for training and testing. The data includes visual observations and the corresponding

particle states. For all three environments, we use 90% of the data for training and 10% for

testing.

RigidFall. This environment simulates the motion and interaction of three rigid cubes.

The cubes initially form a vertical stack with random noise added to their horizontal positions.

The stack is released from above a rigid horizontal surface, and the cubes collide with one

another as they fall under gravity. Each cube consists of 64 particles (4×4×4). The physical

parameter of this environment is the gravitational acceleration, which is randomly sampled

from [−15.0,−5.0] for each simulation. The full dataset contains 5,000 simulations, each of

which has 120 time steps.

FluidCube. In this environment, a rigid cube floats on top of a container of homogeneous

fluid. The container can move horizontally to shake the fluid inside. During simulation,

the container is initialized with a horizontal velocity of 0 and assigned a random horizontal

acceleration at each time step. The rigid block is consisted of 48 particles, and the fluid

is consisted of 300 particles. The viscosity of the fluid is randomly chosen from the range

[1.0, 100.0]. We generate 2000 samples, each of which has 300 time steps.
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Methods MassRope RigidFall FluidCube

DensePhysNet 24.5% (15.1) 25.7% (15.4) 28.6% (15.0)
Ours w/o Rigidness 3.4% (2.2) 7.4% (4.1) 22.2% (14.7)
VGPL (ours) 2.9% (1.3) 3.7% (2.7) 17.5% (13.6)

Table 7.1: Quantitative results on parameter estimation. Below, we compare our model
with DensePhysNet [Xu et al., 2019] and another model whose dynamics prior does not impose any
constraints for rigid body motion. We measure the performance using the Mean Absolute Error
(MAE) between each model’s prediction and the ground truth. The numbers show the percentage of
the MAE error with respect to the maximum parameter range. Numbers in parentheses report the
standard deviation.

MassRope. In this environment, a rigid spherical mass is attached to an elastic rope whose

upper end is pinned to an actuator that drives the rope’s motion. We use positive 𝑦-direction

as the upward direction, and the initial 𝑥𝑦𝑧-position of the actuator is [0, 1, 0]. The mass

swings under a constant gravitational force and other internal forces such as rope tension.

During simulation, the actuator at the upper end of the rope is assigned random accelerations

along the horizontal plane (i.e. 𝑥- and 𝑧- directions), which also changes accelerations of the

mass. The rigid mass is consisted of 81 particles, and the deformable rope is consisted of

14 particles. Rope stiffness is randomly chosen from range [0.25, 1.20]. We generate 3000

simulations, each of which includes 200 time steps.

7.4.2 Implementation Details

We present detailed model architecture and training paradigms below. All models are

implemented in PyTorch [Paszke et al., 2019] and trained with the Adam optimizer [Kingma

and Ba, 2015].

Visual prior. Our visual prior network consists of a feature encoder and fully connected

output heads. The feature encoder has 4 stacked convolutional blocks, with 32, 64, 128 and

256 channels. Each block includes one 3×3 convolutional layer with batch normalization and

ReLU activation. The prediction heads for particle position and grouping are both bi-layer

MLPs with hidden size 2048.

The network is trained on the rendered visual observations of the system as well as the

corresponding particle positions and grouping labels. We use a batch size of 50 and a learning

rate of 10−4 to train the model for 2700 iterations on all environments. The particle positions
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Methods FluidCube RigidFall MassRope
𝑇 + 1 𝑇 + 5 𝑇 + 10 𝑇 + 20 𝑇 + 1 𝑇 + 5 𝑇 + 10 𝑇 + 20 𝑇 + 1 𝑇 + 5 𝑇 + 10

w/o Rigidness 3.864 5.100 7.631 13.62 2.283 10.68 43.93 198.1 0.898 4.849 16.40
w/o Refinement 4.530 6.349 8.584 10.50 2.640 6.720 16.71 57.10 2.298 3.628 7.493
w/o Param. Est. 3.894 5.363 7.557 10.19 2.110 6.229 16.04 51.91 0.845 4.612 24.48
VGPL (ours) 3.887 5.038 6.531 7.998 2.112 6.190 15.73 50.78 0.807 2.724 7.338

Table 7.2: Quantitative results on future prediction. We show the Mean Squared Error (MSE)
between the future predictions of the particle positions and the ground truth on all environments,
scaled by 104. We evaluate our model’s performance by ablating on different aspects of the model:
(1) without rigidness estimation, (2) without parameter estimation, and (3) without positions and
groupings refinement. As shown in the table, with better and more thorough estimation of physical
properties, we can predict the future positions more accurately, especially when making long-term
predictions.

are normalized. The sequence length of input and output data per forward pass is set to

be 4. At inference time, given a sequence of input frames, we run the network on a sliding

window over the sequence. In order to enforce temporal consistency, we move the window

one step forward at a time and append the output at the last step of the moving window to

the result sequence.

Dynamics prior. We adopt the DPI-Net [Li et al., 2019a] as the model for the dynamics

prior. As explained in Section 7.3.3, the network operates on a graph representation of the

physical state at each time step and predicts the information at the vertices at the next step.

The distance threshold for edge connection between two vertices is set to be 𝑑𝑒 = 0.08. In

practice, the vertex and edge information are first separately encoded by two 3-layer MLPs

with hidden and output size 150 before sent to the propagator networks 𝜑𝑒, 𝜑𝑣 for spatial

message passing. Both 𝜑𝑒 and 𝜑𝑣 include one fully connected layer with output size 150.

The predictor heads for both rigid and non-rigid particles are 3-layer MLPs with hidden size

150 and ReLU activations.

Our dynamics prior is trained on the ground-truth particle trajectories for 10 epochs

under each environment. We use a batch size of 4 and a learning rate of 10−5. The model

observes 4 past time steps and predicts 1 time step into the future. The particle positions

are normalized at input and denormalized at output.

Inference module. We use the same network architecture in the inference module for

feature encoding and spatial message passing as in the dynamics prior: 3-layer MLPs for

vertex and edge embedding and single fully connected layer for message passing. All hidden

and output layers have size 150. For temporal message passing, we use a bi-directional GRU
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with two hidden layers of size 150. The prediction heads are MLPs with 1 hidden layer of size

150 and output size determined by the dimensions of the prediction targets. The rigidness

and parameter estimation heads have extra sigmoid and tanh output activations respectively.

Our inference module is trained for 2 epochs on each environment, using a batch size

of 2 and a learning rate of 10−5. Length of the input and output sequences is set to be

𝑇 = 10. The inference module is implemented by two separate networks with the same

architecture: one for particle position refinement and rigidness prediction, and the other

for physical parameter estimation. Each network takes in the proposals from the visual

prior and predicts the desired variables, which, together with the ground-truth labels of the

other network’s output, are sent to the dynamics prior to predict particle positions. Loss is

computed by comparing the predictions with the ground truth trajectories.

7.4.3 Results

We evaluate the performance of VGPL on the following tasks: accuracy of the inferred

parameters including rigidness, position refinement and parameter estimation; and the

prediction accuracy of future particle trajectories conditioned on these inferred properties.

We also conduct ablation studies on these tasks to quantitatively evaluate the contributions

from different model components.

Rigidness estimation. In this task, we train the inference module on input sequences

of length 𝑇 = 10 and evaluate rigidness estimation on sequences of lengths 𝑇 = 1 through

𝑇 = 20. We focus on two environments for this task, MassRope and FluidCube, since

RigidFall only contains rigid objects.

We use the mean probability weight on the correct rigidness label as the quantitative

measure of inference accuracy. The model will choose the correct label at inference time if

this probability is above 0.5. Figure 7-2a-b shows the relation between the inference accuracy

and the input time steps for all object types existing in these environments. Our model

achieves a good performance at input length 10 on all object types, especially for both

objects in MassRope and fluid in FluidCube, with the mean probability close to 1.0. We also

observe nice results under different input time steps. The mean probability further increases

as the input length is increased beyond 10. This result shows temporal message passing in

our inference module is generalizable to various input lengths.
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Figure 7-4: Qualitative results on future predictions. For each environment, we show results
on predicted particle positions after 1 and 20 time steps. We compare the ground truth with the
results of our model, together with versions without rigidness estimation or parameter estimation.
For output frames after 20 steps, we provide zoom-in views to show more details of the predicted
particles. As shown in the figure, without proper estimation of the rigidness, (a) the rigid cube
melts into the fluids and (b) the rigid cube scatters. Without an accurate estimate of the physical
parameters, (b) the rigid boxes fall faster onto the ground, and (c) the rope contracts more than the
ground truth. In all environments, our model performs the best, especially on the longer horizon.

Our result also presents a notable gap between the mean probability of the cube versus

the fluid in the FluidCube environment (Figure 7-2b). This is due to the fact that the cube

particles mostly move along the same direction as the fluid particles, and therefore are harder

to recognize the rigidness. Intuitively, the rigidness of the cube becomes more obvious when

it is moving against the water particles, not when it is “riding the tide”. As suggested by the

result, a longer input sequence includes more opposite motion patterns between the cube

and particle. It, therefore, leads to higher mean probability, which corresponds to higher

confidence in the correct label of the rigidness.

Position refinement. We evaluate position refinement via the deviation of the predicted

positions from the ground truth trajectories. Figure 7-2c shows a quantitative comparison

between the positions before and after the refinement. The result shows improvements in the

mean squared error (MSE) on all environments, especially for MassRope where the MSE
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decreases by more than 3 fold.

We also show qualitative results in Figure 7-3 to compare visualizations of the particles

before and after refinement with the ground truth. As shown in the figure, in FluidCube, the

fluid particle density becomes more uniform after the refinement, which is in agreement with

the underlying assumption of the physics simulator that the incompressible fluid preserves

density. In RigidFall, particle refinement is able to correct the deformation of the cube. This

correction will largely affect the collision property of the cubes in dynamics modeling. In

MassRope, the particles on the rope become less bumpy after the refinement.

Physical parameter estimation. DensePhysNet [Xu et al., 2019] has shown to be able

to learn representations that carry rich physical information and can directly be used to

decode physical object properties such as friction and mass. We compare with DensePhysNet

by evaluating how well the models can estimate the physical parameters. We employ the

same model and training procedure as used in DensePhysNet that iteratively takes the action

and the current visual observation as input and tries to predict the optical flow, which is

estimated using the algorithm developed by Liu et al. [2009]. We then train a linear decoder

that maps the resulting dense representation to the ground truth physical parameter. On

FluidCube, RigidFall, and MassRope, the parameters of interest are the fluid’s viscosity,

gravitational acceleration, and the stiffness of the rope, respectively.

As shown in Table 7.1, where the numbers represent the percentage of the mean absolute

error (MAE) with respect to the full range of these parameters, our model significantly

outperforms DensePhysNet, showing the benefit of our formulation and the use of the visual

and dynamics priors. We also compare the result with another model whose dynamics prior

treats all particles equally without imposing any constraints for rigid body motion. Our

model shows higher accuracy on all environments, suggesting that a stronger dynamics model

can provide better guidance to the inference module, and therefore lead to a more accurate

estimation.

Forward dynamics prediction. One important standard for judging the overall perfor-

mance of visual grounding is the model’s ability to accurately predict the future states of the

system. To evaluate this, we send the inferred physical properties (i.e. position refinement,

rigidness, and physical parameter) back to the dynamics prior and run forward pass on
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the network to iteratively predict the particles’ future trajectories. We compute the mean

squared error between the predicted particle positions and the ground truth after 1, 5, 10, 20

time steps as the quantitative benchmark to evaluate the performance over different time

horizons (Table 7.2). We also show qualitative results of predicted states in Figure 7-4.

To further study the impact of each inferred property on the overall performance, we

perform ablation studies on each of the properties and compare with the full model. In the

w/o rigidness model, the dynamics prior independently predicts the motion of each particle

as non-rigid objects. This model predicts accurately within very short time horizon (𝑇 + 1)

but fails after a few time steps as the rigid bodies melts into other shapes Figure 7-4a-b. In

the w/o refinement model the dynamics prior inputs the coarse position proposals from the

visual prior. This model shows poorer accuracy than the full model under all conditions

due to the inaccurate inputs. The w/o parameter estimation model replaces the inferred

parameter by a random number uniformly drawn from the parameter’s range. Prediction of

this model remains physically correct but deviates far from the ground truth at large time

horizon Figure 7-4b-c. Overall, we show our full model achieves stronger performances than

other baselines and demonstrate that all of the three inferred properties are essential to the

task.

7.5 Discussion

Humans have a strong ability to mentally simulate a variety of different substances, which

helps us to distinguish between rigid and deformable objects and infer the material properties

from visual observations. In this work, we propose a model, named Visually Grounded

Physics Learner (VGPL) that grounds the physical properties from vision, with the help

of learned visual and dynamics priors. Our model employs a particle-based intermediate

representation, which allows us to handle rigid bodies, deformable objects, and fluids. We

have demonstrated in our experiments that our learned model can quickly adapt to new

environments of unknown physical properties and make accurate predictions into the future.
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Part III

Structured Models of Physical

Interactions via Vision and Touch
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Chapter 8

Learning Hand-Object Interactions

Using a Scalable Tactile Glove

Part III of this thesis focuses on advancing the sensing capabilities of the robots by

obtaining not only vision but tactile information during physical interactions (i.e., 𝑦𝑡 in

Equation 1.2). I will discuss our efforts in constructing multi-modal sensing and learning

platforms with a focus on capturing the detailed tactile responses when making contact

with the environment, which could lay the foundation for more structured and physically

grounded modeling of the interaction process.

Humans can feel, weigh and grasp diverse objects, and simultaneously infer their material

properties while applying the right amount of force—a challenging set of tasks for a modern

robot [Bartolozzi et al., 2016]. Mechanoreceptor networks that provide sensory feedback and

enable the dexterity of the human grasp [Johansson and Flanagan, 2009] remain difficult

to replicate in robots. Whereas computer-vision-based robot grasping strategies [Mahler

et al., 2019, Levine et al., 2016, Morrison et al., 2018] have progressed substantially with

the abundance of visual data and emerging machine-learning tools, there are as yet no

equivalent sensing platforms and large-scale datasets with which to probe the use of the

tactile information that humans rely on when grasping objects. Studying the mechanics of

how humans grasp objects will complement vision-based robotic object handling. Importantly,

the inability to record and analyse tactile signals currently limits our understanding of the

role of tactile information in the human grasp itself—for example, how tactile maps are used

to identify objects and infer their properties is unknown [Saal et al., 2017]. Here we use a
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scalable tactile glove and deep convolutional neural networks to show that sensors uniformly

distributed over the hand can be used to identify individual objects, estimate their weight

and explore the typical tactile patterns that emerge while grasping objects. The sensor array

(548 sensors) is assembled on a knitted glove, and consists of a piezoresistive film connected

by a network of conductive thread electrodes that are passively probed. Using a low-cost

(about US$10) scalable tactile glove sensor array, we record a large-scale tactile dataset with

135,000 frames, each covering the full hand, while interacting with 26 different objects. This

set of interactions with different objects reveals the key correspondences between different

regions of a human hand while it is manipulating objects. Insights from the tactile signatures

of the human grasp—through the lens of an artificial analogue of the natural mechanoreceptor

network—can thus aid the future design of prosthetics [Osborn et al., 2018], robot grasping

tools and human–robot interactions [Bartolozzi et al., 2016, Okamura et al., 2000, Cannata

et al., 2008, Romano et al., 2011]. More video illustrations and details of developed sensors

can be found on our project page: http://stag.csail.mit.edu/.

This chapter was originally published as Sundaram et al. [2019] in Nature, with co-

authors Subramanian Sundaram, Petr Kellnhofer, Jun-Yan Zhu, Antonio Torralba, and

Wojciech Matusik, in which Subramanian Sundaram and Petr Kellnhofer have made major

contributions to the content of this chapter.

8.1 Main

Humans effortlessly manipulate objects and tools by applying precisely controlled

forces [Marzke, 1997, Niewoehner et al., 2003, Feix et al., 2015a]. To understand the

tactile feedback involved in the human grasp, we can use emerging machine learning tools

to attempt to distil high-level properties and relationships from high-dimensional tactile

data. Such tools require large-scale tactile datasets with high spatial resolution. However,

large tactile datasets of human grasps covering the full hand do not exist because densely

covering the human hand with tactile sensors is challenging. These tactile sensors come

with strict requirements for the form-factor, resolution and mechanical compliance. Whereas

electronic skins have made progress on the compliance requirements [Chortos et al., 2016],

an electronic tactile glove with dense coverage and capable of collecting large datasets has

yet to be demonstrated. The Tekscan Grip system (with its 349 sensors) is the closest
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Figure 8-1: The STAG as a platform to learn from the human grasp. (a) The STAG
consists of a sensor array with 548 elements covering the entire hand, attached to a custom knit
glove. An electrical readout circuit is used to acquire the normal force recorded by each sensor at
approximately 7.3 fps. Using this setup allows us to record a dataset of 135,187 tactile maps while
interacting with 26 different objects. A deep convolutional neural network trained purely on tactile
information can be used to identify or weigh objects and explore the tactile signatures of the human
grasp. The glove shown at the centre is a rendering. (b) The design of the STAG architecture shows
the individual locations of the 548 sensors, along with the interconnects, slot and 64 electrodes.
The piezoresistive sensor array is fabricated by laminating simple materials and can be extended
to different architectures easily (Figure 8-6 and 8-8). (c) Each sensor element responds to normal
force by exhibiting a change in the through-film resistance. The sensor characteristics are repeatable
across multiple devices and reliable over the long term (Figure 8-5). The inset shows the same
characteristics in a logarithmic force scale (axes labels are as for the main plot).

high-cost commercially available system, but does not fully cover the hand (details and

a comparative list are included in the Supplementary Information on the Nature website:

https://www.nature.com/articles/s41586-019-1234-z). Current high-resolution optical

tactile sensors [Li et al., 2014, Yamaguchi and Atkeson, 2016] and biomimetic multimodal

sensor integrations [Wettels and Loeb, 2011, Park et al., 2015] have not successfully mapped

a full human hand. Broadly, hurdles in creating a scalable tactile feedback network and ac-

quiring large tactile datasets covering the hand have impeded our fundamental understanding

of the human grasp.

We first present a simple method of fabricating a low-cost, scalable tactile glove (STAG)

covering the full hand with 548 sensors. The STAG can record tactile videos (with frame

rate approximately 7.3 Hz), measuring normal forces in the range 30 mN to 0.5 N (with

quantization of about 150 levels and a peak hysteresis of about 17.5%). Importantly, the

device can be constructed with low-cost materials (around US$10) and be used over long

intervals. The STAG can be translated to a variety of different designs (see below). We

introduce a large-scale dataset of tactile maps (135,000 frames) recorded using the STAG while
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manipulating objects with a single hand; see Section 8.2 for dataset acquisition conditions.

The spatial correlations and correspondence between finger regions that emerge from the

dataset represent the tactile signatures of the human grasping strategy (Figure 8-1a). Here

we observe and learn from successful daily human–object interactions with the long-term

goal of aiding the development of robots and prosthetics.

The similarities in the underlying shape perception primitives between the visual and

tactile domains are known [Yau et al., 2016]. We therefore hypothesized, on the basis of visual

perception studies (showing that 16 × 16 pixels were sufficient for face recognition [Bachmann,

1991] and 32 × 32 pixels for scene recognition [Torralba et al., 2008] in visual data), that

a similar minimal sensor count is suitable for a tactile sensor. The STAG consists of a

sensing sleeve with 548 sensors attached on top of a custom knit glove. Figure 8-1b shows

the locations of the 548 sensors and the 64 electrodes (fabrication details are included in the

Methods). Fabricated gloves are shown in Figure 8-1a and Figure 8-4a (see Figure 8-4b for

a high-resolution scan of the glove). The sensor array consists of a force-sensitive film (0.1

mm thick) addressed by a network of orthogonal conductive threads (0.34 mm) on each side,

insulated by a thin adhesive (0.13 mm) and a low-density polyethylene (LDPE) film (about

13 𝜇m). Each point of overlap between the orthogonal electrodes is sensitive to normal force,

modulating the electrical resistance through the force-sensitive film. The force-sensitive film

is laser-cut to fit the custom knit glove (yellow) along with holes to guide thread placement,

and slots at the finger joints. The sensor laminate is thin and mechanically flexible. The

typical force response of a single sensing element (Figure 8-1c), measured as the through-film

resistance, changes from about 4 kΩ (unloaded) to below 2 kΩ (at a 0.5 N normal load).

Each sensing element is sensitive to small forces (starting at about 25 mN; Figure 8-5a)

and saturates beyond 0.8 N. The force response in the working range (30 mN to 0.5 N) is

consistent across multiple devices (Figure 8-5b) and over multiple cycles (1,000 cycle tests

in Figure 8-5c-d). The sensor elements show a stable resistance up to 60∘𝐶 and become

insulating at temperatures above 80∘𝐶 (differential scanning calorimetry and resistance

measurements are shown in Figure 8-5e-f).

We use a modified version of a grounding-based electrical isolation scheme [D’Alessio,

1999] (including charging resistors to improve the readout speed) to extract individual sensor

measurements (the readout circuit costs about US$100; see Section 8.2 for fabrication details).

The circuit topology is shown in Figure 8-4c along with the fabricated printed circuit-board
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Figure 8-2: Identifying and weighing objects from tactile information. (a) The CNN architecture
used for identifying objects from tactile information takes as input N arrays of tactile data (32 × 32 arrays).
Rectified Linear Units (ReLU) are used to introduce non-linearity into the model. ‘Dropout’ is a regularization
technique that randomly drops out nodes of the network to reduce overfitting to the training data. ‘Max
pooling’ is used to reduce dimensionality of the data by passing only the locally highest activations. (b) The
object identification accuracy is enhanced when using a diverse set of tactile maps from N distinct clusters as
input when compared to a random choice of inputs; results are averaged over ten training runs (mean ± s.d.).
Here each distinct cluster (as shown in (e)) is a group of similar grasps. (c) A representative set of examples
during single-hand manipulation of objects. Tactile maps, corresponding visual images and the classification
vectors (bottom) from single tactile map inputs are shown—the ground-truth object labels are marked in
black. (d) The convolution filters learned by the scaled version of the network are shown (see Section 8.2).
Note that the inputs and the network are scaled to visualize the filters at a higher resolution. The original 3
× 3 convolution filters of the network in a and the original ImageNet-trained ResNet filters are shown in
Figure 8-10i-j respectively. (e) Clustering tactile maps from a single object interaction helps to identify a
diverse set of tactile maps that correspond to that object. Five different clusters are used to extract five
tactile inputs (N) shown in red. (f) ‘Leave-one-out’-based CNN weight prediction results compared with a
linear model (mean ± 95% confidence interval).
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image (Figure 8-4d). The sensor response at the output of the amplifier (and the analog-to-

digital converter, ADC) is linear with respect to the force. We note that the STAG design

can be simplified to rapidly fabricate regular arrays; Figure 8-6 shows 1,024-element sensors

with sensor spacing of 2.5 mm. Such regular arrays fixed on flat surfaces can record the

resting identities of different objects (Figure 8-7). Furthermore, despite the weak extensibility

of the force-sensitive film, we can enhance the achievable stretchability by incorporating

auxetic designs [Ko et al., 2015] into the sensor structure as shown in Figure 8-8. The auxetic

prototype with 10 × 10 elements can be stretched in multiple directions, as well as folded or

crushed (Figure 8-8e-f).

The reliability of our STAG prototype allows us to record tactile videos (and corresponding

visual images for illustration) during interactions with a set of 26 objects (Figure 8-9) with a

single hand over many hours (total length of recordings exceeding 5 hours; see Section 8.2 for

dataset acquisition details). We identify the specific frames in which objects are in contact

with the glove (see Section 8.2 for filtering procedure). We train a convolutional neural

network (CNN) to identify objects using these filtered frames (32 × 32 arrays in sensor

coordinates). We use a ResNet-18-based architecture [He et al., 2016] that takes N input

frames (Figure 8-2a; see network implementation in the Methods). The classification accuracy

improves with the number of inputs and reaches its maximal performance with about seven

random input frames (Figure 8-2b). This is expected, because multiple contacts with an

object help to identify it more accurately. Figure 8-2c shows eight example tactile frames

along with their output classification vectors. Here we observe that it is easy to identify the

mug when it is held by the handle but it can be confused with a can or other objects when

lifted from the sides. Likewise, the elongated shape of the pen is easier to identify when it is

in contact with the palm than when it is held between fingers. Interestingly, when a mug is

held by the handle (or while a spray can is being held), the distinct hand pose captured in

the tactile map from sensors around the joints (proprioceptive data) may also help in object

classification.

The first 3 × 3 convolution filters learned by our network are shown in Figure 8-10i. To

understand the features at a higher resolution, we scaled the input resolution by three and

adapted the network elements appropriately (see Section 8.2). The first layer convolution

filters learned by the adapted network are shown in Figure 8-2d. The network primarily

learns blob-like point detectors, edge detectors and low-frequency filters. The visual domain
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filters learned by standard ResNet-18 trained on the ImageNet [Russakovsky et al., 2015]

dataset are shown in Figure 8-10j for comparison. Furthermore, we visualized the features

of our trained network (with Network Dissection; see Section 8.2 for details) and observed

that the early convolution layers are activated in small regions. The higher-layer convolution

filters are often activated by more complex grasp-related concepts. Supplementary Figure 4b

on the Nature website (https://www.nature.com/articles/s41586-019-1234-z) shows

the activation maps of filters that respond to larger contact patterns, or when specific hand

regions are used.

Humans are easily capable of associating similar grasps based on motor movements, and

the identification of an object is probably better performed when choosing the most distinct

(informative) set of grasps. Motivated by this, instead of choosing N random frames, we

identified the most diverse set of N frames for an input recording by k-means clustering

(an example with N = 5 clusters is shown in Figure 8-2e; see an interactive version of the

map in Supplementary Data 1 on the Nature website: https://www.nature.com/articles/

s41586-019-1234-z). The classification accuracy using N input frames (one from each

cluster) shows that clustering provides a marginal improvement in accuracy when a small

set of inputs is used (N < 4 in Figure 8-2b). We note that the results of clustering-based

inputs converge with those of randomly chosen inputs for large N because a random selection

captures the data well when N is large. The corresponding confusion matrices are shown

in Figure 8-10a–h. We observe that objects with similar shapes, sizes or weights are more

likely to be confused with one another. Light objects such as the safety glasses, the plastic

spoon or the coin are more easily misclassified, whereas large, heavy objects with distinct

signatures, like the tea box, can easily be detected even with a small number of input frames.

The object identification tests described above help to evaluate the capability of the

STAG in capturing useful data. We also evaluated the classification performance of lower

sensor counts by downsampling the tactile data either uniformly or based on different regions

of the hand. The classification accuracy drops considerably as the effective number of sensors

is reduced, thereby highlighting the need for a high sensor count.

In addition to identifying objects, humans can easily estimate the weight of objects from

tactile signals. The ability to estimate weights is of practical use in robotics and has been the

focus of human perception experiments [Brodie and Ross, 1984]. To estimate the weights of

objects from tactile interactions, we used a restricted dataset of multi-fingered grasps where
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the object was picked up from above. After an object is picked up, a single frame is used as

an input to a CNN to predict its weight. Note that the training and test data have disjoint

sets of objects (see Section 8.2). Figure 8-11 shows a representative set of tactile frames and

corresponding images. Results in Figure 8-2f show that our network performs better than a

naive linear model over the entire weight range.

We looked at the typical sequence of tactile maps immediately before and after an object

is grasped (an example is shown in Figure 8-3a) to understand the grasp in depth. The hand

is increasingly articulated to fit the object closely, during which time the proprioceptive

signal in the tactile map increases gradually until contact during the ‘reach’ phase [Johansson

and Flanagan, 2009]. When contact is first made with an object (‘load’ phase), the mean

pressure of the frame increases suddenly, resulting in a steep temporal gradient; the red dot

shows the detected frame. In brief, we identify the prior local minimum as the frame just

before contact (blue dot), which has the maximum hand pose signal (see complete processing

details in the Methods). This empty hand pose frame is subtracted from the local maximum

frame (green dot; lift and hold phase), which is treated as the frame with the maximal

object information. This approach helps in decomposing the tactile map into the hand pose

signal and the object-related pressure map (a detailed description of the decomposition is

included in the Methods). We analysed the Pearson correlation coefficient between a selected

sensor and the remaining sensors in the glove as shown in Figure 8-3b. Our correlations are

shown in the range from 0 to 1; we did not observe any substantial negative correlations

between sensors. We find the largest correlations between the fingertips and the thumb base,

where the forces are dominantly applied; this is an expected signature of precision grip in

humans. The measured correlations for each sensor can be viewed in our interactive map on

the project website. The corresponding correlation between sensors at the fingertips and

the full hand, with the decomposed hand pose signal shows little structured correlation, in

part demonstrating the effectiveness of our decomposition method (Figure 8-12). Canonical-

correlation analysis on the decomposed object-related tactile map across the different regions

of the hand shows the collaborative role between the distal phalanges of the large fingers,

which is most often used in generating forces during object grasps (Figure 8-3c). In the other

phalanges, the distribution is more uniform, corresponding to closed grasps where a large

part of the hand surface is in contact with the object at once (check our project page for an

interactive map of the region-level correlations). The correlations between different sensors
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indicate the collaborations between different hand regions; the nature of the human grasp

is known to be collaborative [Napier, 1956, Lederman and Klatzky, 1987]. We have thus

empirically and quantitatively observed such collaborations and their spatial extent purely

from high-resolution tactile signals. To directly test the proprioceptive content of the tactile

signals from the STAG, we articulated specific hand poses in the absence of an object (see G1

to G7 in Figure 8-13a) based on a standard grasp taxonomy [Feix et al., 2015b]. We observed

that the tactile maps related to specific hand poses can be classified with 89.4% accuracy; a

visualization of the clustering using t-distributed stochastic neighbour embedding (t-SNE) is

shown in Figure 8-13b; confusion matrix from the classification test is shown in Figure 8-13c.

Although hand recognition from visual images has become increasingly robust [Simon et al.,

2017], extracting other meaningful feedback signals (such as establishing contact with an

object) remains challenging without a scalable tactile sensing strategy.

Our results demonstrate the broad utility of high-dimensional tactile sensors as well as

highlight their enabling potential for future work. The current study focuses mainly on the

spatial relationships of tactile signals; the dataset also presents important relationships be-

tween sensors that are temporally linked together. These temporal relationships spotlight the

dynamics of actions performed by humans. Linking these temporal relationships along with

the spatial correspondences between tactile signals would greatly enhance our understanding

of the basic principles of dexterous manipulation. Likewise, the dataset presented here also

contains synchronized visual information along with the tactile data. In this regard, the

STAG is a useful testbed for multimodal learning across visual and tactile domains, which

is potentially useful for robotics applications. Finally, the STAG hardware platform itself

can be augmented, for example, the STAG could be fitted with diverse sensors that mimic

the different sets of mechanoreceptors in the human hand. In addition, transmitting data

wirelessly from a wearable module and more compact packaging will extend its utility in

manipulation tasks that require considerable mobility.

8.2 Method

8.2.1 STAG Sensor Fabrication

The STAG consists of a sensing laminate attached to a light, custom-knit glove designed

not to interfere with hand movements (loosely knitted at half-gauge on a Shima Seiki
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Figure 8-3: Cooperativity among regions of the hand during object manipulation and
grasp. (a) In a typical interaction sequence, the hand increasingly gets articulated until the point of
contact (reach phase) and experiences a sudden rise in tactile forces as the object is held. We use
the maximum gradient (red) in the load phase of the action to decompose a tactile map of when
the object is held into two parts—the hand pose signal (blue) and the object-related pressure (blue
frame subtracted from the green frames). The object interaction frames are automatically detected
and marked in green; full signal decomposition details are described in the Methods. (b) The set
of decomposed object-related pressure frames can be used to extract correlations between specific
sensors and the full hand. The maps here show the correlations between select pixels (marked in
the central hand) and the full hand. Most fingertips are used with other fingers and the thumb
(a signature of precision grasp), whereas the regions on the palm are typically used when grasping
objects that cause the full palm to come into contact with the object. (c) The circular plot shows the
relative correspondences between different parts of the hand (see Section 8.2). The distal phalanges
of the large fingers are usually used with the thumb to generate forces while gripping an object and
result in strong concurrence.
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SWG091N2 15-gauge v-bed knitting machine). The sensing laminate is made by first laser-

cutting (Universal PLS 6.150D CO2 laser cutter; Universal Laser Systems) the force-sensitive

film (FSF) (3M Velostat electrically conductive copolymer 0.1 mm thick; Adafruit Industries)

to fit a hand. To prevent movement of the FSF during the laser cutting process, we attach

the film to an acrylic board with a thin layer of water. The laser-cut film is washed to

remove debris from the surface. The laser-cut pattern includes holes to route conductive

thread electrodes (3-ply stainless steel conductive threads of 12 𝜇m fibre diameter and

about 0.34 mm overall diameter; SparkFun Electronics) and slots at the finger joints to

allow unrestricted movement (pattern in Figure 8-1b; original design is available from the

corresponding author). The conductive threads are sewn with a needle on either side of

the FSF, ensuring that there are no points of direct contact between electrodes. Regions of

overlap between the 64 row and column electrodes respond to forces through a change in the

through-film resistance. The electrodes are first held taut and then subsequently held in place

by attaching a thin, stretchable, two-sided acrylic adhesive tape (3M 468MP 200MP adhesive

0.13 mm thick) on both sides. The two exposed sides of the adhesive are insulated with a

thin, stretchable polybutylene-coated LDPE film (about 13 𝜇m; Saran; S.C. Johnson & Son).

The laminate architecture is shown in Figure 8-1b and Figure 8-6b. The exposed conductive

threads are coated with a polydimethylsiloxane mixture (PDMS, 1:10 ratio of crosslinker

to pre-polymer; SYLGARD 184, DOW Corning). The PDMS-coated conductive thread

electrodes are separately cured on a hot plate at 60∘𝐶 for 2 h and left overnight at room

temperature. The PDMS-coated conductive thread electrodes are attached to insulation-

displacement connectors that can be connected to the readout circuit. Forming robust

electrical connections with the conductive thread electrodes is typically challenging. Using

PDMS to insulate the conductive threads and subsequently using insulation-displacement

connectors resulted in robust electrical contacts, which was critical for the long-term use of

the STAG. Likewise, the robustness of connections between fingers is critical to the long-term

stability of the STAG. Furthermore, they are required to allow free movement of individual

fingers without hindering motion and object interactions. We used a single conductive thread

reaching through all the fingers for each row and insulated the region between fingers using

the acrylic adhesive tape and LDPE film to form insulated ribbons routed along the sides of

fingers (seen between fingers in Figure 8-4a-b).

The regular 32 × 32 array version of the sensor laminate was fabricated using a process
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similar to that described above. In this case, a square of FSF was cut and assembled into a

laminate in two separate versions. Figure 8-6b shows a design that is identical to the version

used in the STAG. Figure 8-6a shows a simplified version of the above design by replacing the

adhesive film and LDPE film with a 25.4-𝜇m-thick polyimide film with adhesive on one side.

Although it is simpler in construction, since the polyimide film is inextensible, we observed

that this design (Figure 8-6a) is less flexible than the STAG laminate architecture, and is

therefore better suited for use in fixed conditions. The spacing between the electrodes was

set to 2.5 mm using a specially designed thread layout tool (Figure 8-6c). The layout tool

consists of two pieces of acrylic, one of which has laser-etched grooves to hold the conductive

threads in place with the correct spacing. The two designs in Figure 8-6a-b were used to

fabricate the square 1,024-element sensor array shown in Figure 8-6d-e respectively.

Auxetic designs of the sensor (10 × 10 elements) were designed by first patterning the

FSF with the design shown in Figure 8-8b. The holes allow the conducting threads to be

routed (red and blue traces) to enable stretching. The cuts in the FSF allow individual

sensor squares to rotate and enable extensibility in all directions. A close-up of the FSF

after routeing the conductive threads is shown in Figure 8-8c. The double-sided adhesive

and LDPE film (as in Figure 8-6b) are then added to both sides and the slots identical to

those on the FSF are cut with a scalpel. The conductive thread electrodes are subsequently

insulated with PDMS, and then connected to the insulation-displacement connector (finished

design in Figure 8-8d). The auxetic sensor array can be folded, crushed and stretched in

different directions as shown in Figure 8-8e-f.

8.2.2 STAG Sensor Characterization

To characterize individual sensor responses, we cut approximately one-inch squares of

the FSF and attached orthogonal electrodes on either side as in the STAG architecture

(inset of Figure 8-5f). The typical sensor force response was measured by applying controlled

normal forces using a table-top mechanical tester (Instron 5944; Instron) and simultaneously

recording the electrical resistance using a Sourcemeter (2611B Keithley Instruments). The

loading rate was controlled at a specific strain rate in all tests (0.05-0.1 mm min−1) until

a maximum load of 0.5 N or 5 N was reached for the results shown in Figure 8-1c and

Figure 8-5a-b. For the long-term tests in Figure 8-5c-d, we cycled the force between 20 mN

and 0.5 N for 1,000 cycles at a controlled strain rate of 2.5 mm min−1. The differential
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scanning calorimetry (DSC) measurements were performed using a TA Instruments Q100

DSC (TA Instruments) at a temperature ramp rate of 10∘𝐶 min−1. The differential scanning

calorimetry measurements show that the material is probably a two-polymer blend that

softens at temperatures around 100∘𝐶. FSF is considered to be thermoformable, but to

directly check the feasibility of thermoforming our sensor and studying the temperature

stability, we placed fabricated single-element prototypes in a convection oven at controlled

temperatures for 10 min and measured the resistance through the film after removal from

the oven (Figure 8-5f). The sensors show large changes in the resistance beyond 60∘𝐶.

8.2.3 Circuit Architecture and Design

The passive matrix design of the STAG makes the fabrication simple and the design

easily extensible to multiple platforms. However, immediately after fabrication, any two

electrodes will appear to be electrically shorted together owing to a large number of spurious

current paths; this is well known in passive arrays. A signal isolation circuit is required to

overcome the extensive crosstalk between sensors [Lazzarini et al., 1995]. It is possible to

eliminate a majority of crosstalk and parasitic effects using a balanced readout scheme. Here

we used an improved version of an electrical-grounding-based readout architecture [D’Alessio,

1999] where one row of the sensor currently being read is grounded while all other rows are

maintained at the reference voltage 𝑉ref (2.5 V in our design; see Figure 8-4c-d; active row is

indicated by a grey arrow). The current between all resistors in other rows is ideally 0 A

since the voltage difference across all the resistors is 0 V. During this state, a 32:1 analog

switch is used as an analog demultiplexer to raster through the row and read individual

resistances one by one. After completing measurements at the active row, the 32 single-pole

double throw (SPDT) switches are used to ground the next row while returning the currently

active row to 𝑉ref. We added charging resistors, 𝑅𝑐, to each column to charge the inverting

node of each amplifier back to 𝑉ref quickly and to reduce the input noise. We observed that

this led to a more stable readout of the resistances without affecting the actual potential at

the output of the amplifier. Note that the 𝑅𝑐 arm of the circuit in each column is analogous

to an adder circuit where one input is always 0, that is, the input to the 𝑅𝑐 arm is 𝑉ref which

is the same as the voltage at the non-inverting terminal of the amplifiers. Rastering through

the readout resistors in the matrix is controlled by an Arduino Nano by switching the 32

SPDT switches and the 32:1 analog switch. The single sensor measurement at the output of
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the analog switch is converted to a digital signal (10-bit resolution; 0–1,023 corresponding to

0–5 V) and transmitted serially to a computer. An image of the fabricated printed circuit

board is shown in Figure 8-4d, with the insulation-displacement connector cables inserted to

connect the sensor array (seen at the top-right and bottom).

8.2.4 Dataset Acquisition Methods

Previous psychophysics studies on human tactile performance have used carefully designed

experimental conditions (objects, awareness and tasks) that are each motivated by the purpose

of the study. For instance, to demonstrate the orientation dependence of human tactile

performance, previous studies have used protocols with blindfolded humans interacting with

artificial objects of similar properties that are fixed in space [Newell et al., 2001]. Likewise,

careful experimental designs have also been implemented in tactile interaction studies in

robotics [Higy et al., 2016]. Our general objective here is to learn from successful human

interactions with objects, which are typical of daily interactions. Our data acquisition

methods were designed with this in mind, and motivated by a few cues from seminal human

tactile perception studies of the past three decades [Lederman and Klatzky, 1987, Klatzky

et al., 1985, Lederman and Klatzky, 2009]. In particular, the use of everyday objects is better

as opposed to artificial objects (unless critically required for the task [Newell et al., 2001])

since human performance in object interaction and identification is underestimated when

unfamiliar objects are used [Klatzky et al., 1985]. Therefore, the STAG prototype was used

to record single hand manipulation of 26 different common objects with a few different sizes,

weights and materials (Figure 8-9).

Visually aware and blindfolded conditions. The task setup influences the general

hand movements and interactions in haptics and tactile recognition [Lederman and Klatzky,

1987, 2009]. Therefore, the level of awareness of objects during interactions is a critical

part of experimental design. In this regard, human perception studies have shown that

blindfolded subjects can identify common objects within 2–3 s almost perfectly; this interval

increases to about 16 s when wearing a glove but with no loss in accuracy (summarized in a

review [Lederman and Klatzky, 2009]). In blindfolded interactions, the level of awareness

increases during these intervals, and the interactions become fully aware once the object is

identified. Our large-scale dataset was captured with complete visual access to the object
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(visually aware); it allows us to record human interactions with a constant level of awareness

of the object at each frame. Each object was manipulated for 3–5 min at a time and

included several different grasps and touch sequences. However, given that the objects are in

sight, some of these grasps are more discriminative (that is, object-dependent). To test the

generality of this visually aware dataset, we also performed a blindfolded study where each

interaction was terminated as soon as the object was identified (at the moment the subject

is aware of the object). Our original CNNs that were trained purely on the visually aware

dataset were used in evaluating the blindfolded test set.

The blindfolded tests were performed by the subject (S.S.), where the task was to identify

the object. In all these tests, the objects were placed on a soft foam surface to reduce sounds

and the subject was made to listen to white noise through headphones. The tactile recording

was started and the shoulder of the subject was tapped. The subject was asked to interact

with the object, identify it and hold the object still. The tests were stopped as soon as the

object was identified. Typically, the objects were identified by the subject in 6.16 ± 2.65 s.

The tasks were performed continuously 104 times (4 times for each of the 26 objects) in a

randomized order. One additional task was performed without any object as an empty hand

control. The objects were identified correctly by the subject in 103 out of the 104 tests. The

last 5 frames from each identification attempt (total 20 frames per object from 4 identification

attempts) were used for a classification test using a CNN trained only on the visually aware

data. We observe that the lighter objects are harder to identify more accurately using a

single input frame, and the single-input (N = 1) top-1 classification accuracy is 28.19%

(top-3 classification accuracy of 49.91%). Overall, the performance is slightly worse than

the single-input classification tests of the frames from the visually aware dataset (N = 1,

top-1 classification accuracy about 37.97% and top-3 classification accuracy about 60.43% in

Figure 8-2b). The ability to identify objects using tactile frames from blindfolded tests using

the original CNN trained only on the visually aware dataset demonstrates that a general set

of object interactions is probably captured in the visually aware dataset.

8.2.5 Dataset Acquisition Metrics

In addition to recording interactions with 26 objects, we recorded the empty hand data

while articulating the hand without interacting with any object. In all cases, we also recorded

corresponding visual images from the experiment using a FLIR GS2-GE-20S4C-C camera
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for illustration. Overall we recorded 135,187 frames for the visually aware dataset used for

the object identification task. All experiments (visually aware and blindfolded tests) were

performed by S.S. using a STAG worn on the right hand. We recorded the tactile maps from

the glove along with timestamps (and corresponding visual frames) at an average frame rate

of 7.3 frames per second. Each object sequence was recorded three times over different days

and in a randomized order for the visually aware dataset.

A similar procedure was followed with the same set of objects in recording the dataset

for the weight estimation task. To ensure that the weight of an object is not trivially

associated with a particular grasp type, we standardized the grasp used in the recording to

be identical for all objects. Each object was picked up from above using a multi-finger grasp

(see Figure 8-11a for example images) where the weight of the object was supported by the

fingers and the thumb. During each recording, the selected object was grasped, lifted, held

and dropped to a flat table multiple times. The procedure was repeated in 10-s intervals for

a total duration of 1 min. Each object was recorded in multiple recording sessions. In total,

we recorded 11,682 frames for the weight estimation dataset.

Finally, we recorded a dataset of different articulated hand poses (empty hand and G1

to G7; Figure 8-13) based on a standard grasp taxonomy [Feix et al., 2015b] to analyse the

proprioceptive content of the tactile information recorded with the STAG. We recorded each

articulated hand pose in random order over 7 different recording sessions and collected 24,037

frames in total. The processing details are described in the ‘Hand pose’ section.

8.2.6 Object Identification

Processing and network design. The overall object identification scheme relies on the

use of CNNs to extract meaningful information from tactile signals and classify objects.

There are many examples of the use of CNNs with tactile sensors, especially in the context

of robotics [Kappassov et al., 2015, Gao et al., 2016, Meier et al., 2016, Baishya and Bäuml,

2016]. This section describes the full details of our tactile data processing and network

architecture.

The recorded tactile dataset (135,187 frames) contained useful signals in the range

500–650 (0–1,023 corresponds to 0–5 V at the amplifier output using a 10-bit ADC). The

tactile map, transmitted as a 32 × 32 map from the readout circuit, is first normalized from

500–650 to 0–1. We discard all frames with any sensor reading over 950, which results from
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shorted electrodes; this happens when the STAG is punctured by a sharp metal object, and

is therefore rare and is easy to detect. We next remove frames without any useful signal

when the hand is not in contact with the object. We use the empty hand recording as a

reference and detect the maximum response for each sensor over time. We then consider

a frame with an object to be valid if at least one sensor response is above the maximum

response found in the empty hand recording. After filtering we obtain 88,269 valid frames.

To estimate the accuracy of the above frame-classification method, we manually inspected

a random sequence of 150 frames from five different recordings (allen key set, multimeter,

tape, mug and the foam model of a brain). In our inspection, we used the temporal sequence

of both the tactile signals and the synchronized visual frames to determine the state of the

grasp and to validate the thresholding-based algorithm. This allows us to notice changes in

the pressure, object position and hand position, consequently making it easier to check for

contact, and partially alleviates difficulties with occlusion. We observe that out of these 750

frames, there were only 57 false negatives (7.6%) where an object contact was omitted and

only 3 false positives (0.4%) where a fake contact was detected. The main sources of false

negatives are the weak contacts at the onset of the grasp where the pressure signal is weak;

soft objects are more prone to this issue (24 for the foam model of a brain versus 1 for the

mug). The main sources of false positives are the occasionally pronounced hand poses. This

issue is rare because we threshold our data based on the empty-hand dataset, which covers a

large range of possible hand movements. Overall, our automatic frame classification method

is conservative and presents clean data.

We then split the dataset into training and test subsets; out of the three sets of trials in

the visually aware dataset, we used two sets of trials for training, and one set of trials for

testing. Each subset was randomly subsampled to contain a balanced number of valid frames

for each of the object classes (26 objects and empty hand recording). The training set has a

total of 36,531 frames (1,353 per class), and the test set has 16,119 frames (597 per class).

With the aim of predicting an object’s identity based on its tactile signature, we treat

each recording trial of a given object as a single instance of the problem, which simulates an

agent exploring an object using multiple grasps. We feed N = 1...8 frames from the recording

to the deep neural network to accommodate information from different grasp configurations

and provide more varied sensory data. When we use N > 1 input frames to our network

during evaluation we consider two different strategies for their selection. The first one is a
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simple random choice of N frames from the recording. The second is aimed at minimizing

the redundancy of data between the N frames by maximizing their variance. For this, we use

principal component analysis to reduce the dimensionality of the tactile signal to 8. We then

find N clusters via k-means clustering (Figure 8-2e); that is, we complement every randomly

selected input frame with N − 1 other frames, each of which belongs to a different cluster.

We use a modified version of the ResNet-18 architecture [He et al., 2016] as the base of

our network (Figure 8-2a). We reduce the filter size of the initial convolution layer from

7 to 3 and the stride from 2 to 1. This allows the entire filter to fit within the smallest

features in our sensor data (finger width is 3 pixels). Since our inputs are 32 × 32 pixels, we

remove the upper two of the four ResNet layer groups leaving the final feature vector size

to be 128 values. To reduce overfitting to our training, set we introduce a spatial dropout

layer [Tompson et al., 2015] with 20% drop probability between the two remaining block

layers. Additionally, we also augment our training data by additive Gaussian noise with

zero mean and a standard deviation of 0.015 during training To incorporate multiple input

frames, we apply the same network with shared weights to each input. The outputs of

all network branches are then concatenated and reduced to 128 dimensions by a per-pixel

convolution. After spatial averaging, a final fully connected layer computes the classification

vector. We implemented this network in the PyTorch (https://pytorch.org/) deep learning

framework [Paszke et al., 2019]. We use Adam solver implemented in PyTorch to train our

model and minimize the cross-entropy loss. We apply an initial learning rate of 10−3, which

we decrease by a factor of 10 every 100 epochs. We train the network using our training

dataset for 200 epochs with batches of 32 samples. We report the average results over 10

training runs. Similar methods were used for the training and classification tests used to

evaluate different sensor resolutions. In all cases, the tactile data was downsampled (by

averaging) and resized to an input size of 32 × 32 in order to use the same network. These

inputs were used for training and subsequent classification tests using methods identical to

those described above.

The 3 × 3 filter of the first convolution layer is not easy to interpret visually owing to the

low resolution. Therefore, we trained a scaled version of the model with the first convolution

increased to 9 × 9 and the stride to 3, for visualization. Max pooling layers reduce the

dimensionality of the model by spatially selecting the locally highest activation values and

are used in both versions of the model. We adapted the filter size of the first max pooling
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layer to 7 and its stride to 4 to make the resulting features similar to the original model. We

also scaled the resolution of the inputs identically (by 3) using bilinear upsampling. The

remainder of the model and the training procedure stayed the same. The learned convolution

filters are shown in Figure 8-2d; the resulting features and performance are similar to the

original model. See Figure 8-10i for the corresponding 3 × 3 convolution filters learned by

the original network. The first convolution filters of the standard ResNet-18 architecture

pre-trained on ImageNet [Russakovsky et al., 2015] are shown in Figure 8-10j for comparison.

To further understand the internal representation of the CNN, we perform Network

Dissection [Bau et al., 2017], a widely used technique for analysing the deeper layers of a

network. Specifically, for any convolution filter, the method first ranks the tactile maps

according to the highest activation value. We subsequently select the tactile frames that

rank first with the highest activations from each object category. This, in essence, shows the

top candidates that different convolution filters have learned to look out for. We observe that

the convolution filters in the first of the two ResNet blocks are most activated in smaller,

spatially confined regions around the tactile signal peaks. However, interesting grasp-related

concepts emerge in the second ResNet block. For instance, these filters are activated by

different object patterns or by specific regions of the hand such as the palm or the thumb.

8.2.7 Weight Prediction

Dataset. We performed identical pre-processing of frames as for the classification task to

obtain normalized 32 × 32 tactile maps. The collection sequence of the grasping procedure

for weight estimation was predetermined; we used the frames between 4 s and 6 s of each

sequence when the object was held (2,301 frames). To prevent the problem from being

reduced to a simple classification task where each weight is associated with an object, we

used a ‘leave-one-out’ approach where the object whose weight is predicted is not part of the

training data.

Regression. Our goal is to predict weights (in grams) for a previously unseen object based

on a single tactile frame; unlike object recognition, weight estimation is possible as soon as

an object is held. Here we use a similar ResNet-based network architecture. Because this

task is based on a single frame input, we remove the input branch concatenation (retaining a

single branch of the CNN alone) and directly apply a fully connected layer to regress the
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weight. Owing to the wide range of object weights in our dataset, we perform the prediction

in the logarithmic space. We optimize the parameters of our model by minimizing the mean

squared error between the predicted and measured ground truth weights (in logarithmic

space). We used the same optimizer and learning parameters as before and train the network

for ten epochs.

We construct a linear baseline for the weight estimation. This is motivated by the fact

that the weight of an object is directly linked to the sum of all forces it applies when the

object rests on a horizontal surface (that is, the naive estimate of weight is 𝑎𝑋 + 𝑏, where 𝑋

is the sum of the tactile map). This baseline is not valid in practice, however, because the

tactile response is affected by the articulation of the hand (grasp), as well as by the surface

friction and the additional force used to avoid slipping. We used the same ‘leave-one-out’

training procedure to find the best choice of 𝑎 and 𝑏 that minimizes the mean squared error

between the prediction and ground-truth weight in logarithmic space.

Figure 8-2f compares the results of our network with the linear baseline model. The error

for each object corresponds to a different instance of our model trained with that particular

object left out from the training dataset. We also computed a mean predicted error across

all objects expressed in grams in linear space. We found that the average prediction error of

our model is 56.88 g, which is less than the 89.68 g of the naive linear model. This result

shows that nonlinear behaviours connected with grasps and the physical properties of the

objects cannot be omitted and that the neural network can compensate these to some extent.

The weight estimation errors in different weight ranges are listed in the table in Figure 8-11b.

We observe that the CNN outperforms the linear baseline in all cases. Furthermore, the

estimation errors are also listed as relative errors (normalized by object weights); this is

analogous to the Weber fraction used in the tactile weight perception literature [Brodie and

Ross, 1984]. We also tested an additional modification to the linear baseline by removing

the hand pose component from the tactile signal using the methods outlined in the section

‘Decomposing signal and sensor correlations’ and Figure 8-3a. We observed that the modified

linear baseline did not present any noticeable improvement over the naive baseline approach,

and the performance of the CNN was better than both linear methods. We believe that this

is due to the complex relationship between the tactile signals and the weight estimates and

this is borne out by previous weight perception studies [Flanagan and Bandomir, 2000].

It is noteworthy that humans rely both on cutaneous and kinaesthetic senses (and their
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inertial responses during object interactions) to gauge weight effectively. The Weber fraction

is known to be about 1/3 when using the cutaneous sensors [Brodie and Ross, 1984]. Our

estimated metric analogous to the Weber fraction is similar for moderately heavy to heavy

objects (Figure 8-11b); this performance is comparably good considering that the human

hands possess additional types of mechanoreceptors that are not used here.

8.2.8 Hand Pose

Dataset. To evaluate whether hand pose (proprioceptive) information can be retrieved

from the glove even when no objects are being manipulated, we picked seven distinct grasps

from the grasp taxonomy [Feix et al., 2015b] (along with a neutral hand pose for reference).

We chose these specific grasps because they are often used and involved object interactions

at the palmar side of the hand, which is covered with sensors in the STAG. Furthermore, we

articulate each hand pose back and forth from the neutral hand pose; this covers a larger set

of grasps in the taxonomy and increases the intra-class variance. We removed ambiguous

articulations of the hand (close to the neutral pose) by thresholding. Frames with a mean

pressure signal higher than 75% of a local dynamic range in a symmetric window with a 6-s

temporal radius were considered as reliably valid hand poses. This filtering step reduced the

number of frames to 7,697.

t-SNE embedding. We applied t-SNE [Van der Maaten and Hinton, 2008] to the tactile

frames to discover structure in the signal and to evaluate its dependency on the performed

hand pose. We first reduce the dimensionality of our pressure readings from the original 548

active sensors to 50 using principal component analysis and then applied t-SNE to obtain

the final two-dimensional projection presented in Figure 8-13. The network described in

the ‘Object identification’ section was also used to train and classify the hand poses from

single tactile maps with 89.4% accuracy (average of 10 runs; 3,080 training frames and

1,256 distinct test frames). The confusion matrix corresponding to these tests is shown

in Figure 8-13c. Most grasps can be identified correctly except for G1 and G6, which are

occasionally confused.
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8.2.9 Decomposing Signal and Sensor Correlations

We computed the mutual correlation of the sensors over our entire object identification

and classification dataset. Each recorded frame contains two different signals: the hand pose

signal and the object-related pressure due to forces between an object and the hand. The

hand pose signal denotes the articulation of the hand and would be present even in the

absence of an object. We assume the hand pose signal to be saturated once the hand reaches

full articulation just before contact (reach phase in Figure 8-3a). This simplification holds in

a majority of cases where the hand articulation does not change much after initial contact.

In this condition, the additional force due to an object contact can be superimposed on the

articulated hand. By design, the sensors respond to normal compressive force components

between the upper and the lower electrodes. Therefore, the force components picked up by

the sensors can be treated as additive. Furthermore, the output of the sensors as seen at the

output of the amplifier circuit or the ADC is linear with respect to the applied force in the

working range.

To extract the hand pose signal and the object pressure signal from the tactile frame,

we implement the following decomposition procedure. We first compute the mean pressure

response for every frame of each recording and filter it over time with a symmetric Gaussian

kernel with the three-frame standard deviation (around 400 ms) to remove noise. The

gradient of this signal (as a forward difference) can show possible object contact points as

local maxima of the gradient (symmetrical window of five frames; about 700 ms). Considering

that the presence of two distinct contacts in this window is unlikely, we first locate the

nearest preceding minima (up to 20 frames away) of the filtered mean pressure signal. To

ensure that this minimum is reliable and to avoid detecting random pressure fluctuations, we

require the mean pressure value to be below 20% of the recording dynamic range. Similarly,

we find the next local maxima and ensure it is larger than 20% of the dynamic range of the

recording. The minimum and maximum are marked as the empty hand pose frame (blue dot

in the reach phase; Figure 8-3a) and as the object manipulation frame (green dot in the lift

and hold phase). To recover a larger amount of useful data, we further explore the frames

surrounding the local maximum frame and include every frame up to a symmetrical 80-frame

radius to the object pressure set until a frame that does not appear to be valid; here, valid

frames are those that lie above the detection threshold (0.5) in this normalized scale. The
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empty hand pose was subtracted from each of the object manipulation frames to recover the

pure object-related tactile data.

To evaluate the effectiveness of this decomposition process, we manually analysed the first

60 s of recordings with five random objects of different sizes and weights (full cola can, mug,

multimeter, pen, and tape). We observe that 64 grasps were detected out of the 93 while

only producing 4 false positive detections. Typically, more detections were missed for light

objects compared to heavier objects (for example, 12 for the tape versus 2 for the full cola

can). Furthermore, the location of the before-contact point (blue) was on average 1.7 frames

before the true location. The first detected object-contact point (first of the green frames)

was on average 3.5 frames after the true location. Our algorithm is therefore conservative as

it does not produce data from false locations and places the empty hand sample safely in the

pre-contact space, as well as uses reliable post-contact frames as a source for extracting the

object signal.

Pearson correlation coefficient and canonical-correlation analysis were used to analyse

the correlations between sensors and sensor groups separately on the decomposed hand pose

data and the decomposed object-related tactile data. Pearson correlations coefficients based

on single sensor correlations uncover local relations between neighbouring sensors but are

sensitive to the selection of specific sensors and do not present overall trends. To extract

phalange level correlations, we used canonical-correlation analysis; results are shown in a

circular plot [Krzywinski et al., 2009] in Figure 8-3c. The three finger phalanges, starting at

the palm and going outward, are proximal, intermediate and distal. Note that the thumb

does not have an intermediate phalanx by standard convention. Since canonical-correlation

analysis always results in larger correlations than those achieved at the individual sensor

level, we show the differences in the relations by subtracting the minimum correlation; the

intermediate phalanx of the little finger and the proximal phalanx of the index finger show

minimum correlation.
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Figure 8-4: STAG images and readout circuit architecture. (a) Image of the finished STAG
just before the electrodes are insulated. (b) Scan of the STAG. (c) Electrical-grounding-based signal
isolation circuit (based on D’Alessio [1999]). The active row during readout is selected by grounding
one of the 32 single-pole double throw (SPDT) switches. A 32:1 analog switch is used to select one
of the 32 columns at a time. Here 𝑅𝑐 is the charging resistor, 𝑉ref is the reference voltage, and 𝑅𝑔

sets the amplifier gain. (d) Fabricated printed circuit board that interfaces with the STAG. The two
connectors shown on the top right and bottom are connected to the column and row electrodes of
the sensor matrix. The charging resistors (𝑅𝑐) are on the back of the printed circuit board.
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Figure 8-5: Characteristics of the STAG sensing elements. (a) The resistance of a single
sensing element shows the linear working range (in logarithmic force units). The sensor is not sensitive
below about 20 mN of force and saturates in response when a load exceeding 0.8 N is applied. (b)
Response of three separate sensors in the force range 20 mN to 0.5 N. The sensors show minimal
hysteresis (17.5 ± 2.8%). (c) The sensor response after 10,100 and 1,000 cycles of linear force ramps
up to 0.5 N for three separate devices. The resistance measurements are shown in (d) over the
entire set of cycles. (e) Differential scanning calorimetry measurements of the FSF material shows a
two-polymer blend response with softening/melting temperatures of around 100∘𝐶 and 115.1∘𝐶. (f)
Through-film resistance of an unloaded sensor after treating at different temperatures in a convection
oven for 10 min. The film becomes insulating above about 80∘𝐶.
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Figure 8-6: Sensor architectures and regular 32 × 32 arrays. (a) A simplified version of
the sensor laminate architecture. (b) The sensor is assembled by laminating a FSF along with
orthogonal electrodes on each side, that are held in place and insulated by a layer of two-sided
adhesive and a stretchable LDPE film (see Section 8.2). (c) Fixture used to assemble parallel
electrodes. The individual electrodes can be threaded into the structure (like a needle) for assembling
parallel electrodes with a spacing of 2.5 mm. (d) Assembled version of the architecture shown in (a).
(e) A regular 32 × 32 array version of the STAG based on the design in (b).

160



Figure 8-7: Sample recordings of nine objects on regular 32 × 32 arrays on a flat surface.
Nine different objects are manipulated on a regular sensor array (Figure 8-6d) placed on a flat surface.
The resting patterns of these objects can be seen easily. Pressing the tactile array with sharp objects
like a pen or the needles of a kiwano yields signals with a single sensor resolution.
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Figure 8-8: Auxetic designs for stretchable sensor arrays. (a) Standard auxetic design laser
cut from the FSF. (b) The actual design of the auxetic includes holes to route the electrodes (shown
in red and blue), and slots allow the square, sensing island to rotate, enhancing the stretchability of
the sensor array. (c) Close-up of the fabricated array showing the conductive thread electrodes before
insulation. (d) A fully fabricated 10 × 10 array with an auxetic design. (e) Auxetic patterning allows
the sensor array to be folded, crushed and stretched easily with no damage. (f) The array can also
be stretched in multiple directions.
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Figure 8-9: Dataset objects. In total, 26 objects are used in our dataset; images of 24 objects are
shown here. In addition to these objects, our dataset includes two cola cans (one empty can and one
full can).
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Figure 8-10: Confusion maps and learned convolution filters. (a–h) The actual object and predicted
object labels are shown in these confusion matrices for different networks, each taking 1 to 8 (or N) inputs
where each input is obtained from a distinct cluster for N > 1 (approach shown in Figure 8-2e; see Section 8.2).
These matrices correspond to the ‘clustering’ curve in Figure 8-2b. Objects with similar shapes, sizes or
weights are more likely to be confused with each other. For example, the empty can and full can are easily
mistaken for each other when they are resting on the table. Likewise, lighter objects such as the safety glasses,
plastic spoon, or the coin are more likely to be confused with each other or other objects. Large, heavy
objects with distinct signatures such as the tea box have high detection accuracy across different numbers of
inputs (N). (i) Original first-layer convolution filters (3 × 3) learned by the network shown in Figure 8-2a for
N = 1 inputs. (j) Visualization of the first-layer convolution filters of ResNet-18 trained on ImageNet.
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Figure 8-11: Weight estimation examples and performance. (a) Four representative examples
from the weight estimation dataset, in which the objects are lifted using multi-finger grasps from the
top. (b) The weight estimation performance is shown in terms of the mean absolute and relative errors
(normalized to the weight of each object) in each weight interval. The relative error is analogous to
the Weber fraction. We observe that the CNN outperforms the linear baseline with or without the
hand pose signal removed. The overall errors of the two linear baselines are comparable.
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Figure 8-12: Correspondence maps for six individual sensors using the decomposed hand
pose signal. The hand pose signal decomposed from object interactions is used to collectively extract
correlations between the sensors and the full hand (analogous to Figure 8-3b where the decomposed
object-related signal is used). The pixels at the fingertips show less structured correlations with the
remaining fingers, unlike in Figure 8-3b.
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Figure 8-13: Hand pose signals from articulated hands. (a) Images of the hand poses used in
the hand pose dataset. The poses G1 to G7 are extracted from a recent grasp taxonomy. In the
recordings, each pose is continuously articulated from the neutral empty hand pose. (b) When the
tactile data from this dataset is clustered using t-SNE, each distinct group represents a hand pose.
Sample tactile maps are shown on the right. The corresponding samples are marked in red. (c) The
hand pose signals can be classified with 89.4% accuracy (average of ten runs with 3,080 training
frames and 1,256 distinct test frames) using the same CNN architecture shown in Figure 8-2a. The
confusion matrix elements denote how often each hand pose (column) is classified as one of the
possible hand poses (rows). It shows that hand poses G1 and G6 are sometimes misidentified but
the other hand poses are identified nearly perfectly.
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Chapter 9

Learning Human-Environment

Interactions Using Tactile Textiles

The previous chapter shows that the dense tactile glove is capable of learning the

contacting patterns during hand-object interactions and recognizing and weighing objects.

However, the sensors only cover the palm area of the hand, whereas for humans, we have

tactile sensing capabilities all over our skin, covering much larger surface areas of more

complicated geometries. Therefore, in this chapter, we take on the problem of developing

more flexible and large-scale tactile sensing platforms for more complicated 3D geometries

in the form of wearable textiles. Sensors of this kind would be of great value in modeling

and understanding tactile interactions, facilitating the study of human behavior and the

development of applications in healthcare and robotics. However, such studies remain

challenging because existing wearable sensory interfaces are limited in terms of performance,

flexibility, scalability, and cost.

Here, we report a textile-based tactile learning platform that can be used to record,

monitor, and learn human-environment interactions. The tactile textiles are created via

digital machine knitting of inexpensive piezoresistive fibers and can conform to arbitrary

three-dimensional geometries. To ensure that our system is robust against variations in

individual sensors, we use machine learning techniques for sensing correction and calibration.

Using the platform, we capture diverse human-environment interactions (more than a million

tactile frames) and show that artificial-intelligence-powered sensing textiles can classify

humans’ sitting poses, motions, and other interactions with the environment. We also

169



show that the platform can recover dynamic whole-body poses, reveal environmental spatial

information, and discover biomechanical signatures. Please check the video illustrations of

developed sensors on our project page: http://senstextile.csail.mit.edu/.

This chapter was originally published as Luo et al. [2021b] in Nature Electronics, along

with co-authors Yiyue Luo, Pratyusha Sharma, Wan Shou, Kui Wu, Michael Foshey, Beichen

Li, Tomas Palacios, Antonio Torralba, and Wojciech Matusik, in which Yiyue Luo have made

major contributions to the content of this chapter.

9.1 Main

Living organisms extract information and learn from the surroundings through constant

physical interactions [Dahiya et al., 2009]. Humans are particularly receptive to tactile cues

(on hands, limbs and torso), which allow complex tasks such as dexterous grasp and locomotion

to be carried out [Winter, 1995]. Observing and modelling interactions between humans and

the physical world are thus fundamental to the study of human behaviour [Someya et al., 2016],

and also for the development of applications in healthcare [Yousef et al., 2011], robotics [Yang

et al., 2018, Sundaram et al., 2019] and human–computer interactions [Poupyrev et al., 2016].

However, studies of human–environment interactions typically rely on easily observable visual

or audible datasets [Zeng et al., 2014], and obtaining tactile data in a scalable manner remains

difficult.

Wearable electronics have benefited from innovations in advanced materials [Yan et al.,

2019, Rogers et al., 2010, Engler et al., 2006], designs [Moeslund et al., 2006, Rein et al., 2018,

Kim et al., 2008, Wang et al., 2018] and manufacturing techniques [Ahn et al., 2009, Truby

and Lewis, 2016]. However, sensory interfaces that offer conformal, full-body coverage and can

record and analyse whole-body interactions have not been developed. Such full-sized tactile

sensing garments could be used to equip humanoid robots with electronic skin for physical

human–robot collaboration [Winter, 1995, Sundaram et al., 2019], could serve as auxiliary

training devices for athletes by providing real-time interactive feedback and recording [Adams,

1971], and could assist high-risk individuals, such as the elderly, in emergencies (a sudden

fall, for example) and early disease detection (heart attacks or Parkinson’s disease, for

example) [Wang et al., 2017b] by acting as unobtrusive health-monitoring systems.

In this chapter, we report a full-body tactile textile for the study of human activities
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Figure 9-1: Textile-based tactile learning platform. (a) Schematic of the scalable manufac-
turing of tactile sensing textiles using a customized coaxial piezoresistive fibre fabrication system
and digital machine knitting. A commercial conductive stainless-steel thread is coated with a
piezoresistive nanocomposite (composed of polydimethylsiloxane (PDMS) elastomer as the matrix
and graphite/copper nanoparticles as the conductive filler). (b) Digitally designed and automatically
knitted full-sized tactile sensing wearables: (i) artificial robot skin, (ii) vest, (iii) sock and (iv) glove.
(c) Examples of tactile frames collected during human–environment interactions and their applications
explored using machine learning techniques.

(Figure 9-1). Our textiles are based on coaxial piezoresistive fibres (conductive stainless-steel

threads coated with a piezoresistive nanocomposite), produced using an automated coating

technique. The functional fibres can be turned into large-scale sensing textiles that can

conform to arbitrary three-dimensional (3D) geometries, using digital machine knitting, an

approach that addresses current challenges in the large-scale manufacturing of functional

wearables. An artificial intelligence (AI)-based computational workflow is also developed

here to assist in the calibration, recording and analysis of full-body human–environment

interactions using the tactile textiles.
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9.2 Conformal Tactile Sensing Textiles

Our low-cost (∼US$0.2 per metre) coaxial piezoresistive fibres are created using a

scalable automated fabrication process (Figure 9-1a; further details on characterization and

preparation are provided in Figure 9-2a–c and the Section 9.5). A pair of fibres are then

orthogonally overlapped to create a sensing unit, which converts pressure stimuli (a normal

force acting on the surface) into electrical signals [Dahiya et al., 2009, Zeng et al., 2014].

Figure 9-2d shows that the measured resistance of a typical sensor drops from 8 kΩ to 2

kΩ in response to an increasing applied normal force (or pressure) in the range of 0.1-2 N

(with an average peak hysteresis of -22%). Our functional fibre has reliable performance

over 1,000 load and unload cycles (Figure 9-2f). It also maintains stable performance in a

wide range of daily environments, such as different temperatures (20–40∘𝐶) and humidities

(40–60%). The performance of the sensing unit can be tuned on demand by adjusting the

material compositions (copper and graphite weight percentages) and fabrication process

(pulling speed and material feeding rate).

To fabricate 3D conformal tactile textiles in a scalable manner, we use digital machine

knitting to seamlessly integrate the functional fibres into shaped fabrics and full-sized

garments. Although weaving has been widely attempted for inserting functional fibres

into fabric, knitting is chosen here as it has two primary advantages over weaving. First,

the fabrication process is simpler: whereas woven fabric must be cut and sewn to form a

garment, full-garment machine knitting can directly manufacture wearables with arbitrary

3D geometry [Narayanan et al., 2019]. Second, the interlocking loops of yarn (that is, stitches)

used in knitting create a softer, stretchier fabric, which ensures comfort and compatibility

during natural human motions.

Because of its relative stiffness compared to regular knitting yarn, the piezoresistive

functional fibre is not suitable to be knitted directly by forming loops. We thus used an

alternative knitting technique—inlay—which horizontally integrates the yarn in a straight

configuration. We assembled two knitted fabrics with functional fibres inlaid perpendicularly

to form a sensing matrix. Different knitting patterns can be used to tune the performance of

the sensing matrix for customized applications. The highest achieved sensitivity of 1.75 kPa

and a detection range up to 87.5 kPa are demonstrated in Figure 9-2e.

We computationally designed and automatically knitted several example garments: socks
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Figure 9-2: Characterization of the functional fibre. (a) Photograph of the piezoresistive
functional fibre (>100m) and sensing fabrics. (b) Optical image of a stainless-steel thread, coaxial
piezoresistive fibre and acrylic knitting yarn. (c) Scanning electron microscopy (SEM) cross-sectional
image of the piezoresistive fibre. (d) The resistance profile of a typical sensor (composed of two
piezoresistive fibres) in response to pressure (or normal force). Error bars indicate the standard
deviation of four individual sensors. (e) The influence of fabric structures (‘manual’ inlay and
automatic inlay) on device performance. Behaving as a buffer, the introduction of the soft fabric (red
curve) decreases the sensitivity and increases the sensing range. Also, the ribbed structures obtained
from automatic inlay induce gaps between two aligned fabrics (dark blue and light blue curves),
further decreasing the sensitivity and increasing the detection range. (f) The stable performance of a
typical sensor over 1,000 cycles of force load and unload.
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(216 sensors over an area of 144 cm2), a vest (1,024 sensors over 2,100 cm2), a robot arm

sleeve (630 sensors over 720 cm2), and full-sized gloves (722 sensors over 160 cm2). Thanks

to the digital machine knitting system [Seiki, 2011], these garments are fully customizable:

they can be adapted to individual shape, size, surface texture and colour preference, meeting

the needs of personalization and fashion design.

9.3 Self-Supervised Sensing Correction

During the large-scale manufacturing of wearable sensors, it is inevitable that variations

will be introduced and thus failure. Although researchers conventionally attempt to fabricate

flawless sensor arrays [Briseno et al., 2006, Khang et al., 2006], we draw inspiration from

living organisms, which develop the ability to adapt their sensory system in the presence

of localized defects or environmental variations using overall sensing [Dahiya et al., 2009,

Winter, 1995, Yousef et al., 2011]. We adopt a similar mechanism to provide robust sensing

capabilities while relaxing the flawless requirement in sensor fabrication. This is critical for

many applications, as it is impractical to perform individual calibration and correction of

our sensing units due to their high-density, complex geometries and diverse applications.

To implement such a mechanism, we developed a self-supervised learning paradigm that

learns from weak supervision, using spatial-temporal contextual information to normalize

sensing responses, compensate for variation and fix malfunctioning sensors. In particular, we

first calibrate our tactile socks and gloves by collecting synchronized tactile responses and

readings from a digital scale stepped or pressed by a wearer (Figure 9-3a). At each frame,

the scale reading indicates the overall applied pressure, which is expected to correlate linearly

with the sum of tactile responses at all sensing points. We then train a fully convolutional

neural network with four hidden layers, which takes a small sequence of raw tactile array

responses as input and outputs a single frame with the same spatial array resolution. The

output represents the corrected tactile response of the middle frame of the input sequence.

The neural network is optimized via stochastic gradient descent with the objective consisting

of two components: one encourages the output to preserve the spatial details from the input,

and the other requires the summed tactile response to be close to the reading from the

scale. Our network consistently increases the correlation between the tactile response and

the reference (reading from scale)—the correlation improves from 75.9% to 91.1% in the
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right sock, from 92.4% to 95.8% in the left sock and from 77.7% to 88.3% in the glove

(Figure 9-3a).

To further calibrate the sensing fabrics with arbitrary shapes, such as the vest and robot

arm sleeve, we treat the corrected glove as a mobile, flexible ‘scale’ and record data from

both the tactile glove and the target garments while researchers randomly press on the latter

through the glove. With the same self-supervised learning framework (Figure 9-3b), the

correlation between the responses increases from 32.1% to 74.2% for the tactile vest and

from 58.3% to 90.6% for the tactile robot arm sleeve (Figure 9-3b). The self-supervised

calibration network exploits the inductive bias underlying the convolutional layers [Ulyanov

et al., 2018], learns to remove artefacts, and produces more uniform and continuous responses

(Figure 9-3c–h). It enables the large-scale sensing matrix to be robust against variation

among the individual elements and even their occasional disruption, consequently improving

the reliability of the measurement.

9.4 Learning on Human–Environment Interactions

Using our full-body sensing garments, we collected a large tactile dataset (over 1,000,000

frames recorded at 14 Hz, details are provided in the Section 9.5) [D’Alessio, 1999] featuring

various human–environment interactions, including diverse contacting patterns from sitting

on chairs of different materials with different postures, complex body movement and other

daily activities (Supplementary Videos 3–7 on the Nature Electronics website: https:

//www.nature.com/articles/s41928-021-00558-0). The capture of human behaviour,

skills and crafts is essential for cultural preservation, transfer of knowledge, as well as for

human and robot performance optimization [Sundaram et al., 2019, Adams, 1971]. We

demonstrate the capability and utility of our platform by leveraging our data for environment

and action classification, motion pattern discovery and full-body human pose prediction.

Our full-sized sensing vest shows the characteristic pressure distributions during sitting,

standing, reclining and other actions, which indicate the wearer’s pose, activity and the

texture of the contacted surfaces. We captured a dataset for a wearer performing different

poses over various surfaces (Figure 9-4a). Projecting the high-dimensional sensory responses

into 2D space via t-distributed stochastic neighbour embedding (t-SNE) [Van der Maaten

and Hinton, 2008], we observe that the recordings from different classes naturally form
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Figure 9-3: Self-supervised correction. (a) Procedure for correcting the tactile sock. The
wearer steps on a digital scale (a tennis ball was placed between the foot and the scale to enhance
conformal contact) and synchronized readings from the sock and scale are collected. The same
method is used for tactile gloves. (b) Procedure for self-supervised correction of the vest using the
response of the calibrated glove as the reference. The same method is also used for the robot arm
sleeve. The bar plots on the right (a,b) show the correlations between the tactile response and the
scale reading: ‘Raw’ indicates the correction of the original, unprocessed tactile signal; ‘Manual’
indicates the correlation of manual-adjusted data where all saturated tactile signals were clipped; and
‘Self-supervised’ indicates the correlation obtained after self-supervised correction. (c–h), Examples
of raw and corrected readouts from the sock (c,d), vest (e,f) and robot arm sleeve (g,h). Our method
removes artefacts and enhances the smoothness of the sensors. The colour bar indicates the relative
pressure in each sensing point.
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distinctive clusters, indicating the discriminative power of the vest (Figure 9-4b). Our vest

also exhibits a discriminative resolution of 2 cm, which is superior to a human’s back (∼4.25

cm) [Lederman and Klatzky, 2009]. We dressed a manikin in the vest and collect a dataset

by pressing three letters cutouts—‘M’, ‘I’ and ‘T’—against the back in different orientations

(Figure 9-4c). The classification network takes a small window of tactile responses and

predicts the type and orientation of the letter with an accuracy of 63.76%; the accuracy

drops as the effective resolution decreases (Figure 9-4d). The discriminative capability of the

sensing socks was demonstrated similarly with action classification. Details are provided in

Supplementary Figure 11e on the Nature Electronics website.

Humans maintain the dynamic balance of the body by redirecting the centre of mass

and exerting forces on the ground, which results in distinct pressure distributions on the

feet [Someya et al., 2016, Bauby and Kuo, 2000, Scott et al., 2020]. Given this, we hypothesize

that a person’s pose can be estimated from the change of pressure distribution over time

obtained by our tactile socks, shown as a sequence of pressure maps (Figure 9-4i-j). Here,

the body pose is represented by 19 joint angles spanning over the legs, torso and arms

(Figure 9-4e). We record synchronized tactile data from a pair of sensing socks and a

full-body motion capture (MOCAP) suit, while the user conducts versatile actions. We model

the pose prediction task as a regression problem using a convolutional neural network. The

model processes a time-series of tactile array footprints that contain the evolving information

about the contact events and predicts the human pose in the middle frame. We optimize the

neural network by minimizing the mean squared error between the predicted and the ground

truth joint angles (MOCAP data) using stochastic gradient descent.

The model learns to make accurate predictions that are both smooth and consistent over

time, achieving a mean squared error that is 70.1% lower than our baseline, which always

outputs the mean pose. As shown in Figure 9-4f–j, our model achieves higher accuracy for

the poses in the torso and legs than in the arms. This is congruous with our observation

that the pressure distributions on the feet are mostly affected by lower body movement and

the majority of body mass is located in the torso [Someya et al., 2016]. We also observe that

the recovered dynamic motion implies the environmental spatial information, for example,

whether the stairs are upwards or downwards. The significance of sensing resolution and

temporal information is reiterated, as the performance drops with a systematic reduction in

either the input resolution of the tactile pressure map or the context size of the input tactile
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Figure 9-4: Learning on human–environment interactions. (a) Example photographs and tactile
frames. (b) t-SNE plot from our pose dataset recorded by the tactile vest. The separation of clusters
corresponding to each pose illustrates the discriminative capability of the sensing vest. (c) Example
photographs and tactile frames of ‘M’, ‘I’ and ‘T’ pressed on the tactile vest. (d) Letter classification accuracy
drops as sensor resolution decreases (top). The confusion matrix for classifying the letter and the orientation
(bottom). (e) Location of the 19 joint angles representing body pose in our model. (f) Mean squared error
in pose prediction. (g,h) Influence of sensor resolution (g) and the number of input frames (h, temporal
window) on prediction performance. The dashed lines represent the baseline defined as the canonical mean
pose of the training data. (i) Comparison of various poses recorded by MOCAP (ground truth) and the same
poses recovered by our model from the tactile socks pressure frames. Notable errors in the arm region are
highlighted in red. (j) Time series prediction of walking. (k) PCA on tactile maps from walking (insets are
corresponding tactile frames).
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frames (Figure 9-4g-h).

To further understand the patterns that emerged from the tactile dataset recorded by

the sensing socks, we used principal component analysis (PCA) to project the tactile signals

collected from walking into a 2D plane (Figure 9-4k). Intriguingly, the walking signals

naturally form a circular pattern in the reduced PCA space. The pressure distribution

smoothly transitions back and forth between the left and right foot as we traverse the circle,

which describes signatures of the different phases during walking [Yousef et al., 2011].

Our results indicate that a pair of tactile socks can potentially replace the bulky MOCAP

system. Our approach sets a path towards the analysis and study of human motion activities

without much physical obtrusion in domains like sports, entertainment, manufacturing

activities and care of the elderly. Furthermore, such footprints contain dynamic body

balance strategies, demonstrating a valuable, instructive paradigm for robot locomotion and

manipulation [Someya et al., 2016, Sundaram et al., 2019].

Finally, we also demonstrate that our 3D conformal sensing textiles can be used as tactile

robot skin. Most modern robots rely solely on vision; however, large-scale and real-time

tactile feedback is critical for dexterous manipulation and interaction skills, especially when

vision is occluded or disabled [Okamura et al., 2000, Cheng et al., 2019]. Our functional

textile enables conformal tactile coverage of the robot arm (Figure 9-1b–i), gripper, limbs and

other functional parts with complex 3D geometries, endowing the robots with real-time tactile

feedback (Figure 9-3e). Our platform offers a critical ingredient for unobtrusive multi-point

collision detection and physical human–robot interaction, which remains challenging with

embedded torque sensors in the robot arm [Sundaram et al., 2019].

9.5 Methods

9.5.1 Fabrication of Coaxial Piezoresistive Functional Fibre

The functional fibre was constructed in two parts: a conductive core and a piezoresistive

sheath. The piezoresistive sheath was prepared by mixing graphite nanoparticle (400–1,200

nm, US Research Nanomaterials), copper nanoparticle (580 nm, US Research Nanomaterials)

and PDMS elastomer (Sylgard-184, base to curing agent weight ratio of 10:1, Dow Corning).

Silicone solvent OS2 (Dow Corning) was added to optimize the viscosity of the mixture

for the coating. The mixture was thoroughly mixed by a speed mixer (FlackTek) at 2,500
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r.p.m. for 90 s. The prepared piezoresistive composite was loaded into a syringe (Nordson),

which was connected to a customized material reservoir with 500-𝜇m-diameter inlet and

700-𝜇m-diameter outlet (Figure 9-1a). Constant pressure (20 psi) was applied to the syringe

with a Nordson dispenser, while the 3-ply stainless-steel thread (Sparkfun, DEV-13814)

was fed to the inlet (Figure 9-1a). The thread was then pulled by a continuously rotating

motor and coated with the nanocomposites. After thermal curing at 150∘𝐶, the resulting

coaxial piezoresistive fibre (namely, the functional fibre) was wound into a roll (Figure 9-1a).

Each sensor was constructed at the intersection of two orthogonally overlapped functional

fibres, forming a layered structure with the piezoresistive nanocomposite sandwiched by two

conductive electrodes (inset, Figure 9-2d).

9.5.2 Morphological Characterization

The longitudinal uniformity is illustrated by optical images (Olympus SZ61, Supple-

mentary Figure 1a on the Nature Electronics website: https://www.nature.com/articles/

s41928-021-00558-0). The microstructure of the coaxial piezoresistive fibre was further

characterized using a scanning electron microscope (Zeiss Merlin, Supplementary Figure

1b on the Nature Electronics website). All fibres were characterized without additional

conductive coating in the scanning electron microscope using a voltage of 3–5 kV.

9.5.3 Electrical Characterization

The individual sensor, constructed from two orthogonally aligned functional fibres,

was used for electrical characterization. The resistance profile was recorded by a digital

multimeter (DMM 4050, Tektronix) while an adjustable pressure (or normal force) was

applied to the sensor by a mechanical testing system (Instron 5944). The applied load

was controlled at a specific strain rate for all tests (0.05-0.5 mm min−1). To evaluate

the robustness of the sensor, we cycled the force between 0.1 and 0.5 N for more than

1,000 cycles at a constant strain rate of 0.1 mm min−1 (Figure 9-2f). We measured the

performance of sensors composed of fibres with various graphite and copper compositions

and coating thicknesses (Supplementary Figure 1a,b,h on the Nature Electronics website:

https://www.nature.com/articles/s41928-021-00558-0). Sensor stability was studied

with different fibre alignment angles, humidity and temperature (Supplementary Figure

1i–k). The effect of fabric structure on single sensor performance was evaluated by recording
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the resistance of an isolated sensor embedded in knitted fabrics with different structures.

Also, sensors consisting of different combinations of fabric structures inlaid with functional

fibres (automatic and manual inlaying) were investigated (Figure 9-2e). The typical sensing

resolution ranged from 0.25 cm2 to 4 cm2.

9.5.4 Mechanical Characterization

The tensile test was conducted on an Instron mechanical tester (Instron 5984). The

fabricated functional fibre (diameter of 600 𝜇m) was compared with stainless-steel core

thread and two common kinds of acrylic knitting yarn (Tamm Petit C4240 and Rebel

TIT8000), as shown in the Supplementary Figure 1g on the Nature Electronics website:

https://www.nature.com/articles/s41928-021-00558-0. Samples with a length of 10

cm were pulled at a strain rate of 5 mm min−1. The yield strength of the functional fibre is

over six times larger than that of the acrylic knitting yarns. However, its ultimate strain is

less than 10% of acrylic knitting yarn’s ultimate strain. These mechanical characteristics

require special accommodations during the machine knitting process. The functional fibre

shows mechanical properties similar to that of the core stainless-steel thread.

9.5.5 Conformal 3D Sensing Textiles Manufacturing

Digital machine knitting. The full-sized conformal garments and coverings were com-

putationally designed using KnitPaint [Seiki, 2011] and the stitch meshing framework, and

later automatically fabricated with a V-bed digital knitting machine (SWG091N2, Shima

Seiki), which has two beds of needles (front and back) forming an inverted ‘V’ shape. Each

needle is composed of a hook, which catches the yarn and holds the topmost loop, and a

slider, which can be actuated to move vertically to close the loop and assist in holding the

loop. Movement of the yarn carrier is synchronized to the needle operation, where yarns

are fed in with appropriate tension (Supplementary Figure 5a on the Nature Electronics

website: https://www.nature.com/articles/s41928-021-00558-0). We used three basic

needle operations during fabrication: knit, tuck and transfer. A knit operation actuates the

needles to grab the fed yarn from the yarn carrier, forms a new loop, and pulls it through

the existing loop to connect the loops in columns (Supplementary Figure 5b on the Nature

Electronics website). A tuck operation actuates the needles to grab the yarn and hold it

without forming a new loop (Supplementary Figure 5c on the Nature Electronics website). A
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transfer operation actuates needles from both beds to pass the existing loop from one bed to

the other (Supplementary Figure 5d on the Nature Electronics website). We also utilized

racking, where the back bed shifts laterally to the left or to the right as a whole to create

needle offsets during transferring to guide the complex 2D and 3D shaping.

Inlaying. Two methods of inlaying were utilized to seamlessly integrate the piezoresistive

fibres into conformal 3D knitted textiles: automatic inlaying and manual inlaying. Automatic

inlaying requires the fabric structure of ‘ribs’, which are textured vertical stripes created

by alternating columns of knit stitches on the front and back bed. The functional fibre is

forced to move simultaneously with normal knitting yarn, which is caught by the needles

on the two beds and forms alternating knit stitches to hold down the inlaid functional fibre

(Supplementary Figure 5e on the Nature Electronics website: https://www.nature.com/

articles/s41928-021-00558-0). The ribbed structure (alternating stitches on the front

and back bed) allows the straightforward inlaying design; however, it creates a textured

gap when two fabrics are aligned orthogonally to act as a functioning device and lowers the

sensitivity and accuracy. Manual inlaying requires consecutive movements of the normal

knitting yarn and the functional fibre. Four steps of operations are conducted: (1) knitting

with normal knitting yarn; (2) the transfer of specific loops from front to back bed; (3)

moving the functional fibre across the fabric; (4) transfer of specific loops from back to

front bed to their original positions. A flat inlaid fabric (without ribbed structure) was

fabricated with manual inlay, and designs with continuous functional fibre coverage were

achieved by alternating the transfer direction (from the front bed to back bed or from back

bed to front bed). However, due to the fibre stiffness and the limited space between two beds,

the functional fibre can barely stay down during the second round of stitches transfer and is

easily caught by the needles, leading to the destruction of fibre functionality. Therefore, the

manual inlay can only be applied to 2D structures.

Full-sized conformal 3D sensing textiles. Two knitted fabrics of specific 2D and 3D

shapes with horizontally and vertically inlaid functional fibres were arranged as a double-layer

structure to form the large-scale sensing matrix. To optimize the manufacturability and

sensing performance of the garments, we exploited both automatic inlaying and manual

inlaying. Different combinations of fabric texture (ribbed or not ribbed) were selected for
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different devices to obtain the desired sensitivity and detection range (Figure 9-2e). Full-sized

socks, vest, gloves and conformal robot arm (LBR iiwa, KUKA) sleeve were fabricated with the

designs shown in Supplementary Figure 6 on the Nature Electronics website: https://www.

nature.com/articles/s41928-021-00558-0. To connect the embedded sensing matrices to

the readout circuit for data transmission without disrupting the main knitted fabric, cutting

was performed at the edge of the fabric, where 1–2-cm functional fibres were pre-reserved

through additional tucking at the edge for connection. A modified electrical-grounding-based

circuit architecture [D’Alessio, 1999] was used to eliminate most crosstalk and parasitic

effects of the passive matrix (Supplementary Figure 7a on the Nature Electronics website).

9.5.6 Self-Supervised Sensing Correction

Dataset. During data collection for the tactile sock correction, our researcher wore the

sock (with a customized printed circuit board mounted on the calves) and conducted random

stepping on a digital weighing scale (Etekcity). The tactile learning platform is powered

by a portable energy source (Dell XPS 13 9380, 30 Wh), which allows real-time recording

(data acquisition and serialization) while being carried by the researcher in a backpack.

The fully charged laptop allows 4 h of recording. We recorded both the real-time tactile

information from the sensing matrix and the readings from the scale. To ensure the conformal

contact of all sensors, we placed a tennis ball on the scale during the data-collection process

(Figure 9-3a). Sensing correction for the tactile gloves used a similar data-collection process.

For data collection with gloves, the printed circuit boards were mounted on the arms. A

person wore the glove and conducted random pressing on a digital scale (Lansheng). We

used 3D printed shapes (dots, lines and curves) to ensure conformal contact of individual

sensors. In total, we collected 25,024 frames for the left sock correction, 37,275 frames for the

right sock correction and 108,305 paired frames for glove calibration. We split the dataset

sequentially, with the first 80% reserved for training, another 10% for validation and the

remaining 10% for testing.

Data processing and network architecture. The data-collection process is assumed to

be quasistatic, so the readings from the scale should have a linear correlation with the sum

of all sensor responses on the glove or the sock. Based on this observation, we developed a

self-supervised learning framework that uses the scale’s reading as weak supervision to guide
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correction of the garment. We preprocessed all frames by replacing shorted or dead sensors

with an average value of its surrounding. A fully convolutional neural network augmented

with skip connections was developed. The model takes a small sequence of the processed

frames as input and then adds an individual bias term to each sensor. The output of the

model is a tensor of the same spatial resolution as the input with a channel size of 16. The

scale prediction is then defined as the mean of all values in this tensor. We applied an

affine transformation to the first channel of the tensor to derive the calibration result, which

corresponded to the middle frame of the input sequence. The affine transformation was

parameterized by two scalar numbers—a scaling factor and a bias term—which were shared

by all sensors in the same garment.

The calibration network was expected to predict the readings from the scale accurately

and preserve the details of the input frame. Hence, the overall objective was a reweighted sum

of two components: one was the mean squared error between the predicted scale reading and

the actual scale reading, while the other was an L1 distance between the calibration result

and the corresponding input frame, where we scaled the second reconstruction loss with a

factor of 0.1. We optimized the parameters in the convolutional layers, the position-wise bias

and the global affine transformation using stochastic gradient descent, which employed the

Adam optimizer with an initial learning rate of 0.001 and a batch size of 64. We decreased

the learning rate with a factor of 0.8 whenever the loss on the validation set plateaued for

five epochs.

Self-correction. After properly correcting the glove, we used it as our new ‘scale’ to

calibrate other garments like the vest and the robot arm sleeve. During data collection,

the customized printed circuit board was mounted on the leg for the vest and mounted on

the robot arm for the sleeve. We randomly pressed the target garment embedded with the

sensing matrix using the corrected glove. In total, 56,031 paired frames and 44,172 frames

were collected for the vest and robot arm sleeve correction. We used the same data split,

network architecture and training procedure, except that we used the sum of the sensors

from the calibrated glove as the target value to minimize the scale prediction error.

184



9.5.7 Human Pose Classification

To evaluate the discriminative power of the vest, and the quality of the obtained signal,

a neural-network-based classifier was developed to distinguish different sitting postures and

contacted surfaces. We selected 10 different classes of poses and recorded 82,836 tactile

frames, in total, to construct the dataset. The input to the model is a small sequence of 45

consecutive frames, which totals ∼3 s in real time. The sequences were selected from the

dataset with a stride of 2, among which 5,000 sequences were used for validation (500 per

class), another 10,000 sequences were reserved as the test set (1,000 per class), and we used

the rest for training. We passed each tactile frame through three shared convolutional layers.

The resulting 45 vectors with a length of 512 after flattening were then passed through

a bidirectional gated recurrent unit [Cho et al., 2014] and two fully connected layers to

derive the final probabilistic distribution over the 10 classes. We trained the model using the

standard cross-entropy loss for 20 epochs with the Adam optimizer with learning rate of 0.001

and batch size of 32. We obtained an accuracy of 99.66% on the test set in distinguishing

different lying postures and supporting surfaces. A real-time pose classification with an

accuracy of 94% is demonstrated in Supplementary Video 8 on the Nature Electronics website:

https://www.nature.com/articles/s41928-021-00558-0. Here, the real-time classifier

predicts the probability of each class, accompanied by the ground-truth human pose.

9.5.8 Letter Classification

The dataset was collected from the tactile vest worn by a manikin when the models of

three letters—‘M’, ‘I’ and ‘T’—were pressed against the back. We recorded 62,932 frames in

total for the 10 classes and retrieved a top-1 accuracy of 63.76% and a top-3 accuracy of

88.63% using the same network architecture, data splitting and training procedure as the

pose classification task. To ablate the resolution of the sensor, we reassigned the value in

each 2 × 2 grid with the average of the four values, which reduced the effective resolution to

16 × 16. We then used the same classification training pipeline to obtain accuracy. A similar

procedure was employed for calculating the accuracy for sensors with effective resolutions of

8 × 8, 4 × 4 and 1 × 1.
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9.5.9 Action Classification and Signature Discovery

In this experiment, we used tactile information from the two socks worn by a person

to identify which action the wearer was conducting. The dataset consists of tactile frames

retrieved from a pair of socks when the wearer conducts nine different activities: walking,

climbing up the stairs, climbing down the stairs, fast walking, standing on toes, jumping,

leaning on the left foot, leaning on the right foot and standing upright. The dataset contains

90,295 frames across the different action categories. The same classification pipeline achieved

a top-1 accuracy of 89.61% and a top-3 accuracy of 96.97%.

To further analyse the patterns underlying the signals collected from the socks, we

performed PCA to visualize their distribution. We used the 12,245 frames from the class

of walking in the action classification dataset. We concatenated and flattened the signals

from the left and right sock as the high-dimensional representation at each time step, each of

which has 2,048 dimensions. We extracted the principal components with the highest and

the second-highest variance to project the high-dimensional responses to a 2D space and

visualize them in Figure 9-4k.

9.5.10 Full-Body Pose Prediction

Dataset. The key idea of full-body pose prediction is to look at how different sequences of

tactile footprints correlate to the different poses as the person transitions from one pose to

another. To this end, we simultaneously collected data from a pair of tactile socks (frame rate

of 13–14 Hz) and an XSENS motion capture system (MOCAP, frame rate of 50 Hz) worn

by a person. The person conducted exercises and other daily activities, including walking,

bending forward, twisting, lunging and so on. The collected dataset is diverse in terms of

poses as the person transitions through different tasks. The MOCAP is composed of 17

inertia-based sensors, mounted on 17 key points on the human body to record and estimate

the orientation of 19 different joints during the movement. The real-time pressure imprints

from both feet were recorded and fed into the network. The 19 different joints include the

joints of the legs, arms and torso. The collected dataset includes 282,747 frames of concurrent

MOCAP and tactile pressure maps: 236,036 frames (∼83.5%) were used as the training set,

10,108 frames (∼3.5%) as the validation set and 36,603 frames (∼13%) as the test set.
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Data processing and network architecture. We trained a deep convolutional neural

network to predict the 19 different joints of the human body, given the tactile footprints

of the person. The network consists of two convolution layers, which take in a sequence of

tactile frames from the socks from time step t - k to time step t + k. The input to the model

is 30 consecutive frames of the pressure map of the left and right feet. These layers extract

patterns from the 2D signal, and the resulting embedding is then passed through three fully

connected layers to finally output the predicted relative joint angles of the human body,

corresponding to the person’s pose at time step t. The relative joint angles are the relative

angle transformation of the distal joint with respect to the proximal joint represented in the

axis angle format. The network was trained using stochastic gradient descent to minimize

the mean squared error between the predicted joint angles and the ground truth.

We trained the network with a batch size of 128 and with a learning rate of 0.01 using

the Adam optimizer. This was a design choice to predict the pose in the joint angle space

instead of the position space, but the code provided can be easily modified to predict the

pose in position space. The collected dataset also contains positions of the different joints

that could be used to train such a model.

Evaluation. The model is validated with the test dataset, including various exercises. The

ability of the model to infer each of the joint angles is illustrated in Supplementary Figure 13 on

the Nature Electronics website: https://www.nature.com/articles/s41928-021-00558-0.

The model can infer the motion of the lower body better than the motion of the upper body.

It is also found that the motion of the hands does not induce a systematic change in the

tactile pressure map, and hence their joint angles are more difficult to infer. There was no

additional loss used to train the system to be temporally consistent. The network figured out

the correspondence between the trajectory and the pose, and smoothly transitioned from

one pose to another accordingly. More results are provided in Supplementary Figure 12

and Supplementary Video 5 on the Nature Electronics website. We also evaluated how the

performance of the model changes with a systematic reduction in the resolution on each of

the feet from 32 × 32 to 1 × 1 (with the same ablation method used for letter classification).
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9.6 Discussion

We have reported large-scale tactile sensing textiles with dense sensor arrays that are

conformal to arbitrary 3D geometries. The textiles are manufactured via an automated,

inexpensive and scalable approach that combines functional fibres and full-garment digital

machine knitting. A self-supervised sensing correction has been developed to normalize the

sensor responses and correct malfunctioning sensors in the array. Demonstrations of various

human–environment interaction learning using the system suggest that our approach could

be of use in biomechanics, cognitive sciences and child development, as well as in imitation

learning for intelligent robots.
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Chapter 10

Conclusion and Future Works

In this dissertation, I have discussed a holistic picture of how my research has contributed

to the robots’ capability of making better physical interactions with the environment, all the

way from sensing, perception, dynamics, and control. I have also discussed in depth

how a suitable choice of structure in the system can deliver much better sample efficiency

and generalization capability.

Specifically, this thesis (1) investigated the construction of novel multi-modal sensing

platforms (i.e., vision and touch) to lay the foundation for structured modeling of the

interaction process, (2) studied the perception problem of what scene representation and at

what level of abstraction we should use to describe the environment that acts as sufficient

statistics for a given downstream task, (3) performed comprehensive examinations of different

functional classes for their abilities to exploit the structure and model the dynamics of the

underlying system, and (4) showed how the learned dynamics model could be used to solve

various inverse problems like physical inference and model-based control both in the

simulation and the real world. I have also showcased various robotic systems successfully

performing real-world manipulation tasks involving objects with complicated properties like

deformable objects, granular materials, and fluids.

In the future, robots should be able to operate in unstructured environments and make

complicated physical interactions as dexterous and effective as we humans do. Over the

past years, there has been impressive progress in enriching robots’ capabilities, but the

performance is still far from ideal for real-world practical deployments. Huge performance

gaps exist in virtually every aspect of the system between robots and humans, ranging
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from perception, dynamics modeling, and planning/control. Progress on this front requires

interdisciplinary studies involving various research areas, including but not limited to robotics,

computer vision, machine learning, control, etc. The tools and techniques developed during

the process would also deepen our understanding and expand the horizon of the respective

subfields, and suggest new research topics. Below I identify three research directions that will

naturally extend my past and ongoing research towards tackling some of the open challenges

in this area.

From specialist to generalist: adaptive scene representations from raw sensory

inputs. Despite rapid progress over the past years, automatic selection and adaptation

of structured scene representations from high- dimensional observation data are still far

from solved, especially for challenging objects like sushi, salad, cloth, etc., that undergo

complex physical interactions with severe occlusions. However, humans’ mental model of

these objects, although not perfect, is still way better than the state-of-the-art computational

models. For example, when buttoning our shirt, we do not have to know the full state of

the cloth and only have to focus on local regions, or when grabbing a mug, we would have

representations at different abstraction levels at different stages of the operation. Replicating

or even surpassing such capability is no easy task. It requires us to draw insights from the

cognitive science and neuroscience communities, and develop new learning paradigms to

integrate structural priors in the optimization procedure that allows automatic and adaptive

representation selection for effective dynamics modeling. The problem, which we termed as

online model order reduction, is intriguing and would be of great value in expanding robots’

capabilities.

Model-based optimization beyond planning & control. Prior works have shown

impressive planning and control results through optimization with a learned dynamics

model. However, a series of theoretical and practical questions remain unanswered, including

questions about guarantees, robustness, the role of learning, how to incorporate domain-

specific knowledge, and others. I desire to draw inspiration and bring tools from communities

like theoretical machine learning and control to establish confidence and make formal claims

about the reliability of the derived controller. One idea would be to construct and plan

within the trust regions calculated from the model’s confidence in its prediction. Going
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beyond planning and control, the dynamics model is essentially a forward mapping from the

inputs and model parameters to the system’s outputs. I also aspire to use it for other inverse

problems like inverse design, co-optimization of robot design and control, material and drug

discovery, etc.

Towards Metaverse: seamless transitions between simulated and real-world

physical interactions. Humans can hold an object in their hands and turn it over,

feeling different parts and constructing a mental model of the object describing its shape,

material properties, and dynamics. However, due to the inaccurate modeling of the physical

interactions, it has always been a big challenge for computational models to map the real world

into the simulation or match the simulation to real-world observations. Our scalable multi-

modal sensing platforms [Sundaram et al., 2019, Luo et al., 2021b] will provide more detailed

and physically-grounded 3D modeling of the scene and the interaction process from vision and

touch. It will deepen our understanding of how different modalities complement each other

and allow us to construct physics-based and/or learning-based simulators that can replicate

the physical interactions and sensory response, enabling seamless transitions between the

simulation and the real world. I envision the overall system can learn to model the geometry

and characterize the scene dynamics from a few trials of interactions. It can then support

interactive applications in virtual and augmented reality (VR/AR) and facilitate sim-to-real

and real-to-sim transfer of challenging robotic manipulation tasks like dexterous in-hand

manipulation/reorientation, non-prehensile manipulation, and human-robot interactions.

Now is a particularly exciting time to work in this interdisciplinary area with the rapid

development of (i) large-scale data sets and physics simulators, (ii) computation and robotic

hardware, and (iii) algorithms. There is huge potential to build intelligent agents that can

perceive and interact with the world with unprecedented performance. I am excited to

continue my academic journey and build close collaborations with various institutions at

the intersection of robotics, computer vision, and machine learning, while more broadly

collaborating with researchers across fields in control theory, computer graphics, mechanical

engineering, cognitive science, neuroscience, computational fabrication, etc.
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Appendix A

Learning Keypoint Dynamics via

Self-Supervised Dense Correspondence

A.1 Dense Correspondence

Here we give a brief overview of the dense correspondence model formulation [Schmidt

et al., 2017, Florence et al., 2018] with spatial distribution losses [Florence et al., 2019,

Florence, 2019]. We briefly explain the loss functions and how the descriptors {𝑑𝑖} are

localized.

A.1.1 Network Architecture

We use an architecture that produces a full resolution descriptor image. Namely it maps

𝑊 ×𝐻 × 3→𝑊 ×𝐻 ×𝐷 (A.1)

We use a FCN (fully-convolutional network architecture) [Long et al., 2015] with a ResNet-50

or ResNet-101 with the number of classes set to the descriptor dimension. Note that the

FCN used in this work does not use striding and upsampling as in the architecture originally

used in Florence et al. [2018].

A.1.2 Loss Function

For all shown experiments we use the spatially-distributed loss formulation with a

combination of heatmap and 3D spatial expectation losses, as described in Chapter 4
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of Florence et al. [2019].

Heatmap loss. Let 𝑝* be the pixel space location of a ground truth match. Then we can

define the ground-truth heatmap as

𝐻*
𝑝*(𝑝) = exp

(︂
−||𝑝− 𝑝

*||22
𝜎2

)︂
(A.2)

𝑝 represents a pixel location. A predicted heatmap can be obtained from the descriptor

image ℐ𝐷 together with a reference descriptor 𝑑*. Then the predicted heatmap is gotten by

�̂�(𝑝; 𝑑*, ℐ𝐷, 𝜂) = exp

(︂
−||ℐ𝐷(𝑝)− 𝑑

*||22
𝜂2

)︂
(A.3)

The heatmap can also be normalized to sum to one, in which case it represents a probability

distribution over the image.

�̃�(𝑝) =
�̂�(𝑝)∑︀

𝑝′∈Ω �̂�(𝑝′)
(A.4)

The heatmap loss is simply the MSE between 𝐻* and �̂� with mean reduction.

𝐿heatmap =
1

|Ω|
∑︁
𝑝∈Ω
||�̂�(𝑝)−𝐻*(𝑝)||22 (A.5)

Spatial expectation loss. Given a descriptor 𝑑* together with a descriptor image ℐ𝐷 we

can compute the 2D spatial expectation as

𝐽pixel(𝑑
*, 𝐼𝐷, 𝜂) =

∑︁
𝑝∈Ω

𝑝 · �̃�(𝑝; 𝑑*, 𝐼𝐷, 𝜂) (A.6)

If we also have a depth image Z then we can define the spatial expectation over the depth

channel as

𝐽𝑧(𝑑
*, 𝐼𝐷,𝒵, 𝜂) =

∑︁
𝑝∈Ω

Z(𝑝) · �̃�(𝑝; 𝑑*, 𝐼𝐷, 𝜂) (A.7)

The spatial expectation loss is simply the L1 loss between the ground truth and estimated

correspondence using

𝐿spatial pixel = ||𝑝* − 𝐽pixel(𝑑
*)||1 (A.8)

We can also use our 3D spatial expectation 𝐽𝑧 to compute a 3D spatial expectation loss. In
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particular given a depth image Z let the depth value corresponding to pixel 𝑝 be denoted by

Z(𝑝). The spatial expectation loss is simply

𝐿spatial z = ||𝒵(𝑝*)− 𝐽𝑧(𝑑*, 𝐼𝐷,𝒵, 𝜂)||1 (A.9)

being careful to only take the expectation over pixels with valid depth values 𝒵(𝑝).

Total loss. The total loss is a combination of the heatmap loss and the spatial loss

𝐿 = 𝑤heatmap𝐿heatmap + 𝑤spatial(𝐿spatial pixel + 𝐿spatial z) (A.10)

where the 𝑤 are weights.

A.1.3 Correspondence Function

The correspondence function 𝑔𝑐(ℐ𝐷, 𝑑𝑖) in Section 2.3.2 is defined using the spatial

expectations 𝐽pixel, 𝐽𝑧 defined above to localize the descriptor 𝑑𝑖 in either pixel space or 3D

space. If in 3D we additionally use the known camera extrinsics to express the localized

point in world frame.

A.2 Training Details

This section provides details on the simulation and hardware experiments.

A.2.1 Trajectory Data Augmentation

Many physical systems exhibit invariances in their dynamics. For example, in the

environments we consider the dynamics are invariant to translation in the 𝑥𝑦 plane and

rotation about the 𝑧 axis. In other words, if we translate or rotate our frame of reference

the dynamics don’t change. Encoding this invariance into our dynamics model has the

potential to greatly simplify the learning problem. Hogan et al. [2018] achieves this by

parameterizing the dynamics relative to the object frame, however this approach requires

having access to the ground truth object frame and assumes you are dealing with a single

rigid object. Another approach, taken by Zeng et al. [2018, 2019] and Suh and Tedrake

[2020], is to rotate the observation into a frame defined by the action. While this can work
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Method Learnable Parameters Θ

DS {𝜃𝑑𝑦𝑛}
SDS {𝜃𝑑𝑦𝑛}
WDS {𝜃𝑑𝑦𝑛, 𝛼}
WSDS {𝜃𝑑𝑦𝑛, 𝛼}

Transporter {𝜃𝑑𝑦𝑛}
Autoencoder {𝜃𝑑𝑦𝑛, 𝜃autoencoder}

Table A.1: The set of learnable parameters for the different methods during the dynamics learning
phase. For our methods and transporter, these parameters don’t include the weights of the visual
model which remain fixed during the dynamics learning phase.

well in the setting of simple manipulation primitives (e.g., push along a straight line for

5𝑐𝑚) it doesn’t naturally extend to the realtime feedback setting where you are commanding

actions continuously at 5− 10 Hz without returning the robot to a reference position. Since

in our approach the latent-state 𝑧 is a physically grounded 3D quantity we are able to

encode some of this invariance by using an alternative approach based on data augmentation.

Given a latent-state action trajectory {(𝑦𝑡,𝑎𝑡)} then transforming this trajectory using a

homogeneous transform 𝑇 , which consists of 𝑥𝑦 translation and 𝑧 rotation, yields another

valid trajectory {(𝑦𝑡, �̃�𝑡)} = {(𝑇 · 𝑦𝑡, 𝑇 · 𝑎𝑡)}. At training time we augment the training

trajectories by sampling such random homogeneous transforms 𝑇 .

A.2.2 Training Details

All methods used the same architecture for the dynamics model 𝑓𝜃𝑑𝑦𝑛 , an MLP with

two hidden layers of 500 units. All of our variants, along with the transporter baselines,

use visual pre-training. The visual models are trained for 100 epochs and the model with

the best test error is used. The dense-correspondence model uses both camera views for

visual pretraining, while the transporter model uses only the images from the camera used

at test time. For the dynamics learning all methods are trained for 1000 epochs using an

Adam optimizer [Kingma and Ba, 2015] with a learning rate of 10−4. For each method the

model with the best test error was used for evaluation. Table A.1 details the set of learnable

parameters for each method.
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A.3 Online Model-Predictive Control

Following Nagabandi et al. [2020] we use the model-predictive path integral (MPPI)

approach derived in Williams et al. [2015a]. Here we provide a brief overview but refer the

reader to Williams et al. [2015a] for more details. MPPI is a gradient-free optimizer that

considers coordination between timesteps when sampling action trajectories. The algorithm

proceeds by sampling 𝑁 trajectories, rolling them out using the learned model, computing

the reward/cost for each trajectory, and then re-weighting the trajectories in order to sample

a new set of trajectories. Let 𝐻 be look-ahead horizon of the MPC, then a single trajectory

consists of state-action pairs {(𝑥(𝑘)𝑡 , 𝑎
(𝑘)
𝑡 }

𝐻−1
𝑡=0 . Let 𝑅𝑘 =

∑︀𝑡+𝐻−1
𝑡′=𝑡 𝑟(𝑥

(𝑘)
𝑡 , 𝑎

(𝑘)
𝑡 ) be the reward

of the 𝑘-th trajectory. Define

𝜇𝑡 =

∑︀𝑁
𝑘=0

(︀
𝑒𝛾𝑅𝑘

)︀
𝑎
(𝑘)
𝑡∑︀𝑁

𝑘=0 𝑒
𝛾𝑅𝑘

A filtering technique is then used to sample new trajectories from the previously computed

mean 𝜇𝑡. Specifically

𝑎𝑖𝑡 = 𝑛𝑖𝑡 + 𝜇𝑡 (A.11)

where the noise 𝑛𝑖𝑡 is sampled via

𝑢𝑖𝑡 ∼ 𝒩 (0,Σ), ∀𝑖 ∈ 0, . . . , 𝑁 − 1, ∀𝑡 ∈ 0, . . . ,𝐻 − 1 (A.12)

𝑛𝑖𝑡 = 𝛽𝑢𝑖𝑡 + (1− 𝛽)𝑛𝑖𝑡−1 where 𝑛𝑡<0 = 0 (A.13)

This procedure is repeated for 𝑀 iterations at which point the best action sequence is selected.

All of our experiments we used 𝑁 = 1000,𝑀 = 3, 𝐻 = 10, 𝛽 = 0.7. The cost/reward in

the MPC objective varied slightly between the hardware and simulation experiments, more

details are provided below.

A.4 Simulation Experiments

To evaluate our method we consider four manipulation tasks in simulation. We use the

Drake simulation environment [Tedrake and the Drake Development Team, 2019], which

provides both the underlying physics simulation and rendering of RGBD images at VGA

resolution 640 × 480 × 3. Figure 2-3 shows image from the four simulation tasks that we
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consider.

• top down camera: This environment, depicted in Figure 2-3a, consists of the sugar-

box object from the YCB dataset [Calli et al., 2017] laying flat on a table. The robot

is represented as cylindrical pusher (shown in green) and the action 𝑎 is the 𝑥 − 𝑦

velocity of the pusher in the plane. The environment timestep is 𝑑𝑡 = 0.1, so the agent

must command actions at 10Hz. Two cameras are placed directly above the table,

facing downwards. The camera positions are offset by 90 degrees about their z-axis.

Our methods use both camera feeds for training the visual correspondence model, but

only one camera feed at test time. An image from this camera is shown in Figure 2-3a.

All other methods use only a single camera feed at both train and test time.

• angled camera: This environment is identical to top down camera but has different

camera positions. Instead of being top down the two cameras are located on adjacent

sides of the table and angled at 45 degrees, see Figure 2-3b. The setting of angled

cameras is more similar to our hardware experimental setup and is useful for comparing

approaches that use pixel space vs. 3D representations.

• occlusions: This environment uses the same setup of task angled camera the only

difference being that the object is now laying on its side, see Figure 2-3c. This, together

with the angled camera position, means that occlusions become a significant factor. In

particular as the box rotates through the full 360 degrees in yaw, the sides of the box

become alternately occluded or visible. The top face of the box is the only one that

remains unoccluded for all poses of the object.

• mugs (category): This environment has the same top-down camera placements and

cylindrical pusher as task angled camera. Instead of a single object however, we use a

collection of 10 different mug models and vary the color and texture on each episode.

This environment tests category-level vision and dynamics generalization. Two mug

instances are shown in Figure 2-3d-e.

A.4.1 Data Collection

For each environment we collect a static dataset that is then used to learn the visual

dynamics model. All methods have access to exactly the same dataset and the visual
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pretraining for our method and the transporter baseline is done using this same dataset.

For each task the dataset is generated by collecting 500 trajectories of length 40 using a

scripted random policy. The simulator timestep is 0.1 seconds so a trajectory of length 40

equates to 4 seconds.

A.4.2 Evaluating Closed-Loop MPC performance

For each environment we evaluate the different methods by planning to a desired goal-state

image and computing the pose error (both translation and rotation) using the ground truth

simulator state. Goal states are generated sampling a random control input and applying it

to the environment for 15 time steps. We further require that goal states are sufficiently far

from initial states (in both translation and rotation). This generates a diverse set of initial

and goal state pairs for evaluation. The simulator state is then reset to the initial state and

we use closed-loop MPC to control the system to the goal state. The MPC cost function

is simply the L2 distance between the latent state and the goal state. Ground truth state

information is used to compute the error between the final and goal poses for the object.

A.4.3 Baselines

To demonstrate the benefits of our approach over prior methods we compare against

several baselines.

• Ground Truth 3D points (GT_3D): This baseline is used for tasks top down

camera, angled camera, occlusions since those environment use just a single object.

𝑧object contains ground truth world-frame 3D locations of 4 points on the object.

Knowing the location of 4 points is equivalent to knowing the object pose for a rigid

object. We believe that this is a strong baseline that provides an upper bound on what

is achievable with our descriptor-based methods that attempt to track points on the

object.

• Transporter: We use the Transporter autoencoder formulation from Kulkarni et al.

[2019] to pre-train a visual model. Following the original paper we use 6 keypoints

and freeze the visual model while training the dynamics model. We investigate two

variants using the transporter approach. In transporter 2D 𝑧object are the pixel-space

locations of the keypoints. In transporter 3D 𝑧object are the 3D world frame locations
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of the keypoints, computed from the pixel space by using the depth image together

with the camera intrinsics and extrinsics.

• Autoencoder: This method jointly learns the visual model and the dynamics model.

Specifically we jointly train a convolutional autoencoder together with a forward

dynamics model. The loss is a combination of the dynamics loss, Equation 2.1, and an

image reconstruction loss, which penalizes the L2 distance between the reconstructed

and actual images. Note that this is exactly the autoencoder baseline from Yan et al.

[2021]. Following Yan et al. [2021], images are downsampled to 64× 64 before being

passed into the network. The encoder architecture contains 6 2D convolutions with

kernel sizes [3, 4, 3, 4, 4, 4], strides [1, 2, 1, 2, 2, 2] and filter sizes [64, 64, 64, 128, 256, 256].

Leaky ReLU activations are added between the convolutional layers. The final output

is flattened and passed through a fully-connected layer to form the latent-state 𝑧object.

We experimented with different dimensions for 𝑧 from 16 to 64 and found that 64

worked best. Hence a 64 dimensional latent state is used for all experiments. The

decoder follows the one in Hafner et al. [2019b] and consists of a dense layer followed

by 4 transposed convolutions with kernels size 4 and stride 2 which upscales the output

image to 64× 64.

A.5 Hardware Experiments

A.5.1 Hardware Setup

We used a Kuka IIWA LBR robot with a custom cylindrical pusher attached to the

end-effector to perform our hardware experiments, see Figure A-1. RGBD sensing was

provided by two RealSense D415 cameras rigidly mounted offboard the robot and calibrated

to the robot’s coordinate frame. To enable effective correspondence learning between views,

it is ideal to have views with some overlap such that correspondences exist, but still maintain

different-enough viewpoints from each camera. At test time only a single camera is used to

localize the dense-descriptor keypoints. The robot is controlled by commanding end-effector

velocity in the 𝑥𝑦 plane at 5Hz. A high-rate Jacobian space controller consumes these 5Hz

end-effector velocity commands and closes the loop to command the robot’s joint positions

at 200Hz.
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Figure A-1: Overview of our experimental setup. It includes two external Realsense D415
cameras. Images from both cameras are used to train the dense-descriptor model, while only the
right camera is used at runtime to localize the keypoints on the object.

A.5.2 One-Shot Imitation Learning

Although our learned dynamics model together with online MPC is able to plan over

short to medium horizons, we can track much longer horizon plans by providing a single

demonstration and using a trajectory tracking cost in our MPC formulation. This demonstra-

tion can in principle come from any source, in our case we used a human teleoperating the

robot. We capture observations throughout the trajectory at 5𝐻𝑧 resulting in a trajectory of

observations {𝑜*
𝑡 }𝑇𝑡=0. Using our visual model we convert these observations into keypoints

{𝑦*
𝑡 }𝑇𝑡=0 and latent state {𝑧*

𝑡 }𝑇𝑡=0 trajectories. These trajectories are used to guide the MPC.

In particular the cost/reward function in the MPC is

𝑟(𝑧𝑡, 𝑎𝑡) = −||𝑧𝑡 − 𝑧*𝑡 ||22 (A.14)
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Figure A-2: The 4 demonstration trajectories used for the hardware experiments. The
left image of each row shows the starting position blended with the goal position. The SDS keypoints
are shown in teal for each frame. The green lines show the paths followed by the keypoints moving
from the starting position to the final position. The right image of each row shows the final/goal
position.

This trajectory cost allows us to accurately track long horizon plans (where the demonstrations

are as long as 15 seconds) using an MPC horizon of 2 seconds. The four demonstrations

trajectories used in the hardware experiments are illustrated in Figure A-2.

A.5.3 Results

In this section we provide more details on the hardware experiments from Section 2.4.4.

Figure A-3 expands on Figure 2-4 showing the region of attraction of our MPC controller

when attempting to stabilize the four different trajectories shown in Figure A-2. We define a

trajectory as a success if the final object position is within 3 cm and 30 degrees of the goal

202



4 2 0 2 4
x (cm)

60

40

20

0

20

40

60
ya

w 
(d

eg
re

es
)

Traj 1

7.5 5.0 2.5 0.0 2.5 5.0
x (cm)

20

0

20

40

Traj 2

4 2 0 2
x (cm)

30

20

10

0

10

20

Traj 3

2 0 2 4
x (cm)

10

5

0

5

10

15

20

25
Traj 4

8 6 4 2 0
y (cm)

60

40

20

0

20

40

60

ya
w 

(d
eg

re
es

)

8 6 4 2 0
y (cm)

20

0

20

40

6 4 2 0 2
y (cm)

30

20

10

0

10

20

2 0 2
y (cm)

10

5

0

5

10

15

20

25

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure A-3: Scatter plots show results of our approach on the four different reference
trajectory tracking tasks. The axes of the plots show the deviation of the object starting pose
from the initial pose of the demonstration. The top row shows the deviation in the 𝑥 and 𝑦𝑎𝑤 axes,
while the bottom shows the deviation in the 𝑦 and 𝑦𝑎𝑤 axes. Axes are illustrated in Figure 2-4.
The color indicates the distance between final and goal poses, lower cost is better. The numerical
value is computed as cost = Δpos

3 + Δangle
30 where Δpos,Δangle are the translational (in centimeters)

and angular (in degrees) errors between the object’s final position and the goal position. The costs
are rescaled and plotted in the range [0, 1]. The various reference trajectories, shown in Figure A-2,
are of different difficulties, as reflected by the different regions of attraction of the MPC controller.
Videos of the closed-loop rollouts can be found at project page.

position. Given that during trials we explicitly chose initial conditions to test the region

of attraction of the MPC controller, success rates are not particularly meaningful, as the

success rate depends on the initial condition. Table A.2 shows the average translational and

angular errors among successful trajectories.
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Trajectory pos (cm) angle ∘ success rate num trials

1 1.23± 0.55 5.25± 3.99 87.5% 40
2 1.10± 0.319 7.32± 4.08 89% 36
3 1.16± 0.58 3.80± 2.54 73% 33
4 1.44± 0.30 9.73± 5.48 65% 29

Table A.2: Quantitative results of hardware experiments. A trial is considered a success rate
if the final object position was within 3 cm and 30 degrees of the goal pose. Note that, as shown
in Figure A-3 the initial conditions were intentionally chosen to test the region of attraction of our
controller, thus the success rates are not meaningful in and of themselves and are included only
for completeness. The pos (cm) and angle columns show the deviation of the final object position
from the target. Note that the mean and standard deviation are only calculated over the successful
trials. This serves to give a sense of the accuracy that can be achieved by using our closed-loop MPC
controller.
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Appendix B

Learning Particle Dynamics for

Manipulating Rigid Bodies,

Deformable Objects, and Fluids

B.1 Control Algorithm

Algorithm 1 Control on Learned Dynamics at Time Step 𝑡
Input: Learned forward dynamics model Φ

Predicted dynamics graph �̂�𝑡
Current dynamics graph 𝐺𝑡
Goal 𝒢𝑔, current estimation of the attributes 𝐴
Current control inputs �̂�𝑡:𝑇
States history 𝒢 = {𝐺𝑖}𝑖=1...𝑡

Time horizon 𝑇
Output: Controls �̂�𝑡:𝑇 , predicted next time step �̂�𝑡+1

Update 𝐴 by descending with the gradients ∇𝐴ℒstate(�̂�𝑡, 𝐺𝑡)
Forward simulation using the current graph �̂�𝑡+1 ← Φ(𝐺𝑡)
Make a buffer for storing the simulation results 𝒢 ← 𝒢 ∪ �̂�𝑡+1

for 𝑖 = 𝑡+ 1, ..., 𝑇 − 1 do
Forward simulation: �̂�𝑖+1 ← Φ(�̂�𝑖); 𝒢 ← 𝒢 ∪ �̂�𝑖+1

end for
Update �̂�𝑡:𝑇 by descending with the gradients ∇�̂�𝑡:𝑇ℒgoal(𝒢,𝒢𝑔)
Return �̂�𝑡:𝑇 and �̂�𝑡+1 ← Φ(𝐺𝑡)
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Figure B-1: Extrapolate generalization on fluids, rigid bodies, and deformable objects.
The performance is evaluated by the MSE (×10−2) between the ground truth and rollouts from
DPI-Nets. The blue bars denote the range of particle numbers that have been seen during training,
which indicate interpolation performance. The red bars indicate extrapolation performance that our
model can generalize to cases containing two times more particles than cases it has been trained on.

B.2 Generalization on Extrapolation

We show our model’s performance on fluids, rigid bodies, and deformable objects with a

larger number of particles than they have in the training set. Figure B-1 shows qualitative

and quantitative results. Our model scales up well to larger objects.

B.3 Data Generation

The data is generated using NVIDIA FleX. We have developed a Python interface for

the ease of generating and interacting with different environments. We will release the code

upon publication.

FluidFall. We generated 3,000 rollouts over 120 time steps. The two drops of fluids contain

64 and 125 particles individually, where the initial position of one of the drop in the 3
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dimensional coordinates is uniformly sampled between (0.15, 0.55, 0.05) and (0.25, 0.7, 0.15),

while the other drop is uniformly sampled between (0.15, 0.1, 0.05) and (0.25, 0.25, 0.15).

BoxBath. We generated 3,000 rollouts over 150 time steps. There are 960 fluid particles

and the rigid cube consist particles ranging between 27 and 150. The fluid particle block

is initialized at (0, 0, 0), and the initial position of the rigid cube is randomly initialized

between (0.45, -0.0155, 0.02) to (1.2, -0.0155, 0.4).

FluidShake. We generated 2,000 rollouts over 300 time steps. The height of the box is

1.0 and the thickness of the wall is 0.025. For the initial fluid cuboid, the number of fluid

particles is uniformly sampled between 10 and 12 in the x direction, between 15 and 20

in the y direction, 3 in the z direction. The box is fixed in the y and z direction, and is

moving freely in the x direction. We randomly place the initial x position between -0.2 to 0.2.

The sampling of the speed is implemented as v = v + rand(−0.15, 0.15)− 0.1x, in order to

encourage motion smoothness and moving back to origin, where speed v is initialized as 0.

RiceGrip. We generated 5,000 rollouts over 30 time steps. We randomize the size of the

initial “rice” cuboid, where the length of the three sides is uniformly sampled between 8.0 and

10.0. The material property parameters clusterStiffness is uniformly sampled between

0.3 and 0.7, clusterPlasticThreshold is uniformly sampled between 1e-5 and 5e-4, and

clusterPlasticCreep is uniformly sampled between 0.1 and 0.3. The position of the gripper

is randomly sampled within a circle of radius 0.5. The orientation of the gripper is always

perpendicular to the line connecting the origin to the center of the gripper and the close

distance is uniformly sampled between 0.7 to 1.0.

Of all the generated data, 90% of the rollouts are used for training, and the rest 10% are

used for validation.

B.4 Training Details

The models are implemented in PyTorch, and are trained using Adam optimizer [Kingma

and Ba, 2015] with a learning rate of 0.0001. The number of particles and relations might be

different at each time step, hence we use a batch size of 1, and we update the weights of the

networks once every 2 forward rounds.
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The neighborhood 𝑑 is set as 0.08, and the propagation step 𝐿 is set as 2 for all four

environments. For hierarchical modeling, it does not make sense to propagate more than one

time between leaves and roots as they are disjoint particle sets, and each propagation stage

between them only involves one-way edges; hence 𝜑LeafToLeaf uses 𝐿 = 2. 𝜑LeafToRoot uses

𝐿 = 1. 𝜑RootToRoot uses 𝐿 = 2, and 𝜑RootToLeaf uses 𝐿 = 1.

For all propagation networks used below, the object encoder 𝑓 enc
𝑂 is an MLP with two

hidden layers of size 200, and outputs a feature map of size 200. The relation encoder 𝑓 enc
𝑅 is

an MLP with three hidden layers of size 300, and outputs a feature map of size 200. The

propagator 𝑓𝑂 and 𝑓𝑅 are both MLP with one hidden layer of size 200, in which a residual

connection is used to better propagate the effects, and outputs a feature map of size 200.

The propagators are shared within each stage of propagation. The motion predictor 𝑓output
𝑂

is an MLP with two hidden layers of size 200, and output the state of required dimension.

ReLU is used as the activation function.

FluidFall. The model is trained for 13 epochs. The output of the model is the 3 dimensional

velocity, which is multiplied by Δ𝑡 and added to the current position to do rollouts.

BoxBath. In this environment, four propagation networks are used due to the hierarchical

modeling and the number of roots for the rigid cube is set as 8. We have two separate motion

predictor for fluids and rigid body, where the fluid predictor output velocity for each fluid

particle, while the rigid predictor takes the mean of the signals over all its rigid particles as

input, and output a rigid transformation (rotation and translation). The model is trained

for 5 epochs.

FluidShake. Only one propagation network is used in this environment, and the model is

trained for 5 epochs.

RiceGrip. Four propagation networks are used due to the hierarchical modeling, and the

number of roots for the “rice” is set as 30. The model is trained for 20 epochs.
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B.5 Control Details

𝑁sample is chosen as 20 for all three cases, where we sample 20 random control sequences,

and choose the best performing one as evaluated using our learned model. The evaluation is

based on the Chamfer distance between the controlling result and the target configuration.

FluidShake. In this environment, the control sequence is the speed of the box along the x

axis. The method to sample the candidate control sequence is the same as when generating

training data of this environment. After selected the best performing control sequence, we

first use RMSprop optimizer to optimize the control inputs for 10 iterations using a learning

rate of 0.003. We then use model-predictive control to apply the control sequence to the

FleX physics engine using Algorithm 1.

RiceGrip. In this environment, we need to come up with a sequence of grip configurations,

where each grip contains positions, orientation, and closing distance. The method to

sample the candidate control sequence is the same as when generating training data of this

environment. After selected the best performing control sequence, we first use RMSprop

optimizer to optimize the control inputs for 20 iterations using a learning rate of 0.003. We

then use model-predictive control to apply the control sequence to the FleX physics engine

using Algorithm 1.

RiceGrip in Real World. In this environment, we need to come up with a sequence of

grip configurations, where each grip contains positions, orientation, and closing distance. The

method to sample the candidate control sequence is the same as when generating training

data of RiceGrip, and 𝑁fill is chosen as 768. Different from the previous case, the physical

parameters are always unknown and has to be estimated online. After selected the best

performing control sequence, we first use RMSprop optimizer to optimize the control inputs

for 20 iterations using a learning rate of 0.003. We then use model-predictive control to apply

the control sequence to the real world using Algorithm 1.
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Appendix C

Learning Latent-Space Dynamics with

Neural Radiance Field

C.1 Model Details

In the decoder model, we use a similar network architecture as the NeRF paper [Mildenhall

et al., 2020]. As shown in Figure C-1, we send a 3D point 𝑥 ∈ R3, a camera ray 𝑑 ∈ R3, and

a state feature representation s𝑡 into a fully-connected network and output the corresponding

density 𝜎𝑡 and RGB color 𝑐𝑡.

C.2 Environment Details

In the FluidPour environment, we generated 1, 000 trajectories for training. Each

trajectory has 300 frames with 20 camera views sampled around the objects with a fixed

distance towards the world origin. The action space for the control task is the position and

tilting angle of the cup, which are randomly generated when constructing the training set.

In the FluidShake environment, we generated 1, 000 trajectories for training. Each

trajectory has 300 frames with 20 camera views sampled around the objects with a fixed

distance towards the world origin. The action space for the control task is the 2D location of

the container in the world coordinate, which is also randomly generated when constructing

the training set.

Figure C-2 shows some example visual observations for FluidPour and FluidShake used

during training. We also include some example images from viewpoints outside the training
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Figure C-1: A visualization of our decoder network architecture. All layers are standard
fully-connected layers, where the black arrows indicate layers with ReLU activations, orange arrows
indicate layers with no activation, dashed black arrows indicate layers with sigmoid activation, and
“+” denotes vector concatenation. We concatenate the positional encoding of the input location
𝛾(𝑥) and our learned state representation 𝑠𝑡, and pass them through 8 fully-connected ReLU layers,
each with 256 channels. We follow the NeRF [Mildenhall et al., 2020] architecture and include a
skip connection that concatenates this input to the fifth layer’s activation. An additional layer
outputs the volume density 𝜎𝑡 (which is rectified using a ReLU to ensure that the output volume
density is nonnegative) and a 256-dimensional feature vector. This feature vector is concatenated
with the positional encoding of the input viewing direction 𝛾(𝑑), and is processed by an additional
fully-connected ReLU layer with 128 channels. A final layer (with a sigmoid activation) outputs the
emitted RGB radiance at position 𝑥, as viewed by a ray with direction 𝑑, given the current 3D state
representation 𝑠𝑡.

distribution, which are then used to evaluate our model’s extrapolated generalization ability.

In RigidStack, we generated 800 trajectories for training. Each trajectory has 80 frames

with 20 camera views sampled around the objects with a fixed distance towards the world

origin.

In RigidDrop, we generated 1, 000 trajectories for training. Each trajectory has 50

frames with 20 camera views sampled around the objects with a fixed distance towards the

world origin.

C.3 Training Details

For the encoder and decoder model described in Figure 4-2, we use the Adam optimizer

with the initial learning rate 5𝑒−4 and decreased to 5𝑒−5 for all the experiments. The batch

size is 2. The hyperparameters in the decoder are the same as the original NeRF model

[Mildenhall et al., 2020] except the near and far distance between the objects and cameras

are different in our environments. In our FluidPour environment, we have near = 2.0 and

far = 9.5. In our FluidShake environment, we have near = 2.0 and far = 7.0. In our
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Figure C-2: Comparison between the viewpoints used for training and the subsequent
viewpoint extrapolation experiments. (a) We show some example images that the model used
during training. For both environments, the camera is placed from a fixed distance and facing towards
the world origin. (b) To evaluate the model’s ability for viewpoint extrapolation, i.e., processing
visual observations from viewpoints that are outside the training distribution, we generate another
set of viewpoints that are closer, higher, and facing more downwards. It is clear from the figure that
the images from viewpoints used during training are very different from the ones used for viewpoint
extrapolation when measured using pixel difference. Therefore, it is essential to build a model that
can directly reason over 3D to provide the desired extrapolation generalization ability. Although the
model has access to visual observations from multiple cameras during training, it can only observe
the environment from one camera when performing the downstream control task.

RigidStack environment, we have near = 2.0 and far = 7.0. In our FluidPour environment,

we have near = 2.0 and far = 6.0.

C.4 Control Details

As discussed in Section 4.4.1, we use model-predictive path integral (MPPI) [Williams

et al., 2015a] to solve the MPC problem. MPPI is a sampling-based, gradient-free optimizer

that considers temporal coordination between time steps when sampling action trajectories.

At time 𝑡, the algorithm first samples 𝑀 action sequences based on the current actions

𝑎𝑡, . . . ,𝑎𝑇−1 via �̂�𝑘ℎ = 𝑎ℎ + 𝑛𝑘ℎ, 𝑘 ∈ {1, . . . ,𝑀}, ℎ ∈ {𝑡, . . . , 𝑇 − 1}. Each noise sample 𝑛𝑘ℎ,

denoting the noise value at the ℎth time step of the 𝑘th trajectory, is generated using filtering
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coefficient 𝛽 as the following:

𝑢𝑘ℎ ∼ 𝒩 (0,Σ) ∀𝑘 ∈ {1, . . . ,𝑀}, ℎ ∈ {𝑡, . . . , 𝑇 − 1}

𝑛𝑘ℎ = 𝛽 · 𝑢𝑘ℎ + (1− 𝛽) · 𝑛𝑘ℎ−1,where 𝑛𝑘ℎ<𝑡 = 0.
(C.1)

We then roll them out in parallel using the learned model on the GPU to derive 𝑠𝑘𝑇 , 𝑘 ∈

{1, . . . ,𝑀}, and then re-weight the trajectories according to the reward to update the action

sequence using a reward-weighting factor 𝛾: 𝑎ℎ = (
∑︀𝑀

𝑘=1 exp (𝛾 ·𝑅𝑘)·�̂�𝑘ℎ)/(
∑︀𝑀

𝑘=1 exp (𝛾 ·𝑅𝑘)), ℎ ∈

{𝑡, . . . , 𝑇 − 1}, where 𝑅𝑘 = −‖𝑠𝑘𝑇 − 𝑠goal‖22. This procedure is repeated for 𝐿 iterations at

which point the best action sequence is selected.

The number of updating iteration for the auto-decoding test-time optimization 𝐾 is

500. The number of sampled trajectories 𝑀 during MPPI optimization is set to 1, 000. The

number of iterations 𝐿 for updating the action sequence is set to 100 for the first time step,

and 10 for the subsequent control steps to maintain a better trade-off between efficiency and

effectiveness. The reward-weighting factor 𝛾 is set to 50 and the filtering coefficient 𝛽 is

specified as 0.7. The control horizon 𝑇 is set as 80 both for FluidPour and FluidShake. The

hyperparameters are the same for all compared methods.

C.5 Additional Experimental Results

C.5.1 Auto-Decoder Test-Time Optimization for Viewpoint Extrapolation

Figure C-3 shows the qualitative results on auto-decoding test-time optimization. When

encountering an image from a viewpoint outside the training distribution, this mechanism

can help us derive a better representation of the scene that holds a more accurate description

of the 3D contents. The obtained representation after the optimization can then be used as

the goal embedding 𝑠goal in Equation 4.4 that the agent needs to achieve.

C.5.2 Validation of the Dynamics Prediction on Real-World Data

We further evaluate our model’s dynamics prediction ability by conducting experiments

on real-world data. As shown in Figure C-4, we use four D415 RGBD cameras to record

a human subject pouring water from one cup to another. The cameras are calibrated and

synchronized with the frequency of 15 Hz. We recorded 50 pouring episodes of length 15
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seconds, resulting in a dataset of 43,400 frames. We use the first 45 episodes for training

and the remaining for testing.

To obtain the action, i.e., the movement of the cup that pours water out, we attached

an AprilTag [Olson, 2011] on the cup to obtain the 6 DoF pose of the cup at each time

step. From the supplementary video, you can see that our model can make open-loop

future predictions on the testing trajectories in the representations space, i.e., given a latent

scene representation of the current time step, the subsequent action sequence, our dynamic

model can accurately predict the evolution of the latent scene representation and render the

corresponding frames that closely resemble the ground truth.

C.5.3 Comparison With PID That Only Matches the Robot’s State

To show the necessity of modeling the fluid dynamics in our task, we include an additional

baseline that uses PID control [Franklin et al., 2002] to reach the robot state in the target

image without worrying about the fluid. Note that this baseline uses additional information,

including the ground truth state of the robot in both the current and the target image.

Our supplementary video shows a controlling trial where the goal is to leave a small

amount of fluid in the container at the end of the control episode. Naively matching the

container’s position and orientation will not work, as shown in the PID baseline that the top

container did not pour any fluid into the bottom container. In contrast, our model first learns

to pour a certain amount of fluid out and then tilt the container back to match the target

configuration. We further use the Chamfer distance to measure the models’ performance in

matching the fluid shape in the 3D point space, where our method significantly outperforms

the PID baseline (Ours: 0.048237 vs. PID: 0.085727).

C.5.4 Nearest Neighbor Search Using the Learned Representations

When the goal image is specified from a viewpoint different from the agent’s view, to

ensure the planning problem defined in Equation 4.4 still work, it is essential that the distance

in the learned feature space reflects the distance in the actual 3D space, i.e., scenes that

are more similar in the real 3D space should be closer in the learned feature space, even

if the visual observations are captured from different viewpoints. We visualize the nearest

neighbor results in Figure C-5. Given a query image, we search its nearest neighbors based

on their state representation 𝑠 (introduced in Section 4.3.1). Even if the images look quite
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Env Ours NN in pixel space Random

FluidPour 1.772718 147.971993 99.903261
FluidShake 2.584928 132.467998 99.646617

Table C.1: Quantitative results on nearest neighbor (NN) search from different viewpoints.
We calculate the accuracy of finding NN using the L1 distance between the ground truth and retrieved
time indexes. Our method measures the distance in the learned representation space, which delivers
the best performance, and the retrieved frame is, on average, around two time steps away from the
ground truth.

different from each other when measured in pixel difference, the learned 3D-aware scene

representations can retrieve reasonable neighborhood images that share similar 3D contents,

indicating that the learned 3D-aware scene representations hold a good understanding of the

real 3D scene and are invariant to viewpoint variations.

We conducted additional experiments to quantitatively measure the accuracy in finding

the nearest neighbors (NN) across viewpoints of our proposed method. The results are shown

in Table C.1. Specifically, for each query frame, the model is asked to find the closest frame

from a randomly selected viewpoint from a trajectory with 300 frames. We measure the

accuracy using the L1 distance between the time indexes. Randomly selecting the closest

frame leads to an averaged distance of 100 times steps between the selected frame and the

ground truth frame. Selecting based on the pixel difference is even worse. Our method can

accurately find the nearest neighbor. The average time step difference between the selected

frame and the ground truth frame is 1.772718 in FluidPour and 2.584928 in FluidShake.

C.6 Limitations and Future Works

Similar to many other data-driven methods, our model can deliver reasonable performance

in regions well-supported by the data. However, for cases that our model has never seen

before, e.g., more containers than during training, we wouldn’t expect our model to generalize.

Potential solutions may include (1) adding the examples and increasing the diversity of the

training set or (2) using a more structured/compositional representation space instead of a

single vector as in our model, which we leave for future works.
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Figure C-3: Qualitative results on auto-decoding test-time optimization. Following from
the pipeline illustrated in Figure 4-3b, if the input image 𝐼𝑡 is outside the training distribution as
shown on the left column, the encoder won’t be able to generate the most accurate state representation.
When passing the predicted state embedding 𝑠𝑡 and the same viewpoint as the input to the decoder,
the generated image does not match the underlying scene as shown in the second column. We
then calculate the L2 distance of the pixels between the generated image and true observation,
backpropagating the gradient until the state representation and making updates to 𝑠𝑡 using SGD. As
discussed in Section 4.4.2, the translational equivariance nature of the decoder allows it to effectively
optimize the latent representation to make it better reflect the 3D contents in the scene. After the
optimization, the generated visual observation is much closer to the ground truth, as shown in the
third column. On the contrary, the vanilla autoencoder that uses a CNN-based decoder won’t be
able to capture the underlying scene even with test-time auto-decoding optimization, as shown on
the right.
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Figure C-4: Dynamics prediction using real-world data. (a) We build a data recording
set up containing four D415 RGBD cameras to record a human subject pouring water from one
cup to another and then use the recorded data to evaluate our model’s dynamics prediction ability.
(b) We show a side-by-side comparison between the ground truth data and our model’s prediction
when predicting the future from the four camera views. Our model correctly identifies when the
fluids pour out and start to fill the bottom container. Please see our supplementary video for better
visualizations.

Figure C-5: Nearest neighbor (NN) results using our learned state representation. Given
a query image (red boundary), we search its nearest neighbors based on their state representation.
Our learned scene representations can retrieve reasonable neighbor images, indicating that our state
representations retain a good estimation of the contents inside the 3D scene and are invariant to
camera poses.
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Appendix D

Learned Structured World Models for

Causal Discovery From Videos

D.1 Model Details

D.1.1 Unsupervised Keypoint Detection From Videos

The perception module maps the input images into a set of keypoints in an unsuper-

vised way. Any unsupervised keypoint detection methods that can track the components

consistently overtime should suit our use case, and there have been many recently-proposed

methods that could serve this purpose [Suwajanakorn et al., 2018, Jakab et al., 2018, Zhang

et al., 2018, Manuelli et al., 2021]. In this work, we use the technique developed by Kulkarni

et al. [2019].

As described in Section 6.2.1 of the main paper, we use reconstruction loss over the pixels

to encourage the keypoints to spread over the foreground of the image. During training, it

takes in a source image 𝐼src and a target image 𝐼tgt sampled from the dataset, and passes

them through a feature extractor 𝑓𝒱𝜔 and a keypoint detector 𝑓𝒱𝜃 . The model then uses

an operation called transport to construct a new feature map using a set of local features

indicated by the detected keypoints:

Φ(𝐼src, 𝐼tgt) ≜ (1−ℋ𝑓𝒱𝜃 (𝐼src)) · (1−ℋ𝑓𝒱𝜃 (𝐼tgt)) · 𝑓
𝒱
𝜔 (𝐼

src) +ℋ𝑓𝒱𝜃 (𝐼tgt) · 𝑓
𝒱
𝜔 (𝐼

tgt), (D.1)

where ℋ is a heatmap image containing fixed-variance isotropic Gaussians around each of the
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𝑁 points specified by 𝑓𝒱𝜃 (Figure D-1). The model then passes the feature map Φ(𝐼src, 𝐼tgt)

through a refiner network to get the reconstruction, 𝐼tgt. We optimize the parameters in

the feature extractor, keypoint detector and refiner by minimizing a pixel-wise 𝐿2 loss,

ℒrec = ‖𝐼tgt − 𝐼tgt‖, using stochastic gradient descent.

D.1.2 Graph Neural Networks As the Spatial Encoder

Graph neural networks act as a building block in our model to capture the interactions

between different keypoints and generate object- and relation-centric embeddings. Here, we

describe the specific formulation of the graph neural network we used in our inference and

dynamics modules.

For a set of 𝑁 keypoints, we construct a directed graph 𝒢 = (𝒱, ℰ), where vertices

𝒱 = {𝑜𝑖} represent the information on the keypoints and edges ℰ = {(𝑜𝑖,𝑜𝑗 , 𝑔𝑖𝑗)} represent

the directed relation pointing from 𝑗 to 𝑖. 𝑔𝑖𝑗 is the associated edge attributes.

Our graph neural network employs a similar structure as the Interaction Networks

(IN) [Battaglia et al., 2016] to generate the embeddings for the objects and the relations:

ℎ𝑖𝑗 = 𝑓 rel(𝑜𝑖,𝑜𝑗 , 𝑔𝑖𝑗) for each edge (𝑜𝑖,𝑜𝑗 , 𝑔𝑖𝑗) ∈ ℰ , (D.2)

ℎ𝑖 = 𝑓obj(𝑜𝑖,
∑︁
𝑗∈𝒩𝑖

ℎ𝑖𝑗) for each node 𝑜𝑖 ∈ 𝒱, (D.3)

where 𝑓obj and 𝑓 rel are object and relation encoders respectively. 𝒩𝑖 denotes all vertices

that have an edge pointing to object 𝑖. {ℎ𝑖} and {ℎ𝑖𝑗} are the derived object and relation

embeddings individually. In practice, we usually propagate the node and edge information

over the graph multiple times to improve the expressiveness of the model [Sanchez-Gonzalez

et al., 2018, Li et al., 2019b].

The graph neural network, denoted as 𝜑, aggregates the spatial information spanned by

the keypoints, passes the information along the edges, and outputs embeddings for the nodes

and edges, i.e., ({ℎ𝑖}, {ℎ𝑖,𝑗}) = 𝜑(𝒱, ℰ). Please see our main paper for how we instantiate 𝜑

as a submodule in the inference and the dynamics modules.
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D.2 Environment Details

D.2.1 Multi-Body Interaction

We use the Pymunk simulator to generate 5, 000 episodes of 500 frames, among which

250 episodes are reserved for testing, and the remaining goes to the training set. At the

beginning of each episode, we randomly assign the balls in different positions. For each pair

of balls, there is a one-third probability that they are connected by nothing, rigid rod, and

spring. The stiffness of the spring relation is set to 20, and we randomly sample the rest

length between [20, 120]. For the rigid relation, we allow the connected two balls to move

freely in a small fixed window on their opposing direction, e.g., if the rigid relationship is of

length 50, the distance between the two balls can vary between 45 to 55. This treatment

will force the model to infer the length of the rigid relation instead of naively exploiting the

distance between the two balls.

D.2.2 Fabric Manipulation

We generate 2, 000 episodes of 300 frames using the NVIDIA FleX simulator [Macklin

et al., 2014]. Similar to the Multi-Body environment, we reserve 200 episodes for testing and

use the remaining for training our model. As shown in Figure D-1, we build fabrics of three

different shapes: a shirt, pants, and a towel, where we also vary the shape of the fabrics like

the length of the pant leg or the height and width of the towel. To deform the fabrics and

move them around, we apply forces on the contour of the fabric.

D.3 Implementation Details

Our implementation is based on PyTorch [Paszke et al., 2019], and each instance of the

model is trained using one NVIDIA TITAN Xp graphics card.

D.3.1 Unsupervised Keypoint Detection

We employ a similar encoder-decoder structure as described in Kulkarni et al. [2019].

Both the keypoint detector, 𝑓𝒱𝜃 , and the feature extractor, 𝑓𝒱𝜔 , have 5 blocks of convolutional

layers that reduce the height and width of the image into a quarter of their original size.

The output of the keypoint detector has 𝑁 channels, representation the confidence map of
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the 𝑁 keypoints, over which 𝑓𝒱𝜃 computes the exact location of each keypoint via spatial

softmax. We use the operation describe in Equation D.1 to get the feature maps Φ(𝐼src, 𝐼tgt).

The refiner network, consisting of a few transpose convolutional operators, transforms the

features map back to the original size of the target image.

We optimize ℒrec using Adam optimizer [Kingma and Ba, 2015] with a learning rate of

0.001 for about 240k iterations.

D.3.2 Predicting the Directed Edge Set Using the Inference Module

We use simple multilayer perceptron (MLP) to instantiate the object encoder, 𝑓obj, and

the relation encoder, 𝑓 rel. To aggregate the temporal information, we use three blocks of

convolutional layers for CNNobj and CNNrel. The use of convolutional operators allows the

model to handle time series of different lengths, and the output of the CNNs is fed through

a max-pooling layer to compute a fixed-dimensional feature vector.

D.3.3 Joint Optimization of the Inference Module and the Dynamics

Module

We train the inference module, 𝑓ℰ𝜑 , and the dynamics module, 𝑓𝒟𝜓 , jointly by optimizing

the loss function defined in Section 6.2.5 using stochastic gradient descent via Adam optimizer

with a learning rate of 0.0001 in the Multi-Body environment and 0.0005 in the Fabrics

environment for about 300k iterations.

For the exact network architecture and more details in the training procedures of the

individual modules, please refer to our released code.

D.4 Additional Experimental Results

D.4.1 Unsupervised Keypoint Detection

The combination of the keypoint-based bottleneck layer and the downstream reconstruc-

tion task allows the perception module to extract temporally-consistent keypoints dispersing

over the images’ foreground. The model accurately tracks the movement of the objects and

can naturally handle deformable objects. Figure D-1 shows some more qualitative examples

of our perception module in both the Multi-Body and the Fabric environments.
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Multi-Body Interaction Fabric Manipulation

Figure D-1: Unsupervised keypoint detection. We show some more qualitative results of our
perception module and visualize the intermediate results. In each block, the first row shows the input
images, and the second row illustrates an overlay between the predicted keypoints and the image.
The third and the fourth row show the intermediate results - heatmap spanned by the keypoints and
the reconstructed target image.
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Figure D-2: Future prediction in the Fabrics environment. When making long-term predictions
into the future, our method outperforms the baseline that does not perform causal discovery.

D.4.2 Future Prediction in the Fabric Environment

Figure D-2 shows a comparison between our model and the baseline, which is the same as

our model except that it does not contain an inference module to perform causal discovery.

Our model can make more accurate future predictions, indicating the importance of an

accurate modeling of the causal mechanisms in the underlying physical system.
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