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Abstract

Compared with off-the-shelf physics engines, a learnable simulator has a stronger
ability to adapt to unseen objects, scenes, and tasks. However, existing models like
Interaction Networks only work for fully observable systems; they also only consider
pairwise interactions within a single time step, both restricting their use in practical
systems. We introduce Propagation Networks (PropNets), a differentiable, learnable
dynamics model that handles partially observable scenarios and enables instantaneous
propagation of signals beyond pairwise interactions. In the second half of the thesis,
I will discuss our attempt to extend PropNets to learn a particle-based simulator
for handling matters of various substances—rigid or soft bodies, liquid, gas—each
with distinct physical behaviors. Combining learning with particle-based systems
brings in two major benefits: first, the learned simulator, just like other particle-based
systems, acts widely on objects of different materials; second, the particle-based
representation poses strong inductive bias for learning: particles of the same type have
the same dynamics within. We demonstrate that our models not only outperform
current learnable physics engines in forward simulation, but also achieve superior
performance on various control tasks, such as manipulating a pile of boxes, a cup of
water, and a deformable foam, with experiments both in simulation and in the real
world. Compared with existing model-free deep reinforcement learning algorithms,
model-based control with our models is also more accurate, efficient, and generalizable
to new, partially observable scenes and tasks.

Thesis Supervisor: Antonio Torralba
Title: Professor of Electrical Engineering and Computer Science

Thesis Supervisor: Russ Tedrake
Title: Professor of Electrical Engineering and Computer Science
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Preface

This work is organized in four chapters. Chapter 1 introduces the work, discusses the

motivation, reviews related work, and states the contributions. Chapter 2 introduces

Propagation Networks (PropNets), a learning-based dynamics model that handles

partially observable scenarios and enables instantaneous propagation of signals beyond

pairwise interactions. Chapter 3 describes Dynamic Particle Interaction Networks

(DPI-Nets), an extension of PropNets, for learning particle dynamics of rigid bodies,

deformable objects, and fluids. Chapter 4 concludes.

Chapter 2 and 3 were originally written as independent papers [26, 27]. Chapter 2

was published as

Yunzhu Li, Jiajun Wu, Jun-Yan Zhu, Joshua B. Tenenbaum, Antonio Tor-

ralba, and Russ Tedrake. Propagation Networks for Model-Based Control

Under Partial Observation. In International Conference on Robotics and

Automation (ICRA), May 2019.

Chapter 3 was published as

Yunzhu Li, Jiajun Wu, Russ Tedrake, Joshua B. Tenenbaum, and Antonio

Torralba. Learning Particle Dynamics for Manipulating Rigid Bodies,

Deformable Objects, and Fluids. In International Conference on Learning

Representations (ICLR), May 2019.
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Chapter 1

Introduction

1.1 Motivation

Figure 1-1: Particle-based simulation. The method represents the environment
using particles and simulates the interactions between objects of different substances,
including rigid bodies, deformable materials, and fluids.

Objects have distinct dynamics. Under the same push, a rigid box will slide,

modeling clay will deform, and a cup full of water will fall with water spilling out.

The diverse behavior of different objects poses challenges to traditional rigid-body

simulators used in robotics [45, 44, 7]. Particle-based simulators aim to model the
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dynamics of these complex scenes [29] (Figure 1-1); however, relying on approximation

techniques for the sake of perceptual realism, their simulation often deviates from

real-world physics, especially in the long term. Developing generalizable and accurate

forward dynamics models is of critical importance for robot manipulation of distinct

real-life objects.

(a) Newton’s Cradle (b) Rope Manipulation

(c) Box Pushing

Figure 1-2: Challenges for existing learning-based physics simulators: Model-
ing the dynamics of (a) Newton’s cradle or (b) a rope requires instantaneous propaga-
tion of multi-object interaction. (c) Pushing a group of boxes to a target configuration
requires dynamics modeling under partial observations. Here, the camera is looking
down and only red blocks are observable.

Recently, researchers have started building general-purpose neural physics simula-

tors, aiming to approximate complex physical interactions with neural networks [3, 6].

They have succeeded in modeling the dynamics of both rigid bodies and deformable

objects (e.g., ropes). More recent work has used Interaction Networks for discrete and

continuous control [36, 16, 33, 37].

Interaction Networks, however, have two major limitations. First, Interaction Nets

only consider pairwise interactions between objects, restricting its use in real-world

scenarios, where simultaneous multi-body interactions often occur. Typical examples

include Newton’s cradle (Figure 1-2a) or rope manipulation (Figure 1-2b). Second,
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they need to observe the full states of an environment; however, many real-world

control tasks involve dealing with partial observable states. Figure 1-2c shows an

example, where a robot wants to push a set of blocks into a target configuration;

however, only the red blocks in the top layer are visible to the camera. It is, therefore,

desired to develop methods that can address these two issues.

1.2 Contribution

1.2.1 Propagation Networks (PropNets)

We introduce Propagation Networks (PropNets), a learning-based physics simulator

that simulates multi-body object interactions. PropNets handle partially observable

situations by operating on a latent dynamics representation; it also enables instan-

taneous propagation of signals beyond pairwise interactions using multi-step effect

propagation. Specifically, by representing a scene as a graph, where objects are the

vertices and object interactions are the directed edges, we initialize and propagate the

signals through the directed paths in the interaction graph at each time step.

Experiments demonstrate that PropNets consistently outperform Interaction Net-

works in forward simulation. PropNets’ ability to handle partially observable en-

vironments brings significant benefits for control. Compared with Interaction Nets

and state-of-the-art model-free deep reinforcement learning algorithms, model-based

control using Propagation Networks is more sample-efficient, accurate, and generalizes

better to new, partially observable scenarios.

1.2.2 Dynamic Particle Interaction Networks (DPI-Nets)

In the second half of this thesis, we propose to extend PropNets, learning a particle-

based simulator for object of different materials using neural networks. We develop

Dynamic Particle Interaction Networks (DPI-Nets) for learning particle dynamics,

focusing on capturing the dynamic, hierarchical, and long-range interactions of particles.

DPI-Nets can then be combined with classic perception and gradient-based control
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algorithms for robot manipulation of deformable objects.

Learning a particle-based simulator brings in two major benefits. First, the learned

simulator, just like other particle-based systems, acts widely on objects of different

states. DPI-Nets have successfully captured the complex behaviors of deformable

objects, fluids, and rigid-bodies. With learned DPI-Nets, our robots have achieved

success in manipulation tasks that involve deformable objects of complex physical

properties, such as molding plasticine to a target shape.

Second, the particle-based representation poses strong inductive bias for learning:

particles of the same type have the same dynamics within. This enables the model to

adapt to new environments of unknown dynamics. Experiments suggest that DPI-Nets

quickly learn to adapt to characterize a novel object of unknown physical parameters

by performing online system identification. The adapted model also helps the robot

to successfully manipulate object in the real world.

DPI-Nets combine three key features for effective particle-based simulation and

control: multi-step spatial propagation, hierarchical particle structure, and dynamic

interaction graphs. In particular, it employs dynamic interaction graphs, built on the

fly throughout manipulation, to capture the meaningful interactions among particles

of deformable objects and fluids. The use of dynamic graphs allows neural models

to focus on learning meaningful interactions among particles, which is crucial for

obtaining good simulation accuracy and high success rates in manipulation. As objects

deform when robots interact with them, a fixed interaction graph over particles is

insufficient for robot manipulating non-rigid objects.

Experiments demonstrate that DPI-Nets significantly outperform Interaction Net-

works [3], HRN [30], and a few other baselines. More importantly, unlike previous

papers that focused purely on forward simulation, we have applied our model to

downstream control tasks. Our DPI-Nets enable complex manipulation tasks for

deformable objects and fluids, and adapts to scenarios with unknown physical parame-

ters that need to be identified online. We have also performed real-world experiments

to demonstrate our model’s generalization ability.
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1.3 Related Work

1.3.1 Physics Simulators with Analytical Gradients

Researchers have developed many physics simulators, where they have access to the

analytical gradients for end-to-end learning and control [11, 9]. In particular, [3] and

[6] have explored learning a simulator from data by approximating object interactions

with neural networks. These methods mostly focus on modeling rigid body dynamics.

Recently, [38] proposed SPNets for extracting gradients from simulators of position-

based fluids [28]. An inspiring concurrent work from [30] explored learning to ap-

proximate particle dynamics of deformable shapes with the Hierarchical Relation

Network (HRN). Compared with these papers, we introduce state-specific modeling

and dynamic graphs for accurate forward prediction for different states of matter (rigid

bodies, deformable shapes, fluids). We also demonstrate how the learned dynamics

model can be used for control in both the simulation and the real world.

Our approach is also complementary to some recent work on learning to discover

the interaction graphs [47, 20]. Our model can also be naturally augmented with a

perception module to handle raw visual input, as suggested by [48, 49, 14, 50, 25], for

various dynamics reasoning and prediction tasks.

1.3.2 Control Using the Gradients from Physics Simulators

In robotics, the use of differentiable simulators, together with continuous and symbolic

optimization algorithms, has enabled planning for increasingly complex whole-body

motions with multi-contact and multi-object interactions [12, 35, 21, 46]. A few recent

papers have employed the analytical gradients extracted from the simulators [10, 38]

for control problems, such as tool manipulation and tool-use planning [46]. Yet these

approaches often assume they have access to the full state of the system, make local

approximations of the dynamics, and focus mainly on rigid-body systems.

Many recent papers have studied model-predictive control with deep networks [23,

15, 31, 13, 41]. They often learn an abstract state transition function, instead of an
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explicit account of the environment [40, 32, 24], and then use the learned function to

facilitate the training of a policy network. Some others have explored using Interaction

Networks for planning and control. They often learn a policy based on Interaction

Networks’ rollouts [36, 16, 33, 37].

Our PropNets build on and extend these approaches to simultaneous multi-body

interactions and deal with partially observable scenarios. Our DPI-Nets have further

extended by learning a general physics simulator that takes raw object observations

(e.g., positions, velocities) of each particle as input. We then integrate it into classic tra-

jectory optimization algorithms for control, which can simulate and control deformable,

particle-based objects, using dynamic graphs to tackle scenes with complex object

interactions. Compared with physics-based simulators, our learned simulator can

better generalize to novel testing scenarios where object and environment parameters

are unknown.
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Chapter 2

Propagation Networks for Partially

Observable Environments

2.1 Dynamics Learning

2.1.1 Preliminaries

We assume that the interactions within a physical system can be represented as a

directed graph, 𝐺 = ⟨𝑂,𝑅⟩, where vertices 𝑂 represent the objects, and edges 𝑅

correspond to their relations (Figure 2-2). Graph 𝐺 can be represented as

𝑂 = {𝑜𝑖}𝑖=1...|𝑂| 𝑅 = {𝑟𝑘}𝑘=1...|𝑅| (2.1)

Specifically, 𝑜𝑖 = ⟨𝑥𝑖, 𝑎𝑜𝑖 , 𝑝𝑖⟩, where 𝑥𝑖 = ⟨𝑞𝑖, 𝑞𝑖⟩ is the state of object 𝑖, containing its

position 𝑞𝑖 and velocity 𝑞𝑖. 𝑎𝑜𝑖 denote its attributes (e.g., mass, radius), and 𝑝𝑖 is the

external force on object 𝑖. For the relations, we have

𝑟𝑘 = ⟨𝑢𝑘, 𝑣𝑘, 𝑎𝑟𝑘⟩, 1 ≤ 𝑢𝑘, 𝑣𝑘 ≤ |𝑂|, (2.2)

where 𝑢𝑘 is the receiver, 𝑣𝑘 is the sender, and both are integers. 𝑎𝑟𝑘 is the type and

attributes of relation 𝑘 (e.g., collision, spring connection).

Our goal is to build a learnable physics engine to approximate the underlying

17



physical interactions. We can then use it to infer the system dynamics and predict

the future from the observed interaction graph 𝐺:

𝐺𝑡+1 = 𝜑(𝐺𝑡), (2.3)

where 𝐺𝑡 denotes the scene states at time 𝑡. We aim to learn 𝜑(·), a learnable dynamics

model, to minimize ‖𝐺𝑡+1 − 𝜑(𝐺𝑡)‖2.

Below we review our baseline model Interaction Networks (IN) [3]. IN is a general-

purpose, learnable physics engine, performing object- and relation-centric reasoning

about physics. IN defines an object function 𝑓𝑂 and a relation function 𝑓𝑅 to model

objects and their relations in a compositional way. The future state at time 𝑡+ 1 is

predicted as

𝑒𝑘,𝑡 = 𝑓𝑅(𝑜𝑢𝑘,𝑡, 𝑜𝑣𝑘,𝑡, 𝑎
𝑟
𝑘), 𝑘 = 1 . . . |𝑅|,

𝑜𝑖,𝑡+1 = 𝑓𝑂(𝑜𝑖,𝑡,
∑︁
𝑘∈𝒩𝑖

𝑒𝑘,𝑡), 𝑖 = 1 . . . |𝑂|, (2.4)

where 𝑜𝑖,𝑡 = ⟨𝑥𝑖,𝑡, 𝑎𝑜𝑖 , 𝑝𝑖,𝑡⟩ denotes object 𝑖 at time 𝑡, 𝑢𝑘 and 𝑣𝑘 are the receiver and

sender of relation 𝑟𝑘, and 𝒩𝑖 denotes the relations where object 𝑖 is the receiver.

2.1.2 Propagation Networks (PropNets)

IN defines a flexible and efficient model for explicit reasoning of objects and their

relations in a complex system. It can handle a variable number of objects and

relations and has performed well in domains like n-body systems, bouncing balls,

and falling strings. However, one fundamental limitation of IN is that at every

time step 𝑡, it only considers local information in the graph 𝐺 and cannot handle

instantaneous propagation of forces, such as Newton’s cradle shown in Figure 2-1,

where ball A’s impact produces a compression wave that propagates through the

balls immediately [42]. As force propagation is a common phenomenon in rigid-body

dynamics, this shortcoming has limited IN’s practical applicability.

To address the above issues, we propose Propagation Networks (PropNets) to
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A B

A B

A B

Interaction Networks

Propagation Networks

A B

A

(c-i) Prediction

(c-ii) Prediction

(b-i) Force Propagation

(b-ii) Force Propagation

(a) Initial State

A B

(d) Goal

A B

B

Interaction Networks

Propagation Networks

(e-i) Control

(e-ii) Control

A

B

Figure 2-1: Newton’s Cradle. (a) shows the initial states of Newton’s cradle, based
on which both the Interaction Networks and Propagation Networks try to predict
future states; (b-i) The Interaction Networks can only propagate the force along with a
single relation at a time step, thus results in a false prediction (c-i); (b-ii) Our proposed
method can propagate the force correctly which leads to the correct prediction (c-ii);
(d) A downstream task where we aim to achieve a specific goal using the learned
model; (e-i) Model-based control methods fail to produce the correct control using
Interaction Networks while (e-ii) our model can provide the desired control signal.

handle the instantaneous propagation of forces efficiently. Our method is inspired by

message passing, a classic algorithm in graphical models [34].

Effect propagation

Effect propagation requires multi-step message passing along the directed edges in

graph 𝐺. Forces ejected from ball A (Figure 2-1) should be propagated through the

connected balls to ball B within a single time step. Force propagation is hard to

analyze analytically for complex scenes. Therefore, we let PropNets learn to decide
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whether an effect should be propagated further or withheld.

At time 𝑡, we denote the propagating effect from relation 𝑘 at propagation step 𝑙 as

𝑒𝑙𝑘,𝑡, and the propagating effect from object 𝑖 as ℎ𝑙𝑖,𝑡. Here, we have 1 ≤ 𝑙 ≤ 𝐿, where

𝐿 is the maximum propagation steps within each step of the simulation. Propagation

can be described as

Step 0: ℎ0𝑖,𝑡 = 0, 𝑖 = 1 . . . |𝑂|,

Step 𝑙 = 1, . . . , 𝐿: 𝑒𝑙𝑘,𝑡 = 𝑓 𝑙
𝑅(𝑜𝑢𝑘,𝑡, 𝑜𝑣𝑘,𝑡, 𝑎

𝑟
𝑘, ℎ

𝑙−1
𝑢𝑘,𝑡

, ℎ𝑙−1
𝑣𝑘,𝑡

), 𝑘 = 1 . . . |𝑅|,

ℎ𝑙𝑖,𝑡 = 𝑓 𝑙
𝑂(𝑜𝑖,𝑡,

∑︁
𝑘∈𝒩𝑖

𝑒𝑙𝑘,𝑡), 𝑖 = 1 . . . |𝑂|,

Output: 𝑜𝑖,𝑡+1 = ℎ𝐿𝑖,𝑡, 𝑖 = 1 . . . |𝑂|, (2.5)

where 𝑓 𝑙
𝑂(·) denotes the object propagator at propagation step 𝑙, and 𝑓 𝑙

𝑅(·) denotes the

relation propagator. Depending on the complexity of the task, the network weights

can be shared among propagators at different propagation steps.

We name this model Vanilla PropNets. Experimental results show that the selection

of 𝐿 is task-specific, and usually a small 𝐿 (e.g., 𝐿 = 3) can achieve a good trade-off

between the performance and efficiency.

Object- and relation-encoding with residual connections

We notice that Vanilla PropNets is not efficient for fast online control. As information

such as states 𝑜𝑖,𝑡 and attributes 𝑎𝑟𝑘 are fixed at a specific time step, they can be shared

without re-computation between each sequential propagation step. Hence, inspired by

the ideas on fast RNNs training [22, 4], we propose to encode the shared information

beforehand and reuse them along the propagation steps. We denote the encoder for

objects as 𝑓 enc
𝑂 (·) and the encoder for relations as 𝑓 enc

𝑅 (·). Then,

𝑐𝑜𝑖,𝑡 = 𝑓 enc
𝑂 (𝑜𝑖,𝑡), 𝑐𝑟𝑘,𝑡 = 𝑓 enc

𝑅 (𝑜𝑢𝑘,𝑡, 𝑜𝑣𝑘,𝑡, 𝑎
𝑟
𝑘). (2.6)
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In practice, we add residual links [17] between adjacent propagation steps that connect

ℎ𝑙𝑖,𝑡 and ℎ𝑙−1
𝑖,𝑡 . This helps address gradient vanishing and exploding problem, and

provides access to historical effects. The update rules become

𝑒𝑙𝑘,𝑡 = 𝑓 𝑙
𝑅(𝑐𝑟𝑘,𝑡, ℎ

𝑙−1
𝑢𝑘,𝑡

, ℎ𝑙−1
𝑣𝑘,𝑡

),

ℎ𝑙𝑖,𝑡 = 𝑓 𝑙
𝑂(𝑐𝑜𝑖,𝑡,

∑︁
𝑘∈𝒩𝑖

𝑒𝑙𝑘,𝑡, ℎ
𝑙−1
𝑖,𝑡 ),

(2.7)

where propagators 𝑓 𝑙
𝑂(·) and 𝑓 𝑙

𝑅(·) now take a new sets of inputs, which is different

from Vanilla PropNets.

Based on the assumption that the effects between propagation steps can be

represented as simple transformations (e.g., identity-mapping in Newton’s cradle), we

can use small networks as function approximators for the propagators 𝑓 𝑙
𝑂(·) and 𝑓 𝑙

𝑅(·)

for better efficiency. We name this updated model Propagation Networks (PropNets).

(a) IN (b) Vanilla PropNet (c) PropNet
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Ô
<latexit sha1_base64="q+Zhf278am6JOh5ULv6zizFHChI=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF29WsB/QhrLZbtqlm03YnQgl9Ed48aCIV3+PN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38789hPXRsTqEScJ9yM6VCIUjKKV2r0Rxex+2i9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+7pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw2s/EypJkSu2WBSmkmBMZr+TgdCcoZxYQpkW9lbCRlRThjahkg3BW355lbRqVe+iWnu4rNRv8jiKcAKncA4eXEEd7qABTWAwhmd4hTcncV6cd+dj0Vpw8plj+APn8wdzPY+k</latexit>

hl�1
<latexit sha1_base64="cl3ypKNduG+J6rv/t0W/qObN4VA=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4sSRV0GPRi8cK9gPaWDbbTbt0swm7E6GE/ggvHhTx6u/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGt1O/9cS1EbF6wHHC/YgOlAgFo2il1vAxk+fepFcquxV3BrJMvJyUIUe9V/rq9mOWRlwhk9SYjucm6GdUo2CST4rd1PCEshEd8I6likbc+Nns3Ak5tUqfhLG2pZDM1N8TGY2MGUeB7YwoDs2iNxX/8zophtd+JlSSIldsvihMJcGYTH8nfaE5Qzm2hDIt7K2EDammDG1CRRuCt/jyMmlWK95FpXp/Wa7d5HEU4BhO4Aw8uIIa3EEdGsBgBM/wCm9O4rw4787HvHXFyWeO4A+czx/teo9M</latexit>

R
<latexit sha1_base64="cVRUNBy/RTcU6LUbsjbBwonoaeo=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx7ByCOBDZkdemFkdnYzM2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaHSPJYPZpygH9GB5CFn1Fipft8rltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OY/Oi/PufCxac042cwx/4Hz+AK3vjNo=</latexit>

O
<latexit sha1_base64="GaKRjcxSBA8vmj115Ee3A9y0aWc=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexGQY9BL95MwDwgWcLspDcZMzu7zMwKIeQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mHGCfkQHkoecUWOl+n2vWHLL7hxklXgZKUGGWq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+aFTcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5rw2p9wmaQGJVssClNBTExmX5M+V8iMGFtCmeL2VsKGVFFmbDYFG4K3/PIqaVbK3kW5Ur8sVW+yOPJwAqdwDh5cQRXuoAYNYIDwDK/w5jw6L86787FozTnZzDH8gfP5A6ljjNc=</latexit>

el
<latexit sha1_base64="mvhOklqR56Lv/Tr2TrpwJb7y3ro=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2ls120i7dbMLuRiihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6mfqtJ1Sax/LBjBP0IzqQPOSMGivd46PolcpuxZ2BLBMvJ2XIUe+Vvrr9mKURSsME1brjuYnxM6oMZwInxW6qMaFsRAfYsVTSCLWfzU6dkFOr9EkYK1vSkJn6eyKjkdbjKLCdETVDvehNxf+8TmrCKz/jMkkNSjZfFKaCmJhM/yZ9rpAZMbaEMsXtrYQNqaLM2HSKNgRv8eVl0qxWvPNK9e6iXLvO4yjAMZzAGXhwCTW4hTo0gMEAnuEV3hzhvDjvzse8dcXJZ47gD5zPH0fzjcs=</latexit>

f l
O

<latexit sha1_base64="bWrifOmk2b5wrgS7K/+tXho6YkU=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04s0Kpi20sWy2k3bpZhN2N0Ip/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAqujet+Oyura+sbm4Wt4vbO7t5+6eCwoZNMMfRZIhLVCqlGwSX6hhuBrVQhjUOBzXB4M/WbT6g0T+SDGaUYxLQvecQZNVbyo+7do+iWym7FnYEsEy8nZchR75a+Or2EZTFKwwTVuu25qQnGVBnOBE6KnUxjStmQ9rFtqaQx6mA8O3ZCTq3SI1GibElDZurviTGNtR7Foe2MqRnoRW8q/ue1MxNdBWMu08ygZPNFUSaIScj0c9LjCpkRI0soU9zeStiAKsqMzadoQ/AWX14mjWrFO69U7y/Ktes8jgIcwwmcgQeXUINbqIMPDDg8wyu8OdJ5cd6dj3nripPPHMEfOJ8/nZmOjg==</latexit>

hl
<latexit sha1_base64="UcSjMqcelLdPXrfzyRsgWZRz+SI=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2ls120y7dbMLuRCihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXFtRKwecJxwP6IDJULBKFrpfvgoe6WyW3FnIMvEy0kZctR7pa9uP2ZpxBUySY3peG6CfkY1Cib5pNhNDU8oG9EB71iqaMSNn81OnZBTq/RJGGtbCslM/T2R0ciYcRTYzoji0Cx6U/E/r5NieOVnQiUpcsXmi8JUEozJ9G/SF5ozlGNLKNPC3krYkGrK0KZTtCF4iy8vk2a14p1XqncX5dp1HkcBjuEEzsCDS6jBLdShAQwG8Ayv8OZI58V5dz7mrStOPnMEf+B8/gBMhY3O</latexit>

hl
<latexit sha1_base64="UcSjMqcelLdPXrfzyRsgWZRz+SI=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2ls120y7dbMLuRCihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXFtRKwecJxwP6IDJULBKFrpfvgoe6WyW3FnIMvEy0kZctR7pa9uP2ZpxBUySY3peG6CfkY1Cib5pNhNDU8oG9EB71iqaMSNn81OnZBTq/RJGGtbCslM/T2R0ciYcRTYzoji0Cx6U/E/r5NieOVnQiUpcsXmi8JUEozJ9G/SF5ozlGNLKNPC3krYkGrK0KZTtCF4iy8vk2a14p1XqncX5dp1HkcBjuEEzsCDS6jBLdShAQwG8Ayv8OZI58V5dz7mrStOPnMEf+B8/gBMhY3O</latexit>

f l
O

<latexit sha1_base64="bWrifOmk2b5wrgS7K/+tXho6YkU=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04s0Kpi20sWy2k3bpZhN2N0Ip/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAqujet+Oyura+sbm4Wt4vbO7t5+6eCwoZNMMfRZIhLVCqlGwSX6hhuBrVQhjUOBzXB4M/WbT6g0T+SDGaUYxLQvecQZNVbyo+7do+iWym7FnYEsEy8nZchR75a+Or2EZTFKwwTVuu25qQnGVBnOBE6KnUxjStmQ9rFtqaQx6mA8O3ZCTq3SI1GibElDZurviTGNtR7Foe2MqRnoRW8q/ue1MxNdBWMu08ygZPNFUSaIScj0c9LjCpkRI0soU9zeStiAKsqMzadoQ/AWX14mjWrFO69U7y/Ktes8jgIcwwmcgQeXUINbqIMPDDg8wyu8OdJ5cd6dj3nripPPHMEfOJ8/nZmOjg==</latexit>

co
<latexit sha1_base64="TUkHQ8WP6AH2YW9BfI+I9rgZn3o=">AAAB6nicbVBNSwMxEJ34WetX1aOXYBE8ld0q6LHoxWNF+wHtWrJptg3NJkuSFcrSn+DFgyJe/UXe/Dem7R609cHA470ZZuaFieDGet43WlldW9/YLGwVt3d29/ZLB4dNo1JNWYMqoXQ7JIYJLlnDcitYO9GMxKFgrXB0M/VbT0wbruSDHScsiMlA8ohTYp10Tx9Vr1T2Kt4MeJn4OSlDjnqv9NXtK5rGTFoqiDEd30tskBFtORVsUuymhiWEjsiAdRyVJGYmyGanTvCpU/o4UtqVtHim/p7ISGzMOA5dZ0zs0Cx6U/E/r5Pa6CrIuExSyySdL4pSga3C079xn2tGrRg7Qqjm7lZMh0QTal06RReCv/jyMmlWK/55pXp3Ua5d53EU4BhO4Ax8uIQa3EIdGkBhAM/wCm9IoBf0jj7mrSsonzmCP0CfP0lzjcw=</latexit>

cr
<latexit sha1_base64="3MsllJUvRe1kBcT2/Whx1rrOuB4=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2ls120y7dbMLuRCihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXFtRKwecJxwP6IDJULBKFrpnj3qXqnsVtwZyDLxclKGHPVe6avbj1kacYVMUmM6npugn1GNgkk+KXZTwxPKRnTAO5YqGnHjZ7NTJ+TUKn0SxtqWQjJTf09kNDJmHAW2M6I4NIveVPzP66QYXvmZUEmKXLH5ojCVBGMy/Zv0heYM5dgSyrSwtxI2pJoytOkUbQje4svLpFmteOeV6t1FuXadx1GAYziBM/DgEmpwC3VoAIMBPMMrvDnSeXHenY9564qTzxzBHzifP03/jc8=</latexit>

el
<latexit sha1_base64="mvhOklqR56Lv/Tr2TrpwJb7y3ro=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2ls120i7dbMLuRiihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6mfqtJ1Sax/LBjBP0IzqQPOSMGivd46PolcpuxZ2BLBMvJ2XIUe+Vvrr9mKURSsME1brjuYnxM6oMZwInxW6qMaFsRAfYsVTSCLWfzU6dkFOr9EkYK1vSkJn6eyKjkdbjKLCdETVDvehNxf+8TmrCKz/jMkkNSjZfFKaCmJhM/yZ9rpAZMbaEMsXtrYQNqaLM2HSKNgRv8eVl0qxWvPNK9e6iXLvO4yjAMZzAGXhwCTW4hTo0gMEAnuEV3hzhvDjvzse8dcXJZ47gD5zPH0fzjcs=</latexit>

hl�1
<latexit sha1_base64="cl3ypKNduG+J6rv/t0W/qObN4VA=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4sSRV0GPRi8cK9gPaWDbbTbt0swm7E6GE/ggvHhTx6u/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGt1O/9cS1EbF6wHHC/YgOlAgFo2il1vAxk+fepFcquxV3BrJMvJyUIUe9V/rq9mOWRlwhk9SYjucm6GdUo2CST4rd1PCEshEd8I6likbc+Nns3Ak5tUqfhLG2pZDM1N8TGY2MGUeB7YwoDs2iNxX/8zophtd+JlSSIldsvihMJcGYTH8nfaE5Qzm2hDIt7K2EDammDG1CRRuCt/jyMmlWK95FpXp/Wa7d5HEU4BhO4Aw8uIIa3EEdGsBgBM/wCm9O4rw4787HvHXFyWeO4A+czx/teo9M</latexit>

Figure 2-2: Graphical illustration of Propagation Networks. (a) The structure
of Interaction Networks as detailed in Equation 2.4; (b) The internal structure of
Vanilla PropNets is described in Equation 2.5, where the effects 𝑒𝑙 and ℎ𝑙 are propagated
through the propagators 𝑓 𝑙

𝑂 and 𝑓 𝑙
𝑅 along the directed relations in the graph 𝐺; (c)

The shared object encoding 𝑐𝑜 and relation encoding 𝑐𝑟 are inputs to the internal
modules, where there are also residual connections for better effect propagation as
described in Equation 2.6 and 2.7.

21



(a) Full-state observation (b) Partial observation
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Figure 2-3: Comparison between fully- and partially-observable scenarios.
(a) Forward model for fully observable environments (Equation 2.3). (b) For partially
observable scenarios, we first map the observation to a latent space using function 𝜏(·),
and then specify the forward dynamics over the latent space using 𝜑(·) as described in
Equation 2.8. 𝜏(·) consists of 𝑔(·) and 𝜔(·), where 𝑔(·) maps the observation to object-
based representations, which are then aggregated to a global representation using 𝜔(·).
A decoding function 𝜓(·) maps the encoding back to the original observation space to
ensure a nontrivial encoding.

2.1.3 Extending to Partially Observable Scenarios

For many real-world situations, however, it is often hard or impossible to estimate the

full state of environments. We extend Equation 2.3 using PropNets to handle such

partially observable cases by operating on a latent dynamics model:

𝜏(𝐺𝑡+1) = 𝜑(𝜏(𝐺𝑡)), (2.8)

where 𝜏(·) is an encoding function that maps the current observation to a latent

representation. As shown in Figure 2-3b, 𝜏(·) consists of two parts: first, PropNets

𝑔(·) that map the current observation to object-centric representations; second, 𝜔(·)

that aggregates the object-centric representations into a fixed-dimensional global

representation. We use a global representation for partially observable cases, because

the number and set of observable objects vary over time, making it hard to define object-

centric dynamics. In fully observable environments, 𝜏(·) reduces to an identity mapping

and the dynamics is defined on the object level over the state space (Equation 2.3

and Figure 2-3a). To train such a latent dynamics model, we seek to minimize the

loss function: ℒforward = ‖𝜏(𝐺𝑡+1)− 𝜑(𝜏(𝐺𝑡))‖2.

In practice, we use a small history window of length 𝑇history for the state represen-

tation, i.e., the input to 𝜑(·) is the concatenation of 𝜏(𝐺𝑡), 𝜏(𝐺𝑡−1), ..., 𝜏(𝐺𝑡−𝑇history+1).
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Using the above loss alone leads to trivial solutions such as 𝜑(𝑥) = 𝜏(𝑥) = 0 for

any valid 𝑥. We tackle this based on an intuitive idea: an ideal encoding function 𝜏(·)

should be able to reserve information about the scene observation. Hence, we use an

aggregation function 𝜔(·) that has no learnable parameters like summation or average

and introduce a decoding function 𝜓(·) to ensure a nontrivial 𝜏(·) by minimizing an

additional auto-encoder reconstruction loss [18]: ℒencode = ‖𝐺 − 𝜓(𝑔(𝐺))‖2, where

𝜓(·) is realized as PropNets. The full model is shown in Figure 2-3b.

2.2 Control Using the Learned Dynamics

Compared to model-free approaches, model-based methods offer many advantages,

such as generalization and sample efficiency, as it can approximate the policy gradient

or value estimation without exhausted trials and errors.

However, an accurate model of the environment is often hard to specify and brings

significant computational costs for even a single-step forward simulation. It would be

desirable to learn to approximate the underlying dynamics from data.

A learned dynamics model is naturally differentiable. Given the model and a

desired goal, we can perform forward simulation, optimizing the control inputs by

minimizing a loss between simulated results and a goal. The model can also estimate

the uncertain attributes online by minimizing the difference between predicted future

and actual outcome. Algorithm 1 outlines our control algorithm, which provides a

natural testbed for evaluating the dynamics models.

2.2.1 Model-predictive Control Using Shooting Methods

Let 𝒢𝑔 be our goal and �̂�1:𝑇 be the control inputs (decision variables), where 𝑇 is

the time horizon. These task-specific control inputs are part of the dynamics graph.

Typical choices include observable objects’ initial velocity/position and external

forces/attributes on objects/relations. We denote the graph encoding as 𝐺𝜏 = 𝜏(𝐺),

and the resulting trajectory after applying the control inputs as 𝒢 = {𝐺𝜏
𝑖 }𝑖=1:𝑇 . The
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Algorithm 1 Control on Learned Dynamics at Time Step 𝑡
Input: Learned forward dynamics model 𝜑(·)

Predicted dynamics graph encoding �̂�𝜏
𝑡

Current dynamics graph encoding 𝐺𝜏
𝑡

Goal 𝒢𝑔, current estimation of the attributes 𝐴
Current control inputs �̂�𝑡:𝑇
States history 𝒢 = {𝐺𝜏

𝑖 }𝑖=1...𝑡

Time horizon 𝑇
Output: Controls �̂�𝑡:𝑇 , predicted next time step �̂�𝜏

𝑡+1

Update 𝐴 by descending with the gradients
∇𝐴ℒstate(�̂�

𝜏
𝑡 , 𝐺

𝜏
𝑡 )

Forward simulation using the current graph encoding
�̂�𝜏

𝑡+1 ← 𝜑(𝐺𝜏
𝑡 )

Make a buffer for storing the simulation results
𝒢 ← 𝒢 ∪ �̂�𝜏

𝑡+1

for 𝑖 = 𝑡+ 1, ..., 𝑇 − 1 do
Forward simulation
�̂�𝜏

𝑖+1 ← 𝜑(�̂�𝜏
𝑖 ); 𝒢 ← 𝒢 ∪ �̂�𝜏

𝑖+1

end for
Update �̂�𝑡:𝑇 by descending with the gradients
∇�̂�𝑡:𝑇

ℒgoal(𝒢,𝒢𝑔)

Return �̂�𝑡:𝑇 and �̂�𝜏
𝑡+1 ← 𝜑(𝐺𝜏

𝑡 )

task here is to determine the control inputs by minimizing the gap between the actual

outcome and the specified goal ℒgoal(𝒢,𝒢𝑔).

Our Propagation Networks can do forward simulation by taking the dynamics

graph at time 𝑡 as input, and produce the graph at next time step, �̂�𝜏
𝑡+1 = 𝜑(𝐺𝜏

𝑡 ). Let’s

denote the forward simulation from time step 𝑡 as 𝒢 = {�̂�𝜏
𝑖 }𝑖=𝑡+1...𝑇 and the history

until time 𝑡 as 𝒢 = {𝐺𝜏
𝑖 }𝑖=1...𝑡. We can back-propagate from the loss ℒ𝑔(𝒢 ∪𝒢,𝒢𝑔) and

use stochastic gradient descent (SGD) to update the control inputs. This is known as

the shooting method in trajectory optimization [43].

If the time horizon 𝑇 is too long, the learned model might deviate from the ground

truth due to accumulated prediction errors. Hence, we use Model-Predictive Control

(MPC) [5] to stabilize the trajectory by doing forward simulation at every time step

as a way to compensate the simulation error.
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2.2.2 Online Adaptation

In many situations, inherent attributes such as masses, friction, and damping are

not directly observable. Instead, we can interact with the objects and use PropNets

to estimate these attributes online (denoted as 𝐴) with SGD updates by minimiz-

ing the difference between the predicted future states and the actual future states

ℒstate(�̂�
𝜏
𝑡 , 𝐺

𝜏
𝑡 ).

2.3 Experiments

In this section, we evaluate the performance of our model on both simulation and

control in three scenarios: Newton’s Cradle, Rope Manipulation, and Box Pushing.

We also test how the model generalizes to new scenarios and how it learns to adapt

online.

2.3.1 Physics Simulation

We aim to predict the future states of physical systems. We first describe the network

used across tasks and then present the setup of each task as well as the experimental

results.

Model architecture

For the IN baseline, we use the same network as described in the original work [3]. For

Vanilla PropNets, we adopt similar network structure where the relation propagator

𝑓 𝑙
𝑅(·)(1 ≤ 𝑙 ≤ 𝐿) is an MLP with four 150-dim hidden layers and the object propagator

𝑓 𝑙
𝑂(·)(1 ≤ 𝑙 ≤ 𝐿−1) has one 100-dim hidden layer. Both output a 100-dim propagation

vector. For fully observable scenarios, 𝑓𝐿
𝑂(·) has one 100-dim hidden layer and outputs

a 2-dim vector representing the velocity at the next time step. For partially observable

cases, 𝑓𝐿
𝑂(·) outputs one 100-dim vector as the latent representation.

For PropNets, we use an MLP with three 150-dim hidden layers as the relation

encoder 𝑓 enc
𝑅 (·) and one 100-dim hidden layer MLP as the object encoder 𝑓 enc

𝑂 (·).
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Light-weight neural networks are used for the propagators 𝑓 𝑙
𝑂(·) and 𝑓 𝑙

𝑅(·), both of

which only contain one 100-dim hidden layer.

Newton’s cradle

A typical Newton’s cradle consists of a series of identically sized rigid balls suspended

from a frame. When one ball at the end is lifted and released, it strikes the stationary

balls. Forces will transmit through the stationary balls and push the last ball upward

immediately. In our fully observable setup, the graph 𝐺 of 𝑛 balls has 2𝑛 objects

representing the balls and the corresponding fixed pinpoints above the balls, as shown

in Figure 2-1a, where 𝑛 = 5. There will be 2𝑛 directed relations describing the rigid

connections between the fixed points and the balls. Collisions between adjacent balls

introduce another 2(𝑛− 1) relations.

We generated 2,000 rollouts over 1,000 time steps, of which 85% of the rollouts are

randomly chosen as the training set, while the rest are held as the validation set. The

model was trained with a mini-batch of 32 using Adam optimizer [19] with an initial

learning rate of 1e-3. We reduce the learning rate by 0.8 each time the validation error

stops decreasing for over 20 epochs.

Figure 2-1a-c show some qualitative results, where we compare IN and PropNets.

IN cannot propagate the forces properly: the rightmost ball starts to swing up before

the first collision happens. Quantitative results also show that our method significantly

outperforms IN in tracking object positions. For 1,000 forward steps, IN results in an

MSE of 336.46, whereas PropNets achieves an MSE of 7.85.

Rope manipulation

We then manipulate a particle-based rope in a 2D plane using a spring-mass model,

where one end of the rope is fixed to a random point near the center and the rest of

the rope is free to move. Two circular obstacles are placed at random positions near

the rope and are fixed to the ground. Random forces are applied to the masses on the

rope and the rope is moving in compliant with the forces. More specifically, for a rope

containing 𝑛 particles, there will be a total of 𝑛 + 2 objects. Each pair of adjacent
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Figure 2-4: Qualitative results on rope simulation. Results on the planar rope
simulation, where every mass on the rope has been applied a random force and the
rope is moving in the planar in compliant with the forces. Our model better matches
the ground truth and suffers less from the drifting problem as time horizon becomes
longer. Here the transparent trajectories indicate the ground truth.

masses will have spring relations connecting each other, resulting in 2(𝑛− 1) directed

edges in the dynamics graph 𝐺. Each mass will have a collision relation with each

fixed obstacle, which adds to the graph another 4𝑛 edges. Frictional force applied to

each mass is modeled as a directed edge connecting the mass itself.

We use the same network as described above and generate 5,000 rollouts over

100 time steps. Figure 2-4 and Figure 2-5a show qualitative and quantitative results,

respectively. We train the models with a 15-dim rope and evaluated in situations

where the rope length can vary between 10 and 20. As can be seen from the figures,

although the length of the underlying force propagation is fewer than Newton’s

Cradle’s, our proposed method can still track the ground truth much more accurately

and outperform IN by a large margin.

Box pushing

In this case, we are pushing a pile of boxes forward (Figure 2-6b). We place a camera

at the top of the scene, and only red boxes are observable. More challengingly, the

observable boxes are not tracked. Therefore, the visibility of a specific box might

change over time. The vertices in the graph are then defined as the state of the
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Figure 2-5: Quantitative results on rope simulation. We vary the propagation
steps 𝐿 between 2 to 4 for Vanilla PropNets and PropNets, which shows a trade-off
between accuracy and efficiency. When 𝐿 = 1, both models reduce to Interaction
Networks (IN).

observable boxes and edges are defined as directional relations connecting every pair

of observable boxes. Specifically, if there are 𝑛 observable boxes, 𝑛(𝑛 − 1) edges

are automatically generated. The dynamics function 𝜑(·) then takes both the scene

representation and the action (i.e., position and velocity of the pusher) as input to

perform an implicit forward simulation. As it is hard to explicitly evaluate a latent

dynamics model, we evaluate the downstream control tasks instead.

Ablation studies

We also provide ablation studies on how the number of propagation steps 𝐿 influences

the final performance. Empirically, a larger 𝐿 can model a longer propagation path.

They are however harder to train and more likely to overfit the training set, often

leading to poor generalization. Figure 2-5a and 2-5b show the ablation studies

regarding the choice of 𝐿. PropNets achieves a high accuracy at 𝐿 = 3, with a good

trade-off between speed and accuracy. Vanilla PropNets achieves its best accuracy

at 𝐿 = 2 but generalizes less well as 𝐿 increases further. This shows the benefits of

using the shared encoding and residual connections used in PropNet, as described in

Section 2.1.2.
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2.3.2 Control

We now evaluate the applicability of the learned model on control tasks. We first

describe the three tasks: Newton’s Cradle, Rope Manipulation, and Box Pushing,

which include both open-loop and feedback continuous control tasks, as well as fully

and partially observable environments. We evaluate the performance against various

baselines and test its ability on generalization and online adaptation.

PropNet

PD

Control

70 steps40 steps 100 steps 130 steps 160 steps 190 steps

(a) Rope Manipulation

IN

PropNet

60 steps40 steps20 steps

(b) Box Pushing

Figure 2-6: Qualitative results on control. (a) The rope manipulation task defines
a continuous control problem which is to achieve a specified goal configuration by
applying forces to the top two masses on the free end of the rope. The applied forces
are visualized as yellow arrows and the goal configuration is shown as transparent.
Note that instead of naively trying to match the top two masses (PD control), our
control method based on PropNets can achieve the goal configuration by exploring the
rich dynamics of the rope. (b) The box pushing task requires solving a control problem
under partial observation (only red blocks are observable). The goal configuration is
shown as transparent. Doing control with our Propagation Networks achieves more
accurate outcome than with an IN.
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Figure 2-7: Quantitative results on control tasks. (a) For rope manipulation,
the algorithms attempt to match a specific configuration under situations where the
ground-truth attributes are known (“Normal”), where the value of the attributes are
unknown (“Bias”), where algorithms actively estimate these attributes online (“Adapt”),
and where ropes are of varied length between 10 to 20 when the model is only trained
on ropes of length 15 (“Genearlize”). DRL has the same performance for “Bias” and
“Adapt” as it is model-free; it requires a fixed length input, and thus cannot generalize
to ropes of a different length. (b) For box pushing, Propagation Networks again
outperforms the other methods.

Newton’s Cradle

In this scenario, we assume full-state observation and a control task would be to

determine the initial angle of the left-most ball, so as to let the right-most ball achieve

a specific height, which can be solved with an accurate forward simulation model.

This is an open-loop control task where we only have control over the initial

condition. We thus use a simplified version of Algorithm 1. Given the initial physics

graph and a learned dynamics model, we iteratively do forward simulation and update

the control inputs by minimizing the loss function ℒgoal(𝒢,𝒢𝑔). In this specific task,

the loss ℒgoal is the ℒ2 distance between the target height of the right-most ball and

the highest height that has been achieved in 𝒢.

We initialize the swing up angle as 45∘ and then optimize the angle with a learning

rate of 0.1 for 50 iterations using Adam optimizer. We compare our model with IN.

Qualitative results are shown in Figure 2-1e. Quantitatively, PropNets’s output angle

has an MSE of 3.08 from the ground truth initial angle, while the MSE for interaction
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nets is 296.66.

Rope Manipulation

Here we define the task as to move the rope to a target configuration, where the

only controls are the top two masses at the moving end of the rope (Figure 2-6a).

The controller tries to match the target configuration by “swinging” the rope, which

requires to leverage the dynamics of the rope. The loss ℒgoal here is the ℒ2 distance

between the resulting configuration and the goal configuration.

We first assume the attributes of the physics graph is known (e.g., mass, friction,

damping) and compare the performance between Proportional-Derivative controller

(PD) [1], Model-free Deep Reinforcement Learning (Actor-Critic method optimized

with PPO [39] - DRL), as well as Interaction Networks (IN) and Propagation Networks

(PropNets) with Algorithm 1. Figure 2-7 shows quantitative results, where bars

marked as “Normal” are the results in this task (a hand-tuned PD controller has an

MSE of 2.50). PropNets outperforms the competing baselines. Figure 2-6a shows

a qualitative sample. Compared with the PD controller, our method leverages the

dynamics and manages to match the target, instead of naively matching the free end

of the rope.

We then consider situations where some of the attributes are unknown and can

only be guessed before actually interacting with the objects. We randomly add noise

of 15% of the original scale to the attributes as the initial guesses. The “Bias” bars

in Figure 2-7 show that models trained with ground-truth attributes will encounter

performance drop when the supplied attributes are not accurate. However, model-

based methods can do online adaptation using the actual output from the environment

as feedback to correct the attribute estimation. By updating the estimated attributes

over the first 20 steps of the time horizon with standard SGD, we can improve the

manipulation performance so as to catch up with the situations where attributes are

accurate (bars marked as “Adapt” in Figure 2-7).

We further test whether our model generalizes to new scenarios, where the length

of the rope is varied between 10 to 20. As can be seen in Figure 2-7, our proposed
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method can still achieve a good performance, even though the original PropNets is only

trained in situations with a fixed length 15 (PD has an MSE of 2.72 for generalization).

Box Pushing

In this case, we aim to push a pile of boxes to a target configuration within a predefined

time horizon (Figure 2-6b). We assume partial observation where a camera is placed

at the top of the scene, and we can only observe the states of the boxes marked in red.

The model trained with partial observation is compared with two baselines: DRL and

IN. The loss function ℒgoal used for MPC is the ℒ2 distance between the resulting

scene encoding and the target scene encoding.

We evaluate the performance by the Chamfer Distance (CD) [2] between the

observable boxes at the end of the episode and the target configurations, where for

each box in each set, CD finds the nearest box in the other set, and sums the distance

up. The negative of the distance is used as the reward for DRL. Figure 2-6b and

Figure 2-7b show qualitative and quantitative results, respectively. Our method

outperforms the baselines due to its explicit modeling of the dynamics and its ability

to handle multi-object interactions.
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Chapter 3

Learning Particle Dynamics for

Manipulating Rigid Bodies,

Deformable Objects, and Fluids

3.1 Approach

3.1.1 Dynamic Particle Interaction Networks (DPI-Nets)

Particle-based system is widely used in physical simulation due to its flexibility in

modeling various types of objects [29]. We extend existing systems that model object-

level interactions to allow particle-level deformation. Consider object set {o𝑖}, where

each object o𝑖 = {𝑜𝑘𝑖 }𝑘=1...|o𝑖| is represented as a set of particles. We now define the

graph on the particles and the rules for influence propagation.

Dynamic graph building

The vertices of the graph are the union of particles for all objects𝑂 = {𝑜𝑘𝑖 }𝑖=1...|𝑂|,𝑘=1...|o𝑖|.

The edges 𝑅 between these vertices are dynamically generated over time to ensure

efficiency and effectiveness. The construction of the relations is specific to environment

and task, which we’ll elaborate in Section 3.2. A common choice is to consider the

neighbors within a predefined distance.
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An alternative is to build a static, complete interaction graph, but it has two

major drawbacks. First, it is not efficient. In many common physical systems,

each particle is only interacting with a limited set of other particles (e.g., those

within its neighborhood). Second, a static interaction graph implies a universal,

continuous neural function approximator; however, many physical interactions involve

discontinuous functions (e.g. contact). In contrast, using dynamic graphs empowers

the model to tackle such discontinuity.

Hierarchical modeling for long-range dependence

Propagation Networks [27] require a large 𝐿 to handle long-range dependence, which

is both inefficient and hard to train. Hence, we add one level of hierarchy to efficiently

propagate the long-range influence among particles [30]. For each object that requires

modeling of the long-range dependence (e.g. rigid-body), we cluster the particles

into several non-overlapping clusters. For each cluster, we add a new particle as the

cluster’s root. Specifically, for each object o𝑖 that requires hierarchical modeling, the

corresponding roots are denoted as õ𝑖 = {𝑜𝑘𝑖 }𝑘=1...|õ𝑖|, and the particle set containing

all the roots is denoted as �̃� = {𝑜𝑘𝑖 }𝑖=1...|𝑂|,𝑘=1...|õ𝑖|. We then construct an edge set

𝑅LeafToRoot that contains directed edges from each particle to its root, and an edge

set 𝑅RootToLeaf containing directed edges from each root to its leaf particles. For each

object that need hierarchical modeling, we add pairwise directed edges between all its

roots, and denote this edge set as 𝑅RootToRoot.

We employ a multi-stage propagation paradigm: (1) propagation among leaf nodes,

𝜑LeafToLeaf(⟨𝑂,𝑅⟩); (2) propagation from leaf nodes to root nodes, 𝜑LeafToRoot(⟨𝑂 ∪

�̃�, 𝑅LeafToRoot⟩); (3) propagation between roots, 𝜑RootToRoot(⟨�̃�, 𝑅RootToRoot⟩); (4) prop-

agation from root to leaf, 𝜑RootToLeaf(⟨𝑂 ∪ �̃�, 𝑅RootToLeaf⟩). The signals on the leaves

are used to do the final prediction.

Applying to objects of various materials

We define the interaction graph and the propagation rules on particles for different

types of objects as follows:
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∙ Rigid bodies. All the particles in a rigid body are globally coupled; hence for

each rigid object, we define a hierarchical model to propagate the effects. After

the multi-stage propagation, we average the signals on the particles to predict

a rigid transformation (rotation and translation) for the object. The motion

of each particle is calculated accordingly. For each particle, we also include its

offset to the center-of-mass to help determine the torque.

∙ Elastic/Plastic objects. For elastically deforming particles, only using the current

position and velocity as the state is not sufficient, as it is not clear where the

particle will be restored after the deformation. Hence, we include the particle

state with the resting position to indicate the place where the particle should

be restored. When coupled with plastic deformation, the resting position might

change during an interaction. Thus, we also infer the motion of the resting

position as a part of the state prediction. We use hierarchical modeling for this

category but predict the next state for each particle individually.

∙ Fluids. For fluid simulation, one has to enforce density and incompressibility,

which can be effectively achieved by only considering a small neighborhood for

each particle [28]. Therefore, we do not need hierarchical modeling for fluids. We

build edges dynamically, connecting a fluid particle to its neighboring particles.

The strong inductive bias leveraged in the fluid particles allows good performance

even when tested on data outside training distributions.

For the interaction between different materials, two directed edges are generated for

any pairs of particles that are closer than a certain distance.

3.1.2 Control on the Learned Dynamics

Model-based methods offer many advantages when compared with their model-free

counterparts, such as generalization and sample efficiency. However, for cases where

an accurate model is hard to specify or computationally prohibitive, a data-driven

approach that learns to approximate the underlying dynamics becomes useful.
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Function approximators such as neural networks are naturally differentiable. We

can rollout using the learned dynamics and optimize the control inputs by minimizing

a loss between the simulated results and a target configuration. In cases where certain

physical parameters are unknown, we can perform online system identification by

minimizing the difference between the model’s prediction and the reality. The control

algorithm is very similar to Algorithm 1 and a detailed version can be found in

Appendix A.1.

Model predictive control using shooting methods

Let’s denote 𝒢𝑔 as the goal and �̂�1:𝑇 be the control inputs, where 𝑇 is the time horizon.

The control inputs are part of the interaction graph, such as the velocities or the initial

positions of a particular set of particles. We denote the resulting trajectory after

applying �̂� as 𝒢 = {𝐺𝑖}𝑖=1:𝑇 . The task here is to determine the control inputs as to

minimize the distance between the actual outcome and the specified goal ℒgoal(𝒢,𝒢𝑔).

Our Dynamic Particle Interaction Networks does forward simulation by taking

the dynamics graph at time 𝑡 as input, and produces the graph at next time step,

�̂�𝑡+1 = Φ(𝐺𝑡), where Φ is implemented as DPI-Nets as described in the previous

section. Let’s denote the the history until time 𝑡 as 𝒢 = {𝐺𝑖}𝑖=1...𝑡, and the forward

simulation from time step 𝑡 as 𝒢 = {�̂�𝑖}𝑖=𝑡+1...𝑇 . The loss ℒgoal(𝒢 ∪ 𝒢,𝒢𝑔) can be

used to update the control inputs by doing stochastic gradient descent (SGD). This is

known as the shooting method in trajectory optimization [43].

The learned model might deviate from the reality due to accumulated prediction

errors. We use Model-Predictive Control (MPC) [5] to stabilize the trajectory by doing

forward simulation and updating the control inputs at every time step to compensate

the simulation error.

Online adaptation

In many real-world cases, without actually interacting with the environment, inherent

attributes such as mass, stiffness, and viscosity are not directly observable. DPI-Nets

can estimate these attributes on the fly with SGD updates by minimizing the distance
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between the predicted future states and the actual future states ℒstate(�̂�𝑡, 𝐺𝑡).

3.2 Experiments

We evaluate our method on four different environments containing different types of

objects and interactions. We will first describe the environments and show simulation

results. We then present how the learned dynamics help to complete control tasks in

both simulation and the real world.

3.2.1 Environments

∙ FluidFall (Figure 3-1a). Two drops of fluids are falling down, colliding, and

merging. We vary the initial position and viscosity for training and evaluation.

∙ BoxBath (Figure 3-1b). A block of fluids is flushing a rigid cube. In this

environment, we have to model two different materials and the interactions

between them. We randomize the initial position of the fluids and the cube to

test the model’s generalization ability.

∙ FluidShake (Figure 3-1c). We have a box of fluids and the box is moving

horizontally, The speed of the box is randomly selected at each time step. We

vary the size of the box and volume of the fluids to test generalization.

∙ RiceGrip (Figure 3-1d). We manipulate an object with both elastic and plastic

deformation (e.g., sticky rice). We use two cuboids to mimic the fingers of

a parallel gripper, where the gripper is initialized at a random position and

orientation. During the simulation of one grip, the fingers will move closer to

each other and then restore to its original positions. The model has to learn the

interactions between the gripper and the “sticky rice”, as well as the interactions

within the “rice” itself.

We use all four environments in evaluating our model’s performance in simulation.

We use the rollout MSE as our metric. We further use the latter two for control, because
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they involve fully actuated external shapes that can be used for object manipulation.

In FluidShake, the control task requires determining the speed of the box at each time

step, in order to make the fluid match a target configuration within a time window;

in RiceGrip, the control task corresponds to select a sequence of grip configurations

(position, orientation, closing distance) to manipulate the deformable object as to

match a target shape. The metric for performance in control is the Chamfer distance

between the manipulation results and the target configuration.

3.2.2 Physics Simulation

We present implementation details for dynamics learning in the four environment and

perform ablation studies to evaluate the effectiveness of the introduced techniques.

Implementation details

For FluidFall, we dynamically build the interaction graph by connecting each particle

to its neighbors within a certain distance 𝑑. No hierarchical modeling is used.

For BoxBath, we model the rigid cube as in Section 3.1.1, using multi-stage

hierarchical propagation. Two directed edges will be constructed between two fluid

particles if the distance between them is smaller than 𝑑. Similarly, we also add two

directed edge between rigid particles and fluid particles when their distance is smaller

than 𝑑.

For FluidShake, we model fluid as in Section 3.1.1. We also add five external

particles to represent the walls of the box. We add a directed edge from the wall

particle to the fluid particle when they are closer than 𝑑. The model is a single

propagation network, where the edges are dynamically constructed over time.

For RiceGrip, we build a hierarchical model for rice and use four propagation

networks for multi-stage effect propagation (Section 3.1.1). The edges between the

“rice” particles are dynamically generated if two particles are closer than 𝑑. Similar to

FluidShake, we add two external particles to represent the two “fingers” and add an

edge from the “finger” to the “rice” particle if they are closer than the distance 𝑑. As
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Methods FuildFall BoxBath FluidShake RiceGrip

IN [3] 2.74 ± 0.56 N/A N/A N/A
HRN [30] 0.21 ± 0.04 3.62 ± 0.40 3.58 ± 0.77 0.17 ± 0.11
DPI-Nets w/o hierarchy 0.15 ± 0.03 2.64 ± 0.69 1.89 ± 0.36 0.29 ± 0.13
DPI-Nets 0.15 ± 0.03 2.03 ± 0.41 1.89 ± 0.36 0.13 ± 0.07

Table 3.1: Quantitative results on forward simulation. MSE (×10−2) between
the ground truth and model rollouts. The hyperparameters used in our model are
fixed for all four environments. FluidFall and FluidShake involve no hierarchy, so
DPI-Nets performs the same as the variant without hierarchy. DPI-Nets significantly
outperforms HRN [30] in modeling fluids (BoxBath and FluidShake) due to the use of
dynamic graphs.

“rice” can deform both elastically and plastically, we maintain a resting position that

helps the model restore a deformed particle. The output for each particle is a 6-dim

vector for the velocity of the current observed position and the resting position. More

training details for each environment can be found in Appendix A.4. Details for data

generation are in Appendix A.3.

Results

Qualitative and quantitative results are in Figure 3-1 and Table 3.1. We compare

our method (DPI-Nets) with three baselines, Interaction Networks [3], HRN [30], and

DPI-Nets without hierarchy. Note that we use the same set of hyperparameters in our

model for all four testing environments.

Specifically, Interaction Networks (IN) consider a complete graph of the particle

system. Thus, it can only operate on small environments such as FluidFall; it runs

out of memory (12GB) for the other three environments. IN does not perform well,

because its use of a complete graph makes training difficult and inefficient, and because

it ignores influence propagation and long-range dependence.

Without a dynamic graph, modeling fluids becomes hard, because the neighbors of

a fluid particle changes constantly. Table 3.1 shows that for environments that involve

fluids (BoxBath and FluidShake), DPI-Nets performs better than those with a static

interaction graph. Our model also performs better in scenarios that involve objects

of multiple states (BoxBath, Figure 3-1b), because it uses state-specific modeling.
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Models such as HRN [30] aim to learn a universal dynamics model for all states of

matter. It is therefore solving a harder problem and, for this particular scenario,

expected to perform not as well. When augmented with state-specific modeling,

HRN’s performance is likely to improve, too. Without hierarchy, it is hard to capture

long-range dependence, leading to performance drop in environments that involve

hierarchical object modeling (BoxBath and RiceGrip).

Appendix A.2 includes results on scenarios outside the training distribution (e.g.,

more particles). DPI-Nets performs well on these out-of-sample cases, successfully

leveraging the inductive bias.

Ablation studies

We also test our model’s sensitivity to hyperparameters. We consider three of them:

the number of roots for building hierarchy, the number of propagation steps 𝐿, and

the size of the neighborhood 𝑑. We test them in RiceGrip. As can be seen from the

results shown in Figure 3-2a, DPI-Nets can better capture the motion of the “rice” by

using fewer roots, on which the information might be easier to propagate. Longer

propagation steps do not necessarily lead to better performance, as they increases

training difficulty. Using larger neighborhood achieves better results, but makes

computation slower. Using one TITAN Xp, each forward step in RiceGrip takes 30ms

for 𝑑 = 0.04, 33ms for 𝑑 = 0.08, and 40ms for 𝑑 = 0.12.

We also perform experiments to justify our use of different motion predictors for

objects of different states. Figure 3-2b shows the results of our model vs. a unified

dynamics predictor for all objects in BoxBath. As there are only a few states of

interest (solids, liquids, and soft bodies), and their physical behaviors are drastically

different, it is not surprising that DPI-Nets, with state-specific motion predictors,

perform better, and are equally efficient as the unified model (time difference smaller

than 3ms per forward step).
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3.2.3 Control

We leverage Dynamic Particle Interaction Networks for control tasks in both simulation

and real world. Because trajectory optimization using shooting method can easily

stuck to a local minimum, we first randomly sample 𝑁sample control sequences, and

select the best performing one according to the rollouts of our learned model. We

then optimize it via shooting method using our model’s gradients. We also use online

system identification to further improve the model’s performance. Figure 3-3 and

Figure 3-4 show qualitative and quantitative results, respectively. More details of the

control algorithm can be found in Appendix A.5.

∙ FluidShake. We aim to control the speed of the box to match the fluid particles

to a target configuration. We compare our method (RS+TO) with random search

over the learned model (without trajectory optimization - RS) and Model-free

Deep Reinforcement Learning (Actor-Critic method optimized with PPO [39]

(RL). Figure 3-4a suggests that our model-based control algorithm outperforms

both baselines with a large margin. Also RL is not sample-efficient, requiring

more than 10 million time steps to converge while ours requires 600K time steps.

∙ RiceGrip. We aim to select a sequence of gripping configurations (position,

orientation, and closing distance) to mold the “sticky rice" to a target shape.

We also consider cases where the stiffness of the rice is unknown and need to be

identified. Figure 3-4b shows that our Dynamic Particle Interaction Networks

with system identification performs the best, and is much more efficient than

RL (150K vs . 10M time steps).

∙ RiceGrip in the real world. We generalize the learned model and control

algorithm for RiceGrip to the real world. We first reconstruct object geometry

using a depth camera mounted on our Kuka robot using TSDF volumetric

fusion [8]. We then randomly sampled 𝑁fill particles within the object mesh as

the initial configuration for manipulation. Figure 3-3c and Figure 3-4b shows

that, using DPI-Nets, the robot successfully adapts to the real world environment
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of unknown physical parameters and manipulates a deformable foam into various

target shapes. The learned policy in RiceGrip does not generalize to the real

world due to domain discrepancy, and outputs invalid gripping configurations.
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(a) FluidFall

(b) BoxBath

(c) FluidShake
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Figure 3-1: Qualitative results on forward simulation. We compare the ground
truth (GT) and the rollouts from HRN [30] and our model (DPI-Nets) in four envi-
ronments (FluidFall, BoxBath, FluidShake, and RiceGrip). The simulations from our
DPI-Nets are significantly better. We provide zoom-in views for a few frames to show
details. Please see our video for more empirical results.
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Figure 3-2: Ablation studies. We perform ablation studies to test our model’s
robustness to hyperparameters. The performance is evaluated by the mean squared
distance (×10−2) between the ground truth and model rollouts. (a) We vary the
number of roots when building hierarchy, the propagation step 𝐿 during message
passing, and the size of the neighborhood 𝑑. (b) In BoxBath, DPI-Nets use separate
motion predictors for fluids and rigid bodies. Here we compared with a unified motion
predictor.
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Figure 3-3: Qualitative results on control. (a) FluidShake - Manipulating a box
of fluids to match a target shape. The Result and Target indicate the fluid shape
when viewed from the cutaway view. (b) RiceGrip - Gripping a deformable object
and molding it to a target shape. (c) RiceGrip in Real World - Generalize the learned
dynamics and the control algorithms to the real world by doing online adaptation.
The last two columns indicate the final shape viewed from the top.
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Figure 3-4: Quantitative results on control. We show the results on control (as
evaluated by the Chamfer distance (×10−2) between the manipulated result and the
target) for (a) FluidShake and (b) RiceGrip by comparing with four baselines. RL:
Model-free deep reinforcement learning optimized with PPO; RS: Random search
the actions from the learned model and select the best one to execute; RS + TO:
Trajectory optimization augmented with model predictive control; RS + TO + ID:
Online system identification by estimating uncertain physical parameters during run
time.
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Chapter 4

Conclusion

We have presented Propagation Networks (PropNets), a general learnable physics

engine that outperforms the previous state-of-the-art with a large margin. We have also

demonstrated PropNets’s applicability in model-based control under both fully and

partially observable environments. With propagation steps, PropNets can propagate

the effects along relations and model the dynamics of long-range interactions within a

single time step. We have also proposed to improve PropNets’s efficiency by adding

residual connections and shared encoding.

In the second half of the thesis, we have extended the model and shown a learned

particle dynamics model can approximate the interaction of diverse objects, and can

help to solve complex manipulation tasks of deformable objects. Our system requires

standard open-source robotics and deep learning toolkits, and can be potentially

deployed in household and manufacturing environment. Robot learning of dynamic

scenes with particle-based representations shows profound potentials due to the

generalizability and expressiveness of the representation. Our study helps lay the

foundation for it.
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Appendix A

Supplementary Materials for

DPI-Nets

A.1 Control Algorithm

Algorithm 2 Control on Learned Dynamics at Time Step 𝑡
Input: Learned forward dynamics model Φ

Predicted dynamics graph �̂�𝑡

Current dynamics graph 𝐺𝑡

Goal 𝒢𝑔, current estimation of the attributes 𝐴
Current control inputs �̂�𝑡:𝑇
States history 𝒢 = {𝐺𝑖}𝑖=1...𝑡

Time horizon 𝑇
Output: Controls �̂�𝑡:𝑇 , predicted next time step �̂�𝑡+1

Update 𝐴 by descending with the gradients ∇𝐴ℒstate(�̂�𝑡, 𝐺𝑡)
Forward simulation using the current graph �̂�𝑡+1 ← Φ(𝐺𝑡)
Make a buffer for storing the simulation results 𝒢 ← 𝒢 ∪ �̂�𝑡+1

for 𝑖 = 𝑡+ 1, ..., 𝑇 − 1 do
Forward simulation: �̂�𝑗+1 ← Φ(�̂�𝑗); 𝒢 ← 𝒢 ∪ �̂�𝑗+1

end for
Update �̂�𝑡:𝑇 by descending with the gradients ∇�̂�𝑡:𝑇

ℒgoal(𝒢,𝒢𝑔)
Return �̂�𝑡:𝑇 and �̂�𝑡+1 ← Φ(𝐺𝑡)
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Figure A-1: Extrapolate generalization on fluids, rigid bodies, and de-
formable objects. The performance is evaluated by the MSE (×10−2) between
the ground truth and rollouts from DPI-Nets. The blue bars denote the range of
particle numbers that have been seen during training, which indicate interpolation
performance. The red bars indicate extrapolation performance that our model can
generalize to cases containing two times more particles than cases it has been trained
on.

A.2 Generalization on Extrapolation

We show our model’s performance on fluids, rigid bodies, and deformable objects with

a larger number of particles than they have in the training set. Figure A-1 shows

qualitative and quantitative results. Our model scales up well to larger objects.

A.3 Data Generation

The data is generated using NVIDIA FleX. We have developed a Python interface for

the ease of generating and interacting with different environments. We will release

the code upon publication.
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∙ FluidFall. We generated 3,000 rollouts over 120 time steps. The two drops

of fluids contain 64 and 125 particles individually, where the initial position of

one of the drop in the 3 dimensional coordinates is uniformly sampled between

(0.15, 0.55, 0.05) and (0.25, 0.7, 0.15), while the other drop is uniformly sampled

between (0.15, 0.1, 0.05) and (0.25, 0.25, 0.15).

∙ BoxBath. We generated 3,000 rollouts over 150 time steps. There are 960 fluid

particles and the rigid cube consist particles ranging between 27 and 150. The

fluid particle block is initialized at (0, 0, 0), and the initial position of the rigid

cube is randomly initialized between (0.45, -0.0155, 0.02) to (1.2, -0.0155, 0.4).

∙ FluidShake. We generated 2,000 rollouts over 300 time steps. The height of

the box is 1.0 and the thickness of the wall is 0.025. For the initial fluid cuboid,

the number of fluid particles is uniformly sampled between 10 and 12 in the x

direction, between 15 and 20 in the y direction, 3 in the z direction. The box

is fixed in the y and z direction, and is moving freely in the x direction. We

randomly place the initial x position between -0.2 to 0.2. The sampling of the

speed is implemented as v = v + rand(−0.15, 0.15)− 0.1x, in order to encourage

motion smoothness and moving back to origin, where speed v is initialized as 0.

∙ RiceGrip. We generated 5,000 rollouts over 30 time steps. We randomize the

size of the initial “rice" cuboid, where the length of the three sides is uniformly

sampled between 8.0 and 10.0. The material property parameters Stiffness is

uniformly sampled between 0.3 and 0.7, PlasticThreshold is uniformly sampled

between 1e-5 and 5e-4, and PlasticCreep is uniformly sampled between 0.1 and

0.3. The position of the gripper is randomly sampled within a circle of radius 0.5.

The orientation of the gripper is always perpendicular to the line connecting the

origin to the center of the gripper and the close distance is uniformly sampled

between 0.7 to 1.0.

Of all the generated data, 90% of the rollouts are used for training, and the rest 10%

are used for validation.
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A.4 Training Details

The models are implemented in PyTorch, and are trained using Adam optimizer ([19])

with a learning rate of 0.0001. The number of particles and relations might be different

at each time step, hence we use a batch size of 1, and we update the weights of the

networks once every 2 forward rounds.

The neighborhood 𝑑 is set as 0.08, and the propagation step 𝐿 is set as 2 for all

four environments. For hierarchical modeling, it does not make sense to propagate

more than one time between leaves and roots as they are disjoint particle sets, and

each propagation stage between them only involves one-way edges; hence 𝜑LeafToLeaf

uses 𝐿 = 2. 𝜑LeafToRoot uses 𝐿 = 1. 𝜑RootToRoot uses 𝐿 = 2, and 𝜑RootToLeaf uses 𝐿 = 1.

For all propagation networks used below, the object encoder 𝑓 enc
𝑂 is an MLP with

two hidden layers of size 200, and outputs a feature map of size 200. The relation

encoder 𝑓 enc
𝑅 is an MLP with three hidden layers of size 300, and outputs a feature

map of size 200. The propagator 𝑓𝑂 and 𝑓𝑅 are both MLP with one hidden layer of

size 200, in which a residual connection is used to better propagate the effects, and

outputs a feature map of size 200. The propagators are shared within each stage

of propagation. The motion predictor 𝑓 output
𝑂 is an MLP with two hidden layers of

size 200, and output the state of required dimension. ReLU is used as the activation

function.

∙ FluidFall. The model is trained for 13 epochs. The output of the model is

the 3 dimensional velocity, which is multiplied by ∆𝑡 and added to the current

position to do rollouts.

∙ BoxBath. In this environment, four propagation networks are used due to the

hierarchical modeling and the number of roots for the rigid cube is set as 8. We

have two separate motion predictor for fluids and rigid body, where the fluid

predictor output velocity for each fluid particle, while the rigid predictor takes

the mean of the signals over all its rigid particles as input, and output a rigid

transformation (rotation and translation). The model is trained for 5 epochs.
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∙ FluidShake. Only one propagation network is used in this environment, and

the model is trained for 5 epochs.

∙ RiceGrip. Four propagation networks are used due to the hierarchical modeling,

and the number of roots for the “rice" is set as 30. The model is trained for 20

epochs.

A.5 Control Details

𝑁sample is chosen as 20 for all three cases, where we sample 20 random control

sequences, and choose the best performing one as evaluated using our learned model.

The evaluation is based on the Chamfer distance between the controlling result and

the target configuration.

∙ FluidShake. In this environment, the control sequence is the speed of the box

along the x axis. The method to sample the candidate control sequence is the

same as when generating training data of this environment. After selected the

best performing control sequence, we first use RMSprop optimizer to optimize

the control inputs for 10 iterations using a learning rate of 0.003. We then

use model-predictive control to apply the control sequence to the FleX physics

engine using Algorithm 2.

∙ RiceGrip. In this environment, we need to come up with a sequence of grip

configurations, where each grip contains positions, orientation, and closing

distance. The method to sample the candidate control sequence is the same

as when generating training data of this environment. After selected the best

performing control sequence, we first use RMSprop optimizer to optimize the

control inputs for 20 iterations using a learning rate of 0.003. We then use

model-predictive control to apply the control sequence to the FleX physics engine

using Algorithm 2.

∙ RiceGrip in Real World.
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In this environment, we need to come up with a sequence of grip configurations,

where each grip contains positions, orientation, and closing distance. The method to

sample the candidate control sequence is the same as when generating training data of

RiceGrip, and 𝑁fill is chosen as 768. Different from the previous case, the physical

parameters are always unknown and has to be estimated online. After selected the best

performing control sequence, we first use RMSprop optimizer to optimize the control

inputs for 20 iterations using a learning rate of 0.003. We then use model-predictive

control to apply the control sequence to the real world using Algorithm 2.
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