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Abstract— There has been an increasing interest in learning
dynamics simulators for model-based control. Compared with
off-the-shelf physics engines, a learnable simulator can quickly
adapt to unseen objects, scenes, and tasks. However, existing
models like interaction networks only work for fully observable
systems; they also only consider pairwise interactions within a
single time step, both restricting their use in practical systems.
We introduce Propagation Networks (PropNet), a differentiable,
learnable dynamics model that handles partially observable sce-
narios and enables instantaneous propagation of signals beyond
pairwise interactions. Experiments show that our propagation
networks not only outperform current learnable physics engines
in forward simulation, but also achieve superior performance
on various control tasks. Compared with existing model-free
deep reinforcement learning algorithms, model-based control
with propagation networks is more accurate, efficient, and
generalizable to new, partially observable scenes and tasks.

I. INTRODUCTION

Physics engines are critical for planning and control in
robotics. To plan for a task, a robot may use a physics engine
to simulate the effects of different actions on the environment
and then select a sequence of actions to reach a desired goal
configuration. The utility of the resulting action sequence
depends on the accurate prediction of the physics engine; so
a high-fidelity physics engine plays a critical role in robot
planning. Most physics engines used in robotics, such as
Mujoco [1], Bullet [2], and Drake [3], use approximate contact
models, and recent studies [4], [5], [6] have demonstrated
discrepancies between their predictions and real-world data.
These mismatches prevent the above physics engines from
solving contact-rich tasks.

Recently, researchers have started building general-purpose
neural physics simulators, aiming to approximate complex
physical interactions with neural networks [7], [8]. They have
succeeded to model the dynamics of both rigid bodies and
deformable objects (e.g., ropes). More recent work has used
interaction networks for discrete and continuous control [9],
[10], [11], [12].

Interaction networks, however, have two major limitations.
First, interaction nets only consider pairwise interactions
between objects, restricting its use in real-world scenarios,
where simultaneous multi-body interactions often occur.
Typical examples include Newton’s cradle (Fig. 1a) or rope
manipulation (Fig. 1b). Second, they need to observe the full
states of a environment; however, many real-world control
tasks involve dealing with partial observable states. Fig. 1c
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(a) Newton’s Cradle (b) Rope Manipulation

(c) Box Pushing

Fig. 1: Challenges for existing differentiable physics simulators: Model-
ing the dynamics of (a) Newton’s cradle or (b) a rope requires instantaneous
propagation of multi-object interaction. For (a), our goal is to control the
leftmost ball so that rightmost ball hits the target (transparent). For (b), our
goal is to control the rope to reach the target (transparent), while the blue
and green circles are fixed obstacles. (c) Pushing a group of boxes to a
target configuration requires dynamics modeling under partial observations.
Here, the camera is looking down and only red blocks are observable.

shows an example, where a robot wants to push a set of blocks
into a target configuration; however, only the red blocks in
the top layer are visible to the camera.

In this paper, we introduce Propagation Networks (Prop-
Net), a differentiable, learnable engine that simulates multi-
body object interactions. PropNet handles partially observable
situations by operating on a latent dynamics representation; it
also enables instantaneous propagation of signals beyond
pairwise interactions using multi-step effect propagation.
Specifically, by representing a scene as a graph, where objects
are the vertices and object interactions are the directed edges,
we initialize and propagate the signals through the directed
paths in the interaction graph at each time step.

Experiments demonstrate that PropNet consistently outper-
forms interaction networks in forward simulation. PropNet’s
ability to accurately handle partially observable states brings
significant benefits for control. Compared with interaction nets
and state-of-the-art model-free deep reinforcement learning
algorithms, model-based control using propagation networks
is more sample-efficient, accurate, and generalizes better to
new, partially observable scenarios.

II. RELATED WORK

A. Differentiable Physics Simulators

In recent years, researchers have been building differen-
tiable physics simulators in various forms [1], [3], [13], [14].
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Fig. 2: Newton’s Cradle. (a) shows the initial states of a Newton’s cradle, based on which both the Interaction Networks and Propagation Networks try to
predict future states; (b-i) The Interaction Networks can only propagate the force along a single relation at a time step, thus results in a false prediction
(c-i); (b-ii) Our proposed method can propagate the force correctly which leads to the correct prediction (c-ii); (d) A downstream task where we aim to
achieve a specific goal using the learned model; (e-i) Model-based control methods fail to produce the correct control using Interaction Networks while
(e-ii) our model can provide the desired control signal.

For example, approximate, analytical differentiable rigid body
simulators [14], [15] have been deployed for tool manipulation
and tool-use planning [16].

Among them, two notable efforts on learning differentiable
simulators include interaction networks [7] and neural physics
engines [8]. These methods restrict themselves to pairwise
interactions for generalizability. However, this simplification
limits their ability to handle simultaneous, multi-body inter-
actions. In this work, we tackle this problem by learning to
propagate the signals multiple steps on the interaction graph.
Gilmer et al. [17] have recently explored message passing
networks, but with a focus on quantum chemistry.

B. Model-Predictive Control with a Learned Simulator

Recent work on model-predictive control with deep net-
works [18], [19], [20], [21], [22] often learns an abstract-
state transition function, instead of an explicit account of
environments [23], [24]. Subsequently, they use the learned
model or value function to guide the training of the policy net-
work. Instead, PropNet learns a general physics simulator that
takes raw object observations (e.g., positions, velocities) as
input. We then integrate it into classic trajectory optimization
algorithms for control.

A few recent papers exploit the power of interaction net-
works for planning and control. Many of them use interaction
networks to imagine—rolling out approximate predictions—to
facilitate training a policy network [9], [10], [11]. In contrast,
we use propagation networks as a learned dynamics simulator
and directly optimize trajectories for continuous control. By
separating model learning and control, our model generalizes
better to novel scenarios. Recently, Sanchez-Gonzalez et
al. [12] also explored applying interaction networks for
control. Compared with them, our propagation networks can
handle simultaneous multi-body interactions and deal with
partially observable scenarios.

III. LEARNING THE DYNAMICS

A. Preliminaries

We assume that the interactions within a physical system
can be represented as a directed graph, G = 〈O,R〉, where

vertices O represent the objects, and edges R correspond to
their relations (Fig. 3). Graph G can be represented as

O = {oi}i=1...|O| R = {rk}k=1...|R| (1)

Specifically, oi = 〈xi, aoi , pi〉, where xi = 〈qi, q̇i〉 is the state
of object i, containing its position qi and velocity q̇i. aoi
denote its attributes (e.g., mass, radius), and pi is the external
force on object i. For the relations, we have

rk = 〈uk, vk, ark〉, 1 ≤ uk, vk ≤ |O|, (2)

where uk is the receiver, vk is the sender, and ark is the type
and attributes of relation k (e.g., collision, spring connection).

Our goal is to build a learnable physics engine to approxi-
mate the underlying physical interactions. We can then use
it to infer the system dynamics and predict the future from
the observed interaction graph G:

Gt+1 = φ(Gt), (3)

where Gt denotes the scene states at time t. We aim to learn
φ(·), a learnable dynamics model, to minimize ‖Gt+1 −
φ(Gt)‖2.

Below we review our baseline model Interaction Net-
works (IN) [7]. IN is a general-purpose, learnable physics
engine, performing object- and relation-centric reasoning
about physics. IN defines an object function fO and a
relation function fR to model objects and their relations
in a compositional way. The future state at time t + 1 is
predicted as

ek,t = fR(ouk,t, ovk,t, a
r
k), k = 1 . . . |R|,

ôi,t+1 = fO(oi,t,
∑
k∈Ni

ek,t), i = 1 . . . |O|, (4)

where oi,t = 〈xi,t, aoi , pi,t〉 denotes object i at time t, uk and
vk are the receiver and sender of relation rk, and Ni denotes
the relations where object i is the receiver.

B. Propagation Networks

IN defines a flexible and efficient model for explicit
reasoning of objects and their relations in a complex system.
It can handle a variable number of objects and relations and
has performed well in domains like n-body systems, bouncing



balls, and falling strings. However, one fundamental limitation
of IN is that at every time step t, it only considers local
information in the graph G and cannot handle instantaneous
propagation of forces, such as Newton’s cradle shown in
Fig. 2, where ball A’s impact produces a compression
wave that propagates through the balls immediately [25].
As force propagation is a common phenomenon in rigid-
body dynamics, this shortcoming has limited IN’s practical
applicability.

To address the above issues, we propose Propagation
Networks (PropNet) to handle the instantaneous propagation
of forces efficiently. Our method is inspired by message
passing, a classic algorithm in graphical models [26].

1) Effect propagation: Effect propagation requires multi-
step message passing along the directed edges in graph G.
Forces ejected from ball A (Fig. 2) should be propagated
through the connected balls to ball B within a single time
step. Force propagation is hard to analyze analytically for
complex scenes. Therefore, we let PropNet learn to decide
whether an effect should be propagated further or withheld.

At time t, we denote the propagating effect from relation
k at propagation step l as elk,t, and the propagating effect
from object i as hli,t. Here, we have 1 ≤ l ≤ L, where L
is the maximum propagation steps within each step of the
simulation. Propagation can be described as

Step 0: h0i,t = 0, i = 1 . . . |O|,
Step l = 1, . . . , L: elk,t = f lR(ouk,t, ovk,t, a

r
k, h

l−1
uk,t

, hl−1vk,t
),

k = 1 . . . |R|,

hli,t = f lO(oi,t,
∑
k∈Ni

elk,t),

i = 1 . . . |O|,
Output: ôi,t+1 = hLi,t, i = 1 . . . |O|, (5)

where f lO(·) denotes the object propagator at propagation
step l and f lR(·) denotes the relation propagator. Depending
on the complexity of the task, the network weights can be
shared among propagators at different propagation steps.

We name this model Vanilla PropNet. Experimental results
show that the selection of L is task-specific, and usually a
small L (e.g., L = 3) can achieve a good trade-off between
the performance and efficiency.

2) Object- and relation-encoding with residual connections:
We notice that Vanilla PropNet is not efficient for fast online
control. As information such as states oi,t and attributes ark
are fixed at a specific time step, they can be shared without
re-computation between each sequential propagation step.
Hence, inspired by the ideas on fast RNNs training [27], [28],
we propose to encode the shared information beforehand
and reuse them along the propagation steps. We denote the
encoder for objects as f enc

O (·) and the encoder for relations
as f enc

R (·). Then,

coi,t = f enc
O (oi,t), crk,t = f enc

R (ouk,t, ovk,t, a
r
k). (6)

(a) IN (b) Vanilla PropNet (c) PropNet

fR
<latexit sha1_base64="9J/vLXB8v6dNBCWpbBfft/lJvWY=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHoxWN85AHJEmYnvcmQ2dllZlYISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSATXxnW/nZXVtfWNzcJWcXtnd2+/dHDY1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8HoZuq3nlBpHstHM07Qj+hA8pAzaqz0EPbue6WyW3FnIMvEy0kZctR7pa9uP2ZphNIwQbXueG5i/Iwqw5nASbGbakwoG9EBdiyVNELtZ7NTJ+TUKn0SxsqWNGSm/p7IaKT1OApsZ0TNUC96U/E/r5Oa8MrPuExSg5LNF4WpICYm079JnytkRowtoUxxeythQ6ooMzadog3BW3x5mTSrFe+8Ur27KNeu8zgKcAwncAYeXEINbqEODWAwgGd4hTdHOC/Ou/Mxb11x8pkj+APn8wcjlo2z</latexit>

f l
R

<latexit sha1_base64="kyVOZEFJVSoNcXwsd677AGVSmIc=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGKaQttLJvtpF262YTdjVBKf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXpoJr47rfzsrq2vrGZmGruL2zu7dfOjhs6CRTDH2WiES1QqpRcIm+4UZgK1VI41BgMxzeTP3mEyrNE/lgRikGMe1LHnFGjZX8qHv/KLqlsltxZyDLxMtJGXLUu6WvTi9hWYzSMEG1bntuaoIxVYYzgZNiJ9OYUjakfWxbKmmMOhjPjp2QU6v0SJQoW9KQmfp7YkxjrUdxaDtjagZ60ZuK/3ntzERXwZjLNDMo2XxRlAliEjL9nPS4QmbEyBLKFLe3EjagijJj8ynaELzFl5dJo1rxzivVu4ty7TqPowDHcAJn4MEl1OAW6uADAw7P8ApvjnRenHfnY9664uQzR/AHzucPoiuOkQ==</latexit>

f l
R

<latexit sha1_base64="kyVOZEFJVSoNcXwsd677AGVSmIc=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGKaQttLJvtpF262YTdjVBKf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXpoJr47rfzsrq2vrGZmGruL2zu7dfOjhs6CRTDH2WiES1QqpRcIm+4UZgK1VI41BgMxzeTP3mEyrNE/lgRikGMe1LHnFGjZX8qHv/KLqlsltxZyDLxMtJGXLUu6WvTi9hWYzSMEG1bntuaoIxVYYzgZNiJ9OYUjakfWxbKmmMOhjPjp2QU6v0SJQoW9KQmfp7YkxjrUdxaDtjagZ60ZuK/3ntzERXwZjLNDMo2XxRlAliEjL9nPS4QmbEyBLKFLe3EjagijJj8ynaELzFl5dJo1rxzivVu4ty7TqPowDHcAJn4MEl1OAW6uADAw7P8ApvjnRenHfnY9664uQzR/AHzucPoiuOkQ==</latexit>

R
<latexit sha1_base64="cVRUNBy/RTcU6LUbsjbBwonoaeo=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx7ByCOBDZkdemFkdnYzM2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaHSPJYPZpygH9GB5CFn1Fipft8rltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OY/Oi/PufCxac042cwx/4Hz+AK3vjNo=</latexit>

O
<latexit sha1_base64="GaKRjcxSBA8vmj115Ee3A9y0aWc=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexGQY9BL95MwDwgWcLspDcZMzu7zMwKIeQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mHGCfkQHkoecUWOl+n2vWHLL7hxklXgZKUGGWq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+aFTcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5rw2p9wmaQGJVssClNBTExmX5M+V8iMGFtCmeL2VsKGVFFmbDYFG4K3/PIqaVbK3kW5Ur8sVW+yOPJwAqdwDh5cQRXuoAYNYIDwDK/w5jw6L86787FozTnZzDH8gfP5A6ljjNc=</latexit>

e
<latexit sha1_base64="Pna6fdTWgvUMdKOvBzHgjCOOl/o=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlJvbLFbfqzkFWiZeTCuRo9MtfvUHM0gilYYJq3fXcxPgZVYYzgdNSL9WYUDamQ+xaKmmE2s/mh07JmVUGJIyVLWnIXP09kdFI60kU2M6ImpFe9mbif143NeG1n3GZpAYlWywKU0FMTGZfkwFXyIyYWEKZ4vZWwkZUUWZsNiUbgrf88ipp16reRbXWvKzUb/I4inACp3AOHlxBHe6gAS1ggPAMr/DmPDovzrvzsWgtOPnMMfyB8/kDyruM7Q==</latexit>

fO
<latexit sha1_base64="2og0W0/WeTwpDQod5318i/SCflo=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04s2K9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGN1O/9cS1EbF6xHHC/YgOlAgFo2ilh7B31yuV3Yo7A1kmXk7KkKPeK311+zFLI66QSWpMx3MT9DOqUTDJJ8VuanhC2YgOeMdSRSNu/Gx26oScWqVPwljbUkhm6u+JjEbGjKPAdkYUh2bRm4r/eZ0Uwys/EypJkSs2XxSmkmBMpn+TvtCcoRxbQpkW9lbChlRThjadog3BW3x5mTSrFe+8Ur2/KNeu8zgKcAwncAYeXEINbqEODWAwgGd4hTdHOi/Ou/Mxb11x8pkj+APn8wcfCo2w</latexit>

Ô
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hl
<latexit sha1_base64="UcSjMqcelLdPXrfzyRsgWZRz+SI=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2ls120y7dbMLuRCihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXFtRKwecJxwP6IDJULBKFrpfvgoe6WyW3FnIMvEy0kZctR7pa9uP2ZpxBUySY3peG6CfkY1Cib5pNhNDU8oG9EB71iqaMSNn81OnZBTq/RJGGtbCslM/T2R0ciYcRTYzoji0Cx6U/E/r5NieOVnQiUpcsXmi8JUEozJ9G/SF5ozlGNLKNPC3krYkGrK0KZTtCF4iy8vk2a14p1XqncX5dp1HkcBjuEEzsCDS6jBLdShAQwG8Ayv8OZI58V5dz7mrStOPnMEf+B8/gBMhY3O</latexit>

hl
<latexit sha1_base64="UcSjMqcelLdPXrfzyRsgWZRz+SI=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2ls120y7dbMLuRCihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXFtRKwecJxwP6IDJULBKFrpfvgoe6WyW3FnIMvEy0kZctR7pa9uP2ZpxBUySY3peG6CfkY1Cib5pNhNDU8oG9EB71iqaMSNn81OnZBTq/RJGGtbCslM/T2R0ciYcRTYzoji0Cx6U/E/r5NieOVnQiUpcsXmi8JUEozJ9G/SF5ozlGNLKNPC3krYkGrK0KZTtCF4iy8vk2a14p1XqncX5dp1HkcBjuEEzsCDS6jBLdShAQwG8Ayv8OZI58V5dz7mrStOPnMEf+B8/gBMhY3O</latexit>

f l
O

<latexit sha1_base64="bWrifOmk2b5wrgS7K/+tXho6YkU=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04s0Kpi20sWy2k3bpZhN2N0Ip/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAqujet+Oyura+sbm4Wt4vbO7t5+6eCwoZNMMfRZIhLVCqlGwSX6hhuBrVQhjUOBzXB4M/WbT6g0T+SDGaUYxLQvecQZNVbyo+7do+iWym7FnYEsEy8nZchR75a+Or2EZTFKwwTVuu25qQnGVBnOBE6KnUxjStmQ9rFtqaQx6mA8O3ZCTq3SI1GibElDZurviTGNtR7Foe2MqRnoRW8q/ue1MxNdBWMu08ygZPNFUSaIScj0c9LjCpkRI0soU9zeStiAKsqMzadoQ/AWX14mjWrFO69U7y/Ktes8jgIcwwmcgQeXUINbqIMPDDg8wyu8OdJ5cd6dj3nripPPHMEfOJ8/nZmOjg==</latexit>

co
<latexit sha1_base64="TUkHQ8WP6AH2YW9BfI+I9rgZn3o=">AAAB6nicbVBNSwMxEJ34WetX1aOXYBE8ld0q6LHoxWNF+wHtWrJptg3NJkuSFcrSn+DFgyJe/UXe/Dem7R609cHA470ZZuaFieDGet43WlldW9/YLGwVt3d29/ZLB4dNo1JNWYMqoXQ7JIYJLlnDcitYO9GMxKFgrXB0M/VbT0wbruSDHScsiMlA8ohTYp10Tx9Vr1T2Kt4MeJn4OSlDjnqv9NXtK5rGTFoqiDEd30tskBFtORVsUuymhiWEjsiAdRyVJGYmyGanTvCpU/o4UtqVtHim/p7ISGzMOA5dZ0zs0Cx6U/E/r5Pa6CrIuExSyySdL4pSga3C079xn2tGrRg7Qqjm7lZMh0QTal06RReCv/jyMmlWK/55pXp3Ua5d53EU4BhO4Ax8uIQa3EIdGkBhAM/wCm9IoBf0jj7mrSsonzmCP0CfP0lzjcw=</latexit>

cr
<latexit sha1_base64="3MsllJUvRe1kBcT2/Whx1rrOuB4=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2ls120y7dbMLuRCihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXFtRKwecJxwP6IDJULBKFrpnj3qXqnsVtwZyDLxclKGHPVe6avbj1kacYVMUmM6npugn1GNgkk+KXZTwxPKRnTAO5YqGnHjZ7NTJ+TUKn0SxtqWQjJTf09kNDJmHAW2M6I4NIveVPzP66QYXvmZUEmKXLH5ojCVBGMy/Zv0heYM5dgSyrSwtxI2pJoytOkUbQje4svLpFmteOeV6t1FuXadx1GAYziBM/DgEmpwC3VoAIMBPMMrvDnSeXHenY9564qTzxzBHzifP03/jc8=</latexit>

el
<latexit sha1_base64="mvhOklqR56Lv/Tr2TrpwJb7y3ro=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2ls120i7dbMLuRiihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6mfqtJ1Sax/LBjBP0IzqQPOSMGivd46PolcpuxZ2BLBMvJ2XIUe+Vvrr9mKURSsME1brjuYnxM6oMZwInxW6qMaFsRAfYsVTSCLWfzU6dkFOr9EkYK1vSkJn6eyKjkdbjKLCdETVDvehNxf+8TmrCKz/jMkkNSjZfFKaCmJhM/yZ9rpAZMbaEMsXtrYQNqaLM2HSKNgRv8eVl0qxWvPNK9e6iXLvO4yjAMZzAGXhwCTW4hTo0gMEAnuEV3hzhvDjvzse8dcXJZ47gD5zPH0fzjcs=</latexit>

hl�1
<latexit sha1_base64="cl3ypKNduG+J6rv/t0W/qObN4VA=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4sSRV0GPRi8cK9gPaWDbbTbt0swm7E6GE/ggvHhTx6u/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGt1O/9cS1EbF6wHHC/YgOlAgFo2il1vAxk+fepFcquxV3BrJMvJyUIUe9V/rq9mOWRlwhk9SYjucm6GdUo2CST4rd1PCEshEd8I6likbc+Nns3Ak5tUqfhLG2pZDM1N8TGY2MGUeB7YwoDs2iNxX/8zophtd+JlSSIldsvihMJcGYTH8nfaE5Qzm2hDIt7K2EDammDG1CRRuCt/jyMmlWK95FpXp/Wa7d5HEU4BhO4Aw8uIIa3EEdGsBgBM/wCm9O4rw4787HvHXFyWeO4A+czx/teo9M</latexit>

Fig. 3: Graphical illustration of the models. (a) The structure of Interaction
Networks as detailed in Eqn. 4; (b) The internal structure of Vanilla PropNet
is described in Eqn. 5, where the effects el and hl are propagated through
the propagators f lO and f lR along the directed relations in the graph G; (c)
The shared object encoding co and relation encoding cr are inputs to the
internal modules, where there are also residual connections for better effect
propagation as described in Eqn. 6 and 7.

(a) Full-state observation (b) Partial observation
Gt

<latexit sha1_base64="PkvxSbIJAC9+r2/QYT+PqTqc0Ag=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj0oMeK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGN1O/9cS1EbF6xHHC/YgOlAgFo2ilh9se9kplt+LOQJaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzySbGbGp5QNqID3rFU0YgbP5udOiGnVumTMNa2FJKZ+nsio5Ex4yiwnRHFoVn0puJ/XifF8MrPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2naEPwFl9eJs1qxTuvVO8vyrXrPI4CHMMJnIEHl1CDO6hDAxgM4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AEn5I22</latexit>

Gt+1
<latexit sha1_base64="xZKi2Jx3gxlB22TvJzSmIZYVx14=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSIIQkmqoMeiBz1WsB/QhrLZbtqlm03YnQgl9Ed48aCIV3+PN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dlZW19Y3Ngtbxe2d3b390sFh08SpZrzBYhnrdkANl0LxBgqUvJ1oTqNA8lYwup36rSeujYjVI44T7kd0oEQoGEUrte56GZ57k16p7FbcGcgy8XJShhz1Xumr249ZGnGFTFJjOp6boJ9RjYJJPil2U8MTykZ0wDuWKhpx42ezcyfk1Cp9EsbalkIyU39PZDQyZhwFtjOiODSL3lT8z+ukGF77mVBJilyx+aIwlQRjMv2d9IXmDOXYEsq0sLcSNqSaMrQJFW0I3uLLy6RZrXgXlerDZbl2k8dRgGM4gTPw4ApqcA91aACDETzDK7w5ifPivDsf89YVJ585gj9wPn8AxWWPMg==</latexit>

g(Gt)
<latexit sha1_base64="3Gz4JkXGNcYj+fvAEijfxpHc70U=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoMQL2FXBT0GPegxgnlAsoTZyWwyZnZmmekVQsg/ePGgiFf/x5t/4yTZgyYWNBRV3XR3hYngBj3v28mtrK6tb+Q3C1vbO7t7xf2DhlGppqxOlVC6FRLDBJesjhwFayWakTgUrBkOb6Z+84lpw5V8wFHCgpj0JY84JWilRr9828XTbrHkVbwZ3GXiZ6QEGWrd4lenp2gaM4lUEGPavpdgMCYaORVsUuikhiWEDkmftS2VJGYmGM+unbgnVum5kdK2JLoz9ffEmMTGjOLQdsYEB2bRm4r/ee0Uo6tgzGWSIpN0vihKhYvKnb7u9rhmFMXIEkI1t7e6dEA0oWgDKtgQ/MWXl0njrOKfV87uL0rV6yyOPBzBMZTBh0uowh3UoA4UHuEZXuHNUc6L8+58zFtzTjZzCH/gfP4AsU6OjA==</latexit>

g(Gt+1)
<latexit sha1_base64="sS+Jrcs56Azz5/FMuqVkwd7Xqr0=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BItQEUpSBT0WPeixgv3ANpTNdtMu3WzC7kQoof/CiwdFvPpvvPlv3LY5aOuDgcd7M8zM82PBNTrOt5VbWV1b38hvFra2d3b3ivsHTR0lirIGjUSk2j7RTHDJGshRsHasGAl9wVr+6Gbqt56Y0jySDziOmReSgeQBpwSN9Dgo3/ZSPHMnp71iyak4M9jLxM1ICTLUe8Wvbj+iScgkUkG07rhOjF5KFHIq2KTQTTSLCR2RAesYKknItJfOLp7YJ0bp20GkTEm0Z+rviZSEWo9D33SGBId60ZuK/3mdBIMrL+UyTpBJOl8UJMLGyJ6+b/e5YhTF2BBCFTe32nRIFKFoQiqYENzFl5dJs1pxzyvV+4tS7TqLIw9HcAxlcOESanAHdWgABQnP8ApvlrZerHfrY96as7KZQ/gD6/MHUoaQCA==</latexit>

⌧(Gt+1)
<latexit sha1_base64="gFMuqxI077l4P6Y9ICUjypqzN84=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYBAiQtiNgh6DHvQYwTwgWcLsZDYZMvtwpjcQlnyHFw+KePVjvPk3TpI9aGJBQ1HVTXeXF0uh0ba/rZXVtfWNzdxWfntnd2+/cHDY0FGiGK+zSEaq5VHNpQh5HQVK3ooVp4EnedMb3k795ogrLaLwEccxdwPaD4UvGEUjuR2kSemum+K5MznrFop22Z6BLBMnI0XIUOsWvjq9iCUBD5FJqnXbsWN0U6pQMMkn+U6ieUzZkPZ529CQBly76ezoCTk1So/4kTIVIpmpvydSGmg9DjzTGVAc6EVvKv7ntRP0r91UhHGCPGTzRX4iCUZkmgDpCcUZyrEhlClhbiVsQBVlaHLKmxCcxZeXSaNSdi7KlYfLYvUmiyMHx3ACJXDgCqpwDzWoA4MneIZXeLNG1ov1bn3MW1esbOYI/sD6/AGynJFl</latexit>

⌧(Gt)
<latexit sha1_base64="dwYMXUvH8NuEy35xTtICyZzQgUU=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYhDiJexGQY9BD3qMYB6SLGF2MpsMmZldZnqFEPIVXjwo4tXP8ebfOEn2oIkFDUVVN91dYSK4Qc/7dlZW19Y3NnNb+e2d3b39wsFhw8SppqxOYxHrVkgME1yxOnIUrJVoRmQoWDMc3kz95hPThsfqAUcJCyTpKx5xStBKjx0kaem2i2fdQtErezO4y8TPSBEy1LqFr04vpqlkCqkgxrR9L8FgTDRyKtgk30kNSwgdkj5rW6qIZCYYzw6euKdW6blRrG0pdGfq74kxkcaMZGg7JcGBWfSm4n9eO8XoKhhzlaTIFJ0vilLhYuxOv3d7XDOKYmQJoZrbW106IJpQtBnlbQj+4svLpFEp++flyv1FsXqdxZGDYziBEvhwCVW4gxrUgYKEZ3iFN0c7L8678zFvXXGymSP4A+fzBwxfj+k=</latexit>

 (g(Gt))
<latexit sha1_base64="orglvp+bmLYAPSDph/R8IKaod7w=">AAAB83icbVBNSwMxEJ31s9avqkcvwSK0l7JbBT0WPeixgv2A7lKyabYNzWZDkhXK0r/hxYMiXv0z3vw3pu0etPXBwOO9GWbmhZIzbVz321lb39jc2i7sFHf39g8OS0fHbZ2kitAWSXiiuiHWlDNBW4YZTrtSURyHnHbC8e3M7zxRpVkiHs1E0iDGQ8EiRrCxku9LzSrDyl3fVKv9UtmtuXOgVeLlpAw5mv3Slz9ISBpTYQjHWvc8V5ogw8owwum06KeaSkzGeEh7lgocUx1k85un6NwqAxQlypYwaK7+nshwrPUkDm1njM1IL3sz8T+vl5roOsiYkKmhgiwWRSlHJkGzANCAKUoMn1iCiWL2VkRGWGFibExFG4K3/PIqaddr3kWt/nBZbtzkcRTgFM6gAh5cQQPuoQktICDhGV7hzUmdF+fd+Vi0rjn5zAn8gfP5A58xkME=</latexit>

 (g(Gt+1))
<latexit sha1_base64="N18yNmRZAvHuSUaZG3pZjWpX5ks=">AAAB+XicbVBNS8NAEJ3Ur1q/oh69LBahRShJFfRY9KDHCtYW2hA22027dLMJu5tCCf0nXjwo4tV/4s1/47bNQVsfDDzem2FmXpBwprTjfFuFtfWNza3idmlnd2//wD48elJxKgltkZjHshNgRTkTtKWZ5rSTSIqjgNN2MLqd+e0xlYrF4lFPEupFeCBYyAjWRvJtu5coVhlU7vxMn7vTatW3y07NmQOtEjcnZcjR9O2vXj8maUSFJhwr1XWdRHsZlpoRTqelXqpogskID2jXUIEjqrxsfvkUnRmlj8JYmhIazdXfExmOlJpEgemMsB6qZW8m/ud1Ux1eexkTSaqpIItFYcqRjtEsBtRnkhLNJ4ZgIpm5FZEhlphoE1bJhOAuv7xKnuo196JWf7gsN27yOIpwAqdQAReuoAH30IQWEBjDM7zCm5VZL9a79bFoLVj5zDH8gfX5A8EBkm4=</latexit>

�
<latexit sha1_base64="U7EeqmYiKeTo/r/N2HofpG7Xero=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lqQY9FLx4r2A9oQ9lsN83S3U3Y3Qgl9C948aCIV/+QN/+NmzYHbX0w8Hhvhpl5QcKZNq777ZQ2Nre2d8q7lb39g8Oj6vFJV8epIrRDYh6rfoA15UzSjmGG036iKBYBp71gepf7vSeqNIvlo5kl1Bd4IlnICDa5NEwiNqrW3Lq7AFonXkFqUKA9qn4NxzFJBZWGcKz1wHMT42dYGUY4nVeGqaYJJlM8oQNLJRZU+9ni1jm6sMoYhbGyJQ1aqL8nMiy0nonAdgpsIr3q5eJ/3iA14Y2fMZmkhkqyXBSmHJkY5Y+jMVOUGD6zBBPF7K2IRFhhYmw8FRuCt/ryOuk26t5VvfHQrLVuizjKcAbncAkeXEML7qENHSAQwTO8wpsjnBfn3flYtpacYuYU/sD5/AEU1o5D</latexit>

Gt
<latexit sha1_base64="PkvxSbIJAC9+r2/QYT+PqTqc0Ag=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj0oMeK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGN1O/9cS1EbF6xHHC/YgOlAgFo2ilh9se9kplt+LOQJaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzySbGbGp5QNqID3rFU0YgbP5udOiGnVumTMNa2FJKZ+nsio5Ex4yiwnRHFoVn0puJ/XifF8MrPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2naEPwFl9eJs1qxTuvVO8vyrXrPI4CHMMJnIEHl1CDO6hDAxgM4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AEn5I22</latexit>

Gt+1
<latexit sha1_base64="xZKi2Jx3gxlB22TvJzSmIZYVx14=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSIIQkmqoMeiBz1WsB/QhrLZbtqlm03YnQgl9Ed48aCIV3+PN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dlZW19Y3Ngtbxe2d3b390sFh08SpZrzBYhnrdkANl0LxBgqUvJ1oTqNA8lYwup36rSeujYjVI44T7kd0oEQoGEUrte56GZ57k16p7FbcGcgy8XJShhz1Xumr249ZGnGFTFJjOp6boJ9RjYJJPil2U8MTykZ0wDuWKhpx42ezcyfk1Cp9EsbalkIyU39PZDQyZhwFtjOiODSL3lT8z+ukGF77mVBJilyx+aIwlQRjMv2d9IXmDOXYEsq0sLcSNqSaMrQJFW0I3uLLy6RZrXgXlerDZbl2k8dRgGM4gTPw4ApqcA91aACDETzDK7w5ifPivDsf89YVJ585gj9wPn8AxWWPMg==</latexit>

�
<latexit sha1_base64="U7EeqmYiKeTo/r/N2HofpG7Xero=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lqQY9FLx4r2A9oQ9lsN83S3U3Y3Qgl9C948aCIV/+QN/+NmzYHbX0w8Hhvhpl5QcKZNq777ZQ2Nre2d8q7lb39g8Oj6vFJV8epIrRDYh6rfoA15UzSjmGG036iKBYBp71gepf7vSeqNIvlo5kl1Bd4IlnICDa5NEwiNqrW3Lq7AFonXkFqUKA9qn4NxzFJBZWGcKz1wHMT42dYGUY4nVeGqaYJJlM8oQNLJRZU+9ni1jm6sMoYhbGyJQ1aqL8nMiy0nonAdgpsIr3q5eJ/3iA14Y2fMZmkhkqyXBSmHJkY5Y+jMVOUGD6zBBPF7K2IRFhhYmw8FRuCt/ryOuk26t5VvfHQrLVuizjKcAbncAkeXEML7qENHSAQwTO8wpsjnBfn3flYtpacYuYU/sD5/AEU1o5D</latexit>

!
<latexit sha1_base64="vJB2IXpkSYCNVVbXv6gbuAuTdDM=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHoxWME84BkCbOT2WTIPJaZWSEs+QgvHhTx6vd482+cTfagiQUNRVU33V1Rwpmxvv/tra1vbG5tl3bKu3v7B4eVo+O2UakmtEUUV7obYUM5k7RlmeW0m2iKRcRpJ5rc5X7niWrDlHy004SGAo8kixnB1kmdvhJ0hMuDStWv+XOgVRIUpAoFmoPKV3+oSCqotIRjY3qBn9gww9oywums3E8NTTCZ4BHtOSqxoCbM5ufO0LlThihW2pW0aK7+nsiwMGYqItcpsB2bZS8X//N6qY1vwozJJLVUksWiOOXIKpT/joZMU2L51BFMNHO3IjLGGhPrEspDCJZfXiXtei24rNUfrqqN2yKOEpzCGVxAANfQgHtoQgsITOAZXuHNS7wX7937WLSuecXMCfyB9/kDx/qPMw==</latexit> !

<latexit sha1_base64="vJB2IXpkSYCNVVbXv6gbuAuTdDM=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHoxWME84BkCbOT2WTIPJaZWSEs+QgvHhTx6vd482+cTfagiQUNRVU33V1Rwpmxvv/tra1vbG5tl3bKu3v7B4eVo+O2UakmtEUUV7obYUM5k7RlmeW0m2iKRcRpJ5rc5X7niWrDlHy004SGAo8kixnB1kmdvhJ0hMuDStWv+XOgVRIUpAoFmoPKV3+oSCqotIRjY3qBn9gww9oywums3E8NTTCZ4BHtOSqxoCbM5ufO0LlThihW2pW0aK7+nsiwMGYqItcpsB2bZS8X//N6qY1vwozJJLVUksWiOOXIKpT/joZMU2L51BFMNHO3IjLGGhPrEspDCJZfXiXtei24rNUfrqqN2yKOEpzCGVxAANfQgHtoQgsITOAZXuHNS7wX7937WLSuecXMCfyB9/kDx/qPMw==</latexit>

Fig. 4: Comparison between fully- and partially-observable scenarios.
(a) Forward model for fully observable environments (Eqn. 3). (b) For
partially observable scenarios, we first map the observation to a latent space
using function τ(·), and then specify the forward dynamics over the latent
space using φ(·) as described in Eqn. 8. τ(·) consists of g(·) and ω(·),
where g(·) maps the observation to object-based representations, which are
then aggregated to a global representation using ω(·). A decoding function
ψ(·) maps the encoding back to the original observation space to ensure a
nontrivial encoding.

In practice, we add residual links [29] between adjacent
propagation steps that connect hli,t and hl−1i,t . This helps
address gradient vanishing and exploding problem, and
provides access to historical effects. The update rules become

elk,t = f lR(crk,t, h
l−1
uk,t

, hl−1vk,t
),

hli,t = f lO(coi,t,
∑
k∈Ni

elk,t, h
l−1
i,t ), (7)

where propagators f lO(·) and f lR(·) now take a new sets of
inputs, which is different from Vanilla PropNet.

Based on the assumption that the effects between prop-
agation steps can be represented as simple transformations
(e.g., identity-mapping in Newton’s cradle), we can use small
networks as function approximators for the propagators f lO(·)
and f lR(·) for better efficiency. We name this updated model
Propagation Networks (PropNet).

C. Partially Observable Scenarios

For many real-world situations, however, it is often hard
or impossible to estimate the full state of environments.
We extend Eqn. 3 using PropNets to handle such partially
observable cases by operating on a latent dynamics model:

τ(Gt+1) = φ(τ(Gt)), (8)



where τ(·) is an encoding function that maps the current
observation to a latent representation. As shown in Figure 4b,
τ(·) consists of two parts: first, PropNets g(·) that map the
current observation to object-centric representations; second,
ω(·) that aggregates the object-centric representations into
a fixed-dimensional global representation. We use a global
representation for partially observable cases, because the
number and set of observable objects vary over time, making
it hard to define object-centric dynamics. In fully observable
environments, τ(·) reduces to an identity mapping and the
dynamics is defined on the object level over the state space
(Eqn. 3 and Fig. 4a). To train such a latent dynamics model,
we seek to minimize the loss function: Lforward = ‖τ(Gt+1)−
φ(τ(Gt))‖2.

In practice, we use a small history window of length
Thistory for the state representation, i.e., the input to φ(·) is
the concatenation of τ(Gt), τ(Gt−1), ..., τ(Gt−Thistory+1).

Using the above loss alone leads to trivial solutions
such as φ(x) = τ(x) = 0 for any valid x. We tackle
this based on an intuitive idea: an ideal encoding function
τ(·) should be able to reserve information about the scene
observation. Hence, we use an aggregation function ω(·) that
has no learnable parameters like summation or average and
introduce a decoding function ψ(·) to ensure a nontrivial
τ(·) by minimizing an additional auto-encoder reconstruction
loss [30]: Lencode = ‖G−ψ(g(G))‖2, where ψ(·) is realized
as PropNets. The full model is shown in Figure 4b.

IV. CONTROL USING LEARNED DYNAMICS

Compared to model-free approaches, model-based methods
offer many advantages, such as generalization and sample
efficiency, as it can approximate the policy gradient or value
estimation without exhausted trials and errors.

However, an accurate model of the environment is often
hard to specify and brings significant computational costs for
even a single-step forward simulation. It would be desirable
to learn to approximate the underlying dynamics from data.

A learned dynamics model is naturally differentiable. Given
the model and a desired goal, we can perform forward
simulation, optimizing the control inputs by minimizing a
loss between simulated results and a goal. The model can
also estimate the uncertain attributes online by minimizing
the difference between predicted future and actual outcome.
Alg. 1 outlines our control algorithm, which provides a natural
testbed for evaluating the dynamics models.

a) Model predictive control using shooting methods:
Let Gg be our goal and û1:T be the control inputs (decision
variables), where T is the time horizon. These task-specific
control inputs are part of the dynamics graph. Typical
choices include observable objects’ initial velocity/position
and external forces/attributes on objects/relations. We denote
the graph encoding as Gτ = τ(G), and the resulting trajectory
after applying the control inputs as G = {Gτi }i=1:T . The
task here is to determine the control inputs by minimizing
the gap between the actual outcome and the specified goal
Lgoal(G,Gg).

Algorithm 1 Control on Learned Dynamics at Time Step t
Input: Learned forward dynamics model φ(·)

Predicted dynamics graph encoding Ĝτt
Current dynamics graph encoding Gτt
Goal Gg , current estimation of the attributes A
Current control inputs ût:T
States history Ḡ = {Gτi }i=1...t

Time horizon T
Output: Controls ût:T , predicted next time step Ĝτt+1

Update A by descending with the gradients
∇ALstate(Ĝ

τ
t , G

τ
t )

Forward simulation using the current graph encoding
Ĝτt+1 ← φ(Gτt )

Make a buffer for storing the simulation results
G ← Ḡ ∪ Ĝτt+1

for i = t+ 1, ..., T − 1 do
Forward simulation
Ĝτi+1 ← φ(Ĝτi ); G ← G ∪ Ĝτi+1

end for
Update ût:T by descending with the gradients
∇ût:T

Lgoal(G,Gg)

Return ût:T and Ĝτt+1 ← φ(Gτt )

Our propagation networks can do forward simulation by
taking the dynamics graph at time t as input, and produce
the graph at next time step, Ĝτt+1 = φ(Gτt ). Let’s denote the
forward simulation from time step t as Ĝ = {Ĝτi }i=t+1...T

and the history until time t as Ḡ = {Gτi }i=1...t. We can back-
propagate from the loss Lg(Ḡ ∪ Ĝ,Gg) and use stochastic
gradient descent (SGD) to update the control inputs. This is
known as the shooting method in trajectory optimization [31].

If the time horizon T is too long, the learned model might
deviate from the ground truth due to accumulated prediction
errors. Hence, we use Model-Predictive Control (MPC) [32]
to stabilize the trajectory by doing forward simulation at
every time step as a way to compensate the simulation error.

b) Online adaptation: In many situations, inherent
attributes such as masses, friction, and damping are not
directly observable. Instead, we can interact with the objects
and use PropNet to estimate these attributes online (denoted
as A) with SGD updates by minimizing the difference
between the predicted future states and the actual future
states Lstate(Ĝ

τ
t , G

τ
t ).

V. EXPERIMENTS

In this section, we evaluate the performance of our model
on both simulation and control in three scenarios: Newton’s
Cradle, Rope Manipulation, and Box Pushing. We also test
how the model generalizes to new scenarios and how it learns
to adapt online.

A. Physics Simulation

We aim to predict the future states of physical systems. We
first describe the network used across tasks and then present



the setup of each task as well as the experimental results.
a) Model architecture: For the IN baseline, we use the

same network as described in the original work [7]. For
Vanilla PropNet, we adopt similar network structure where
the relation propagator f lR(·)(1 ≤ l ≤ L) is an MLP with four
150-dim hidden layers and the object propagator f lO(·)(1 ≤
l ≤ L − 1) has one 100-dim hidden layer. Both output a
100-dim propagation vector. For fully observable scenarios,
fLO(·) has one 100-dim hidden layer and outputs a 2-dim
vector representing the velocity at the next time step. For
partially observable cases, fLO(·) outputs one 100-dim vector
as the latent representation.

For PropNet, we use an MLP with three 150-dim hidden
layers as the relation encoder f enc

R (·) and one 100-dim hidden
layer MLP as the object encoder f enc

O (·). Light-weight neural
networks are used for the propagators f lO(·) and f lR(·), both
of which only contain one 100-dim hidden layer.

b) Newton’s cradle: A typical Newton’s cradle consists
of a series of identically sized rigid balls suspended from a
frame. When one ball at the end is lifted and released, it strikes
the stationary balls. Forces will transmit through the stationary
balls and push the last ball upward immediately. In our fully
observable setup, the graph G of n balls has 2n objects
representing the balls and the corresponding fixed pinpoints
above the balls, as shown in Fig. 2a, where n = 5. There
will be 2n directed relations describing the rigid connections
between the fixed points and the balls. Collisions between
adjacent balls introduce another 2(n− 1) relations.

We generated 2,000 rollouts over 1,000 time steps, of which
85% of the rollouts are randomly chosen as the training set,
while the rest are held as the validation set. The model was
trained with a mini-batch of 32 using Adam optimizer [33]
with an initial learning rate of 1e-3. We reduce the learning
rate by 0.8 each time the validation error stops decreasing
for over 20 epochs.

Fig. 2a-c show some qualitative results, where we compare
IN and PropNet. IN cannot propagate the forces properly:
the rightmost ball starts to swing up before the first collision
happens. Quantitative results also show that our method
significantly outperforms IN in tracking object positions. For
1,000 forward steps, IN results in an MSE of 336.46, whereas
PropNet achieves an MSE of 7.85.

c) Rope manipulation: We then manipulate a particle-
based rope in a 2D plane using a spring-mass model, where
one end of the rope is fixed to a random point near the center
and the rest of the rope is free to move. Two circular obstacles
are placed at random positions near the rope and are fixed
to the ground. Random forces are applied to the masses on
the rope and the rope is moving in compliant with the forces.
More specifically, for a rope containing n particles, there will
be a total of n + 2 objects. Each pair of adjacent masses
will have spring relations connecting each other, resulting in
2(n− 1) directed edges in the dynamics graph G. Each mass
will have a collision relation with each fixed obstacle, which
adds to the graph another 4n edges. Frictional force applied
to each mass is modeled as a directed edge connecting the
mass itself.

We use the same network as described above and generate
5,000 rollouts over 100 time steps. Fig. 5a and Fig. 6a show
qualitative and quantitative results, respectively. We train the
models with a 15-dim rope and evaluated in situations where
the rope length can vary between 10 and 20. As can be seen
from the figures, although the length of the underlying force
propagation is fewer than Newton’s Cradle’s, our proposed
method can still track the ground truth much more accurately
and outperform IN by a large margin.

d) Box pushing: In this case, we are pushing a pile
of boxes forward (Fig. 5c). We place a camera at the top
of the scene, and only red boxes are observable. More
challengingly, the observable boxes are not tracked. Therefore,
the visibility of a specific box might change over time. The
vertices in the graph are then defined as the state of the
observable boxes and edges are defined as directional relations
connecting every pair of observable boxes. Specifically, if
there are n observable boxes, n(n−1) edges are automatically
generated. The dynamics function φ(·) then takes both the
scene representation and the action (i.e., position and velocity
of the pusher) as input to perform an implicit forward
simulation. As it is hard to explicitly evaluate a latent
dynamics model, we evaluate the downstream control tasks
instead.

e) Ablation studies: We also provide ablation studies on
how the number of propagation steps L influences the final
performance. Empirically, a larger L can model a longer
propagation path. They are however harder to train and
more likely to overfit the training set, often leading to poor
generalization. Fig. 6a and 6b show the ablation studies
regarding the choice of L. PropNet achieves a high accuracy
at L = 3, with a good trade-off between speed and accuracy.
Vanilla PropNet achieves its best accuracy at L = 2 but
generalizes less well as L increases further. This shows the
benefits of using the shared encoding and residual connections
used in PropNet, as described in Section III-B.2.

B. Control

We now evaluate the applicability of the learned model
on control tasks. We first describe the three tasks: Newton’s
Cradle, Rope Manipulation, and Box Pushing, which include
both open-loop and feedback continuous control tasks, as well
as fully and partially observable environments. We evaluate
the performance against various baselines and test its ability
on generalization and online adaptation.

a) Newton’s Cradle: In this scenario, we assume full-
state observation and a control task would be to determine the
initial angle of the left-most ball, so as to let the right-most
ball achieve a specific height, which can be solved with an
accurate forward simulation model.

This is an open-loop control task where we only have
control over the initial condition. We thus use a simplified
version of Alg. 1. Given the initial physics graph and a learned
dynamics model, we iteratively do forward simulation and
update the control inputs by minimizing the loss function
Lgoal(G,Gg). In this specific task, the loss Lgoal is the L2
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Fig. 5: Qualitative results on simulation and control. (a) Results on the planar rope simulation, where every mass on the rope has been applied a random
force and the rope is moving in the planar in compliant with the forces. Our model better matches the ground truth and suffers less from the drifting
problem as time horizon becomes longer. Here the transparent trajectories indicate the ground truth. (b) The rope manipulation task defines a continuous
control problem which is to achieve a specified goal configuration by applying forces to the top two masses on the free end of the rope. The applied forces
are visualized as yellow arrows and the goal configuration is shown as transparent. Note that instead of naively trying to match the top two masses (PD
control), our control method based on PropNet can achieve the goal configuration by exploring the rich dynamics of the rope. (c) The box pushing task
requires solving a control problem under partial observation (only red blocks are observable). The goal configuration is shown as transparent. Doing control
with our propagation networks achieves more accurate outcome than with an IN. Please also see the supplementary video.
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Fig. 6: Quantitative results on rope simulation. We vary the propagation
steps L between 2 to 4 for Vanilla PropNet and PropNet, which shows a
trade-off between accuracy and efficiency. When L = 1, both models reduce
to Interaction Networks (IN).

distance between the target height of the right-most ball and
the highest height that has been achieved in G.

We initialize the swing up angle as 45◦ and then optimize
the angle with a learning rate of 0.1 for 50 iterations using
Adam optimizer. We compare our model with IN. Qualitative
results are shown in Fig. 2e. Quantitatively, PropNet’s output
angle has an MSE of 3.08 from the ground truth initial angle,
while the MSE for interaction nets is 296.66.

b) Rope Manipulation: Here we define the task as to
move the rope to a target configuration, where the only
controls are the top two masses at the moving end of the rope
(Fig. 5b). The controller tries to match the target configuration
by “swinging” the rope, which requires to leverage the
dynamics of the rope. The loss Lgoal here is the L2 distance
between the resulting configuration and the goal configuration.

We first assume the attributes of the physics graph is known

Normal Bias Adapt Generalization
0

0.5

1

1.5

2

2.5

3

M
SE

DRL
IN
PropNet

(a) Rope Manipulation

Box Pushing
0

200

400

600

800

C
ha

m
fe

r 
D

is
ta

nc
e

(b) Box Pushing

Fig. 7: Quantitative results on control tasks. (a) For rope manipulation,
the algorithms attempt to match a specific configuration under situations
where the ground-truth attributes are known (“Normal”), where the value
of the attributes are unknown (“Bias”), where algorithms actively estimate
these attributes online (“Adapt”), and where ropes are of varied length
between 10 to 20 when the model is only trained on ropes of length 15
(“Genearlize”). DRL has the same performance for “Bias” and “Adapt” as
it is model-free; it requires a fixed length input, and thus cannot generalize
to ropes of a different length. (b) For box pushing, propagation networks
again outperforms the other methods.

(e.g., mass, friction, damping) and compare the performance
between Proportional-Derivative controller (PD) [34], Model-
free Deep Reinforcement Learning (Actor-Critic method
optimized with PPO [35] - DRL), as well as Interaction
Networks (IN) and Propagation Networks (PropNet) with
Alg. 1. Fig. 7 shows quantitative results, where bars marked
as “Normal” are the results in this task (a hand-tuned PD
controller has an MSE of 2.50). PropNet outperforms the
competing baselines. Fig. 5b shows a qualitative sample.
Compared with the PD controller, our method leverages the
dynamics and manages to match the target, instead of naively



matching the free end of the rope.
We then consider situations where some of the attributes are

unknown and can only be guessed before actually interacting
with the objects. We randomly add noise of 15% of the
original scale to the attributes as the initial guesses. The
“Bias” bars in Fig. 7 show that models trained with ground-
truth attributes will encounter performance drop when the
supplied attributes are not accurate. However, model-based
methods can do online adaptation using the actual output
from the environment as feedback to correct the attribute
estimation. By updating the estimated attributes over the first
20 steps of the time horizon with standard SGD, we can
improve the manipulation performance so as to catch up with
the situations where attributes are accurate (bars marked as
“Adapt” in Fig. 7).

We further test whether our model generalizes to new
scenarios, where the length of the rope is varied between 10
to 20. As can be seen in Fig. 7, our proposed method can
still achieve a good performance, even though the original
PropNet is only trained in situations with a fixed length 15
(PD has an MSE of 2.72 for generalization).

c) Box Pushing: In this case, we aim to push a pile
of boxes to a target configuration within a predefined time
horizon (Fig. 5c). We assume partial observation where
a camera is placed at the top of the scene, and we can
only observe the states of the boxes marked in red. The
model trained with partial observation is compared with two
baselines: DRL and IN. The loss function Lgoal used for MPC
is the L2 distance between the resulting scene encoding and
the target scene encoding.

We evaluate the performance by the Chamfer Distance
(CD) [36] between the observable boxes at the end of the
episode and the target configurations, where for each box in
each set, CD finds the nearest box in the other set, and sums
the distance up. The negative of the distance is used as the
reward for DRL. Fig. 5c and Fig. 7b show qualitative and
quantitative results, respectively. Our method outperforms the
baselines due to its explicit modeling of the dynamics and
its ability to handle multi-object interactions.

VI. CONCLUSION

We have presented propagation networks (PropNet), a
general learnable physics engine that outperforms the pre-
vious state-of-the-art with a large margin. We have also
demonstrated PropNet’s applicability in model-based control
under both fully and partially observable environments. With
propagation steps, PropNet can propagate the effects along
relations and model the dynamics of long-range interactions
within a single time step. We have also proposed to improve
PropNet’s efficiency by adding residual connections and
shared encoding.
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