
Planning and Control for Quadrotor Flight through
Cluttered Environments

by

Benoit Landry

B.S., Massachusetts Institute of Technology (2014)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2015

c○ Massachusetts Institute of Technology 2015. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 22, 2015

Certified by. .
Russ Tedrake

Associate Professor of Computer Science
Thesis Supervisor

Accepted by .
Albert R. Meyer

Chairman, Masters of Engineering Thesis Committee

2

Planning and Control for Quadrotor Flight through Cluttered

Environments

by

Benoit Landry

Submitted to the Department of Electrical Engineering and Computer Science
on May 22, 2015, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Previous demonstrations of autonomous quadrotor flight have typically been limited
to sparse environments due to the computational burden associated with planning
for a large number of obstacles. We hypothesized that it would be possible to do
efficient planning and robust execution in obstacle-dense environments using the novel
Iterative Regional Inflation by Semidefinite programming algorithm (IRIS), mixed-
integer semidefinite programs (MISDP), and model-based control approaches. Here,
we present experimental validation of this hypothesis using a small quadrotor in a
series of indoor environments including a cubic meter volume containing 20 interwoven
strings. We chose one of the smallest hardware platforms available on the market
(34g, 92mm rotor to rotor), allowing for these dense environments and explain how to
overcome the many system identification, state estimation, and control problems that
result from the small size of the platform and the complexity of the environments.

Thesis Supervisor: Russ Tedrake
Title: Associate Professor of Computer Science

3

4

Acknowledgments

I would like to thank my research advisor, Professor Russ Tedrake, for his generous

advice and for never doubting my ability to push results further. I would also like to

acknowledge Anirudha Majumdar for his constant guidance throughout the duration

of this project. There is no doubt that his support was critical in my success. I

would also like to thank Pete Florence, for his help modeling the quadrotor and for

his invaluable assistance in running the experiments. Pete’s insights on producing

appealing results and demonstrations can be seen in every element of this work. I

would finally like to thank Andy Barry, for sharing his infinite wisdom on hardware

and graduate school in general. Andy never hesitated to volunteer his own time

to help. Three o’clock coffee breaks with Ani, Pete and Andy kept me away from

common research pitfalls more often than I would probably like to acknowledge. I

would also like to thank the rest of our research group, who never ran out of ideas

when my inspiration was failing me.

A special thank you to Lyndsey, whose loving support was essential at every step

of the way. Lyndsey never failed to pick up the phone no matter how late my nights

in the lab would drag until. I never saw her put anything else than my best interest

at the heart of any advice she offered, often showing better understanding of myself

than I ever had.

Finally, I must thank my family Michel, Luce, Marianne, Simon-Pierre, Vanessa

and Liam. They will always have been the first ones to have shared my vision and

they have never stopped pushing me to realize it.

5

6

Contents

1 Introduction 17

1.1 Experiment Overview . 18

1.2 Related Work . 19

1.2.1 UAVs in Obstacle-Dense Environments 19

1.2.2 Planning Collision-Free Trajectories 20

1.2.3 Feedback Control for Path Following 21

2 Hardware 23

2.1 Crazyflie 2.0 . 23

2.1.1 Microcontrollers . 24

2.1.2 Inertial Measurement Unit (IMU) 25

2.1.3 Other On-Board Sensors . 25

2.1.4 Battery and Power . 25

2.1.5 Motors . 26

2.1.6 Propellers . 26

2.2 Radio . 26

2.3 Optical Tracking . 27

2.4 Marker Frame . 27

3 Software 29

3.1 Firmware . 29

3.2 Python Controller . 30

3.2.1 Main Thread . 31

7

3.2.2 Controller Thread . 31

3.2.3 Estimation Module . 31

3.2.4 Manual Commands . 31

3.3 Drake . 32

3.4 Crazy RealTime Protocol (CRTP) . 32

3.5 Lightweight Communication and Marshalling (LCM) 33

4 Modeling 35

4.1 Differentially Flat Quadrotor Model 35

4.2 System Identification . 36

5 Planning 41

5.1 Generating Convex Safe Regions . 41

5.2 Generating trajectories with an MISDP 43

6 State Estimation 47

6.1 Complementary Filter . 47

6.2 Extended Kalman Filter . 48

7 Controller 51

7.1 On-board Attitude Controller . 51

7.2 Software-Based Speed Controller . 52

7.3 TVLQR . 52

8 Results 55

8.1 Modeling Obstacle Fields . 55

8.2 Computing Trajectories and Feedback Controllers 56

8.3 Controller Tuning . 56

8.3.1 TVLQR Cost Function . 56

8.3.2 Trajectory Speed . 57

8.4 Experimental Results . 57

8.5 Discussion . 57

8

9 Conclusions and Future Work 67

9.1 Future Work . 67

9.2 Conclusion . 67

9

10

List of Figures

1-1 View from inside one of the obstacle-dense environments used in the

experiment. This one shows a cubic meter volume containing 20 inter-

woven strings. 19

1-2 IRIS used for footstep planning on the Atlas robot. The gray areas are

the safe regions computed by the algorithm. Image courtesy of Robin

Deits [6] . 21

2-1 The Crazyflie Nano Quadcopters by Bitcraze.se 24

2-2 The Crazyradio by Bitcraze.se . 27

2-3 CAD rendering of the polyoxymethylene frame used to hold the mark-

ers mounted on the Crazyflie. 28

3-1 Overview of the firmware architecture. 30

3-2 The CRTP header byte. 32

3-3 Overview of the software architecture. 33

4-1 The body frame used in the differentially flat model developed by [18].

z𝐵 points in the same direction as the propellers in the world frame. . 37

5-1 Example of the result of inflating obstacles of one of the environments.

The red faces are the inflated obstacles and the white ones the original

ones. The inflation then allows us to treat the quadrotor as being

dimensionless. 42

11

5-2 Example of a trajectory computed by IRIS and the MISDP formulated

in [4]. The yellow regions are the safe regions, the gray ones are obsta-

cles and the piecewise polynomial trajectory is shown in blue. Image

courtesy of Robin Deits [4] . 45

6-1 Estimated and real position of the quadrotor with simulated occlu-

sions of the position measurements. From the plot we observe that

our robustness to occlusions is much better in the 𝑥 and 𝑦 position

than in the vertical 𝑧 position, something most likely related to the

complementary filter we use. 50

8-1 The “forest” obstacle course: the trajectory planned by our planning

algorithm and the resulting trajectory described by the quadrotor ex-

ecuting it using our controller. We see that the tracking gets worse

when doing the more dynamic maneuvers. 58

8-2 The “forest” obstacle course: Showing here the 3D visualization of the

trajectory as well as the error of the position over time. 59

8-3 The obstacle course with “walls”: the trajectory planned by our plan-

ning algorithm and the resulting trajectory described by the quadrotor

executing it using our controller. Once again the rapid turns are much

harder to track than the more linear motions. 60

8-4 The obstacle course with “walls”: the trajectory planned by our plan-

ning algorithm and the resulting trajectory described by the quadrotor

executing it using our controller. Notice the convergence to the planned

trajectory even though there was a large error in the initial conditions. 61

8-5 The obstacle course with 11 pipes: the trajectory planned by our plan-

ning algorithm and the resulting trajectory described by the quadrotor

executing it using our controller. The first turn was extremely dynamic

and difficult to track, but the tracking converged later. 62

12

8-6 The obstacle course with 11 pipes: the trajectory planned by our plan-

ning algorithm and the resulting trajectory described by the quadrotor

executing it using our controller. 63

8-7 The obstacle course with strings: the trajectory planned by our plan-

ning algorithm and the resulting trajectory described by the quadrotor

executing it using our controller. The first figure only shows the be-

ginning of the trajectory. 64

8-8 The obstacle course with strings: the full trajectory was made by con-

catenating shorter trajectories. 65

13

14

List of Tables

4.1 The parameters identified with our approach for the Crazyflie. 39

15

16

Chapter 1

Introduction

The quadrotor is quickly becoming one of the canonical systems of modern robotics.

It supports a wide range of payloads and offers the type of underactuated system that

is still manageable for a lot of well-established linear control approaches. Moreover,

advances in research have brought the quadrotor to a level of usability that makes it

increasingly attractive for commercial applications like surveying and delivery. De-

spite these advances, the quadrotor still suffers from a variety of shortcomings that

roboticists will need to overcome in order to get the platform to truly be a viable

option for real-world applications. For example, flight times, usually in the order

of minutes, are still too short to allow quadrotors to be effective delivery vehicles.

Quadrotors, highly dynamic systems, also have fairly low reliability, something that

can lead to spectacular failures. Quadrotors and small helicopters can be dangerous

machines when hovering over crowded areas. These risks may be mitigated in part

by increasing the robustness and efficiency with which they may detect and avoid

obstacles.

A few algorithms have been put forward in order to enable quadrotors to fly

through crowded environments. The most successful ones of those often require an

exponential increase in planning time with respect to the number of obstacles. For

example, by introducing an integer variable for each face of obstacles in the environ-

ment. Most of these algorithms therefore start to perform poorly as the number of

obstacles are increased beyond a modest handful of obstacles.

17

Recently, it has been suggested that the challenges of increasing obstacle density

may be overcome by the novel Iterative Regional Inflation by semidifinite program-

ming algorithm (IRIS). Rather than enumerate the obstacles, the algorithm performs

convex segmentation of free space by seeding it with polytopes enclosing an obstacle

free ellipsoid that is iteratively grown. This approach is only limited by the mixed-

integer program that is then used to plan a trajectory through the polytopes, and

not by the number of obstacles. Hence, it can produce trajectories in environments

containing many more obstacles than was previously demonstrated.

We hypothesized that it would be possible to fly a small quadrotor through envi-

ronments containing greater number of obstacles than ever demonstrated before by

leveraging IRIS, MISDPs, and model-based control approaches. Here we present ex-

perimental validation of this hypothesis. We choose one of the smallest platforms on

the market (34g, 92mm rotor to rotor) allowing for even more dense environments and

show how to overcome the other system identification, state estimation and control

problems that result from the small platform and the crowded environments.

1.1 Experiment Overview

The goal of the proposed experiment was to test our hypothesis that IRIS and a model-

based controller could fly a quadrotor in environments containing more obstacles than

previously demonstrated. The quadrotor was controlled by the off-board software

Drake and followed trajectories computed by IRIS and mixed-integer semidefinite

programs. The sensing was accomplished with Vicon sensors as well as an IMU

onboard the quadrotor. The exact location of the obstacles was given to the planner

ahead of time, as a set of convex hulls. The level of performance of the planning

algorithm was evaluated by looking at its ability to find collision-free trajectories in

real-world environments that contained more obstacles than previously demonstrated,

and the ability of the proposed control system to execute those trajectories.

18

Figure 1-1: View from inside one of the obstacle-dense environments used in the
experiment. This one shows a cubic meter volume containing 20 interwoven strings.

1.2 Related Work

1.2.1 UAVs in Obstacle-Dense Environments

There has been a few demonstrations of unmanned aerial vehicles (UAVs) maneuver-

ing in environments with obstacles. [20] showed quadrotors capable of flying through

small openings. [2] demonstrated an aircraft with rotating wings flying between two

poles closer to each other than the plane’s wingspan. [24] also demonstrated an

algorithm for planning trajectories indoors with a quadrotor.

Even though [24]’s approach has been shown capable of navigating indoors, none

of the model-based approaches have been demonstrated in overwhelmingly crowded

environments.

19

1.2.2 Planning Collision-Free Trajectories

Rapidly-Exploring Random Trees (RRT*)

The approach in [24] consists of running RRT* in the entire space where the quadrotor

might fly. The algorithm only expands the randomly-exploring tree with straight

trajectories in order to make its expansion more efficient. It therefore results in a

piece-wise linear collision-free trajectory. Finally, the algorithm computes a smooth

trajectory using a quadratic program between each node along the path returned by

RRT*.

Mixed-Integer Programs

[19] also demonstrated the use of mixed-integer quadratic programs in order to plan

collision-free trajectories. In this particular work, the integer variable enforces non-

penetration by making sure that the sampled location is on the collision-free side

of at least one of the faces of each obstacle. The approach worked well in practice,

but it suffered from having the number of integer variables grow rapidly with the

number of obstacles. Moreover the technique cannot guarantee to generate collision-

free trajectories between the sample points.

Differential Flatness

[18] is one of the most cited and first uses of differential flatness for planning with

quadrotors. In their experiments, they set a series of desired poses through hoops

and similar obstacles, and use a quadratic program to compute trajectories in the flat

output space between those poses. The method was used again in later experiments

[14]. An introduction to differential flatness is provided in section 4.1.

Iterative Regional Inflation by Semidefinite Programming (IRIS)

IRIS, our choice of algorithm for convex segmentation of free-space, has previously

been used in the context of footstep planning [6]. In this application, the algorithm

generates collision-free regions in the robot’s configuration space. A mixed-integer

20

Figure 1-2: IRIS used for footstep planning on the Atlas robot. The gray areas are
the safe regions computed by the algorithm. Image courtesy of Robin Deits [6]

program is then used to assign steps to each regions while simultaneously optimizing

the pose of the robot.

[4] then went on to demonstrate that we can formulate the problem of planning

minimum-snap collision-free trajectories as a mixed-integer semidefinite program by

using the obstacles-free regions returned by IRIS and by planning in differentially flat

space. This document in part aims to provide experimental demonstrations for these

results.

1.2.3 Feedback Control for Path Following

Flat Outputs PD Controller

[20] demonstrated a feedback controller inspired by the work of Hoffmann et al. [12].

In this approach, the controller computes the position error 𝑒𝑝 and the velocity error

of the quadrotor 𝑒𝑣 and then specifies the desired center of mass acceleration 𝑟𝑑𝑒𝑠

21

using those errors and feed-forward terms.

𝑟𝑑𝑒𝑠 = 𝑘𝑝𝑒𝑝 + 𝑘𝑑𝑒𝑣 + 𝑟𝑇 (�̂�) , (1.1)

where 𝑟𝑇 (�̂�) is the feed-forward term (the acceleration in the direction tangential to

the trajectory) for the current state �̂�. The resulting acceleration of the quadrotor’s

center of mass is then mapped to a desired roll and pitch that are stabilized by an

attitude controller.

Time-varying LQR

Finally, our own control strategy for the experiment, time-varying linear quadratic

regulator (TVLQR), has already been shown capable of tracking extremely dynamic

trajectories. For example, [2] demonstrated an aircraft with rotating wings executing

a knife-edge maneuver in order to fly between two poles without colliding with either

of them.

22

Chapter 2

Hardware

The proposed experiment uses the Crazyflie Nano Quadcopter. The development of

the Crazyflie started in 2009 as a side project by three employees of the Swedish

consulting company Epsilon AB. In 2010, a video showing the first prototype of

the Crazyflie was sent to the website Hackaday.com and received a lot of attention.

After the success of the video, the three creators of the Crazyflie decided to launch

Bitcraze AB, that eventually became Bitcraze.se, in order to finance the development

and manufacturing of the quadrotor. The version 1.0 was available during the first

months of the experiment. A second version of the Crazyflie became available in

December 2015. We started developing on the Crazyflie 1.0, but eventually switched

to the Crazyflie 2.0, since this last one was equiped with a higher energy capacity

battery, slightly larger motors and a better on-board micro-controller [1].

2.1 Crazyflie 2.0

The Crazyflie 2.0 is one of the smallest quadrotors available on the market. Its small

size and general safety makes it an ideal candidate for applications that require it to

fly near people. It measures 92mm from propeller to propeller and weighs 34g with

optical markers mounted on it. It has a flight time of around 5 minutes. The small

size of the Crazyflie presents many challenges in using it as a research platform. Its

small inertia requires controllers that can react with very little latency. Its payload

23

(a) Version 1.0 (b) Version 2.0

Figure 2-1: The Crazyflie Nano Quadcopters by Bitcraze.se

capacity is also limited, making it challenging to add additional sensors.

On the other hand, a great advantage of the Crazyflie is that all the software

produced by Bitcraze is fully open-source. This gives us complete control over the

firmware running on the quadrotor, the firmware running on the radio as well as

the client library running on the base-station. Bitcraze hosts all of its codebase on

Github. In the same spirit we distribute the entirety of our software on Github as

well1.

2.1.1 Microcontrollers

The Crazyflie 2.0 is equipped with two microcontrollers. The first one, an ARM

Cortex-M4 embedded processor (STM32F405), is used to run the main application.

The processor is a 32 bits architecture and can run at 168MHz. The ARM Cortex-M4

also has a floating point unit that support all ARM single-precision data-processing

instructions and data types [22]. The Crazyflie 2.0 also has a second microcontroller

to handle power management and the radio. That microprocessor is an ARM Cortex-

M0 (nRF51822) that runs at 32MHz [23]. This second microcontroller has Bluetooth

capability but it was not leveraged in this experiment due to lack of a library for it on

the client side as well as good reasons to believe it would provide poorer performance

1https://github.com/blandry/crazyflie-tools

24

than the Crazyradio USB dongle.

2.1.2 Inertial Measurement Unit (IMU)

The Crazyflie Nano Quadcopter is equipped with an IMU, the MPU-9250. The IMU

contains a 3-axis gyroscope and a 3-axis accelerometer [13]. The experimental setup

described here relies entirely on the IMU to get orientation measurements, both for

the on-board and off-board controllers. Note that these measurements are given in

the sensor frame, which is oriented in what is known as the “X” configuration with

its x-axis pointing between motor number 4 and 1. Since our models assume an x-

axis pointing toward motor 1, we rotate the measurements by 45∘ using a constant

rotation matrix before using them.

2.1.3 Other On-Board Sensors

The Crazyflie is also equipped with an on-board magnetometer as well as a barometer.

However the radio protocol limits the size of the packets being sent from the Crazyflie

to the Crazyradio to 29 bytes of payload. This corresponds to a maximum of 7 floating

point numbers on the ARM micro-controller, and therefore prevents us from sending

the entirety of the sensor measurements with each packet without cutting in half the

frequency at which the state estimator gets sensor updates.

2.1.4 Battery and Power

The battery used by the Crazyflie 2.0 is a single cell Lithium-Polymer (LiPo) battery.

This is the most popular type of battery in the R/C industry and provides the best

power to weight ratio. It supplies 3.7V and has a capacity of 240mAh. The battery

also comes with a Protection Circuit Module (PCM) attached to it that prevents the

user from under or over charging the battery or from shorting it2. The battery is

easily removable from the quadrotor so connectors were built for it so that they could

2http://wiki.bitcraze.se/projects:crazyflie:hardware:explained

25

be charged in parallel and reduce delay between experiments. The battery’s discharge

rate is 15C, which in theory should provide 4 minutes of continuous flight.

2.1.5 Motors

The Crazyflie 2.0 has four brushed DC motors. The motors are coreless which in

theory provides faster acceleration. They can produce 12000rpm per volt, with a

nominal voltage of 4.2V. Those numbers allow us to compute the theoretical maxi-

mal thrust that is predicted by the 𝑘𝐹 parameter we will describe later. The most

interesting point about the motors is that most quadrotors use brushless motors,

which use an electronic circuit to accurately regulate their speed with respect to the

input signal. The Crazyflie 2.0 motors are however not brushless, and are powered by

an unregulated power supply. Therefore higher motor speeds, requiring more torque

in order to fight the increasing air resistance and therefore more current, tend to make

the battery voltage drop. As we shall see later, this can be remedied with software

feedback.

2.1.6 Propellers

The propellers are conventional 45mm plastic propellers. They have a tendency to

bend during collisions and so experimenters should make sure they regularly change

the propellers for new ones in order to give the controller optimal conditions.

2.2 Radio

The Crazyflie is equipped with a Nordic Semiconductor nRF51822 which handles

radio communication. The easiest way to communicate with the chip is to use the

Crazyradio. The Crazyradio is a USB dongle that integrates a Nordic Semiconductor

nRF24LU1+. The chips can communicate with each other over the 2.4GHz ISM

band. Both chips can be reprogrammed, although the nRF51822 on the Crazyflie

requires a JTAG connector, while the nRF24LU1+ can be reprogrammed over USB.

26

Figure 2-2: The Crazyradio by Bitcraze.se

The radios can be run at up to 2Mbs.

2.3 Optical Tracking

Our experimental setup contains both on-board and off-board sensors. First, the

on-board gyroscope and accelerometer provide measurements that can be used to

estimate the state of the quadrotor. Second, an optical tracking system provides

additional information on the position of the quadrotor. Optical tracking has been

extensively used to perform similar experiments in the past. They are often considered

“ground truth” for these types of demonstrations.

The Vicon tracking system uses infrared cameras to localize small reflecting mark-

ers. The markers come in various sizes. The system used in the experiment runs at

120Hz. Even though Vicon provides both position and orientation measurements,

we found that its orientation measurements for the Crazyflie were very noisy, most

likely due to the small size of our platform, and we therefore opted for only using its

position measurement.

2.4 Marker Frame

Because of the size of the Crazyflie Nano Quadcopter, it was not possible to mount the

optical markers directly on the quadrotor and still have the optical tracking system

27

Figure 2-3: CAD rendering of the polyoxymethylene frame used to hold the markers
mounted on the Crazyflie.

distinguish between them. We therefore designed a simple frame that we laser-cut

out of polyoxymethylene. The frame weighs a total of 2.7g and greatly improves our

ability to track the quadrotor.

28

Chapter 3

Software

3.1 Firmware

The Crazyflie Nano Quadcopter firmware is based on FreeRTOS, an open source real-

time operating system. The firmware currently distributed with the Crazyflie runs a

variety of services called “tasks”. Commands are usually sent to the quadrotor using

the Crazy RealTime Protocol (CRTP) described below and an internal proportional

integral derivative (PID) controller stabilizes the desired Euler angles contained in

the commands. This firmware has been modified for the purpose of this experiment.

We do not actually use any of the controller software distributed with the Crazyflie.

The software on both the nRF51822 and the STM32F405 is modifiable. However

only the firmware of the main micro controller (STM32F405) was modified for the

experiment. The firmware was modified to optimize two tasks: the forwarding of the

latest control inputs to the actuators and of the measurements to the base station.

Like in the original firmware, the nRF51822 controls the antenna and does not process

any of the incoming or outgoing data. Instead it forwards it to the STM32F405 using

the serial communication between the two. The Syslink task in the STM32F405

then builds packets from the incoming data stream. In order to reduce the latency

in the control loop, the Syslink task then immediately checks if the packet contains

control input (desired euler angles and angular velocities) or sensor requests. If it

contains control inputs, it simply updates the memory location where the Offboardctrl

29

nRF51822

IMU

Motors

Battery

STM32F405

I2C

PWM
UART

Volts

2.4GHz

(ISM)

Figure 3-1: Overview of the firmware architecture.

task looks for desired euler angles and angular velocities. On its next iteration, the

Offboardctrl task will use these desired values to compute motor commands using a

simple PD controller. If instead the packet is an empty packet received on the sensor

channel (a sensor request), then it reads the memory location where the Offboardctrl

stores the last IMU measurements, makes a packet and sends it back on the UART.

Finally if the packet is neither of those, it proceeds with the original communication

scheme by putting it in the delivery queue of the Crtp task for later dispatching to the

appropriate task. Prioritizing packets related to sensors and actuator inputs prevents

build-up in the firmware queues. It also always favors the most recent control signals,

disregarding ones that have not made it through the controller or the actuators yet

if needed.

3.2 Python Controller

Bitcraze distributes an open-source Python library that allows users to develop their

own client applications. The library provides simple calls to the USB radio that can

be sent to the Crazyflie. It also allows the user to define callbacks for received data

from the quadrotor. The library was modified to improve its performance in the

context of our experiment. We used the modified library to write a multi-threaded

Python controller that runs on the base station.

30

3.2.1 Main Thread

The main thread takes care of synchronizing the different components of the control

system. It launches the state estimator and the controller. It then only manages the

communication loop. The communication loop consists of requesting sensor measure-

ments, receiving those measurements, forwarding those measurements to the state

estimator and getting the latest state estimate, then requesting control inputs for

that estimate and finally forwarding them to the quadrotor.

3.2.2 Controller Thread

The controller thread either computes control inputs from a state estimate and a

time-invariant linear controller, or keeps track of the latest control inputs sent by

Drake over an LCM channel. When using the control inputs sent by Drake, the main

thread attempts to minimize the delay between the time the latest state estimate

was published on the LCM channel Drake is listening to and the time a control input

is recovered from the controller thread. This is accomplished by pausing the main

thread with a lock immediately after it broadcasts the state estimate, and having

the controller thread unpause it by removing the lock as soon as it receives a control

input from Drake over LCM.

3.2.3 Estimation Module

The state estimator was implemented as its own separate module that contains both

python and C code. The state estimator receives Vicon measurements over an LCM

channel and IMU measurements from the main thread running the communication

loop. It combines them using a low pass filter, a complementary filter and an extended

Kalman filter.

3.2.4 Manual Commands

Several experiments required us to send arbitrary inputs to the quadrotors. Therefore

we also implemented a simple client that allows us to send manual commands, like

31

 7 6 5 4 3 2 1 0

+----+----+----+----+----+----+----+----+

 | Port | Link | Chan. |

+----+----+----+----+----+----+----+----+

Figure 3-2: The CRTP header byte.

switching from LQR stabilization to time-varying LQR at the push of a button, from

a USB board called the nanoKONTROL.

3.3 Drake

Drake is a robotics toolbox developed by our research group implemented in MATLAB

and C++ [26]. The package allows us to implement a model of the quadrotor using

the Unified Robot Description Format (URDF). It also allows us to easily compute

and run (over LCM) various controllers like the time-varying LQR demonstrated in

this experiment.

3.4 Crazy RealTime Protocol (CRTP)

One can communicate with the Crazyflie using the Crazy RealTime Protocol (CRTP).

A CRTP packet contains one header byte and 29 bytes of payload. The header

contains three fields. The first one, the port, specifies what application the packet

is directed to. The second field, the link, is currently unused. Finally the channel

field is used to specify sub-task or functionality. Currently, both the up and down

link use this protocol. However the down link is created by adding a payload to each

acknowledgment expected by the radio. This, along with the limited size of the CRTP

packets, are the main challenges in the use of the protocol 1.

1https://wiki.bitcraze.io/projects:crazyflie:crtp

32

IMU

PD Controller

Optical Tracking
Extended Kalman FilterComplementary Filter

Main

 Thread

Controller

Drake

(TVLQR Only)

MOTOR 1

MOTOR 2

MOTOR 3

MOTOR 4

State Estimator

Base Station Quadrotor

Figure 3-3: Overview of the software architecture.

3.5 Lightweight Communication and Marshalling (LCM)

We opted for the Lightweight Communication and Marshalling (LCM) package in

order to link the different components of our control system. LCM allows the user

to define different message types and pass them seamlessly over a network by either

publishing or subscribing to specific channels.

33

34

Chapter 4

Modeling

4.1 Differentially Flat Quadrotor Model

Differentially flat systems were first introduced in 1992 by Fliess and al. [8]. Generally,

a system is said to be flat if there exists a set of output, in equal number to the number

of inputs, such that all the states of the system can be computed from these outputs

(without integration). Once flat outputs are identified, it is possible to generate plans

in the flat output space only, and extract the corresponding full-state trajectory at a

later stage.

Planning in the flat output space also has limitations. For example, differential

flatness alone does not guarantee that one can follow arbitrary trajectories in output

space. For example, the system 4.1 proposed by Nieuwstadt [27] has the flat output

𝑥2, but it does not allow trajectories with a negative �̇�2.

�̇�1 = 𝑢,

�̇�2 = 𝑥21.
(4.1)

Even though our IRIS segmentation is agnostic to the plant model, the mixed-

integer semidefinite program does require it to be differentially flat. We therefore use

the differentially flat quadrotor model introduced in [18] also used by others [24]. The

model consists of a single floating rigid body and four inputs. We define the inputs

35

as the square of the angular velocities 𝜔2 of the motors on the quadrotor. A spinning

propeller produces two forces on the quadrotor, namely lift and drag. Those forces are

directly proportional to 𝜔2. Each input 𝜔2
𝑖 can therefore be said to produce a certain

linear force 𝐹𝑖 on the center of mass as well as to create a moment 𝑀𝑖 according to

𝐹𝑖 = 𝑘𝑓𝜔
2
𝑖 , (4.2)

𝑀𝑖 = 𝑘𝑚𝜔
2
𝑖 . (4.3)

We can then write the dynamics of the quadrotor:

𝑚𝑟 = 𝑚𝑔z𝑊 +

(︃
4∑︁

𝑖=1

𝐹𝑖

)︃
z𝐵, (4.4)

�̇� = 𝐼−1

⎛⎜⎜⎜⎜⎜⎜⎝−𝜔 × 𝐼𝜔 +

⎡⎢⎢⎢⎣
0 𝑘𝑓𝐿 0 −𝑘𝑓𝐿

−𝑘𝑓𝐿 0 𝑘𝑓𝐿 0

𝑘𝑚 −𝑘𝑚 𝑘𝑚 −𝑘𝑚

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣
𝜔2
1

𝜔2
2

𝜔2
3

𝜔2
4

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠ , (4.5)

where 𝑚 is the mass of the quadrotor, 𝑟 is the acceleration of its center of mass,

z𝑊 is a unit vector in the direction of gravity, z𝐵 is a unit vector pointing in the

same direction as the propellers (in the world frame), 𝐼 is the inertia matrix of the

quadrotor, 𝐿 is the distance between each propeller and the center of mass of the

quadrotor, and 𝜔 is the angular velocity of the quadrotor in the body frame [24].

The flat outputs in this model are the positions 𝑥, 𝑦, 𝑧 and 𝜓 where 𝜓 is the yaw

of the quadrotor.

4.2 System Identification

The model described above requires the identification of certain parameters of the

Crazyflie. We solve the problem of parameter identification with a two step approach.

First, we directly or semi-directly measure each parameter of the model with a series

of simple experiments. Second, we log flight data for a series of maneuvers, and use

36

Figure 4-1: The body frame used in the differentially flat model developed by [18].
z𝐵 points in the same direction as the propellers in the world frame.

an optimization-based algorithm to adjust those parameters.

First, we made a detailed model of the quadrotor using SolidWorks and extracted

the inertia estimate from that model.

The 𝑘𝑓 parameter was then identified by measuring the thrust produced by the

quadrotor placed upside-down on a scale and fitting the corresponding parameter.

𝐹 = 𝑘𝑓 (𝜔2
1 + 𝜔2

2 + 𝜔2
3 + 𝜔2

4). (4.6)

Note that we had to add the controller described in section 7.2 to the quadrotor’s

firmware in order for this input model to work.

The 𝑘𝑚 parameter can then be measured by slowly increasing a pair of opposite

motors (motors spinning in the same direction) and measuring the resulting angular

velocities using the on-board gyroscope. This test is possible because the resulting

spinning motion of the quadrotor acts like a mechanical gyroscope stabilizing it with-

out the use of any feedback control. This enables us to perform long enough flights

(a few seconds) to acquire the needed data. We then differentiate the gyroscope rate,

37

filter it, and use the relationship below to fit the 𝑘𝑚 parameter.

𝑤2 := 𝜔2
2 + 𝜔2

4 − 𝜔2
1 − 𝜔2

3 ,(4.7)

𝐼𝑥𝑧�̇�𝑥 + 𝐼𝑥𝑦�̇�𝑦 + 𝐼𝑧𝑧�̇�𝑧 = 𝑘𝑚𝑤
2 − (𝐼𝑥𝑦𝜔𝑥 + 𝐼𝑦𝑦𝜔𝑦 + 𝐼𝑦𝑧𝜔𝑧) + 𝜔𝑦(𝐼𝑥𝑥𝜔𝑥 + 𝐼𝑥𝑦𝜔𝑦 + 𝐼𝑥𝑧𝜔𝑧),(4.8)

where 𝜔𝑥, 𝜔𝑦 and 𝜔𝑧 are the angular velocities of the quadrotor around 𝑥𝐵, 𝑦𝐵 and

𝑧𝐵 (the axes in the body frame).

The second step in our parameter identification approach is to log a series of

flights with the quadrotor and fit the resulting data by tuning the parameters of our

model. This can be done using MATLAB’s Grey-box system identification toolbox.

The initial guesses given to the algorithm are the ones measured as explained above.

Because the quadrotor is a highly unstable system, one of the challenges of this

second step is that it is hard to get long enough flights when using purely open-loop

trajectories. It is therefore tempting to use a simple controller like a PD controller

in order to extend the time we can acquire data to fit. However, adding a controller

can render some of the parameters unidentifieable [10].

Imagine that we were trying to perform system identification on the following

simple linear system:

ẋ = 𝐴x +𝐵u. (4.9)

The grey-box approach we are using could then be understood as trying to compute

the entries of 𝐴 and 𝐵 from data on the evolution of x and u over time. Now if we

use a linear feedback controller in order to stabilize the system, we end up with the

following system:

u = −𝐾x , (4.10)

ẋ = 𝐴x +𝐵(−𝐾x), (4.11)

ẋ = (𝐴−𝐵𝐾)x, (4.12)

ẋ = 𝐴x. (4.13)

Now even though we know 𝐾, we do not know any of the entries of 𝐵, and therefore

38

Parameter Value
𝐼𝑥𝑥 2.3951 · 10−5𝑘𝑔 ·𝑚2

𝐼𝑦𝑦 2.3951 · 10−5𝑘𝑔 ·𝑚2

𝐼𝑧𝑧 3.2347 · 10−5𝑘𝑔 ·𝑚2

𝐾𝑚 1.8580 · 10−5𝑁 ·𝑚 · 𝑠2
𝐾𝑓 0.005022𝑁 · 𝑠2

Table 4.1: The parameters identified with our approach for the Crazyflie.

cannot distinguish between 𝐴 and 𝐵 when identifying the entries of 𝐴. This is

referred to as loosing the system’s identifiabiliy. There has been substantial work in

identification of closed-loop systems [10, 9] that in some cases have even performed

better than some open-loop identification methods [11].

Our approach to this problem is therefore to use an open-loop control input that

also contains a stabilizing input. First we put a stabilizing controller around the plant.

Then we also send an additional open-loop input that pushes the system slightly out

of equilibrium:

𝑢 = −𝐾�̃�+ 𝑢0. (4.14)

This results in slightly unstable flights that generate the right amount of data for

the system identification algorithm. When fitting the data, we model the quadrotor

dynamics with the stabilizing controller inside the plant and only take the open-loop

component of that experiment as the actual input to the system. In our linear system

example from above, this would be equivalent to identifying the following system:

ẋ = (𝐴−𝐵𝐾)x +𝐵𝑢0. (4.15)

Note that we also take the delay of the control loop into account when running the

optimization by shifting the input tape by the appropriate number of time steps. This

value can be measured by placing motion capture markers on the propellers of the

quadrotor and computing the delay between a step input and the resulting velocity

of the propeller. In our case this resulted in a 28ms delay.

39

40

Chapter 5

Planning

We compute collision-free trajectories for the quadrotor prior to it flying through

the obstacle field using the work of Deits on convex segmentation of free space and

mixed-integer semidefinite programs [4]. The algorithm consists of first segmenting

space into convex polytopes that are obstacle-free. This step requires our obstacles

to be described as a set of convex hulls. The segmentation is done using the IRIS

algorithm. We then use a mixed-integer semidefinite program to assign a series of

polynomial trajectories to the polytopes in a way that both guarantees no collision

and that minimizes snap.

5.1 Generating Convex Safe Regions

First, we inflate the convex hulls representing the obstacles by moving each one of

their planes in the direction of their normal by an amount equal to the radius of the

quadrotor. This then allows us to treat the quadrotor as a dimensionless object for

the rest of the planning.

We compute convex regions of safe space using the software IRIS (Iterative Re-

gional Inflation by Semi-definite programming). IRIS solves the problem of segment-

ing 3D space into a set of convex regions through a series of convex optimizations.

More specifically, IRIS alternates between two optimizations. The first optimization

is a quadratic program that finds hyperplanes that separate a convex region of space

41

Figure 5-1: Example of the result of inflating obstacles of one of the environments.
The red faces are the inflated obstacles and the white ones the original ones. The
inflation then allows us to treat the quadrotor as being dimensionless.

from the obstacles. The second optimization is a semidefinite program that takes the

intersection of those hyperplanes, and finds an ellipsoid of maximum volume inscribed

inside those hyperplanes.

IRIS starts with an initial point 𝑞0 and a list of obstacles. In some applications,

IRIS has used a human operator in order to find those initial points. This had the

advantage of letting the operator define which regions of space should be used by the

robot and which ones should not [5]. Here we however leverage other work from Deits

that uses a simple heuristic in order to seed the ellipsoid. The heuristic separates the

space into a discrete grid, and computes the cell that is the farthest from any obstacles

or previously computed polytope. The output of IRIS is a set of “safe regions” than

can each be written as a set of hyperplanes:

𝑃 = {𝑥 | 𝐴𝑥 ≤ 𝑏}. (5.1)

42

5.2 Generating trajectories with an MISDP

We then to design a piecewise polynominal trajectory that goes from our start point

to our goal while staying inside the safe-regions returned by IRIS by following the

procedure described in [4]. As explained in section 4.1, we can plan these trajectories

by fixing the quadrotor yaw’s to zero and only consider 𝑥, 𝑦 and 𝑧. These trajectories

are given an arbitrary timespan between 0 and 1 that can later easily be scaled to

tune the velocity at which the quadrotor executes the trajectory. We parametrize

the trajectories using the coefficients of the picewise polynominal. We also constraint

the resulting trajectory to have continuous derivatives up to the (𝑑− 1)th derivative,

where 𝑑 is the degree of each polynomial piece.

We can write the assignment of polynomial pieces to convex regions of free space

with a matrix of binary variables, 𝐻 ∈ {0, 1}𝑅×𝑁 , where 𝑅 is the number of convex

regions and 𝑁 is the number of polynomial trajectory pieces. If 𝐻𝑟,𝑗 = 1, then poly-

nomial 𝑗 must be contained within region 𝑟. We then constraint that each polynomial

piece be fully contained in at least one region. This constraint can be represented as

a combination of linear 5.2 and semidefinite constraints for a polynomial of arbitrary

degree. The binary constraint can be written as

𝑅∑︁
𝑟=1

𝐻𝑟,𝑗 = 1 ∀𝑗 ∈ 1, . . . , 𝑁, (5.2)

and we can formulate the semidefinite constraint as sum of squares constraint. First

we define the polynomial 𝑗 as a linear combination of polynomial basis functions

𝜑1(𝑡), ..., 𝜑𝑑+1(𝑡).

𝑃𝑗(𝑡) =
𝑑+1∑︁
𝑘=1

𝐶𝑗,𝑘𝜑𝑘(𝑡) 𝑡 ∈ [0, 1], (5.3)

Therefore if 𝐻𝑟,𝑗 is set to 1, then the polynomial must be contained inside the safe

region 𝑟

𝐴𝑟𝑃𝑗(𝑡) ≤ 𝑏𝑟 ∀𝑡 ∈ [0, 1], (5.4)

43

or

𝐴𝑟

𝑑+1∑︁
𝑘=1

𝐶𝑗,𝑘𝜑𝑘(𝑡) ≤ 𝑏𝑟 ∀𝑡 ∈ [0, 1]. (5.5)

The constraint 5.5 can be written as 𝑚 constraints of the form

𝑎𝑇𝑟,𝑙

𝑑+1∑︁
𝑘=1

𝐶𝑗,𝑘𝜑𝑘(𝑡) ≤ 𝑏𝑟,𝑙 ∀𝑡 ∈ [0, 1], (5.6)

where

𝐴𝑟 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑎𝑇𝑟,1

𝑎𝑇𝑟,2
...

𝑎𝑇𝑟,𝑚

⎤⎥⎥⎥⎥⎥⎥⎦ and 𝑏 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑏𝑟,1

𝑏𝑟,2
...

𝑏𝑟,𝑚

⎤⎥⎥⎥⎥⎥⎥⎦ . (5.7)

By redistributing the terms in 5.6 in order to get

𝑑+1∑︁
𝑘=1

(𝑎𝑇𝑟,𝑙𝐶𝑗,𝑘)𝜑𝑘(𝑡) ≤ 𝑏𝑟,𝑙 ∀𝑡 ∈ [0, 1], (5.8)

with which we can now define 𝑞(𝑡)

𝑞(𝑡) := 𝑏𝑟,𝑙 −
𝑑+1∑︁
𝑘=1

(𝑎𝑇𝑟,𝑙𝐶𝑗,𝑘)𝜑𝑘(𝑡) ≥ 0 ∀𝑡 ∈ [0, 1], (5.9)

from which we can define our sum of square constraint since 𝑞(𝑡) ≥ 0 ∀𝑡 ∈ [0, 1] if

and only if 𝑞(𝑡) can be written as

𝑞(𝑡) =

⎧⎨⎩ 𝑡𝜎1(𝑡) + (1 − 𝑡)𝜎2(𝑡) if 𝑑 is odd

𝜎1(𝑡) + 𝑡(1 − 𝑡)𝜎2(𝑡) if 𝑑 is even
(5.10)

𝜎1(𝑡), 𝜎2(𝑡) are sums of squares (5.11)

We then use the same cost defined by [18], a quadratic cost function on the square

of the fourth derivative with respect to time (often called snap). If we are designing

a trajectory of degree 𝑑 ≤ 3, we use the squared norm of the 𝑑th derivative of the

44

Figure 5-2: Example of a trajectory computed by IRIS and the MISDP formulated
in [4]. The yellow regions are the safe regions, the gray ones are obstacles and the
piecewise polynomial trajectory is shown in blue. Image courtesy of Robin Deits [4]

polynomial.

The full trajectory optimization therefore becomes a mixed-integer semidefinite

program (MISDP), where the integer variables are the assignments to safe regions 𝐻𝑟,𝑗

and the semidefinite program finds minimum-snap polynomial trajectories in those

safe regions. Like in [4], we do not directly solve the MISDP because it tends to be

numerically unstable with our solver Mosek [21]. Instead we solve the problem of

degree 𝑑 = 3 which can be formulated as a mixed-integer second-order cone program

(MISOCP) and use the resulting integer solution as the integer solution of the degree-5

MISDP.

45

46

Chapter 6

State Estimation

We perform state estimation by fusing two different sources of sensor information:

position from the optical tracking system (𝑥, 𝑦 and 𝑧) and IMU readings (gyroscope

and accelerometer). Even though Vicon (our optical tracking system) could also pro-

vide a measurement of the orientation of the quadrotor, we found that the platform’s

small size tended to generate noisy measurements of its orientation. The IMU data

is passed through a nonlinear complementary filter to estimate the orientation of the

quadrotor. Then the roll, pitch, yaw, accelerometer readings and Vicon position mea-

surement are passed to an extended Kalman filter to produce final estimates of the

quadrotor’s position and velocity. It has not escaped our attention that the Kalman

filter would be capable of performing orientation estimation as well, but the overall

good performance and stability of the nonlinear complementary filter convinced us to

keep it as part of the control system. It also has the advantage of keeping the Kalman

filter very straightforward.

6.1 Complementary Filter

We use the filter already implemented in the Crazyflie Nano Quadcopter for the

onboard atittude estimation. We also modified the same implementation of the filter

by [15] in order to provide attitude estimates to the offboard controller. The filter is

based on Mahony’s work on complementary filters [16]. The idea is to compute an

47

error 𝑒𝑘 between the predicted acceleration due to gravity 𝛼𝑘 and 𝑎𝑘 the measured

one from the accelerometer in order to filter measurements and then integrate the

filtered angular velocities to get an attitude estimate 𝜃𝑘. The filter also applies an

integral feedback 𝐼𝑘.

𝜃−𝑘 = 𝜃𝑘−1 + (𝜔𝑘 + 𝐼𝑘−1)∆𝑡, (6.1)

𝑒𝑘 = 𝑎𝑘 − 𝛼𝑘−1, (6.2)

𝜃𝑘 = 𝜃−𝑘 +𝐾𝑝𝑒𝑘∆𝑡, (6.3)

𝐼𝑘 = 𝐼𝑘−1 +𝐾𝑖𝑒𝑘∆𝑡. (6.4)

6.2 Extended Kalman Filter

We modified the extended Kalman filter proposed by Bloesh et al. [3] in order to

estimate the quadrotor’s position and velocity. We first define the following states

𝑥 :=
[︁
𝑟 𝑣 𝑏𝑓

]︁
, (6.5)

where 𝑟 is the position of the center of mass of the quadrotor, 𝑣 is its velocity and

𝑏𝑓 is the bias of the accelerometer. We define the inputs to the filter to be the

current roll, pitch and yaw estimate and the last accelerometer measurement 𝑓 . Our

only measurement is the optical tracking 𝑟. After defining 𝐶 as the rotation matrix

corresponding to the orientation input (rotating vectors from the inertial into the

body coordinate frame), we can then write the predict dynamics as such:

𝑟𝑘+1 = 𝑟𝑘 + ∆𝑡𝑣𝑘 +
∆𝑡2

2
(𝐶𝑇

𝑘 𝑓𝑘 + 𝑔), (6.6)

𝑣𝑘+1 = 𝑣𝑘 + ∆𝑡(𝐶𝑇
𝑘 𝑓𝑘 + 𝑔), (6.7)

�̂�𝑓,𝑘+1 = �̂�𝑓,𝑘, (6.8)

48

with its Jacobian ⎡⎢⎢⎢⎣
𝐼 ∆𝑡𝐼 −Δ𝑡2

2
𝐶𝑇

𝑘

0 𝐼 −∆𝑡𝐶𝑇
𝑘

0 0 𝐼

⎤⎥⎥⎥⎦ . (6.9)

We also define the process covariance as such⎡⎢⎢⎢⎣
Δ𝑡3

3
𝑄𝑓 + Δ𝑡5

20
𝑄𝑏𝑓

Δ𝑡2

2
𝑄𝑓 + Δ𝑡4

8
𝑄𝑏𝑓 −Δ𝑡3

6
𝐶𝑇

𝑘 𝑄𝑏𝑓

Δ𝑡2

2
𝑄𝑓 + Δ𝑡4

8
𝑄𝑏𝑓 ∆𝑡𝑄𝑓 + Δ𝑡3

3
𝑄𝑏𝑓 −Δ𝑡2

2
𝐶𝑇

𝑘 𝑄𝑏𝑓

−Δ𝑡3

6
𝑄𝑏𝑓𝐶𝑘 −Δ𝑡2

2
𝑄𝑏𝑓𝐶𝑘 ∆𝑡𝑄𝑏𝑓

⎤⎥⎥⎥⎦ , (6.10)

where 𝑄𝑓 is the accelerometer covariance and 𝑄𝑏𝑓 is the covariance of the accelerom-

eter bias. We can measure 𝑄𝑓 by logging the measurement of the accelerometer for

with the quadrotor stationary for some time and measuring the covariance of that

signal. The covariance of the bias can be measured using the Allan Variance, but we

instead estimated it using published values for a similar accelerometer [7] and then

tuned it further manually.

The measurement covariance is in our case the covariance of the Vicon position

measurement, that once again can be simply computed from a log of measurements

with the quadrotor stationary.

It was important to us that the state estimator be capable of handling lack of

measurements from the optical tracking. We indeed predicted that dense enough

obstacles courses would sometimes hide the quadrotor from the cameras. Figure 6-1

shows our state estimator attempt at estimating the quadrotor’s position based solely

on orientation (the output of the complementary filter) and accelerometer measure-

ments. The gray areas show time-intervals where the state estimator was not sent any

optical tracking measurements. The measurements it would have otherwise received

are overlaid to show the quadrotor’s “true” position.

49

24 25 26 27 28 29 30
−2

−1

0

1

time (s)

x
 p

o
s
it
io

n
 (

m
)

Optical Tracking Occlusion

True Position

Position Estimate

24 25 26 27 28 29 30
−2

−1

0

1

time (s)

y
 p

o
s
it
io

n
 (

m
)

24 25 26 27 28 29 30
0

0.5

1

1.5

time (s)

z
 p

o
s
it
io

n
 (

m
)

Figure 6-1: Estimated and real position of the quadrotor with simulated occlusions
of the position measurements. From the plot we observe that our robustness to
occlusions is much better in the 𝑥 and 𝑦 position than in the vertical 𝑧 position,
something most likely related to the complementary filter we use.

50

Chapter 7

Controller

7.1 On-board Attitude Controller

We first hypothesized that it would possible for the entire controller to run off-board.

Even though we had a certain amount of success with that approach, we eventually

opted to add an on-board attitude controller. This controller has the advantage

of being able to run significantly faster because it does not suffer from the delay

introduced by the radio link.

The inputs to the on-board attitude controller are the desired Euler angles 𝜑𝑑𝑒𝑠,

𝜃𝑑𝑒𝑠, 𝜓𝑑𝑒𝑠 and a nominal squared angular velocity for the propellers 𝜔2
0. The attitude

controller first maps the nominal squared angular velocity to duty cycles for the

motors 𝑢𝐷,0 using the software-based speed controller described in 7.2. The on-board

attitude controller then computes the error between the current and desired Euler

angles 𝑒𝑟𝑝𝑦 and angular velocities 𝑒𝑤 and uses a linear PD controller to stabilize

them.

𝑢𝐷 = −𝐾

⎡⎣𝑒𝑟𝑝𝑦
𝑒𝑤

⎤⎦+ 𝑢𝐷,0, (7.1)

where 𝑢𝐷 is the input (duty cycles) actually sent to the physical hardware (the mo-

tors).

51

7.2 Software-Based Speed Controller

The model used for the planning defines inputs to the plant as being the square of

the velocity of the propellers 𝜔2. This is a reasonable input model for most quadro-

tors, because most of them use brushless motors that are actuated through speed

controllers. Speed controllers have an internal control system that takes as input the

desired velocity of the motor they control. However in our case, the Crazyflie Nano

Quadcopter uses DC motors and unregulated power. This means that the commands

sent to the physical motors, in the form of duty cycles 𝑢𝐷, do not always accurately re-

flect the resulting velocities they produce. We get around this complication by adding

feedback around the desired 𝜔2 for a motor using the measured battery voltage. This

effectively creates an approximation for a software-based speed controller.

𝑢𝐷 =
𝑉𝑚𝑎𝑥

𝑉𝑎𝑐𝑡𝑢𝑎𝑙
(
√︀
𝜔2 − 𝛽) + 𝛼. (7.2)

In this mapping, 𝑢𝐷 is the duty cycle sent to the hardware, 𝑉𝑚𝑎𝑥 is the nominal

voltage of the battery, 𝑉𝑎𝑐𝑡𝑢𝑎𝑙 is the current battery voltage, 𝛼 can be interpreted

as the minimum duty cycle that must be sent to the hardware in order to get any

angular velocity 𝜔 with the motors. Parameter 𝛽 then accounts for the fact that the

propellers start out at a certain non-zero velocity.

7.3 TVLQR

The mixed-integer semidefinite program provides us with a feasible trajectory in the

flat output space that avoids collisions with obstacles. We can then follow the well

documented steps to invert the flat output [18] and get a nominal trajectory x0(𝑡) in

52

the full 12-DOF state-space of the quadrotor

x :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥

𝑦

𝑧

𝜑

𝜃

𝜓

�̇�

�̇�

�̇�

�̇�

𝜃

�̇�

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (7.3)

where 𝑥, 𝑦, and 𝑧 are the quadrotor’s position and 𝜑, 𝜃, and 𝜓 the Euler angles

corresponding to its orientation. Inverting the flat outputs also gives us a desired

trajectory for the square of the speed of each propellers 𝜔2
0,𝑖(𝑡).

We then turn our attention to the task of stabilizing these trajectories using the

time-varying linear quadratic regulator [25]. First we augment the differentially flat

model used by the planning algorithm to take into account the on-board attitude

controller. This is done by simply adding a model of the on-board attitude controller

(a system that computes propeller square angular velocities from the error between

the current and desired euler angles and angular velocities of the quadrotor) and

connecting the output of that system to the input of the differentially flat model.

This does not create a state x that is different from the differentially flat model in

any way but it does generate a new input and therefore a new feed-forwad term 𝑢0(𝑡):

𝑢 :=
[︁
𝜑𝑑𝑒𝑠 𝜃𝑑𝑒𝑠 𝜓𝑑𝑒𝑠 𝜔x𝑑𝑒𝑠 𝜔y𝑑𝑒𝑠 𝜔z𝑑𝑒𝑠 𝜔0,𝑑𝑒𝑠

]︁
, (7.4)

where 𝜔0,𝑑𝑒𝑠 is a nominal squared velocity for all the propellers. Note that this last

53

input should be intuitive to anyone who has flown R/C aircraft because it often

corresponds to the throttle stick.

We then define the error dynamics x̄(𝑡) and �̄�(𝑡).

x̄(𝑡) = x(𝑡) − x0(𝑡), (7.5)

�̄�(𝑡) = 𝑢(𝑡) − 𝑢0(𝑡). (7.6)

We can then linearize the plant dynamics ẋ(𝑡) = 𝑓(x, 𝑢) around the nominal trajec-

tories and get the following error dynamics

˙̄x(𝑡) = 𝐴(𝑡)x̄(𝑡) +𝐵(𝑡)�̄�(𝑡). (7.7)

Now if we define the following quadratic cost on the tracking error

𝐽(x′, 𝑡′) =

∫︁ ∞

0

x̄𝑇 (𝑡)𝑄x̄(𝑡) + �̄�𝑇 (𝑡)𝑅�̄�(𝑡)𝑑𝑡,

𝑄 = 𝑄𝑇 ≥ 0, 𝑅 = 𝑅𝑇 > 0,x(𝑡) = x′(𝑡). (7.8)

It can then be shown that the optimal cost-to-go 𝐽* has the form

𝐽*(x̄, 𝑡) = x̄𝑇𝑆(𝑡)x̄, 𝑆(𝑡) = 𝑆𝑇 (𝑡) ≥ 0, (7.9)

where 𝑆(𝑡) is the solution to the differential algebraic Riccati equation:

−�̇� = 𝑄− 𝑆𝐵𝑅−1𝐵𝑇𝑆 + 𝑆𝐴+ 𝐴𝑇𝑆. (7.10)

Although the boundary condition on 𝑆(𝑡), i.e. the value of 𝑆(𝑡𝑓) where 𝑡𝑓 is the time

where the plant reaches the goal state, can be chosen along with the costs 𝑄 and 𝑅

to give the best tracking, or it can be made the same as the infinite-horizon cost if

the trajectory ends on a fixed point we want to stabilize.

The result is a time-varying controller 𝐾(𝑡) that takes the full state of the quadro-

tor as input and returns a control input to be sent to the on-board attitude controller.

54

Chapter 8

Results

In order to test our planning and control approach, we designed a series of obstacle

courses of increasing difficulty. First, a simple “forest” simulation, mimicking a series

of vertical obstacles. Then we experiment with a few vertical obstacles contained

between two “walls” that the quadrotor has to either go over or under. This is par-

ticularly challenging for our controller because it makes it easy for the quadrotor to

enter a vortex ring state as it travels downward and comes to a zero airspeed in order

to accelerate back up. The third course starts to increase the number of obstacles

with a total of 11 vertical and angled poles. Finally, an environment made of 6 poles

and 20 strings placed in various orientations is used to demonstrate the scalability of

our approach.

8.1 Modeling Obstacle Fields

Each obstacle field was built with either PVC pipes, plastic fencing or cotton strings.

We then measured the dimensions of each one of them and entered them in a file

using the Unified Robot Description Format (URDF). The URDF, along with Drake,

allows us to seamlessly extract convex hull representations of the resulting obstacle

fields.

55

8.2 Computing Trajectories and Feedback Controllers

We then inflate each obstacle by moving the faces of the convex hulls by an amount

equal to the radius of the quadrotor in the direction of their normal. This then allows

us to treat the quadrotor as being essentially dimensionless. In practice, we found

that this approach performed slightly better than the alternate one that requires the

polynomial trajectories to be a certain distance away from the planes of the safe

regions returned by IRIS. We then run IRIS over the obstacle field, also specifying

a bounding box limiting the space segmented by IRIS. This helps the mixed-integer

program run faster, but most importantly it makes sure that the quadrotor does not

simply fly around the obstacle fields. We can then run the mixed-integer semidefinite

program described in section 5.2, invert the flat outputs and compute a time-varying

LQR controller using Drake.

Computing trajectories for the four environments we experimented with usually

converged within a few minutes (less than 10) in agreement with the performance

shown in [4]. However the trajectory in the environment with the strings was built

by concatenating shorter trajectories that took more time to converge, and we simply

stopped the optimization after 20 minutes. By then the planner had found feasible

trajectories that satisfied all the constraints but the cost hadn’t converged within the

same tolerance as with the other environments.

8.3 Controller Tuning

8.3.1 TVLQR Cost Function

Even though we used a model-based approach, TVLQR still requires us to tune

gains through the quadratic cost functions 𝑄 and 𝑅. We tune those with a greedy

approach. First we set the 𝑅 matrix to a trivial cost (the identity) and then make

the cost associated with the other states very small. We then run a trajectory and

evaluate how well the quadrotor tracks it. Then one by one we increase the gains for

position, orientation, and their derivatives. Once we have increased each entry of the

56

diagonal of 𝑄, we fine tune it further by trial and error and general intuition about

the system.

8.3.2 Trajectory Speed

As described in chapter 5, our planning algorithm does not tie the resulting trajectory

to a specific velocity. We therefore tune the velocity of the trajectory by starting with

a very comfortable (making its execution time very long). We then slowly increase

the speed of the trajectory until the system stops tracking well enough or is simply

unable to follow it. We believe that a more analytical approach to this tuning could

benefit us greatly and suggest it as further work in section 9.1.

8.4 Experimental Results

Figures 8-1 to 8-8 show the results of running the controllers in the four environments.

A picture of each environment with the quadrotor flying through them is shown, along

with the resulting tracking of position over time. Then a 3D visualizer is used to show

the overlaid plan and resulting trajectories. Finally we plot the error of the tracking

for each environment.

8.5 Discussion

As it can be seen from the plots, IRIS, MISDPs and model-based control approaches

are indeed capable of flying a small quadrotor like the Crazyflie through environments

that are densely populated with obstacles, confirming our hypothesis. The number

of obstacles we used ranged from 5 to 26, all contained within a cubic meter volume

or so. The plots also show how our controller was capable of tracking the trajectories

with errors that did not deviate from the planned trajectories by more than 10cm or

so, and that were lower than that on average.

We found that the limitation of the planning algorithm lies in the number of

obstacle-free regions that can be handled efficiently by the mixed-integer program,

57

(a) Picture of the “forest” obstacle course.

0 0.5 1 1.5 2 2.5 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

time (s)

p
o

s
it
io

n
 (

m
)

x reference
y reference
z reference
x actual
y actual
z actual

(b) Position of the quadrotor over time.

Figure 8-1: The “forest” obstacle course: the trajectory planned by our planning
algorithm and the resulting trajectory described by the quadrotor executing it using
our controller. We see that the tracking gets worse when doing the more dynamic
maneuvers.

58

(a) Planned trajectory in blue and trajectory followed by the
quadrotor in green.

0 0.5 1 1.5 2 2.5 3
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

time (s)

e
rr

o
r

(m
)

x error

y error

z error

(b) Error of the tracking over time.

Figure 8-2: The “forest” obstacle course: Showing here the 3D visualization of the
trajectory as well as the error of the position over time.

59

(a) The obstacle course with “walls”.

0 1 2 3 4 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

time (s)

p
o

s
it
io

n
 (

m
)

x reference
y reference
z reference
x actual
y actual
z actual

(b) Position of the quadrotor over time.

Figure 8-3: The obstacle course with “walls”: the trajectory planned by our planning
algorithm and the resulting trajectory described by the quadrotor executing it using
our controller. Once again the rapid turns are much harder to track than the more
linear motions.

60

(a) Planned trajectory in blue and trajectory followed by the
quadrotor in green.

0 1 2 3 4 5
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

time (s)

e
rr

o
r

(m
)

x error

y error

z error

(b) Error of the tracking over time.

Figure 8-4: The obstacle course with “walls”: the trajectory planned by our planning
algorithm and the resulting trajectory described by the quadrotor executing it using
our controller. Notice the convergence to the planned trajectory even though there
was a large error in the initial conditions.

61

(a) The obstacle course with 11 pipes.

0 0.5 1 1.5 2 2.5 3 3.5
−1.5

−1

−0.5

0

0.5

1

1.5

time (s)

p
o

s
it
io

n
 (

m
)

x reference
y reference
z reference
x actual
y actual
z actual

(b) Position of the quadrotor over time.

Figure 8-5: The obstacle course with 11 pipes: the trajectory planned by our planning
algorithm and the resulting trajectory described by the quadrotor executing it using
our controller. The first turn was extremely dynamic and difficult to track, but the
tracking converged later.

62

(a) Planned trajectory in blue and trajectory followed by the
quadrotor in green.

0 0.5 1 1.5 2 2.5 3 3.5
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

time (s)

e
rr

o
r

(m
)

x error

y error

z error

(b) Error of the tracking over time.

Figure 8-6: The obstacle course with 11 pipes: the trajectory planned by our planning
algorithm and the resulting trajectory described by the quadrotor executing it using
our controller.

63

(a) The beginning of the obstacle course with strings

0 5 10 15 20 25
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

time (s)

p
o

s
it
io

n
 (

m
)

x reference
y reference
z reference
x actual
y actual
z actual

(b) Position of the quadrotor over time.

Figure 8-7: The obstacle course with strings: the trajectory planned by our planning
algorithm and the resulting trajectory described by the quadrotor executing it using
our controller. The first figure only shows the beginning of the trajectory.

64

(a) Planned trajectory in blue and trajectory followed by the
quadrotor in green.

0 5 10 15 20 25
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

time (s)

e
rr

o
r

(m
)

x error
y error
z error

(b) Error of the tracking over time.

Figure 8-8: The obstacle course with strings: the full trajectory was made by con-
catenating shorter trajectories.

65

although this limitation only appeared once we reached a significant number of ob-

stacles like with the environment containing the strings. In this case, we also found

that using the feasible but not necessarily optimal trajectory returned by the solver

was highly sufficient to complete the task.

We also unsurprisingly found that the quality of the tracking depended on the

speed at which we were planning it. This turned out to be more of a challenge than

expected, because there was no analytical way to compute a maximal velocity for a

given trajectory and controller.

We also found that TVLQR performed reasonably well for this task. However the

results give us good reasons to believe that time might not be the best dimension

to parameterize over. We believe that better performance could be produced by

transverse LQR, where the parameter would be the tangential velocity of the tracked

trajectory instead of time. This controller would be closer in spirit to what was

demonstrated in [20].

We also initially attempted to run the trajectories without the on-board attitude

controller (producing a completely off-board controller). Even though we were able

to track trajectories with a certain level of success with this approach, we found

that the on-board controller added a significant amount of stability to the system.

Indeed errors in roll and pitch quickly take the quadrotor into unstable states if the

control loop is not running quickly enough (at least around 100Hz in the case of the

Crazyflie).

66

Chapter 9

Conclusions and Future Work

9.1 Future Work

We found that the use of differential flatness, although numerically convenient, failed

to capture some of the limits of the system. For example, there was no way to include

the actuator limits in the planning stage, leaving us having to set the speed of the

trajectory mostly by trial and error. We have identified this as a potential area

for future work, and believe that parametric funnels [17] might provide the proper

framework for that improvement.

Finally, as the speed of the trajectories are increased, the quality of the tracking

given by the feedback controller inevitably went down. We believe that transverse

LQR could be a suitable alternative to time-varying LQR and allow us to push the

limits of our platform further. Finally, IRIS could also be used in various reactive

planning schemes that could be added to the demonstrated control system.

9.2 Conclusion

We demonstrated experimental validation of the algorithm originally proposed by

Deits to generate collision-free trajectories in obstacle-dense environments. This con-

firmed our hypothesis that it would be possible to fly a small quadrotor like the

Crazyflie through environments containing significantly more obstacles than demon-

67

strated in the past using IRIS, MISDPs and model-based control. The most cluttered

environment we flew the quadrotor through contained 26 obstacles in a cubic meter

volume and the quadrotor was able to follow a collision-free trajectory through it

within 10cm of precision.

68

Bibliography

[1] About bitcraze. Accessed: 2014-11-05.

[2] Andrew James Barry. Flying between obstacles with an autonomous knife-edge
maneuver. PhD thesis, Massachusetts Institute of Technology, 2012.

[3] Michael Bloesch, Marco Hutter, Mark A Hoepflinger, Stefan Leutenegger, Chris-
tian Gehring, C David Remy, and Roland Siegwart. State estimation for legged
robots-consistent fusion of leg kinematics and imu. Robotics, page 17, 2013.

[4] Robin Deits and Russ Tedrake. Efficient mixed-integer planning for uavs in
cluttered environments. 2014.

[5] Robin Deits and Russ Tedrake. Footstep planning on uneven terrain with mixed-
integer convex optimization. Technical report, DTIC Document, 2014.

[6] Robin LH Deits. Convex Segmentation and Mixed-Integer Footstep Planning for
a Walking Robot. PhD thesis, Massachusetts Institute of Technology, 2014.

[7] Naser El-Sheimy, Haiying Hou, and Xiaoji Niu. Analysis and modeling of in-
ertial sensors using allan variance. Instrumentation and Measurement, IEEE
Transactions on, 57(1):140–149, 2008.

[8] M Fliess, J Levine, P Martin, and P Rouchon. On differentially flat nonlinearsys-
tems. In Symposium on Nonlinear Control System Design, Bordeaux, France,
pages 159–163, 1992.

[9] Urban Forssell. Closed-loop identification: Methods, theory, and applications.
1999.

[10] Ivar Gustavsson, Lennart Ljung, and Torsten Söderström. Identification of
processes in closed loopâĂŤidentifiability and accuracy aspects. Automatica,
13(1):59–75, 1977.

[11] Håkan Hjalmarsson, Michel Gevers, and Franky De Bruyne. For model-based
control design, closed-loop identification gives better performance. Automatica,
32(12):1659–1673, 1996.

[12] Gabriel M Hoffmann, Steven L Waslander, and Claire J Tomlin. Quadrotor he-
licopter trajectory tracking control. In AIAA Guidance, Navigation and Control
Conference and Exhibit, pages 1–14, 2008.

69

[13] InvenSense. MPU 9250 Product Specification Revision 1.0. Rev. 1.

[14] Alex Kushleyev, Daniel Mellinger, Caitlin Powers, and Vijay Kumar. Towards a
swarm of agile micro quadrotors. Autonomous Robots, 35(4):287–300, 2013.

[15] Sebastian OH Madgwick. An efficient orientation filter for inertial and iner-
tial/magnetic sensor arrays. Report x-io and University of Bristol (UK), 2010.

[16] Robert Mahony, Tarek Hamel, and Jean-Michel Pflimlin. Nonlinear complemen-
tary filters on the special orthogonal group. Automatic Control, IEEE Transac-
tions on, 53(5):1203–1218, 2008.

[17] Anirudha Majumdar, Mark Tobenkin, and Russ Tedrake. Algebraic verification
for parameterized motion planning libraries. In American Control Conference
(ACC), 2012, pages 250–257. IEEE, 2012.

[18] Daniel Mellinger and Vijay Kumar. Minimum snap trajectory generation and
control for quadrotors. In Robotics and Automation (ICRA), 2011 IEEE Inter-
national Conference on, pages 2520–2525. IEEE, 2011.

[19] Daniel Mellinger, Aleksandr Kushleyev, and Vijay Kumar. Mixed-integer
quadratic program trajectory generation for heterogeneous quadrotor teams.
In Robotics and Automation (ICRA), 2012 IEEE International Conference on,
pages 477–483. IEEE, 2012.

[20] Daniel Mellinger, Nathan Michael, and Vijay Kumar. Trajectory generation
and control for precise aggressive maneuvers with quadrotors. The International
Journal of Robotics Research, page 0278364911434236, 2012.

[21] Mosek ApS. The MOSEK optimization software, 2014.

[22] Nordic Semiconductor. ARM Cortex-M4 32b MCU+FPU, 210DMIPS, up to
1MB Flash/192+4KB RAM, USB OTG HS/FS, Ethernet, 17 TIMs, 3 ADCs,
15 comm. interfaces and camera, June 2013. Rev. 4.

[23] Nordic Semiconductor. ARM-based 32-bit MCU, 256 KB Flash, CAN, 12 timers,
ADC, DAC and comm. interfaces, 1.8 V, November 2014. Rev. 2.

[24] Charles Richter, Adam Bry, and Nicholas Roy. Polynomial trajectory planning
for quadrotor flight. In International Conference on Robotics and Automation,
2013.

[25] Russ Tedrake. Lqr-trees: Feedback motion planning on sparse randomized trees.
2009.

[26] Russ Tedrake. Drake: A planning, control, and analysis toolbox for nonlinear
dynamical systems, 2014.

70

[27] M Van Nieuwstadt, M Rathinam, and RM Murray. Differential flatness and
absolute equivalence of nonlinear control systems. SIAM Journal on Control
and Optimization, 36(4):1225–1239, 1998.

71

