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Abstract

Previous demonstrations of autonomous quadrotor flight have typically been limited
to sparse environments due to the computational burden associated with planning
for a large number of obstacles. We hypothesized that it would be possible to do
efficient planning and robust execution in obstacle-dense environments using the novel
Iterative Regional Inflation by Semidefinite programming algorithm (IRIS), mixed-
integer semidefinite programs (MISDP), and model-based control approaches. Here,
we present experimental validation of this hypothesis using a small quadrotor in a
series of indoor environments including a cubic meter volume containing 20 interwoven
strings. We chose one of the smallest hardware platforms available on the market
(34g, 92mm rotor to rotor), allowing for these dense environments and explain how to
overcome the many system identification, state estimation, and control problems that
result from the small size of the platform and the complexity of the environments.
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Chapter 1

Introduction

The quadrotor is quickly becoming one of the canonical systems of modern robotics.
It supports a wide range of payloads and offers the type of underactuated system that
is still manageable for a lot of well-established linear control approaches. Moreover,
advances in research have brought the quadrotor to a level of usability that makes it
increasingly attractive for commercial applications like surveying and delivery. De-
spite these advances, the quadrotor still suffers from a variety of shortcomings that
roboticists will need to overcome in order to get the platform to truly be a viable
option for real-world applications. For example, flight times, usually in the order
of minutes, are still too short to allow quadrotors to be effective delivery vehicles.
Quadrotors, highly dynamic systems, also have fairly low reliability, something that
can lead to spectacular failures. Quadrotors and small helicopters can be dangerous
machines when hovering over crowded areas. These risks may be mitigated in part
by increasing the robustness and efficiency with which they may detect and avoid
obstacles.

A few algorithms have been put forward in order to enable quadrotors to fly
through crowded environments. The most successful ones of those often require an
exponential increase in planning time with respect to the number of obstacles. For
example, by introducing an integer variable for each face of obstacles in the environ-
ment. Most of these algorithms therefore start to perform poorly as the number of

obstacles are increased beyond a modest handful of obstacles.
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Recently, it has been suggested that the challenges of increasing obstacle density
may be overcome by the novel Iterative Regional Inflation by semidifinite program-
ming algorithm (IRIS). Rather than enumerate the obstacles, the algorithm performs
convex segmentation of free space by seeding it with polytopes enclosing an obstacle
free ellipsoid that is iteratively grown. This approach is only limited by the mixed-
integer program that is then used to plan a trajectory through the polytopes, and
not by the number of obstacles. Hence, it can produce trajectories in environments

containing many more obstacles than was previously demonstrated.

We hypothesized that it would be possible to fly a small quadrotor through envi-
ronments containing greater number of obstacles than ever demonstrated before by
leveraging IRIS, MISDPs, and model-based control approaches. Here we present ex-
perimental validation of this hypothesis. We choose one of the smallest platforms on
the market (34g, 92mm rotor to rotor) allowing for even more dense environments and
show how to overcome the other system identification, state estimation and control

problems that result from the small platform and the crowded environments.

1.1 Experiment Overview

The goal of the proposed experiment was to test our hypothesis that IRIS and a model-
based controller could fly a quadrotor in environments containing more obstacles than
previously demonstrated. The quadrotor was controlled by the off-board software
Drake and followed trajectories computed by IRIS and mixed-integer semidefinite
programs. The sensing was accomplished with Vicon sensors as well as an IMU
onboard the quadrotor. The exact location of the obstacles was given to the planner
ahead of time, as a set of convex hulls. The level of performance of the planning
algorithm was evaluated by looking at its ability to find collision-free trajectories in
real-world environments that contained more obstacles than previously demonstrated,

and the ability of the proposed control system to execute those trajectories.
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Figure 1-1: View from inside one of the obstacle-dense environments used in the
experiment. This one shows a cubic meter volume containing 20 interwoven strings.

1.2 Related Work

1.2.1 UAYVs in Obstacle-Dense Environments

There has been a few demonstrations of unmanned aerial vehicles (UAVs) maneuver-
ing in environments with obstacles. [20] showed quadrotors capable of flying through
small openings. [2] demonstrated an aircraft with rotating wings flying between two
poles closer to each other than the plane’s wingspan. [24] also demonstrated an

algorithm for planning trajectories indoors with a quadrotor.

Even though [24]’s approach has been shown capable of navigating indoors, none
of the model-based approaches have been demonstrated in overwhelmingly crowded

environments.

19



1.2.2 Planning Collision-Free Trajectories
Rapidly-Exploring Random Trees (RRT%*)

The approach in [24] consists of running RRT* in the entire space where the quadrotor
might fly. The algorithm only expands the randomly-exploring tree with straight
trajectories in order to make its expansion more efficient. It therefore results in a
piece-wise linear collision-free trajectory. Finally, the algorithm computes a smooth

trajectory using a quadratic program between each node along the path returned by

RRT*.

Mixed-Integer Programs

[19] also demonstrated the use of mixed-integer quadratic programs in order to plan
collision-free trajectories. In this particular work, the integer variable enforces non-
penetration by making sure that the sampled location is on the collision-free side
of at least one of the faces of each obstacle. The approach worked well in practice,
but it suffered from having the number of integer variables grow rapidly with the
number of obstacles. Moreover the technique cannot guarantee to generate collision-

free trajectories between the sample points.

Differential Flatness

[18] is one of the most cited and first uses of differential flatness for planning with
quadrotors. In their experiments, they set a series of desired poses through hoops
and similar obstacles, and use a quadratic program to compute trajectories in the flat
output space between those poses. The method was used again in later experiments

[14]. An introduction to differential flatness is provided in section 4.1.

Iterative Regional Inflation by Semidefinite Programming (IRIS)

IRIS, our choice of algorithm for convex segmentation of free-space, has previously
been used in the context of footstep planning [6]. In this application, the algorithm

generates collision-free regions in the robot’s configuration space. A mixed-integer
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Figure 1-2: TRIS used for footstep planning on the Atlas robot. The gray areas are
the safe regions computed by the algorithm. Image courtesy of Robin Deits [6]

program is then used to assign steps to each regions while simultaneously optimizing

the pose of the robot.

[4] then went on to demonstrate that we can formulate the problem of planning
minimum-snap collision-free trajectories as a mixed-integer semidefinite program by
using the obstacles-free regions returned by IRIS and by planning in differentially flat
space. This document in part aims to provide experimental demonstrations for these

results.

1.2.3 Feedback Control for Path Following
Flat Outputs PD Controller

[20] demonstrated a feedback controller inspired by the work of Hoffmann et al. [12].
In this approach, the controller computes the position error e, and the velocity error

of the quadrotor e, and then specifies the desired center of mass acceleration 74
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using those errors and feed-forward terms.

7:des - kpep + kdev + TT<JA:) ) (11)

where 77(Z) is the feed-forward term (the acceleration in the direction tangential to
the trajectory) for the current state z. The resulting acceleration of the quadrotor’s
center of mass is then mapped to a desired roll and pitch that are stabilized by an

attitude controller.

Time-varying LQR

Finally, our own control strategy for the experiment, time-varying linear quadratic
regulator (TVLQR), has already been shown capable of tracking extremely dynamic
trajectories. For example, [2] demonstrated an aircraft with rotating wings executing
a knife-edge maneuver in order to fly between two poles without colliding with either

of them.
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Chapter 2

Hardware

The proposed experiment uses the Crazyflie Nano Quadcopter. The development of
the Crazyflie started in 2009 as a side project by three employees of the Swedish
consulting company Epsilon AB. In 2010, a video showing the first prototype of
the Crazyflie was sent to the website Hackaday.com and received a lot of attention.
After the success of the video, the three creators of the Crazyflie decided to launch
Bitcraze AB, that eventually became Bitcraze.se, in order to finance the development
and manufacturing of the quadrotor. The version 1.0 was available during the first
months of the experiment. A second version of the Crazyflie became available in
December 2015. We started developing on the Crazyflie 1.0, but eventually switched
to the Crazyflie 2.0, since this last one was equiped with a higher energy capacity

battery, slightly larger motors and a better on-board micro-controller [1].

2.1 Crazyflie 2.0

The Crazyflie 2.0 is one of the smallest quadrotors available on the market. Its small
size and general safety makes it an ideal candidate for applications that require it to
fly near people. It measures 92mm from propeller to propeller and weighs 34g with
optical markers mounted on it. It has a flight time of around 5 minutes. The small
size of the Crazyflie presents many challenges in using it as a research platform. Its

small inertia requires controllers that can react with very little latency. Its payload
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(a) Version 1.0 (b) Version 2.0

Figure 2-1: The Crazyflie Nano Quadcopters by Bitcraze.se

capacity is also limited, making it challenging to add additional sensors.

On the other hand, a great advantage of the Crazyflie is that all the software
produced by Bitcraze is fully open-source. This gives us complete control over the
firmware running on the quadrotor, the firmware running on the radio as well as
the client library running on the base-station. Bitcraze hosts all of its codebase on
Github. In the same spirit we distribute the entirety of our software on Github as

welll.

2.1.1 Microcontrollers

The Crazyflie 2.0 is equipped with two microcontrollers. The first one, an ARM
Cortex-M4 embedded processor (STM32F405), is used to run the main application.
The processor is a 32 bits architecture and can run at 168 MHz. The ARM Cortex-M4
also has a floating point unit that support all ARM single-precision data-processing
instructions and data types [22]. The Crazyflie 2.0 also has a second microcontroller
to handle power management and the radio. That microprocessor is an ARM Cortex-
MO (nRF51822) that runs at 32MHz [23]. This second microcontroller has Bluetooth
capability but it was not leveraged in this experiment due to lack of a library for it on

the client side as well as good reasons to believe it would provide poorer performance

thttps://github.com /blandry /crazyflie-tools
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than the Crazyradio USB dongle.

2.1.2 Inertial Measurement Unit (IMU)

The Crazyflie Nano Quadcopter is equipped with an IMU, the MPU-9250. The IMU
contains a 3-axis gyroscope and a 3-axis accelerometer [13|. The experimental setup
described here relies entirely on the IMU to get orientation measurements, both for
the on-board and off-board controllers. Note that these measurements are given in
the sensor frame, which is oriented in what is known as the “X” configuration with
its x-axis pointing between motor number 4 and 1. Since our models assume an x-
axis pointing toward motor 1, we rotate the measurements by 45° using a constant

rotation matrix before using them.

2.1.3 Other On-Board Sensors

The Crazyflie is also equipped with an on-board magnetometer as well as a barometer.
However the radio protocol limits the size of the packets being sent from the Crazyflie
to the Crazyradio to 29 bytes of payload. This corresponds to a maximum of 7 floating
point numbers on the ARM micro-controller, and therefore prevents us from sending
the entirety of the sensor measurements with each packet without cutting in half the

frequency at which the state estimator gets sensor updates.

2.1.4 Battery and Power

The battery used by the Crazyflie 2.0 is a single cell Lithium-Polymer (LiPo) battery.
This is the most popular type of battery in the R/C industry and provides the best
power to weight ratio. It supplies 3.7V and has a capacity of 240mAh. The battery
also comes with a Protection Circuit Module (PCM) attached to it that prevents the
user from under or over charging the battery or from shorting it?. The battery is

easily removable from the quadrotor so connectors were built for it so that they could

Zhttp:/ /wiki.bitcraze.se/projects:crazyflie:hardware:explained

25



be charged in parallel and reduce delay between experiments. The battery’s discharge

rate is 15C, which in theory should provide 4 minutes of continuous flight.

2.1.5 Motors

The Crazyflie 2.0 has four brushed DC motors. The motors are coreless which in
theory provides faster acceleration. They can produce 12000rpm per volt, with a
nominal voltage of 4.2V. Those numbers allow us to compute the theoretical maxi-
mal thrust that is predicted by the kp parameter we will describe later. The most
interesting point about the motors is that most quadrotors use brushless motors,
which use an electronic circuit to accurately regulate their speed with respect to the
input signal. The Crazyflie 2.0 motors are however not brushless, and are powered by
an unregulated power supply. Therefore higher motor speeds, requiring more torque
in order to fight the increasing air resistance and therefore more current, tend to make
the battery voltage drop. As we shall see later, this can be remedied with software

feedback.

2.1.6 Propellers

The propellers are conventional 45mm plastic propellers. They have a tendency to
bend during collisions and so experimenters should make sure they regularly change

the propellers for new ones in order to give the controller optimal conditions.

2.2 Radio

The Crazyflie is equipped with a Nordic Semiconductor nRF51822 which handles
radio communication. The easiest way to communicate with the chip is to use the
Crazyradio. The Crazyradio is a USB dongle that integrates a Nordic Semiconductor
nRF24LU1+. The chips can communicate with each other over the 2.4GHz ISM
band. Both chips can be reprogrammed, although the nRF51822 on the Crazyflie

requires a JTAG connector, while the nRF24LU1+ can be reprogrammed over USB.
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Figure 2-2: The Crazyradio by Bitcraze.se

The radios can be run at up to 2Mbs.

2.3 Optical Tracking

Our experimental setup contains both on-board and off-board sensors. First, the
on-board gyroscope and accelerometer provide measurements that can be used to
estimate the state of the quadrotor. Second, an optical tracking system provides
additional information on the position of the quadrotor. Optical tracking has been
extensively used to perform similar experiments in the past. They are often considered
“oround truth” for these types of demonstrations.

The Vicon tracking system uses infrared cameras to localize small reflecting mark-
ers. The markers come in various sizes. The system used in the experiment runs at
120Hz. Even though Vicon provides both position and orientation measurements,
we found that its orientation measurements for the Crazyflie were very noisy, most
likely due to the small size of our platform, and we therefore opted for only using its

position measurement.

2.4 Marker Frame

Because of the size of the Crazyflie Nano Quadcopter, it was not possible to mount the

optical markers directly on the quadrotor and still have the optical tracking system
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Figure 2-3: CAD rendering of the polyoxymethylene frame used to hold the markers
mounted on the Crazyflie.

distinguish between them. We therefore designed a simple frame that we laser-cut
out of polyoxymethylene. The frame weighs a total of 2.7g and greatly improves our

ability to track the quadrotor.
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Chapter 3

Software

3.1 Firmware

The Crazyflie Nano Quadcopter firmware is based on FreeRTOS, an open source real-
time operating system. The firmware currently distributed with the Crazyflie runs a
variety of services called “tasks”. Commands are usually sent to the quadrotor using
the Crazy RealTime Protocol (CRTP) described below and an internal proportional
integral derivative (PID) controller stabilizes the desired Euler angles contained in
the commands. This firmware has been modified for the purpose of this experiment.
We do not actually use any of the controller software distributed with the Crazyflie.

The software on both the nRF51822 and the STM32F405 is modifiable. However
only the firmware of the main micro controller (STM32F405) was modified for the
experiment. The firmware was modified to optimize two tasks: the forwarding of the
latest control inputs to the actuators and of the measurements to the base station.
Like in the original firmware, the nRF51822 controls the antenna and does not process
any of the incoming or outgoing data. Instead it forwards it to the STM32F405 using
the serial communication between the two. The Syslink task in the STM32F405
then builds packets from the incoming data stream. In order to reduce the latency
in the control loop, the Syslink task then immediately checks if the packet contains
control input (desired euler angles and angular velocities) or sensor requests. If it

contains control inputs, it simply updates the memory location where the Offboardctrl
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Figure 3-1: Overview of the firmware architecture.

task looks for desired euler angles and angular velocities. On its next iteration, the
Offboardctrl task will use these desired values to compute motor commands using a
simple PD controller. If instead the packet is an empty packet received on the sensor
channel (a sensor request), then it reads the memory location where the Offboardctrl
stores the last IMU measurements, makes a packet and sends it back on the UART.
Finally if the packet is neither of those, it proceeds with the original communication
scheme by putting it in the delivery queue of the Crtp task for later dispatching to the
appropriate task. Prioritizing packets related to sensors and actuator inputs prevents
build-up in the firmware queues. It also always favors the most recent control signals,

disregarding ones that have not made it through the controller or the actuators yet

if needed.

3.2 Python Controller

Bitcraze distributes an open-source Python library that allows users to develop their
own client applications. The library provides simple calls to the USB radio that can
be sent to the Crazyflie. It also allows the user to define callbacks for received data
from the quadrotor. The library was modified to improve its performance in the
context of our experiment. We used the modified library to write a multi-threaded

Python controller that runs on the base station.
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3.2.1 Main Thread

The main thread takes care of synchronizing the different components of the control
system. It launches the state estimator and the controller. It then only manages the
communication loop. The communication loop consists of requesting sensor measure-
ments, receiving those measurements, forwarding those measurements to the state
estimator and getting the latest state estimate, then requesting control inputs for

that estimate and finally forwarding them to the quadrotor.

3.2.2 Controller Thread

The controller thread either computes control inputs from a state estimate and a
time-invariant linear controller, or keeps track of the latest control inputs sent by
Drake over an LCM channel. When using the control inputs sent by Drake, the main
thread attempts to minimize the delay between the time the latest state estimate
was published on the LCM channel Drake is listening to and the time a control input
is recovered from the controller thread. This is accomplished by pausing the main
thread with a lock immediately after it broadcasts the state estimate, and having
the controller thread unpause it by removing the lock as soon as it receives a control

input from Drake over LCM.

3.2.3 Estimation Module

The state estimator was implemented as its own separate module that contains both
python and C code. The state estimator receives Vicon measurements over an LCM
channel and IMU measurements from the main thread running the communication
loop. It combines them using a low pass filter, a complementary filter and an extended

Kalman filter.

3.2.4 Manual Commands

Several experiments required us to send arbitrary inputs to the quadrotors. Therefore

we also implemented a simple client that allows us to send manual commands, like
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switching from LQR stabilization to time-varying LQR at the push of a button, from
a USB board called the nanoKONTROL.

3.3 Drake

Drake is a robotics toolbox developed by our research group implemented in MATLAB
and C++ [26]. The package allows us to implement a model of the quadrotor using
the Unified Robot Description Format (URDF). It also allows us to easily compute
and run (over LCM) various controllers like the time-varying LQR demonstrated in

this experiment.

3.4 Crazy RealTime Protocol (CRTP)

One can communicate with the Crazyflie using the Crazy RealTime Protocol (CRTP).
A CRTP packet contains one header byte and 29 bytes of payload. The header
contains three fields. The first one, the port, specifies what application the packet
is directed to. The second field, the link, is currently unused. Finally the channel
field is used to specify sub-task or functionality. Currently, both the up and down
link use this protocol. However the down link is created by adding a payload to each
acknowledgment expected by the radio. This, along with the limited size of the CRTP

packets, are the main challenges in the use of the protocol .

thttps:/ /wiki.bitcraze.io/projects:crazyflie:crtp

32



Complementary Filter Extended Kalman Filter -~ Optical Tracking
State Estimator P
- IMU
Main p
Thread “IT——~ PD Controller

Controller MOTOR 1

MOTOR 2

Drake MOTOR 3

(TVLQR Only) MOTOR 4

Base Station Quadrotor

Figure 3-3: Overview of the software architecture.

3.5 Lightweight Communication and Marshalling (LCM)

We opted for the Lightweight Communication and Marshalling (LCM) package in
order to link the different components of our control system. LCM allows the user
to define different message types and pass them seamlessly over a network by either

publishing or subscribing to specific channels.
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Chapter 4

Modeling

4.1 Differentially Flat Quadrotor Model

Differentially flat systems were first introduced in 1992 by Fliess and al. [8]. Generally,
a system is said to be flat if there exists a set of output, in equal number to the number
of inputs, such that all the states of the system can be computed from these outputs
(without integration). Once flat outputs are identified, it is possible to generate plans
in the flat output space only, and extract the corresponding full-state trajectory at a
later stage.

Planning in the flat output space also has limitations. For example, differential
flatness alone does not guarantee that one can follow arbitrary trajectories in output
space. For example, the system 4.1 proposed by Nieuwstadt [27] has the flat output
Zo, but it does not allow trajectories with a negative .

T1 = u,

(4.1)

Ztg = x%

Even though our IRIS segmentation is agnostic to the plant model, the mixed-
integer semidefinite program does require it to be differentially flat. We therefore use
the differentially flat quadrotor model introduced in [18] also used by others [24]. The

model consists of a single floating rigid body and four inputs. We define the inputs
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as the square of the angular velocities w? of the motors on the quadrotor. A spinning
propeller produces two forces on the quadrotor, namely lift and drag. Those forces are
directly proportional to w?. Each input w? can therefore be said to produce a certain

linear force F; on the center of mass as well as to create a moment M; according to

Fy = kywi, (4.2)

M; = kw3 (4.3)

We can then write the dynamics of the quadrotor:

4
mi = mgzy + (Z E) Zg, (4.4)

=1

w1
0 kL 0 —kL||
w
G=I"'"|-wxIw+ |-kL 0 kL 0 i (4.5)
w
ko =k ke —k ||
wj

where m is the mass of the quadrotor, 7 is the acceleration of its center of mass,
zw is a unit vector in the direction of gravity, zp is a unit vector pointing in the
same direction as the propellers (in the world frame), I is the inertia matrix of the
quadrotor, L is the distance between each propeller and the center of mass of the
quadrotor, and w is the angular velocity of the quadrotor in the body frame [24].
The flat outputs in this model are the positions z, y, z and 1) where 1 is the yaw

of the quadrotor.

4.2 System Identification

The model described above requires the identification of certain parameters of the
Crazyflie. We solve the problem of parameter identification with a two step approach.
First, we directly or semi-directly measure each parameter of the model with a series

of simple experiments. Second, we log flight data for a series of maneuvers, and use
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Figure 4-1: The body frame used in the differentially flat model developed by [18].
zp points in the same direction as the propellers in the world frame.

an optimization-based algorithm to adjust those parameters.

First, we made a detailed model of the quadrotor using Solid Works and extracted

the inertia estimate from that model.

The k¢ parameter was then identified by measuring the thrust produced by the

quadrotor placed upside-down on a scale and fitting the corresponding parameter.
F = kp(w? +wi + wj + w)). (4.6)

Note that we had to add the controller described in section 7.2 to the quadrotor’s

firmware in order for this input model to work.

The k,, parameter can then be measured by slowly increasing a pair of opposite
motors (motors spinning in the same direction) and measuring the resulting angular
velocities using the on-board gyroscope. This test is possible because the resulting
spinning motion of the quadrotor acts like a mechanical gyroscope stabilizing it with-
out the use of any feedback control. This enables us to perform long enough flights

(a few seconds) to acquire the needed data. We then differentiate the gyroscope rate,
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filter it, and use the relationship below to fit the k,, parameter.

2._ 2., 2 2 9
w = wh +wy —w) —ws (4.7)

Loy + Lyyoy + 1.0, = kw? — (Lyyws + Tyywy + Low,) + wy(Lawy + Lyywy + 1w, )(4.8)

where w,, w, and w, are the angular velocities of the quadrotor around zg, yp and
zp (the axes in the body frame).

The second step in our parameter identification approach is to log a series of
flights with the quadrotor and fit the resulting data by tuning the parameters of our
model. This can be done using MATLAB’s Grey-box system identification toolbox.
The initial guesses given to the algorithm are the ones measured as explained above.

Because the quadrotor is a highly unstable system, one of the challenges of this
second step is that it is hard to get long enough flights when using purely open-loop
trajectories. It is therefore tempting to use a simple controller like a PD controller
in order to extend the time we can acquire data to fit. However, adding a controller
can render some of the parameters unidentifieable [10].

Imagine that we were trying to perform system identification on the following

simple linear system:

x = Ax + Bu. (4.9)

The grey-box approach we are using could then be understood as trying to compute
the entries of A and B from data on the evolution of x and u over time. Now if we
use a linear feedback controller in order to stabilize the system, we end up with the

following system:

u=-Kx |, (4.10)

x = Ax + B(—Kx), (4.11)
x = (A — BK)x, (4.12)

x = Ax. (4.13)

Now even though we know K, we do not know any of the entries of B, and therefore
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Parameter Value
I, 2.3951 - 10~°kg - m?
I, 2.3951 - 10~°kg - m?
1., 3.2347 - 10~ %kg - m?
K,, 1.8580 - 107°N - m - 52
Ky 0.005022N - s?

Table 4.1: The parameters identified with our approach for the Crazyflie.

cannot distinguish between A and B when identifying the entries of A. This is
referred to as loosing the system’s identifiabiliy. There has been substantial work in
identification of closed-loop systems [10, 9] that in some cases have even performed
better than some open-loop identification methods [11].

Our approach to this problem is therefore to use an open-loop control input that
also contains a stabilizing input. First we put a stabilizing controller around the plant.
Then we also send an additional open-loop input that pushes the system slightly out

of equilibrium:
u=—K7+up. (4.14)

This results in slightly unstable flights that generate the right amount of data for
the system identification algorithm. When fitting the data, we model the quadrotor
dynamics with the stabilizing controller inside the plant and only take the open-loop
component of that experiment as the actual input to the system. In our linear system

example from above, this would be equivalent to identifying the following system:
x = (A — BK)x + Buy. (4.15)

Note that we also take the delay of the control loop into account when running the
optimization by shifting the input tape by the appropriate number of time steps. This
value can be measured by placing motion capture markers on the propellers of the
quadrotor and computing the delay between a step input and the resulting velocity

of the propeller. In our case this resulted in a 28ms delay.
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Chapter 5

Planning

We compute collision-free trajectories for the quadrotor prior to it flying through
the obstacle field using the work of Deits on convex segmentation of free space and
mixed-integer semidefinite programs [4]. The algorithm consists of first segmenting
space into convex polytopes that are obstacle-free. This step requires our obstacles
to be described as a set of convex hulls. The segmentation is done using the IRIS
algorithm. We then use a mixed-integer semidefinite program to assign a series of
polynomial trajectories to the polytopes in a way that both guarantees no collision

and that minimizes snap.

5.1 Generating Convex Safe Regions

First, we inflate the convex hulls representing the obstacles by moving each one of
their planes in the direction of their normal by an amount equal to the radius of the
quadrotor. This then allows us to treat the quadrotor as a dimensionless object for
the rest of the planning.

We compute convex regions of safe space using the software IRIS (Iterative Re-
gional Inflation by Semi-definite programming). IRIS solves the problem of segment-
ing 3D space into a set of convex regions through a series of convex optimizations.
More specifically, IRIS alternates between two optimizations. The first optimization

is a quadratic program that finds hyperplanes that separate a convex region of space
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Figure 5-1: Example of the result of inflating obstacles of one of the environments.
The red faces are the inflated obstacles and the white ones the original ones. The
inflation then allows us to treat the quadrotor as being dimensionless.

from the obstacles. The second optimization is a semidefinite program that takes the
intersection of those hyperplanes, and finds an ellipsoid of maximum volume inscribed

inside those hyperplanes.

IRIS starts with an initial point gy and a list of obstacles. In some applications,
IRIS has used a human operator in order to find those initial points. This had the
advantage of letting the operator define which regions of space should be used by the
robot and which ones should not [5]. Here we however leverage other work from Deits
that uses a simple heuristic in order to seed the ellipsoid. The heuristic separates the
space into a discrete grid, and computes the cell that is the farthest from any obstacles
or previously computed polytope. The output of IRIS is a set of “safe regions” than

can each be written as a set of hyperplanes:

P={x | Az <b}. (5.1)
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5.2 Generating trajectories with an MISDP

We then to design a piecewise polynominal trajectory that goes from our start point
to our goal while staying inside the safe-regions returned by IRIS by following the
procedure described in [4]. As explained in section 4.1, we can plan these trajectories
by fixing the quadrotor yaw’s to zero and only consider x, y and z. These trajectories
are given an arbitrary timespan between 0 and 1 that can later easily be scaled to
tune the velocity at which the quadrotor executes the trajectory. We parametrize
the trajectories using the coefficients of the picewise polynominal. We also constraint
the resulting trajectory to have continuous derivatives up to the (d — 1) derivative,

where d is the degree of each polynomial piece.

We can write the assignment of polynomial pieces to convex regions of free space

with a matrix of binary variables, H € {0, 1}RXN

, where R is the number of convex
regions and N is the number of polynomial trajectory pieces. If H, ; = 1, then poly-
nomial j must be contained within region . We then constraint that each polynomial
piece be fully contained in at least one region. This constraint can be represented as

a combination of linear 5.2 and semidefinite constraints for a polynomial of arbitrary

degree. The binary constraint can be written as

WE

H,;j=1 Vjel,...,N, (5.2)
r=1
and we can formulate the semidefinite constraint as sum of squares constraint. First

we define the polynomial j as a linear combination of polynomial basis functions

G1(t); s Paya(t)-

d+1

Pi(t) =Y Cixgr(t) te[0,1], (5.3)

Therefore if H, ; is set to 1, then the polynomial must be contained inside the safe
region 7

APi(t) <b, Vtelo,1], (5.4)
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or
d+1

A Cirdi(t) < b Ve (0,1). (5.5)
k=1

The constraint 5.5 can be written as m constraints of the form

d+1
aly > Cixdn(t) < by V€ 0,1], (5.6)
k=1
where L _
CLZjl b”‘,l
arly br2
A= 7] andb=| " |. (5.7)
G/Z—;m br,m

By redistributing the terms in 5.6 in order to get

d+1

> (0l Cir)én(t) < bry V€ [0,1], (5.8)

k=1
with which we can now define ¢(t)

d+1

Q(t) = br,l - Z(QZZOJ,k)Qbk(t) 2 0 Vte [07 1]7 (59)
k=1
from which we can define our sum of square constraint since ¢(¢t) > 0 V¢ € [0, 1] if

and only if ¢(t) can be written as

o(t) = toy(t) + (1 —t)oa(t) ‘if d.is odd (5.10)
o1(t) +t(1 —t)oq(t) if d is even

o1(t), o2(t) are sums of squares (5.11)

We then use the same cost defined by [18], a quadratic cost function on the square
of the fourth derivative with respect to time (often called snap). If we are designing

a trajectory of degree d < 3, we use the squared norm of the d*" derivative of the
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Figure 5-2: Example of a trajectory computed by IRIS and the MISDP formulated
in [4]. The yellow regions are the safe regions, the gray ones are obstacles and the
piecewise polynomial trajectory is shown in blue. Image courtesy of Robin Deits [4]

polynomial.

The full trajectory optimization therefore becomes a mixed-integer semidefinite
program (MISDP), where the integer variables are the assignments to safe regions H, ;
and the semidefinite program finds minimum-snap polynomial trajectories in those
safe regions. Like in [4], we do not directly solve the MISDP because it tends to be
numerically unstable with our solver Mosek [21|. Instead we solve the problem of
degree d = 3 which can be formulated as a mixed-integer second-order cone program
(MISOCP) and use the resulting integer solution as the integer solution of the degree-5
MISDP.
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Chapter 6

State Estimation

We perform state estimation by fusing two different sources of sensor information:
position from the optical tracking system (z, y and z) and IMU readings (gyroscope
and accelerometer). Even though Vicon (our optical tracking system) could also pro-
vide a measurement of the orientation of the quadrotor, we found that the platform’s
small size tended to generate noisy measurements of its orientation. The IMU data
is passed through a nonlinear complementary filter to estimate the orientation of the
quadrotor. Then the roll, pitch, yaw, accelerometer readings and Vicon position mea-
surement are passed to an extended Kalman filter to produce final estimates of the
quadrotor’s position and velocity. It has not escaped our attention that the Kalman
filter would be capable of performing orientation estimation as well, but the overall
good performance and stability of the nonlinear complementary filter convinced us to
keep it as part of the control system. It also has the advantage of keeping the Kalman
filter very straightforward.

6.1 Complementary Filter

We use the filter already implemented in the Crazyflie Nano Quadcopter for the
onboard atittude estimation. We also modified the same implementation of the filter
by [15] in order to provide attitude estimates to the offboard controller. The filter is

based on Mahony’s work on complementary filters [16]. The idea is to compute an
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error e between the predicted acceleration due to gravity «a; and a; the measured
one from the accelerometer in order to filter measurements and then integrate the
filtered angular velocities to get an attitude estimate 6. The filter also applies an

integral feedback Ij.

D
—_

0, = Ok—1 + (Wi + I—1)At,

— —~ —~ —
N
=~ w (N}

~—~ ~ ~ N

€ = Q — Og—1,
Gk = 9,; + erkAt,

]k’ = Ik—l + KinAt.

6.2 Extended Kalman Filter

We modified the extended Kalman filter proposed by Bloesh et al. [3] in order to

estimate the quadrotor’s position and velocity. We first define the following states
X = [7‘ v bf} , (65)

where r is the position of the center of mass of the quadrotor, v is its velocity and
by is the bias of the accelerometer. We define the inputs to the filter to be the
current roll, pitch and yaw estimate and the last accelerometer measurement f . Our
only measurement is the optical tracking 7. After defining C' as the rotation matrix
corresponding to the orientation input (rotating vectors from the inertial into the

body coordinate frame), we can then write the predict dynamics as such:

. . A
Th+1 = Tk + Atvk + T(Cgfk + g), (66)
i1 = O + AHCY fi + 9), (6.7)
byrir = bk, (6.8)

48



with its Jacobian
I AtI —2ECT

0 I —AtCF|. (6.9)
0 0 I

We also define the process covariance as such

3 5 2 4 3
ATth + Az_éQbf ATth + ATthf _ATtC;;FQbf
2 4 3 2
ATth + ATthf Ath + %Qbf —ATtOngf , (6.10)
_ATtSQbeA(k _ATﬁQbeA«k Athf

where Q)¢ is the accelerometer covariance and Q) is the covariance of the accelerom-
eter bias. We can measure )y by logging the measurement of the accelerometer for
with the quadrotor stationary for some time and measuring the covariance of that
signal. The covariance of the bias can be measured using the Allan Variance, but we
instead estimated it using published values for a similar accelerometer 7| and then
tuned it further manually.

The measurement covariance is in our case the covariance of the Vicon position
measurement, that once again can be simply computed from a log of measurements
with the quadrotor stationary.

It was important to us that the state estimator be capable of handling lack of
measurements from the optical tracking. We indeed predicted that dense enough
obstacles courses would sometimes hide the quadrotor from the cameras. Figure 6-1
shows our state estimator attempt at estimating the quadrotor’s position based solely
on orientation (the output of the complementary filter) and accelerometer measure-
ments. The gray areas show time-intervals where the state estimator was not sent any
optical tracking measurements. The measurements it would have otherwise received

are overlaid to show the quadrotor’s “true” position.
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Figure 6-1: Estimated and real position of the quadrotor with simulated occlusions

of the position measurements.

From the plot we observe that our robustness to

occlusions is much better in the x and y position than in the vertical z position,
something most likely related to the complementary filter we use.
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Chapter 7

Controller

7.1 On-board Attitude Controller

We first hypothesized that it would possible for the entire controller to run off-board.
Even though we had a certain amount of success with that approach, we eventually
opted to add an on-board attitude controller. This controller has the advantage
of being able to run significantly faster because it does not suffer from the delay

introduced by the radio link.

The inputs to the on-board attitude controller are the desired Euler angles ¢ges,
Oges, Vaes and a nominal squared angular velocity for the propellers wg. The attitude
controller first maps the nominal squared angular velocity to duty cycles for the
motors up o using the software-based speed controller described in 7.2. The on-board
attitude controller then computes the error between the current and desired Euler
angles e, and angular velocities e, and uses a linear PD controller to stabilize
them.

Erpy

up = K +UD70, (71)
Cw

where up is the input (duty cycles) actually sent to the physical hardware (the mo-

tors).
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7.2 Software-Based Speed Controller

The model used for the planning defines inputs to the plant as being the square of
the velocity of the propellers w?. This is a reasonable input model for most quadro-
tors, because most of them use brushless motors that are actuated through speed
controllers. Speed controllers have an internal control system that takes as input the
desired velocity of the motor they control. However in our case, the Crazyflie Nano
Quadcopter uses DC motors and unregulated power. This means that the commands
sent to the physical motors, in the form of duty cycles up, do not always accurately re-
flect the resulting velocities they produce. We get around this complication by adding
feedback around the desired w? for a motor using the measured battery voltage. This

effectively creates an approximation for a software-based speed controller.

Vmam
up = (Vw?—p8)+a. (7.2)
actual

In this mapping, up is the duty cycle sent to the hardware, V,,,, is the nominal
voltage of the battery, V ... is the current battery voltage, o can be interpreted
as the minimum duty cycle that must be sent to the hardware in order to get any
angular velocity w with the motors. Parameter g then accounts for the fact that the

propellers start out at a certain non-zero velocity.

7.3 TVLQR

The mixed-integer semidefinite program provides us with a feasible trajectory in the
flat output space that avoids collisions with obstacles. We can then follow the well

documented steps to invert the flat output [18] and get a nominal trajectory xo(t) in
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the full 12-DOF state-space of the quadrotor

8 S < ©

<.

N-

where z, y, and z are the quadrotor’s position and ¢, €, and 1 the Euler angles
corresponding to its orientation. Inverting the flat outputs also gives us a desired

trajectory for the square of the speed of each propellers wg’i(t).

We then turn our attention to the task of stabilizing these trajectories using the
time-varying linear quadratic regulator [25]. First we augment the differentially flat
model used by the planning algorithm to take into account the on-board attitude
controller. This is done by simply adding a model of the on-board attitude controller
(a system that computes propeller square angular velocities from the error between
the current and desired euler angles and angular velocities of the quadrotor) and
connecting the output of that system to the input of the differentially flat model.
This does not create a state x that is different from the differentially flat model in

any way but it does generate a new input and therefore a new feed-forwad term wug(t):

U = [dees edes wdes Wxdes Wygos Wzdes WO,des]v (74)

where wp 4es is @ nominal squared velocity for all the propellers. Note that this last
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input should be intuitive to anyone who has flown R/C aircraft because it often
corresponds to the throttle stick.
We then define the error dynamics x(¢) and u(t).

x(t) = x(t) — xo(1), (7.5)
a(t) = u(t) — uo(t). (7.6)

We can then linearize the plant dynamics x(¢) = f(x, ) around the nominal trajec-

tories and get the following error dynamics
x(t) = A(t)x(t) + B(t)u(t). (7.7)
Now if we define the following quadratic cost on the tracking error

J(x,t) = /O h <7 (H)Qx(t) +ua” (t) Ru(t)dt,
Q=Q" >0,R=R">0,x(t) =x(t). (7.8)

It can then be shown that the optimal cost-to-go J* has the form
J*(x,t) = xTS(t)x, S(t) = ST(t) > 0, (7.9)
where S(t) is the solution to the differential algebraic Riccati equation:
~S=Q—-SBR'BTS +SA+ ATS. (7.10)

Although the boundary condition on S(t), i.e. the value of S(t;) where ¢, is the time
where the plant reaches the goal state, can be chosen along with the costs () and R
to give the best tracking, or it can be made the same as the infinite-horizon cost if
the trajectory ends on a fixed point we want to stabilize.

The result is a time-varying controller K (¢) that takes the full state of the quadro-

tor as input and returns a control input to be sent to the on-board attitude controller.

o4



Chapter 8

Results

In order to test our planning and control approach, we designed a series of obstacle
courses of increasing difficulty. First, a simple “forest” simulation, mimicking a series
of vertical obstacles. Then we experiment with a few vertical obstacles contained
between two “walls” that the quadrotor has to either go over or under. This is par-
ticularly challenging for our controller because it makes it easy for the quadrotor to
enter a vortex ring state as it travels downward and comes to a zero airspeed in order
to accelerate back up. The third course starts to increase the number of obstacles
with a total of 11 vertical and angled poles. Finally, an environment made of 6 poles
and 20 strings placed in various orientations is used to demonstrate the scalability of

our approach.

8.1 Modeling Obstacle Fields

Each obstacle field was built with either PVC pipes, plastic fencing or cotton strings.
We then measured the dimensions of each one of them and entered them in a file
using the Unified Robot Description Format (URDF). The URDF, along with Drake,
allows us to seamlessly extract convex hull representations of the resulting obstacle

fields.
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8.2 Computing Trajectories and Feedback Controllers

We then inflate each obstacle by moving the faces of the convex hulls by an amount
equal to the radius of the quadrotor in the direction of their normal. This then allows
us to treat the quadrotor as being essentially dimensionless. In practice, we found
that this approach performed slightly better than the alternate one that requires the
polynomial trajectories to be a certain distance away from the planes of the safe
regions returned by IRIS. We then run IRIS over the obstacle field, also specifying
a bounding box limiting the space segmented by IRIS. This helps the mixed-integer
program run faster, but most importantly it makes sure that the quadrotor does not
simply fly around the obstacle fields. We can then run the mixed-integer semidefinite
program described in section 5.2, invert the flat outputs and compute a time-varying
LQR controller using Drake.

Computing trajectories for the four environments we experimented with usually
converged within a few minutes (less than 10) in agreement with the performance
shown in [4]. However the trajectory in the environment with the strings was built
by concatenating shorter trajectories that took more time to converge, and we simply
stopped the optimization after 20 minutes. By then the planner had found feasible
trajectories that satisfied all the constraints but the cost hadn’t converged within the

same tolerance as with the other environments.

8.3 Controller Tuning

8.3.1 TVLQR Cost Function

Even though we used a model-based approach, TVLQR still requires us to tune
gains through the quadratic cost functions ) and R. We tune those with a greedy
approach. First we set the R matrix to a trivial cost (the identity) and then make
the cost associated with the other states very small. We then run a trajectory and
evaluate how well the quadrotor tracks it. Then one by one we increase the gains for

position, orientation, and their derivatives. Once we have increased each entry of the
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diagonal of (), we fine tune it further by trial and error and general intuition about

the system.

8.3.2 Trajectory Speed

As described in chapter 5, our planning algorithm does not tie the resulting trajectory
to a specific velocity. We therefore tune the velocity of the trajectory by starting with
a very comfortable (making its execution time very long). We then slowly increase
the speed of the trajectory until the system stops tracking well enough or is simply
unable to follow it. We believe that a more analytical approach to this tuning could

benefit us greatly and suggest it as further work in section 9.1.

8.4 Experimental Results

Figures 8-1 to 8-8 show the results of running the controllers in the four environments.
A picture of each environment with the quadrotor flying through them is shown, along
with the resulting tracking of position over time. Then a 3D visualizer is used to show
the overlaid plan and resulting trajectories. Finally we plot the error of the tracking

for each environment.

8.5 Discussion

As it can be seen from the plots, IRIS, MISDPs and model-based control approaches
are indeed capable of flying a small quadrotor like the Crazyflie through environments
that are densely populated with obstacles, confirming our hypothesis. The number
of obstacles we used ranged from 5 to 26, all contained within a cubic meter volume
or so. The plots also show how our controller was capable of tracking the trajectories
with errors that did not deviate from the planned trajectories by more than 10cm or
so, and that were lower than that on average.

We found that the limitation of the planning algorithm lies in the number of

obstacle-free regions that can be handled efficiently by the mixed-integer program,
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(a) Picture of the “forest” obstacle course.
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(b) Position of the quadrotor over time.

Figure 8-1: The “forest” obstacle course: the trajectory planned by our planning
algorithm and the resulting trajectory described by the quadrotor executing it using
our controller. We see that the tracking gets worse when doing the more dynamic
maneuvers.
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(a) Planned trajectory in blue and trajectory followed by the
quadrotor in green.
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(b) Error of the tracking over time.

Figure 8-2: The “forest” obstacle course: Showing here the 3D visualization of the
trajectory as well as the error of the position over time.
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Figure 8-3: The obstacle course with “walls™ the trajectory planned by our planning
algorithm and the resulting trajectory described by the quadrotor executing it using
our controller. Once again the rapid turns are much harder to track than the more
linear motions.
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(a) Planned trajectory in blue and trajectory followed by the
quadrotor in green.
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Figure 8-4: The obstacle course with “walls™ the trajectory planned by our planning
algorithm and the resulting trajectory described by the quadrotor executing it using
our controller. Notice the convergence to the planned trajectory even though there
was a large error in the initial conditions.
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Figure 8-5: The obstacle course with 11 pipes: the trajectory planned by our planning
algorithm and the resulting trajectory described by the quadrotor executing it using
our controller. The first turn was extremely dynamic and difficult to track, but the
tracking converged later.
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(a) Planned trajectory in blue and trajectory followed by the

quadrotor in green.
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Figure 8-6: The obstacle course with 11 pipes: the trajectory planned by our planning
algorithm and the resulting trajectory described by the quadrotor executing it using

our controller.
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Figure 8-7: The obstacle course with strings: the trajectory planned by our planning
algorithm and the resulting trajectory described by the quadrotor executing it using
our controller. The first figure only shows the beginning of the trajectory.
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(a) Planned trajectory in blue and trajectory followed by the
quadrotor in green.
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Figure 8-8: The obstacle course with strings: the full trajectory was made by con-
catenating shorter trajectories.
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although this limitation only appeared once we reached a significant number of ob-
stacles like with the environment containing the strings. In this case, we also found
that using the feasible but not necessarily optimal trajectory returned by the solver
was highly sufficient to complete the task.

We also unsurprisingly found that the quality of the tracking depended on the
speed at which we were planning it. This turned out to be more of a challenge than
expected, because there was no analytical way to compute a maximal velocity for a
given trajectory and controller.

We also found that TVLQR performed reasonably well for this task. However the
results give us good reasons to believe that time might not be the best dimension
to parameterize over. We believe that better performance could be produced by
transverse LQR, where the parameter would be the tangential velocity of the tracked
trajectory instead of time. This controller would be closer in spirit to what was
demonstrated in [20].

We also initially attempted to run the trajectories without the on-board attitude
controller (producing a completely off-board controller). Even though we were able
to track trajectories with a certain level of success with this approach, we found
that the on-board controller added a significant amount of stability to the system.
Indeed errors in roll and pitch quickly take the quadrotor into unstable states if the
control loop is not running quickly enough (at least around 100Hz in the case of the

Crazyflie).

66



Chapter 9

Conclusions and Future Work

9.1 Future Work

We found that the use of differential flatness, although numerically convenient, failed
to capture some of the limits of the system. For example, there was no way to include
the actuator limits in the planning stage, leaving us having to set the speed of the
trajectory mostly by trial and error. We have identified this as a potential area
for future work, and believe that parametric funnels [17] might provide the proper
framework for that improvement.

Finally, as the speed of the trajectories are increased, the quality of the tracking
given by the feedback controller inevitably went down. We believe that transverse
LQR could be a suitable alternative to time-varying LQR and allow us to push the
limits of our platform further. Finally, IRIS could also be used in various reactive

planning schemes that could be added to the demonstrated control system.

9.2 Conclusion

We demonstrated experimental validation of the algorithm originally proposed by
Deits to generate collision-free trajectories in obstacle-dense environments. This con-
firmed our hypothesis that it would be possible to fly a small quadrotor like the

Crazyflie through environments containing significantly more obstacles than demon-
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strated in the past using IRIS, MISDPs and model-based control. The most cluttered
environment we flew the quadrotor through contained 26 obstacles in a cubic meter
volume and the quadrotor was able to follow a collision-free trajectory through it

within 10cm of precision.
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