
Identifying Objects’ Inertial Parameters with
Robotic Manipulation to Create Simulation-Ready

Assets

by

Andy Lambert

B.S. Electrical Engineering and Computer Science
Massachusetts Institute of Technology (2022)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2023

© 2023 Andy Lambert. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable,
royalty-free license to exercise any and all rights under copyright, including to

reproduce, preserve, distribute and publicly display copies of the thesis, or release
the thesis under an open-access license.

Authored by: Andy Lambert
Department of Electrical Engineering and Computer Science
May 12, 2023

Certified by: Russ Tedrake
Toyota Professor of EECS, Aero/Astro, MechE
Thesis Supervisor

Accepted by: Katrina LaCurts
Chair, Master of Engineering Thesis Committee

2

Identifying Objects’ Inertial Parameters with Robotic

Manipulation to Create Simulation-Ready Assets

by

Andy Lambert

Submitted to the Department of Electrical Engineering and Computer Science
on May 12, 2023, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Real2Sim is the problem of simulating objects and scenes via real world data, allowing
a robot to imagine future interactions with its environment. However, many existing
approaches either do not consider the dynamics of objects being simulated or make
assumptions about their mass distributions. In this work, we aim to make use of
robotic arm payload identification techniques in order to enhance the dynamic accu-
racy of objects generated from a Real2Sim pipeline for manipulation tasks. While
the payload identification literature is vast, applying these methods in practice has
various challenges and limitations. Upon implementing these techniques, we gain un-
derstanding of best practices in the engineering sense. We hope that these methods
can be used to provide ground truth data for other robot learning tasks on the road
towards generalized dynamic intuition.

Thesis Supervisor: Russ Tedrake
Title: Toyota Professor of EECS, Aero/Astro, MechE

3

4

Acknowledgments

This work is dedicated to my high school robotics teammate and good friend Dominic

Buraglio, who sadly passed away in 2022. Dom’s kindness and passion for engineering

inspired me each day that we worked together, and I may not have chosen to pursue

robotics if our paths had not crossed at that time. Thank you for everything, Dom.

* * *

My deepest thanks go to my supervisor, Russ Tedrake, for teaching me so much about

this optimization and dynamic side of robotics that I had not deeply explored before.

It was an immense privilege to study robotics under his mentorship. I would also like

to thank the rest of the Robot Locomotion Group for helping me grow into the role of

a researcher. I especially want to acknowledge my collaborators, Nicholas Pfaff, Lirui

Wang, and Terry Suh, who helped me manifest these ideas outside of my brain and

into real systems. Many thanks to Eric Cousineau from Toyota Research Institute

and Sadra Saddini from Dexai Robotics for sharing code and ideas. Additionally,

thank you to the staff of 6.100 for both funding my MEng and being a great team

to work with. Lastly, I would like to acknowledge my academic advisor John Fisher

and the EECS Comm Lab for their support in the writing process.

Thank you so much to my family, for unconditionally loving and supporting me

in every way they can. I send special gratitude to my grandparents, who always

believed in me and graciously provided for my education throughout my life. I am

also so grateful for my best friends, Sam Nitz and Lydia Light, who have been my

rock since we came to MIT, and Silvia Knappe, who has been my Course 6 pset

partner and good friend throughout our undergrad and MEng. I am also thankful for

the MIT Sport Taekwondo Team and the rest of my Taekwondo community. MIT

would not have been the same without Taekwondo, and Taekwondo would not have

been the same without all of you! Lastly, I could not have done this without my furry

friends, Pita and Pocket.

5

6

Contents

1 Introduction 15

2 Preliminaries 19

2.1 What Are the Inertial Parameters? 19

2.1.1 Linearity of Composite Bodies 21

2.1.2 System Identification . 22

2.1.3 Constraints on Physical Feasibility 23

2.2 The Equations of Motion . 23

2.2.1 One-Link Robot Case . 24

2.2.2 Two-Link Robot Case . 27

2.2.3 Linearity in Lumped Parameters 28

3 Related Work 29

3.1 Real2Sim . 29

3.2 Object Inertial Parameter Estimation 30

3.2.1 Estimation as a Free Body . 30

3.2.2 Estimation as a Payload (Extension of Robot Arm) 31

3.3 Robot Dynamic Parameter Estimation 33

3.3.1 Identifying Industrial Robots 33

3.3.2 Identifiability Analysis . 34

3.3.3 Trajectories for Excitation . 34

3.3.4 Estimation with Physical Feasibility 35

7

4 Methods 37

4.1 Method 1: Full-Arm Symbolic Decomposition 38

4.1.1 Estimating the Robot’s Dynamic Parameters 38

4.1.2 Friction Modeling . 39

4.1.3 Linear Decomposition and Data Matrix Construction 40

4.1.4 Using an Initial Condition . 43

4.1.5 Estimating the Inertial Parameters of the Payload 43

4.2 Method 2: Direct Payload Identification with Torque Residuals 45

4.2.1 Trajectory Alignment . 47

4.3 Identifiability Analysis . 49

4.4 Data Collection Details . 50

4.4.1 Object Body Frames . 50

4.4.2 Trajectory Type . 51

4.4.3 Filtering . 52

5 Experiments & Results 55

5.1 Validating Each Method . 55

5.1.1 Full-Arm Symbolic Decomposition 55

5.1.2 Torque Residual Decomposition 59

5.2 Sensitivity Analysis . 60

5.2.1 Sensitivity to Noise in State Measurements 61

5.2.2 Sensitivity to Noise in Torque Measurements 62

5.3 Robot Experiments . 62

5.3.1 Identifying the Panda . 63

5.3.2 Object Estimation . 65

5.4 Best Trajectories . 68

6 Conclusion 71

6.1 Summary of Results . 71

6.2 Challenges . 72

6.3 Future Directions . 72

8

List of Figures

1-1 An example of a Real2Sim pipeline which estimates both the geometric

and dynamic properties of an object for simulation. These properties

are often stored in a Universal Robot Description Format (URDF). . 16

2-1 An example of a composite body comprised of two rigidly attached

bodies. Their mass is summed, and the center of mass and inertia are

weighted averages of the two, given the mass. 22

3-1 Estimated inertial parameters of the Franka Panda robot and associ-

ated inertial ellipsoid visualizations. On the left are estimates from

Gaz, et al (2019) [1], and on the right are estimates from Ledezma and

Haddadin [2]. Courtesy of Fernando Díaz Ledezma and Sami Had-

dadin. RIL: Riemannian Incremental Learning of the Inertial Proper-

ties of the Robot Body Schema. In 2021 IEEE International Confer-

ence on Robotics and Automation (ICRA) ©2021. 36

4-1 The graph on the left shows raw joint position data before trajectory

alignment, with and without a 0.9kg payload, where each color rep-

resents one joint trajectory. There is lag due to imperfect position

control. The right graph shows the trajectories after aligning with

dynamic time warping. 48

4-2 Example of a coordinate frame transformation from the terminal link

of a Franka Panda (link 7) to the object coordinate frame P. 51

9

4-3 Examples of a sinusoidal and pick-and-place trajectory on a 7-link

robotic arm . 52

4-4 Unfiltered (translucent) and filtered (opaque) joint torque measure-

ments. They are filtered using a second-order Butterworth filter with

cutoff frequency of 10Hz and sampling frequency of 200Hz. 53

5-1 A one-link arm, which rotates about a single joint at the base, shown

in red. 56

5-2 A simulated 2-link planar manipulator with an object (in blue) rigidly

attached to the terminal link . 59

5-3 The mean squared error and standard deviation for each lumped in-

ertial parameter when random Gaussian noise with 𝜎 = 0.01 is added

to the joint position and velocity observations in simulation. The left

plot shows when the accelerations are calculated from the noisy mea-

surements, and the right shows when they are calculated from smooth

measurements. 61

5-4 Plotted on the y-axis are the mass estimates at each step of the data

matrix construction. The data was collected in simulation with Gaus-

sian noise with 𝜎 = 0.1 added to the torque observations. While the

estimates begin by jumping around, they eventually stabilize but do

not converge to the correct value of 0.37kg. 63

5-5 The mean squared error and standard deviation for each lumped iner-

tial parameter when random Gaussian noise with 𝜎 = 0.01 and 𝜎 = 0.1

is added to the joint torque observations in simulation. 63

5-6 Comparison of the measured torques from the Panda vs. the model

predicted torques of our dynamic model. The outlier in the right plot

is due to an outlier in the calculated accelerations. 64

5-7 The 2lb dumbbell that we attempt to estimate with payload identification 66

10

5-8 The difference in lumped parameter errors from estimation on sinu-

soidal trajectories vs. pick-and-place trajectories. The pick-and-place

trajectories result in much higher error along certain axes of rotation,

whereas sinusoidal gives more constant error across the parameters. . 70

11

12

List of Tables

4.1 Comparison of both payload identification methods. 37

5.1 Lumped parameter estimates of a planar, 1-link robotic arm in simula-

tion. G.T. is the ground truth parameters, and the error is the absolute

error. 56

5.2 Estimates of a 2-link planar robotic arm in simulation 58

5.3 Results of payload identification on a 2-link arm using the direct pay-

load identification method. 59

5.4 Results of payload identification on a simulated Panda arm. The data

is collected from three sinusoidal trajectories, and the resulting abso-

lute error is very low. 60

5.5 Estimated dynamic parameters of the Franka Emika Panda using an

initial condition from [2]. While these values produce good dynamic

results, they are not physically feasible or realistic, as highlighted by a

few parameters in bold. 65

5.6 Results of estimating a dumbbell on hardware using the direct payload

identification method, comparing the results using unfiltered data vs.

filtered data. 67

13

14

Chapter 1

Introduction

As humans, we gain much of our understanding of the world by interacting with the

objects in it. The first time somebody picks up a large pole, they may be surprised by

either its mass or the amount of torque needed to rotate it. We gain intuition about

the physics of rigid objects throughout our lives, and develop the ability to imagine

how they may behave. A long-term vision in the robotics community is for robots to

have this same collective intuition.

This work is motivated by the problem of Real2Sim. Named after the research

area of Sim2Real, which closes gaps between the performance of simulated models and

real robotic systems, Real2Sim is the problem of modeling real objects in simulation

with realistic dynamics. As we enter an era where simulation is an essential tool for

robots to make planning and control decisions, having efficient methods for porting

real world data into simulation is crucial.

A simulation-ready asset of a rigid object requires different properties, depending

on the task being simulated. Our approach to Real2Sim is to obtain these prop-

erties from observations of the world in an efficient manner, specifically using only

cameras and robot sensors. For visualization, an asset generally requires geometry,

often represented as either a set of geometric primitives or a mesh, although newer

representations are coming online. Optionally, a texture and material properties can

be added to the visual representation for rendering purposes. For the dynamics, the

object needs both a collision geometry, to describe where it can interact with other

15

Image
Collection

Create
Mesh

Manipulate
Object

Estimate
Inertial

Parameters

Image data

Trajectory Data

 <l i nk name=" body" >
 <vi sual >
 . . .
 </ v i sual >
 <col l i s i on>
 . . .
 </ col l i s i on>
 <i ner t i al >
 . . .
 </ i ner t i al >
 </ l i nk>

Offline calculation

Inertial Parameter
Estimation Procedure

Geometry Estimation
Procedure Object URDF

Offline calculation

Figure 1-1: An example of a Real2Sim pipeline which estimates both the geometric
and dynamic properties of an object for simulation. These properties are often stored
in a Universal Robot Description Format (URDF).

objects, and dynamic parameters (or properties), which define how the object moves

given applied forces at each time step. A subset of the dynamic parameters is the

inertial parameters, which include the mass, center of mass, and inertia for a rigid

object.

The envisioned pipeline is a robot arm, equipped with cameras, that first takes

many images of an object in order to construct a mesh using 3D geometry tools. Then,

the robot grasps the object, traversing some trajectory to gather torque and motion

data. After using this data to identify the inertial parameters of the object, the result

is an asset of the object that behaves similarly to the real object in simulation. In

this work, we focus on the latter portion: estimating the inertial parameters.

Prior work in Real2Sim either makes assumptions about the object’s mass dis-

tribution or estimates dynamic properties from video. However, robots are already

suited for collecting data with sensors, and with a few extra steps, they could obtain

physical, numerical information about the object. By using robot manipulators as

measurement tools, we can begin to gather physical data about the world that can

be used to generate assets for simulation. Once an object is created in simulation,

the robot can imagine any arbitrary scenario involving that object. This is just one

16

example of the power Real2Sim technology can have on robot decision making.

In the next decade, as robotic manipulators begin to scale in industrial operations,

and perhaps even grocery stores or homes, strong payload identification techniques

could be capturing the properties of every previously unseen object, 24/7. This

previously unavailable data could be used not only to create simulation-ready objects,

but also to train many types of models, such as control policies or perception systems.

For example, images of objects labeled with physical properties can train a model that

can predict the dynamics of objects from visual information.

In this work we aim to understand and implement existing methods of robotic

arm payload identification in the context of inertial property estimation for objects

in Real2Sim pipelines. Specifically we consider rigid objects, due to their simple and

well-understood properties and behavior, and methods that do not require additional

force-torque sensors on a robot’s wrist. We find that there advantages and disad-

vantages to different approaches, but the choice of identification procedure that is

best for Real2Sim is that which can be seamlessly integrated with the geometric data

collection steps.

There are a few questions we seek to answer. Firstly, of various payload iden-

tification methods presented in the literature, which would be best in a Real2Sim

pipeline? Given a particular method, what trajectories are necessary for quality pa-

rameter estimates? Lastly, how tolerant can the estimation process be to noise from

the robot’s sensors? These questions will guide the engineering necessary to build a

payload identification process into a Real2Sim system.

We begin with existing work in system identification for robotic manipulators, as

the data we collect from the robot’s sensors depends on the whole system. However,

we find that it is challenging to implement without substantial engineering effort.

Regardless, studying these works provide intuition for direct payload identification

methods. When all that is needed is the payload identification, we propose an im-

plementation of a method that requires no existing knowledge of the robot’s system.

We implement the preferred method of identification on the Franka Emika Panda

hardware, and analyze various engineering strategies to improve upon the result.

17

18

Chapter 2

Preliminaries

Understanding where the inertial parameters appear in the equations used to describe

the dynamics of robotic manipulators gives intuition for how they can be estimated.

We first describe in detail the quantities we wish to estimate and show the patterns

in which they exist in the models we use to describe and control these systems.

2.1 What Are the Inertial Parameters?

The dynamic parameters, sometimes referred to as the physical parameters, of a rigid

body are the mass (𝑚), center of mass (𝑐), inertia tensor (𝐼), and coefficients of

friction (𝜇). In our setting, we will focus on the estimation of the inertial parameters,

which includes mass, center of mass, and inertia, or the 0th, 1st, and 2nd moments

of mass, respectively. These should not be confused with the geometric or kinematic

parameters that describe the shapes and links of a robotic system, such as the D-H

parameters.

In this work, we will use the SI units of kilograms (𝑘𝑔) to describe mass and meters

(𝑚) to describe the center of mass. The inertia of a rigid body in three dimensions is

often defined by an inertia tensor. The inertia tensor is a symmetric, positive-definite

matrix containing six unique parameters, each with the SI units 𝑘𝑔 ·𝑚2. It can be

calculated by integrating over the volume with respect to the mass distribution of the

19

object.

𝐼 =

∫︁
𝑥∈R3

𝜑(𝑥)(𝑥⊤𝑥I3 − 𝑥𝑥⊤)𝑑𝑚 =

⎡⎢⎢⎢⎢⎣
𝐼𝑥𝑥 𝐼𝑥𝑦 𝐼𝑥𝑧

𝐼𝑥𝑦 𝐼𝑦𝑦 𝐼𝑦𝑧

𝐼𝑥𝑧 𝐼𝑦𝑧 𝐼𝑧𝑧

⎤⎥⎥⎥⎥⎦ . (2.1)

Here, 𝜑(·) is a density field describing how mass is distributed across the volume, and

I3 is the 3× 3 identity matrix.

We also define the unit inertia tensor 𝐺:

𝐺 =
𝐼

𝑚
. (2.2)

We will occasionally use 𝑚𝐺 as an equivalent to 𝐼 to emphasize that all of the inertial

parameters appear in the equations of motion as bilinear terms with 𝑚.

For a 3-dimensional rigid body, the inertial parameters 𝜃 are defined as

𝜃 = [𝑚, 𝑐𝑥, 𝑐𝑦, 𝑐𝑧, 𝐺𝑥𝑥, 𝐺𝑦𝑦, 𝐺𝑧𝑧, 𝐺𝑥𝑦, 𝐺𝑥𝑧, 𝐺𝑦𝑧]. (2.3)

An important note is that the inertial parameters, specifically the center of mass and

inertia, must be defined with respect to some coordinate frame. Unless otherwise

specified, they will be assumed to be about the origin frame of the respective body

𝐵, not about the body’s center of mass frame, 𝐵𝑐𝑚. Defining the parameters this way

allows for special structure in the inverse dynamics equations, as we will see shortly.

The mass parameter itself, being the 0th moment, is invariant to frame of reference.

As further discussed below, the inertial parameters 𝜃, except for mass, always

appear in the structure of a rigid-body manipulator as bilinear terms with 𝑚. We

will refer to these combinations as the lumped inertial parameters, or just lumped

parameters, 𝛼(𝜃):

𝛼 = [𝑚, 𝑚𝑐𝑥, 𝑚𝑐𝑦, 𝑚𝑐𝑧, 𝑚𝐺𝑥𝑥, 𝑚𝐺𝑦𝑦, 𝑚𝐺𝑧𝑧, 𝑚𝐺𝑥𝑦, 𝑚𝐺𝑥𝑧, 𝑚𝐺𝑦𝑧]. (2.4)

Notice again that 𝑚𝐺 is equivalent to the entries of the inertia tensor.

20

In addition to the lumped parameters, it is also possible to describe a set of base

parameters that are the minimum set of dynamic parameter combinations needed

to describe the inverse dynamics of a system [3]. The base parameters are linear

combinations of the lumped parameters, describing which lumped parameters cannot

be identified independently of each other in practice.

2.1.1 Linearity of Composite Bodies

An important fact that we use in payload identification is that the inertial parameters

of a composite body are the sum of the lumped inertial parameters in the bodies it

is comprised of. Consider two rigid bodies 𝐵1 an 𝐵2, which are fixed with respect to

each other, i.e. they are welded together. Each body has inertial properties 𝜃1, 𝜃2,

and lumped inertial properties 𝛼1, 𝛼2, respectively. They behave dynamically as one

rigid body, 𝐵12, which has it’s own inertial properties and lumped inertial properties,

𝜃12 and 𝛼12. Naturally, the mass 𝑚12 is equivalent to the sum of 𝑚1 and 𝑚2. The

center of mass, with respect to a common reference frame 𝐹 , is equivalent to the

weighted sum of each individual center of mass vector, divided by 𝑚12:

𝑚12𝑐12 = 𝑚1𝑐1 +𝑚2𝑐2. (2.5)

The same applies for the inertia, as long as both 𝐺1 and 𝐺2 are defined with respect

to the same frame 𝐹 (this ensures that the parallel axis theorem holds):

𝑚12𝐺12 = 𝑚1𝐺1 +𝑚2𝐺2. (2.6)

Therefore, we see that the lumped parameters of the two bodies can be summed

to obtain the lumped parameters of the composite body,

𝛼12 = 𝛼1 +𝛼2, (2.7)

21

Figure 2-1: An example of a composite body comprised of two rigidly attached bodies.
Their mass is summed, and the center of mass and inertia are weighted averages of
the two, given the mass.

and more generally,

𝛼total =
𝑛∑︁

𝑖=1

𝛼𝑖. (2.8)

2.1.2 System Identification

Assume we know the inverse dynamics equations of a robotic system, parameterized

by these unknowns, 𝛼:

𝜏 = 𝑓(q, q̇, q̈;𝛼). (2.9)

System identification solves the problem of finding an 𝛼* that minimizes the error

between a set of observed states and torques (q, q̇, q̈, 𝜏) and the model-predicted

torques.

𝛼* = argmin
𝛼

‖𝑓(q, q̇, q̈;𝛼)− 𝜏‖22. (2.10)

In many methods, including those we explore in this work, this problem is solved

via least-squares. However, it can also be solved with gradient or other non-linear

optimization methods [4].

When performing system identification, 𝛼 typically represents a stacked combi-

nation of the inertial parameters for multiple bodies in a multi-body system. Here,

22

we distinguish between the inertial parameters of a robot arm 𝛼𝑟, and the inertial

parameters of a payload 𝛼𝑝. We define 𝛼𝑖 for each link 𝑖 ∈ (1, 𝑁) as

𝛼𝑖 = [𝑚𝑖, 𝑚𝑖𝑐𝑥𝑖, 𝑚𝑖𝑐𝑦𝑖, 𝑚𝑖𝑐𝑧𝑖, 𝐼𝑥𝑥𝑖, 𝐼𝑦𝑦𝑖, 𝐼𝑧𝑧𝑖, 𝐼𝑥𝑦𝑖, 𝐼𝑥𝑧𝑖, 𝐼𝑦𝑧𝑖], (2.11)

and 𝛼𝑟 as the concatenated vector of [𝛼1, ...,𝛼𝑁]. We state 𝛼𝑟 is a column vector of

shape (𝐴×𝑁)× 1, where 𝐴 is the number of lumped parameters per link and 𝑁 is

the number of links.

2.1.3 Constraints on Physical Feasibility

We aim to analyze when these parameters can and cannot be identified. Additionally,

in order for these parameters to make sense physically, they must meet certain math-

ematical constraints of physical feasibility, also referred to as physical consistency.

These constraints include 𝑚 > 0, 𝐼 ≻ 0, and the triangle inequality for the principle

moments of inertia, or the three eigenvalues of the inertia tensor, 𝐼1, 𝐼2, 𝐼3:

𝐼1 ≤ 𝐼2 + 𝐼3

𝐼2 ≤ 𝐼1 + 𝐼3

𝐼3 ≤ 𝐼1 + 𝐼2

. (2.12)

Lastly, the inertia tensor must be symmetric.

2.2 The Equations of Motion

The inverse dynamics of a dynamic system are the differential equations that describe

the forces acting upon the system given the system’s state, it’s derivatives, and the

kinematic and dynamic parameters specific to the system. They are also referred

to as the equations of motion. These are the equations that we want to study and

understand if we want to estimate the dynamic parameters given observations of the

state and forces acting upon it. Murray, et al. [5] and Long [6] are the resources we

use to study and derive these equations, in order to give some intuition as to where

23

the dynamic parameters appear. Lastly, an important fact we want to highlight is

that the equations of motion for a manipulator are linear in the lumped parameters,

which was shown in [7] and [8].

2.2.1 One-Link Robot Case

First, we will analyze the equations of motion of a planar, single-link "robot arm"

before moving to higher degrees of freedom. Lagrange’s equations are a popular way

of deriving the equations of motion, which begin from the kinetic and potential energy

of the dynamic system. Take 𝑞 to be the state of the system (in this case, the angle

of the single joint, in radians), and 𝑞 and 𝑞 to be the first and second derivatives,

respectively. If 𝑇 (𝑞, 𝑞) is the kinetic energy and 𝑈(𝑞) is the potential energy, then the

Lagrangian is defined as

𝐿(𝑞, 𝑞) = 𝑇 (𝑞, 𝑞)− 𝑈(𝑞). (2.13)

Considering the case of a robot arm, we assume that all of the generalized forces

acting on the robot can be written as joint torques, 𝜏 . This includes forces from the

motors, gravity, and friction. Lagrange’s equations state that

𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑞𝑖
− 𝜕𝐿

𝜕𝑞𝑖
= 𝜏𝑖 ∀𝑖 = 1, ..., 𝑁, (2.14)

where 𝑁 is the number of joints.

Because we are studying a rigid-body dynamic system, we can define 𝑇 and 𝑈

from the inertial properties of the arm. Let us abstract the values of mass, center of

mass, and the inertia tensor as 𝑚, 𝑐, and 𝐼. In this case, 𝐼 will be with respect to

the center of mass, to simplify calculations, but 𝑐 is with respect to the world frame.

In our world frame of reference, x points to the right, z points up, and y points into

the xz-plane. The single joint of the arm rotates about the y-axis. We can write the

kinetic energy 𝑇 (𝑞, 𝑞) as

𝑇 (𝑞, 𝑞) =
1

2
𝑚‖𝑣‖2 + 1

2
𝜔⊤𝐼𝜔, (2.15)

24

where the norm of the translational velocity of the center of mass is ‖𝑣‖ =
√
�̇�2 + �̇�2

and the angular velocity is 𝜔 = 𝑞. We also have the following conversions from the

joint angle 𝑞 to the Cartesian coordinates, 𝑥, 𝑦, and 𝑧:

𝑥 = 𝑟 cos 𝑞 𝑧 = 𝑟 sin 𝑞

�̇� = −𝑞𝑟 sin 𝑞 �̇� = 𝑞𝑟 cos 𝑞.
(2.16)

𝑟 is the radial position of the center of mass from the world origin, which is equivalent

to
√
𝑥2 + 𝑧2 but will be written as 𝑟 for simplicity. Now we write the kinetic energy

as

𝑇 (𝑞, 𝑞) =
1

2
𝑚(�̇�2 + �̇�2) +

1

2
𝐼𝑦𝑦𝑞

2. (2.17)

Here, we only include the inertia about the y-axis, 𝐼𝑦𝑦, since that is the axis of rotation

of the joint. The body does not rotate about any other axis in this two-dimensional

system. Further substituting, we obtain

𝑇 (𝑞, 𝑞) =
1

2
𝑚

[︀
𝑟2 sin2 𝑞 · 𝑞2 + 𝑟2 cos2 𝑞 · 𝑞2

]︀
+

1

2
𝐼𝑦𝑦𝑞

2

=
1

2

[︀
𝑚𝑟2 + 𝐼𝑦𝑦

]︀
𝑞2.

(2.18)

We can also define the kinetic energy in generalized coordinates. Using the gen-

eralized velocity vector 𝑉 to describe the translational and rotational velocity, then

𝑇 (𝑞, 𝑞) =
1

2
𝑉 ⊤

⎡⎣ 𝑚I3 −𝑚 · 𝑐×

𝑚 · 𝑐× 𝐼

⎤⎦𝑉 , (2.19)

where I3 is the 3 × 3 identity matrix and 𝑐× is the skew-symmetric cross product

operator for 𝑐.

If we were strictly talking about the motion of the arm about it’s origin, this

would be sufficient. However, to describe the motion with respect to a body frame of

a particular link, we will need to account for the kinematics of the system. If we want

to describe the kinetic energy as a function of the joint states, then we must multiply

25

by the Jacobian that maps the joint angle to the generalized velocity vector:

𝑉 = 𝐽𝑞. (2.20)

In the case of a single-link arm, where the base joint only rotates around the

y-axis, the Jacobian is

𝐽 =
[︁
𝑐𝑥 0 𝑐𝑧 0 1 0

]︁⊤
, (2.21)

and the kinetic energy of the system becomes

𝑇 (𝑞, 𝑞) =
1

2
𝑞

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐𝑥

0

𝑐𝑧

0

1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⊤ ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑚 0 0 0 𝑚𝑐𝑧 −𝑚𝑐𝑦

0 𝑚 0 −𝑚𝑐𝑧 0 𝑚𝑐𝑥

0 0 𝑚 𝑚𝑐𝑦 −𝑚𝑐𝑥 0

0 −𝑚𝑐𝑧 𝑚𝑐𝑦 𝐼𝑥𝑥 𝐼𝑥𝑦 𝐼𝑥𝑧

𝑚𝑐𝑧 0 −𝑚𝑐𝑥 𝐼𝑥𝑦 𝐼𝑦𝑦 𝐼𝑦𝑧

−𝑚𝑐𝑦 𝑚𝑐𝑥 0 𝐼𝑥𝑧 𝐼𝑦𝑧 𝐼𝑧𝑧

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐𝑥

0

𝑐𝑧

0

1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝑞

=
1

2

[︀
𝑚(𝑐2𝑥 + 𝑐2𝑧) + 𝐼𝑦𝑦

]︀
𝑞2.

(2.22)

Clearly, these calculations become more complex with more linkages.

𝑈(𝑞) is dependent on the angle of the joint, which gives the height of the center

of mass:

𝑈(𝑞) = −𝑚g𝑟 sin 𝑞. (2.23)

Now, we can form the Lagrangian,

𝐿 =𝑇 − 𝑈

=
1

2
(𝑚𝑟2 + 𝐼𝑦𝑦) 𝑞

2 +𝑚g𝑟 sin 𝑞,
(2.24)

and the equations for the generalized forces via Eq. 2.14:

𝜏 =
𝑑

𝑑𝑡

[︀
(𝑚𝑟2 + 𝐼𝑦𝑦)𝑞

]︀
+𝑚g𝑟 cos 𝑞

=(𝑚𝑟2 + 𝐼𝑦𝑦)𝑞 +𝑚g𝑟 cos 𝑞.
(2.25)

26

Notice that we see the term (𝑚𝑟2 + 𝐼𝑦𝑦)𝑞, which is not linear in the lumped

parameters. However, remember that here, 𝐼𝑦𝑦 is the y-axis inertia about the center

of mass. If we consider the parallel axis theorem and convert this representation of the

inertia in the origin frame of the object, 𝐼𝐵𝑦𝑦, then these non-linearities are eliminated,

as

𝐼𝐵𝑦𝑦 = 𝐼𝐵𝑐𝑚
𝑦𝑦 +𝑚‖𝑐‖2. (2.26)

The resulting equation of motion is

𝜏 = 𝐼𝑦𝑦𝑞 +𝑚(𝑐2𝑥 + 𝑐2𝑧)g cos 𝑞, (2.27)

which is linear in 𝛼 = [𝑚𝑐𝑥,𝑚𝑐𝑧, 𝐼𝑦𝑦].

We also notice that in this system, the mass term 𝑚 does not appear in these

equations independently from other inertial parameters. This means that we could

not estimate the mass without already knowing the center of mass or the inertia.

This makes sense intuitively, since there is no difference in torque produced between

a heavy arm with a short center of mass and a lighter arm with a longer center of

mass. This means that 𝑚 is unidentifiable. The same applies to 𝑐 and the unit

inertia tensor 𝐺. However, the lumped parameters 𝑚𝑐 and 𝑚𝐺 are identifiable, and

in fact, they are the only inertial terms that matter when describing these equations

of motion.

2.2.2 Two-Link Robot Case

Now, we examine the derivation of a two-link planar arm in order to see where the

rest of the inertial parameters appear in the equations. This example is mainly for

building intuition, there is no proof of the linearity in the lumped inertial parameters.

The structure of the equations now relies on the kinematic relationship between

links 1 and 2. In the planar case, this is simply a translational offset dependent on the

length of link 1, ℓ1. Since these kinematic parameters are known in the system, we

27

see the term 𝑚2ℓ1 appear in the equations of motion, allowing for the identification

of 𝑚2.

Indeed, we only need to derive the potential energy of the system to show where

𝑚2 appears independently, although it also appears in the kinetic energy expressions.

The potential energy is equivalent to

𝑈(𝑞1, 𝑞2) = 𝑈1(𝑞) + 𝑈2(𝑞1, 𝑞2), (2.28)

𝑈(𝑞1, 𝑞2) = −𝑚1g𝑟1 sin 𝑞1 +𝑚2g(ℓ1 sin 𝑞1 + 𝑟2 sin (𝑞1 + 𝑞2)). (2.29)

Here we see the term 𝑚2gℓ1 sin 𝑞1 which does not depend on any inertial parameters

except for 𝑚2. Hopefully this example provides some intuition for how the inertial

parameters begin to enter the equations of motion as more links are added. More

rigorous examples can be found in [5] and [6].

2.2.3 Linearity in Lumped Parameters

When the Lagrangian equations of motion for an N-link manipulator are derived,

they take the form

M(q)q̈+C(q, q̇)q̇− 𝜏g(q) = 𝜏 , (2.30)

where M(q) is the generalized mass matrix, C(q, q̇) contains the Coriolis and cen-

trifugal terms, and 𝜏g(q) are the generalized forces due to gravity. Atkeson, et al.

(1985) [7] shows how the parameters of the terminal link are linear in the lumped

parameters (Eq. 2.1), and An, et al. [8] extends this to the full robot case. Gautier

and Khalil also propose the same result in 1988 [9].

This is a very important result that has implications for how the system identifi-

cation problem can be solved; as we see later, this linear relationship that it specific

to robot manipulators allows the problem to be solved via least-squares optimization,

which is convex.

28

Chapter 3

Related Work

Highlighted here are works from both a novel research area, Real2Sim, and a well

established research area, system identification. We note gaps in the Real2Sim litera-

ture with respect to dynamic parameter identification and pull from existing methods

to fill them.

3.1 Real2Sim

Solving the Real2Sim problem is a topical research area, gaining traction with the

rise of virtual reality and advances in computer vision and graphics. It encompasses

a wide variety of tasks, all with the shared objective of representing a scene from the

real world in a simulator. For example, an earlier work in Real2Sim involves modeling

pegs from real, factory insertion tasks to train reinforcement learning policies [10].

The authors make use of generative adversarial networks to create a simulated model

of the real scene, then allow the robot to learn in simulation.

Soon after, we see one of the most important contributions to computer vision and

graphics in the past 3 years that has inspired Real2Sim research, Neural Radiance

Fields (NeRFs) [11]. A NeRF is a neural network representation of a scene or object,

where the inputs are 3D points at a desired viewing angle, and the outputs are RGB

values with a given optical density, describing how much light is transmitted through

that point. By using a differentiable volumetric renderer, the result is an image

29

of the scene at any queried viewpoint. They can be trained end-to-end on sets of

RGB images, creating a virtually three dimensional representation of the scene in

the images. In order to be simulated, a NeRF can be converted into a traditional

mesh via the marching cubes algorithm [12] or simulated directly in a differentiable

simulator.

Le Cleac’h et al. understands that neural fields have a capacity to not only

encapsulate the way that light behaves, but also how mass is distributed on a object

[13]. However, their method does not take advantage of real-world measurement to

gather dynamic information, and instead uses video to learn the expected dynamics

of the object. Additionally, learning a density neural field has many challenges,

mainly that it is very over-parameterized given we can otherwise fully represent the

dynamics of a rigid body using only 10 parameters. PAC-NeRF [14] is another work

which expands neural field representations to contain dynamic information.

Heiden, et al. (2019) is very similar to our work, in that they estimate physical

properties of mechanical systems for Real2Sim transfer [15]. However, they use mo-

tion capture techniques to collect data for system identification, where we use data

directly from a robot’s sensors. We are not aware of Real2Sim solutions that involve

mechanical payload identification methods at this time.

3.2 Object Inertial Parameter Estimation

Identifying payloads of robotic manipulators has been well studied since the mid

1980s. This section will cover a subset of important works in this field as the liter-

ature is vast. Often, the method is derived as an extension of system identification

techniques of robotic manipulators as a whole, so we will review these works as well.

3.2.1 Estimation as a Free Body

When presented with a standalone, rigid object, there are quite a few ways to es-

timate its inertial properties. Mass can be measured with a scale, center of mass

via measuring where the object can balance, and inertia by analyzing motions when

30

hung from a pendulum [16]. However, when our goal is to identify these parameters

of many unseen objects at scale, it is not efficient and difficult to automate. Mavrakis

and Stolkin provide a thorough review of alternative methods, categorized by means

of visual information and physical information [17]. They also describe methods for

objects rigidly fixed to a robot manipulator, which we will discuss more below.

Some notable visual methods include Galileo [18], which identifies the physical

properties of objects from video, and image2mass [19], which can estimate the mass

of an unseen object, trained on thousands of examples of Amazon merchandise. What

is impressive about these visual methods is that they are comparably accurate to a

human performing the same physical parameter estimation task. Regardless, having

a robot involved in the estimation process could allow us to do much better, given

that they can take physical measurements.

Methods in which a manipulator is interacting with an object as a free body

have also been proposed. For example, Yu, et al. aims to identify all of the inertial

parameters of a robot via pushing with a 2-finger gripper [20]. However, their method

requires specialized force sensor hardware at the fingertips, and many interactions are

needed in order to identify the different moments. Mavrakis, et al. also focuses on

planar pushing, which is bound to the xy-plane, meaning many inertial parameters are

destined to be unidentifiable [21]. Overall, free body object identification is helpful for

identifying dynamic parameters such as friction coefficients, but there are limitations

in inertial parameter identification.

3.2.2 Estimation as a Payload (Extension of Robot Arm)

Rather than identifying the parameters of a free body, an object can be treated as

an extension of a mechanical system, or in the case of a robotic manipulator specif-

ically, the object is referred to as the payload. Performing system identification for

a payload’s dynamic parameters specifically is often referred to as payload identifica-

tion. One of the first cited works on payload identification describes a method for

mass estimation in a static setting, both using the joint torques on the manipulator

and with a force sensor attached to the robot’s wrist [22]. Soon after, methods were

31

developed to identify center of mass and inertial of the payloads, using specified test

motions to measure one axis of motion at a time [23].

Atkeson, et al. (1985) contributed to the payload identification literature by

applying the Newton-Euler equations, which combine the transitional and rotational

components of the payloads dynamics into a single equation that can be used for

identification [7]. As mentioned previously, they note that these equations are linear

in the inertial parameters they wish to identify, and therefore the parameters can be

estimated with the least-squares method. They tested this method on a real robotic

system and handled sensor noise and other issues arising from experimental data.

Khalil, et al. presents four different least-squares based methods that can be used

to identify a fixed payload, meaning that the object is rigidly attached to the end

of the arm [24]. This regime is applicable not only when a robotic manipulator is

wielding a tool, but also when it is grasping an object. One of the methods shows

that the parameters of a payload can actually be identified by using the difference in

torque measurements taken when the robot is carrying the payload and when it is not.

A drawback to this method is that it requires both of these measured trajectories to

be identical. Therefore, it may be more reasonable to assume a good dynamic model

of the robot, if available. We study this method carefully in our work, and find it

quite useful for the Real2Sim task.

In later years, Gaz, et al. (2017) revisit this problem and explore questions regard-

ing the identifiability of the payload parameters after the base dynamic parameters of

the robot are already identified [25]. They show that the payload parameters appear

linearly in the dynamic parameters of the robot and can thus be estimated in the

same least-squares approach. An interesting finding was that any estimate of the

payload parameters could be used with any feasible estimate of the robot parameters

and dynamically consistent results would be obtained.

32

3.3 Robot Dynamic Parameter Estimation

As pointed out by Khalil, et al. (2007), many payload identification methods require

knowing either estimating or knowing the dynamic model of the robot a priori. This

is because a rigid payload can be treated as the extension of a manipulator’s terminal

link, and having a strong underlying model of the robot allows us to extract the

parameters of a payload from unexpected changes in the robot’s joint torques. If this

model is not available, which it often is not, the problem of estimating the dynamic

parameters of the whole robotic system is necessary.

In the 1980s, multiple papers ground work for dynamic parameter estimation

on robots [9][3][26][27]. An et al. proposes one of the methods we apply in this

work. This paper points out and addresses the issues of unidentifiability in certain

parameters and subtleties to the least-squares optimization that is ignored in prior

work [8]. Going forward, this foundational method of system identification for robots

is used widely in research and industrial settings.

3.3.1 Identifying Industrial Robots

The main motivation of identifying robotic systems is that when utilizing a robot built

by an external manufacturer, the user does not have access to the dynamic model

of the robot. These numbers are proprietary, but without them, it is challenging to

build precise controllers. Thus, there is a paper for the identification of almost every

commonly used robotic manipulator, and we will highlight a few examples.

The PUMA 560 arm was one of the first to have it’s dynamic parameters estimated

in the 1980s; in the work of Armstrong, et al. it was deconstructed completely to have

the individual links measured [28]. More recently, Gaz, et. al (2019) aims to estimate

the Franka Emika Panda robot [1], which we studied with care as it is the model that

we chose for our real-world experiments. First, they find the optimal value of the base

parameter set, via least-squares optimization. Then, they use a global optimization

method to estimate a set of parameters from the optimal base parameters. The

results are currently one of the most widely accepted Franka Emika Panda models

33

available for simulation and control, notably being used by the ROS interface to the

Panda [29]. However, this estimate does not appear to be physically realistic, meaning

that while the parameter estimates might produce the correct expected torques, they

may not be the same as the actual values of the hardware. The popular KUKA

iiwa LBR robot was analyzed by Stürs, et al [30]. They also use the least-squares

optimization approach, and we found this work helpful when originally performing

early experiments with a simulated KUKA robot.

3.3.2 Identifiability Analysis

Robotic system identification has been heavily studied, especially in the domain of

robotic manipulators. Multiple robotic manipulation textbooks and papers discuss

the use of rigid body dynamics analysis to find a set of base parameters that are

suitable for identification in a system, and specifically for manipulators with rotational

joints [16][22][31][32]. The correct set of base parameters allows the least-squares

problem to be full-rank. Typically, these are numeric methods that involve analyzing

either the QR or SVD compositions of the data matrices used in the least-squares

estimation.

3.3.3 Trajectories for Excitation

Solving the dynamic estimation problem requires quality data collection. Early works

use a sequence of isolated joint trajectories in order to estimate one link at a time [27].

Once the method of solving for the parameters via the Newton-Euler equations was

proposed, the regression could be performed on all parameters simultaneously given

a data set formed from all joint trajectories. We mostly see sinusoidal trajectories

used in the literature; while we could not find the original proposition of this data

collection technique, it likely stems from modal analysis of linear dynamical systems.

However, Rackl et al. performs an optimization for excitability over trajectories

parameterized as B-splines [33]. Many types of trajectories can be parameterized in

this way, but the ones found for excitation appeared to look very similar to sinusoidal

34

trajectories. This demonstrates that sinusoidal trajectories are good for excitation.

3.3.4 Estimation with Physical Feasibility

The identification techniques described above may give robot parameter estimates

that mathematically evaluate to the correct dynamics, but the parameters themselves

may not be physically feasible. To be physically feasible, the physical parameters must

satisfy a series of constraints described in Section 2.1.3.

Previously mentioned, Gaz, et. al (2019) tackles the problem of physical feasibility

on a Franka Emika Panda arm by performing an optimization in two steps [1]. First,

they find the optimal value of the base parameter set, via least-squares optimization.

Then, they use simulated annealing to estimate a set of physically feasible parame-

ters from the optimal base parameters given the necessary constraints, a non-linear

optimization problem. The resulting parameter values are currently one of the most

widely accepted Panda models available for simulation and control, notably being

used by the ROS interface to the Panda [29]. However, there is no guarantee on

physical reality of these estimates, meaning that they may not be close to the values

obtained by measurement techniques, such as deconstructing each link and analyzing

them individually. That is because there are many possible solutions that produce

the same inverse dynamics. This can be observed especially in the large difference in

mass between links 1 and 2, which have equivalent shape and are likely to be very

close in mass in reality (Figure 3-1).

Wensing, et al. encodes these constraints as Linear Matrix Inequalities and utilizes

semi-definite programming to find the optimal solution [34]. Sutanto, et al. provides

an alternative to this approach by encoding the constraints directly into the equations

of motion via reformulation of the dynamic parameters [35]. More recently, Ledezma

and Haddadin try a similar global optimization; however, instead of performing a

non-linear optimization with constraints, they instead show that the set of physically

feasible solutions lie on a Riemannian manifold, and perform gradient descent on that

manifold [2].

There has been plenty of focus on physical feasibility for robot parameter esti-

35

Figure 3-1: Estimated inertial parameters of the Franka Panda robot and associated
inertial ellipsoid visualizations. On the left are estimates from Gaz, et al (2019)
[1], and on the right are estimates from Ledezma and Haddadin [2]. Courtesy of
Fernando Díaz Ledezma and Sami Haddadin. RIL: Riemannian Incremental Learning
of the Inertial Properties of the Robot Body Schema. In 2021 IEEE International
Conference on Robotics and Automation (ICRA) ©2021.

mation, but we could not find previous literature analyzing physical feasibility for

payload parameter estimations exclusively. We assume that this means it is a non-

issue for well-structured payload identification objectives, but refer to these works in

robot identification when trying to understand unsatisfactory results.

While the theory of robotic arm system identification is strong, there are many

implementation subtleties that make the problem challenging. The main motivation

for most of this work is for better controller design, which means obtaining a dynami-

cally consistent model with a margin of error suitable for feedback control. This does

not always mean that we need to produce physically consistent or even physically

accurate results. Fortunately, there are payload estimation techniques that do not

require the estimation of the whole robot system.

36

Chapter 4

Methods

In this section, we present two main approaches to payload identification that we ex-

plored and share additional engineering details on implementation. The first, full-arm

symbolic decomposition, involves learning the dynamic parameters of an entire robot

arm, not just the payload. However, we later see that the direct payload identification

method only estimates the payload parameters. The quality of data used for estima-

tion also affects the quality of the solution, so we address design questions regarding

the types of trajectories executed to collect data from the robot and post-processing

to remove noise from the data.

An overview of each method, with their differences and similarities, is outlined in

Table 4.1. Python implementations are available at:

https://github.com/alambert14/real2sim-payload-id [36].

Method Objective: argmin𝛼𝑝

#
Parameters Needs 𝛼𝑟? Assumptions

Full-Arm
Symbolic

Decomposition
‖W(𝛼𝑟 +𝛼𝑝)− 𝜏‖22

(𝑁 + 1)× 10+
Friction ✓

Robot parameter
estimates are

physically
consistent and

realistic

Direct Payload
Identification ‖W𝑝𝛼𝑝 −Δ𝜏‖22 10 ✗

Two trajectories
have equivalent
positions and

velocities

Table 4.1: Comparison of both payload identification methods.

37

https://github.com/alambert14/real2sim-payload-id

4.1 Method 1: Full-Arm Symbolic Decomposition

The full-arm symbolic decomposition method makes use of the linearity of the lumped

inertial parameters in a robotic arm’s equations of motion. It starts with either an

estimation of the dynamic parameters of the robot’s model, or the assumption that

the parameters are already available.

We began exploring this work by the assumption that the robot’s dynamic pa-

rameters would be made available by the manufacturer, but this is not the case for

most industrial and research robots. The Panda robot, which we choose to use for our

experiments, does not expose the dynamic parameters used in its control algorithms,

nor parameters directly from the manufacturer. Its API exposes some functions that

could help us extract these parameters, such as 𝜏ext(·), the "external" torques cal-

culated from the measured joint torques minus expected torques from the internal

model. This includes commanded joint torques and gravity compensation torques.

However, we ran experiments to see if these external torques can be trusted and found

them to be inaccurate. We observed that the external torques were much larger than

zero when the robot was undisturbed. Regardless, because our Panda has elements

that are unique to it, such as a camera, end-effector, and wires, re-calibrating the

model to fit this specific robot is necessary. This motivated our primary problem of

estimating the Panda’s dynamic parameters.

4.1.1 Estimating the Robot’s Dynamic Parameters

Assuming we know the kinematic and geometric parameters of the robot, we recall

from Chapter 2 that the equations of motion defining the system’s dynamics are

M(q;𝛼𝑟)q̈+C(q, q̇;𝛼𝑟)q̇− 𝜏g(q;𝛼𝑟) = 𝜏 (4.1)

and are linear in the lumped inertial parameters of the robot, 𝛼𝑟, which we will

further refer to as simply the lumped parameters.

By logging one or more trajectories from the robot, we obtain 𝒟, a dataset con-

38

sisting of

• q[·]: The measured joint angles (radians)

• q̇[·]: The measured or calculated joint velocities (rad/s)

• q̈[·]: The calculated joint accelerations (rad/s2)

• 𝜏 [·]: The measured joint torques (Newton-meters)

At a given time 𝑡, each of these components give a vector in R𝑁 . With these

known sequences, the only remaining quantities are the dynamic parameters we wish

to estimate, 𝛼𝑟. Our goal is to find an 𝛼𝑟 which minimizes the torque estimation

error, meaning our model is dynamically accurate:

𝛼*
𝑟 = argmin

𝛼𝑟

‖M(q;𝛼𝑟)q̈+C(q, q̇;𝛼𝑟)q̇− 𝜏g(q;𝛼𝑟)− 𝜏‖22. (4.2)

4.1.2 Friction Modeling

Unfortunately the inertial parameters are not enough for a model of a serial ma-

nipulator that will give reasonable model-predicted torques. There is also friction

between the joints that dampens their motion. The challenge here is that there are

many ways to model friction; however, the coefficients of friction still appear linearly

in the equations of motion and are decoupled from the lumped inertial parameters.

One way of modeling friction is with 3 coefficients, described in [1]:

𝜏𝜇(q̇) = 𝜇𝑣q̇+ 𝜇𝑐sign(q̇) + 𝜇𝑜. (4.3)

𝜇𝑣 represents viscous friction, 𝜇𝑐 represents Coloumb friction, and 𝜇𝑜 is friction offset

that encapsulates any unmodeled behavior. If 𝜏𝜇 is considered with the equations of

motion (Eq. 4.1),

M(q)q̈+C(q, q̇)q̇− 𝜏g(q)− 𝜏𝜇(q̇) = 𝜏 , (4.4)

39

then 𝜇𝑣, 𝜇𝑐, and 𝜇𝑜 may be appended to 𝛼𝑟, which now represents the lumped

dynamic parameters.

4.1.3 Linear Decomposition and Data Matrix Construction

Since the equations of motions are linear in 𝛼𝑟, we can symbolically rewrite our

objective in this form:

𝛼*
𝑟 = argmin

𝛼𝑟

‖W(q, q̇, q̈)𝛼𝑟 − 𝜏‖22. (4.5)

W is referred to as the data matrix, which is dependent on our kinematics variables

q, q̇, and q̈.

There are two tools in Drake that we can use to implement this decomposition,

discussed below [37].

Symbolic Decomposition

One option is the function DecomposeLumpedParameters from Drake’s symbolic toolkit.

This recursive function takes a representation of a symbolic expression and a vector of

symbolic parameters, 𝜃, and returns the data matrix and a set of lumped parameters

as they appear in the symbolic expression, 𝛼(𝜃). Since this algorithm runs agnostic

to the structure of the multibody equations, it is not guaranteed that the lumped

parameters that are identified will be the same set that we describe in Eq. 2.1. How-

ever, this is a good choice if we have a system where we do not know what the set of

lumped parameters would be.

Ideally in computation, W remains symbolic, containing placeholders for the kine-

matics variables q, q̇, and q̈. Unfortunately, at the time of this writing, the decom-

position algorithm does not scale to systems with high degrees of freedom and takes

prohibitive computation time when presented with the equations of motion of the

7-degree-of-freedom robotic arm we are interested in. Despite this issue, the problem

can be made tractable. We found that substituting the kinematics variables with

numeric values drastically reduces the number of expressions needed to represent the

40

equations, as many of the terms are able to be regrouped into numeric coefficients.

Instead of performing the decomposition once with all of symbolic kinematics

variables as placeholders, we can decompose the expression at each time step after

substituting the collected kinematic data. At each time step 𝑡, we collect q(𝑡), q̇(𝑡),

and q̈(𝑡), and then decompose to obtain W𝑡. With 𝑇 total data points, we create a

stacked vector W of size (𝑇 ×𝑁)× 𝐴. An issue with this approach is that 𝐴 could

change at each time step, for example, if some values of the kinematics observations

cause the coefficients to become zero. We simply remove these data points if the

decomposition of 𝛼𝑟 does not contain the parameters we expect, which is fortunately

uncommon.

For a simple system with low degrees of freedom, we only need to decompose

the equations of motion once, with a fully symbolic representation of the kinematics

and the inertial parameters. However, on a real robotic arm with 6 or 7 joints, it is

necessary to add the substitution step, as shown in Algorithm 1.

Algorithm 1 Symbolic Decomposition with Kinematics Substitution
Given: 𝒟, plant, 𝜃sym

Wdata ← 𝑧𝑒𝑟𝑜𝑠(𝑇 ×𝑁,𝐴)
𝑘 ← 0
for 𝑡← 1 to 𝑇 do

X, 𝜏obs ← 𝒟[𝑡] ◁ Observed q, q̇, q̈, 𝜏 at time 𝑡
𝜏sym ← plant.InverseDynamics(X)
W𝑡, 𝛼sym ←DecomposeLumpedParameters(𝜏sym,𝜃sym)
if 𝛼sym is invalid then

continue
end if
Wdata[𝑘 : 𝑘 +𝑁, :]←W𝑡

𝜏data[𝑘 : 𝑘 +𝑁]← 𝜏obs

𝑘 ← 𝑘 +𝑁
end for
return Wdata, 𝛼sym, 𝜏data ◁ Wdata𝛼sym = 𝜏data

41

Auto-Differentiation

Another implementation is based on the observation that W describes the partial

derivatives of the equations of motion with respect to 𝛼𝑟:

W =
𝜕

𝜕𝛼
[M(q;𝛼𝑟)q̈+C(q, q̇;𝛼𝑟)q̇− 𝜏g(q;𝛼𝑟)] . (4.6)

Thus, W can also be constructed using auto-differentiation, which we implement

using the AutoDiff functionality in Drake. Because the equations are linear in 𝛼𝑟,

the partial derivatives are constant with respect to 𝛼𝑟. Essentially, W describes how

much we expect the torque 𝜏 to change when we change 𝛼𝑟. For this reason, W is

sometimes referred to as the sensitivity tensor.

Here, we construct the inverse dynamics using AutoDiff variables to represent

the lumped parameters, telling Drake that we can find the gradient with respect to

these variables. They are initialized to arbitrary values, since the derivative is not

dependent on the values of 𝛼𝑟. This gives an expression e𝑡 at each time step, after

substituting in the recorded kinematics values. W is found by stacking the partial

derivative vectors of each e𝑡 with respect to 𝛼𝑟, creating a matrix of size (𝑇 ×𝑁)×𝐴.

Now that W has been constructed, this minimization problem is a candidate for

least-squares optimization. The least-squares solution to this problem is

𝛼𝑟 = (W⊤W)
−1
W⊤𝜏 , (4.7)

or

𝛼𝑟 = [W]+𝜏 (4.8)

if we use the pseudo-inverse notation [38]. Note that the original dynamic parameters,

𝜃1...𝑁 can be recovered by the associated estimated 𝑚1...𝑁 .

42

4.1.4 Using an Initial Condition

Another advantage of the linearity in 𝛼𝑟 is that we can estimate 𝛼𝑟 with respect to

an initial guess, 𝛼0:

𝜏 − 𝜏0 = W(𝛼𝑟 −𝛼0). (4.9)

This time, instead of solving for a new set of parameters, we solve for a delta

𝛿𝛼 that describes the difference between 𝛼0 and the 𝛼*
𝑟, the optimal 𝛼 that most

accurately describes the system. Now, the bias vector is the difference between our

observed torques 𝜏 , and the model-predicted torques of the 𝛼0 system, 𝜏0.

𝛿*
𝛼 = argmin

𝛿𝛼

‖W(𝛼𝑟 −𝛼0)− (𝜏 − 𝜏0)‖22, (4.10)

𝛿*
𝛼 = [W]+ (𝜏 − 𝜏0), (4.11)

𝛼*
𝑟 = 𝛼0 + 𝛿*

𝛼. (4.12)

In theory, we could choose any initial condition for 𝛼0, but we choose to existing

guesses for the Panda parameters, such as those in [1] and [2]. The advantage of using

an initial condition is that we can add regularization to our least-squares problem,

such as a ridge regularizer, that would keep the solution close to the initial guess:

𝛿*
𝛼 = (W⊤W + 𝜆I)−1W⊤(𝜏 − 𝜏0). (4.13)

This is beneficial when estimating the entire robot, as there are many possible solu-

tions that are dynamically consistent.

4.1.5 Estimating the Inertial Parameters of the Payload

This method, when evaluated on data collected from a robot not carrying a payload,

gives us an estimate of the robot’s inertial parameters, �̂�𝑟. If we consider the payload

to be a component of a composite body with the terminal link of the robot arm, then

from Section 2.1.1 it is shown that the inertial parameters of the composite body are

43

equivalent to the sum of he two bodies it consists of, and thus

�̂�𝑝 = �̂�′
𝑁 − �̂�𝑁 . (4.14)

�̂�𝑁 are the previously estimated (or known a priori) parameters of the terminal link

when there is no payload, and �̂�′
𝑁 is the estimated value of the last link while the

robot is carrying the payload.

Going forward, we will use the notation 𝛼 = 𝛼𝑟+𝛼𝑝 to describe this relationship,

as

𝛼 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝛼1

𝛼2

...

𝛼𝑁

⎤⎥⎥⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎢⎣
0

0
...

𝛼𝑝

⎤⎥⎥⎥⎥⎥⎥⎦ , (4.15)

where 𝛼1...𝛼𝑁 are the lumped parameters of each link.

Implementation wise, there are two options for enforcing the linear relationship

between 𝛼𝑁 and 𝛼𝑝:

1. Re-estimate all robot parameters 𝛼𝑟: If we proceed with the same proce-

dure as before to obtain a new estimate of �̂�𝑟, then the contribution by 𝛼𝑝 can

be extracted by subtracting the old estimate of �̂�𝑟 from the new estimate. An

issue with this method is that if there is error in the initial estimate of �̂�𝑁
𝑟 , it

will be propagated to the estimate of the payload.

2. Create new variables 𝛼𝑝 and sum with 𝛼𝑁 : Previously, we represented

the inertial parameters as variables (either symbolic or AutoDiff) in Drake’s

MultibodyPlant. Here, we create a new version of the plant, initialized with the

previously estimated �̂�𝑟. Then, �̂�𝑁 is replaced by �̂�𝑁 +𝛼𝑝, and the equations

are decomposed, this time with respect to the symbolic 𝛼𝑝:

𝜏 = W𝑝𝛼𝑝 +w. (4.16)

W𝑝 and w are symbolic only in the kinematics variables q, q̇, and q̈, which can

44

either remain symbolic or be substituted as in Algorithm 1. w is a bias term

that holds all of the terms that are not dependent on 𝛼𝑝 (including �̂�𝑟).

Method two is preferred, as the problem becomes easier to solve when less parameters

are being estimated. Regardless, in either technique, 𝛼𝑝 will need to be expressed in

the same frame as 𝛼𝑁 , namely the body frame of link 𝑁 , 𝐿𝑁 . We discuss how to

perform this transformation in Section 4.4.1.

In summary, Method 1 provides a means of estimating the dynamic parameters

of a robot and then proceeding to estimate the inertial parameters of a payload.

This method has the advantage of requiring practically no knowledge of the system

aside from the kinematic parameters of the robot. It also promises a much easier

problem of estimating the object’s parameters with less data once a robust model of

the robot is obtained. By using the structure of the equations of motions, the optimal

estimate can be found with a least-squares quadratic program. While it has practical

challenges that become apparent as we test the method on systems in simulation, we

learn a lot about least-squares system identification as a whole. The decomposition

methods described here will be relevant in the next method.

4.2 Method 2: Direct Payload Identification with

Torque Residuals

In order to avoid challenges with identifying a whole manipulator system, we consider

a method that does not require an accurate robot model a priori. This method is

proposed by Khalil et al. (2007) [24]. This method is similar to the first in that it

involves symbolic decomposition of the equations of motion into the data matrix and

lumped parameters.

We again use the fact that 𝛼′
𝑟 = 𝛼𝑟 + 𝛼𝑝, where 𝛼′

𝑟 are the lumped parameters

of the robot when the robot is carrying the object. This means the system can be

45

decomposed this way:

𝜏 ′ = W(q, q̇, q̈)(𝛼𝑟 +𝛼𝑝) = W(q, q̇, q̈)𝛼𝑟 +W(q, q̇, q̈)𝛼𝑝, (4.17)

where 𝜏 ′ are the observed torques, while the robot is carrying the payload. Noticing

that W(q, q̇, q̈)𝛼𝑟 is equivalent to the model-predicted torque measurements when

the robot is not carrying the payload, we state

𝜏 ′ − 𝜏 = ∆𝜏 = W(q, q̇, q̈)𝛼𝑝, (4.18)

where ∆𝜏 are what we refer to as the residual torques, being the difference in torques

from the robot holding the object and without the object. In lieu of an estimate for

𝛼𝑟 to obtain model-predicted torques, we can simply take another observation from

the robot executing the same trajectory without holding an object to obtain 𝜏 .

Thus, for this method, we collect two sets of data, one without holding the object

and one while holding it. The trajectories themselves, q, q̇, and q̈, are the same in

both data, assuming we have a controller with minimal tracking error, even with an

unknown payload. This is easy in simulation, as we have the ground truth model

of our system (with the payload) available to us. In a real system, we would need

a robust controller that can stabilize in the presence of deviations from the internal

model.

This decomposition is calculated symbolically, like in Method 1. We use W𝑝 to

represent the last few columns of W that correspond to 𝛼𝑝, as the first columns and

inconsequential. Again, this only is valid if 𝛼𝑝 is within the same frame as 𝛼𝑟.

Now, our objective is

min
𝛼𝑝

‖W𝑝𝛼𝑝 −∆𝜏‖22, (4.19)

and least-squares optimization is used to solve for 𝛼𝑝 :

𝛼𝑝 = [W𝑝]
+∆𝜏 . (4.20)

46

Once 𝛼𝑝 is transformed to be with respect to the body frame of the payload and

divided by the estimated mass, 𝑚𝑝, we have obtained an estimate of the payload’s

inertial parameters.

This method is simplistic and more intuitive; the parameters of the payload should

only depend on the discrepancy observed when the robot is carrying the object as to

when it is not. However, one drawback of this method is that it requires the collection

of two trajectories, one with the object in hand and one without. To make matters

worse, the trajectories must be the same within a small error for the method to be

successful, meaning that the robot’s controller must be well tuned. Nonetheless, it has

the major advantage of allowing us to skip the step of robot identification, which is

much more challenging. Only estimating the parameters of the payload significantly

reduces the complexity of the optimization problem, and requires less data overall to

solve, as discovered in [24].

4.2.1 Trajectory Alignment

As mentioned, one of the challenges of the torque residual decomposition method is

the need for two trajectories that are nearly identical. This is challenging for a real

robot. When a payload is added to the system that is not accounted for in the model

used by the controller, there will be errors either in the positions themselves or the

time it takes to reach the target positions in the commanded trajectory.

The approach to solving this problem is to tune the controller so that it can

quickly manage discrepancies in the robot model and closely track a given position

trajectory. We briefly experiment with different gains, both in simulation and on the

real system, to see if this is sufficient, but find that we need a more robust method.

Another strategy is to align the two trajectories in post-processing, matching the

positions as closely as possible. We can do this using the Dynamic Time Warping

(DTW) algorithm, which finds the optimal displacement path between a pair of 2-D

47

Figure 4-1: The graph on the left shows raw joint position data before trajectory
alignment, with and without a 0.9kg payload, where each color represents one joint
trajectory. There is lag due to imperfect position control. The right graph shows the
trajectories after aligning with dynamic time warping.

signals [39][40]. The objective is

inf
𝑤

∑︁
(𝑖, 𝑗)∈𝑤

(q[𝑖]− q′[𝑗])2, (4.21)

where q is the joint trajectory data collected while the robot is not carrying the object

and q′ is the joint trajectory measured when the robot is carrying it.

We use a Python implementation of this algorithm in order to obtain the warping

path [41]. The "lagging" trajectory is assumed to be the one of larger length. We

construct a new trajectory by adjusting each entry in the lagging trajectory to what

it would be at the index corresponded to the leading trajectory. We then use the

same mapping to remap all of the data, including the velocities, accelerations, and

torque observations. This way, the derivatives do not rely on the adjusted data and

each data point used for estimation is conserved.

This approach has notable issues, mainly that we know the velocities and accel-

erations of the two trajectories will not match exactly. Regardless, this method got

us the closest to reasonable payload estimates, as the alignment of the joint positions

was quite successful, as shown in Figure 4-1. At the time of writing, this step allows

Method 2 to be feasible on hardware.

48

4.3 Identifiability Analysis

Above, we have seen that the problem of inertial parameter estimation can be formu-

lated as a least-squares optimization. There is lots of theory from linear algebra that

we can apply to understanding where this method can succeed and where it might

face challenges or impossibilities.

During this process, we empirically observed some parameters to be difficult or

impossible to estimate. This motivates an analysis of which parameters in a robotic

arm system are identifiable. Firstly, we can easily see which parameters are impossible

to estimate by looking at the structure of the equations of motion. If a parameter does

not appear in the equations, then we cannot identify it using the methods proposed.

However, even if a parameter does appear in the equations, it may still be difficult to

estimate.

The sensitivity of a least-squares solution will be dependent on the condition

number of the data matrix W [16]. The condition number, 𝜅 is defined as the ratio of

the largest singular value of the matrix (𝜎max) to the smallest singular value (𝜎min):

𝜅(W) =
𝜎max(W)

𝜎min(W)
. (4.22)

We run into trouble when W has singular values that are very close to zero. This

may mean that one or more of the parameters are unidentifiable independently of

others, and small changes to W can have large effects on the resulting estimates. This

could also occur either as a result of the structure of the equations of motion, meaning

that the parameter associated with that singular value is nearly unidentifiable, or from

data with insufficient excitation for some parameters. It is not wise to simply remove

these parameters from the estimation problem, as other parameters may depend on

them. The solution is instead to find a set of base lumped parameters that defines

these linear dependencies. This is okay for robot estimation, as the base parameters

are the minimum set that are needed to model the robot’s behavior, but could cause

issues when using the robot’s dynamic parameters to identify a payload.

49

4.4 Data Collection Details

4.4.1 Object Body Frames

The center of mass and inertia of a rigid body are defined with respect to some frame,

𝐵, so this frame must be defined. In a simulated system, we are aware of the exact

pose of each body in the system at all times. However, in a real system, knowing

where the object body is with respect to the rest of the robot is non-trivial.

A simple solution is to hand-pick a frame 𝑃 to anchor to each object that is defined

at the position where the object is grasped by the robot’s fingers. Then, we define

the pose 𝐿𝑁𝑋𝑃 to be the measured grasp pose with respect to the terminal link’s

frame, 𝐿𝑁 . We use monogram notation to express this pose as described in [42]. This

means that for the same object grasped at two different poses, the estimated inertial

parameters will be different. However, the inertial parameters can be transformed

to any coordinate frame via the parallel axis theorem if there is a canonical frame

specified for the object. An example of this could be a frame determined by the first

step of the Real2Sim pipeline, such as aligning the z-axis with the longest axis on the

bounding box of a mesh.

If we want to transform the inertial properties of the object from frame 𝐿𝑁 to 𝑃 ,

we perform the following steps. The mass is invariant to transformation, and remains

constant. The center of mass can be re-expressed in the objects body frame 𝑃 like

any point in 3D space. We define the point of the center of mass in the body frame

𝑃 in monogram notation as 𝑃𝑝𝑃𝑐𝑚 , and re-express via

𝑃𝑝𝑃𝑐𝑚 = [𝑃𝑋𝐿𝑁]𝐿𝑁𝑝𝑃𝑐𝑚 = 𝐿𝑁𝑝𝑃 + [𝑃𝑅𝐿𝑁]𝐿𝑁𝑝𝑃𝑐𝑚 . (4.23)

The inertia tensor can be transformed via the parallel axis theorem. First, we

must rotate the inertia tensor so that it is expressed in a frame that is parallel to 𝑃 :

𝐼𝑃 = [𝑃𝑅𝐿𝑁]𝐼𝐿𝑁 [𝐿𝑁𝑅𝑃]. (4.24)

50

Then, it can be translated, now that it is expressed in a parallel frame [43]. When

dealing with the inertia tensor, which is an integral over the distribution of mass, it

is easier to calculate the translation through the center of mass before translating to

another point in space. Fortunately, the SpatialInertia module in Drake allows

these transformations to take place easily [37].

Figure 4-2: Example of a coordinate frame transformation from the terminal link of
a Franka Panda (link 7) to the object coordinate frame P.

4.4.2 Trajectory Type

Existing system identification literature recommends sinusoidal excitation of the arm

links being identified, because it improves noise reduction and ensures proper dynamic

parameter excitation. When collecting data, we command each joint 𝑖 to move in the

pattern of a sinusoid of varying frequency 𝑓(𝑖).

𝑞𝑖[𝑡] = 0.3 sin(𝑓 · (𝑖)𝑡). (4.25)

Sinusoidal trajectories have advantages, but they are not the types of trajecto-

ries that are doing tasks we care about. For the Real2Sim application, we consider

pick-and-place trajectories for two reasons. Firstly, a picking robot station has the

ability to reset itself, meaning more data collection with less researcher supervision.

51

Figure 4-3: Examples of a sinusoidal and pick-and-place trajectory on a 7-link robotic
arm

Second, if we assume that pick-and-place trajectories categorize a large portion of the

work that manipulators currently perform in industries such as logistics and manu-

facturing, then understanding how to identify payloads in this regime permits object

identification at scale.

The issue with pick-and-place trajectories for system identification is that they

are very simple and might not result in proper excitation of the system. A general

blueprint of a pick and place trajectory consists of a grasp, a pull-away motion, the

movement to the target, and the final placement. We will simplify this blueprint by

only considering the movement from a post-grasp point to a pre-place point. This

trajectory is commonly represented as a piece-wise polynomial, or even more simply, a

linear trajectory in configuration space [42]. We represent the trajectory between two

points in task space as a piece-wise cubic polynomial in joint space. This allows us

to easily add more breakpoints if necessary to avoid collisions with the environment.

4.4.3 Filtering

Naturally, real data from real robot sensors is accompanied by noise. When solving a

problem that is sensitive to the data used for regression, we need to ensure the data

is continuous and contains no outliers. In the next section, we perform experiments

to have a sense of how much having noise in the data we collect affects the quality

of our estimates. Many system identification works use low-pass filtering to clean the

data. We use a second-order Butterworth low-pass filter [44] with a cutoff frequency

of 10Hz and sampling frequency of 200Hz on the torque sensor output (Figure 4-4).

52

Figure 4-4: Unfiltered (translucent) and filtered (opaque) joint torque measurements.
They are filtered using a second-order Butterworth filter with cutoff frequency of
10Hz and sampling frequency of 200Hz.

Additionally, we filter the calculated accelerations with the same filter, since they

are calculated by numerically differentiating the measured joint velocities that could

contain discontinuities.

53

54

Chapter 5

Experiments & Results

5.1 Validating Each Method

In order to test our implementation of the methods described in Chapter 4, it is crucial

to first build systems in simulation. The benefit of using these simple systems is that

we can fully understand them mathematically; for the most part, their equations

of motions within one blackboard and can be derived by hand, as in Chapter 2.

Knowing in advance that the general problem may be sensitive to real-world artifacts

such as noise, we create a polished environment to leave no room for uncertainty when

debugging.

5.1.1 Full-Arm Symbolic Decomposition

1-Link Robot Arm

We define a simulated, planar, robotic arm with one rotary joint at it’s base. In our

system, the x-axis points to the right, the z-axis points up, and the y-axis points into

the screen as constrained by their cross product. The origin of the body frame is

located at the base of the link, where it meets the world frame. The joint rotates

about the y-axis.

Given that the motion of the system is constricted to the xz-plane, the only inertial

55

Figure 5-1: A one-link arm, which rotates about a single joint at the base, shown in
red.

parameters that appear in the equations of motion are

𝜃 = [𝑚1, 𝑐𝑥1, 𝑐𝑧1, 𝐺𝑦𝑦1]. (5.1)

Recalling our derivation of the inverse dynamics from Chapter 2 (Eq. 2.2.1), we

find the lumped parameters to be

𝛼 = [𝑚1𝑐𝑥1, 𝑚1𝑐𝑧1, 𝑚1𝐺𝑦𝑦1], (5.2)

noting that the mass, 𝑚1 is missing. The ground truth values (units are as defined

in Chapter 2) specified in the systems description file are

𝜃 = [0.6, 0.0, −0.5, 0.2]. (5.3)

We collect the data from three sinusoidal trajectories, each with increasing fre-

quency, then estimate the robot parameters 𝛼𝑟 of the arm, following the procedure

in Chapter 4. The results are shown in Table 5.1. For all tables in this section, the

error is specified as the absolute error from the ground truth. A reasonable question

𝛼𝑟 G.T. Estimate Error

𝑚1𝑐𝑥1 0.0 −1.71e−5 −1.71× 10−5

𝑚1𝑐𝑧1 −0.3 -0.300 < 1× 10−3

𝑚1𝐺𝑦𝑦1 0.2 0.201 1× 10−3

Table 5.1: Lumped parameter estimates of a planar, 1-link robotic arm in simulation.
G.T. is the ground truth parameters, and the error is the absolute error.

56

to ask is: why are the errors not zero if we have a perfectly simulated environment?

We believe the answer is due to how the data points from the trajectory are sampled.

We hypothesize that given infinite data collected along the trajectory, the limit of the

error goes to zero.

While we obtain accurate estimates of the identifiable lumped parameters, there

is still no way of decomposing the individual parameters from the mass, as the mass

itself is unidentifiable in this setting. Therefore, there is no way to proceed with the

meaningful estimation of a payload’s parameters, as there would be no way to identify

the mass of the object, only the identifiable lumped parameters.

This experiment proved that our implementation was correct. However, we cannot

isolate all of the inertial parameters of the link. This is okay for control applications,

but we cannot perform payload identification. Fortunately, in systems with higher

degrees of freedom, the terminal link becomes fully identifiable, thus, we move on

towards the 2-link robot arm.

2-Link Robot Arm

The natural extension of the 1-link system is a 2-link robot arm. This arm has two

rotary joints that move about the y-axis, while the x-axis points right and the z-axis

points up. Each link has a mass and a center of mass about it’s origin, which coincides

with the geometric center of the link. Its moments of inertia are assumed to be that

of a rod rotating about a pin pointing into the screen.

The inertial parameters of each link 𝑖 of this system are

𝛼𝑖 = [𝑚𝑖, 𝑐𝑥𝑖, 𝑐𝑧𝑖, 𝑚𝑖𝐺𝑦𝑦𝑖]. (5.4)

The ground truth values for the first link are the same as the 1-link arm. The

ground truth inertial parameters of link 2 are

𝛼2 = [0.8, 0, −0.75, 0.6]. (5.5)

57

As shown in Chapter 2, this system’s inverse dynamics equations reveal more

inertial parameters to be estimated, notably the mass of the second link. We found

the lumped parameters of the arm to be

𝛼𝑟 =
[︁
𝑚2, 𝑚1𝐺𝑦𝑦1 +𝑚2𝐺𝑦𝑦2, 𝑚1𝑐𝑥1, 𝑚1𝑐𝑧1, 𝑚2𝑐𝑥2, 𝑚2𝑐𝑧2, 𝑚2𝐺𝑦𝑦2

]︁
(5.6)

Notice that there is a redundancy where 𝑚2𝐺𝑦𝑦2 appears in two of the lumped pa-

rameters. This is an artifact of the decomposition algorithm grouping terms with the

same coefficients. The estimates of these lumped parameters are highly inaccurate,

as shown in Table 5.2.

𝛼𝑟 G.T. Estimate Error

𝑚2 0.8 1.10 0.30
𝑚1𝐺𝑦𝑦1 +𝑚2𝐺𝑦𝑦2 0.8 0.509 0.291

𝑚1𝑐𝑥1 0.0 −6.82× 10−5 6.82× 10−5

𝑚1𝑐𝑧1 −0.3 3.71× 10−16 0.300
𝑚2𝑐𝑥2 0.0 −1.84× 10−4 1.84× 10−4

𝑚2𝑐𝑧2 −0.6 -0.600 0.000
𝑚2𝐺𝑦𝑦2 0.6 0.602 0.002

Table 5.2: Estimates of a 2-link planar robotic arm in simulation

The first thing we note from this result is the poor estimate of 𝑚2, yet many

of the parameters which contain 𝑚2 are correct. We then note that the condition

number 𝜅(W) is very high, on the order of 1× 1015. While almost all of the singular

values of W are on the order of 1× 102, one of the singular values was on the order

of 1× 10−13. This suggests that at least one of the lumped parameters identified by

the decomposition algorithm is actually not well-suited for estimation independently

and are linearly dependent with another parameter. It would require that we either

find a new set of base parameters via methods described in Section 3.3.2.

58

Figure 5-2: A simulated 2-link planar manipulator with an object (in blue) rigidly
attached to the terminal link

5.1.2 Torque Residual Decomposition

2-Link Robot Arm

In this method, we would expect that the identifiability issues in the links of the arm

are abstracted away, as this information is encoded in the torques observed when the

robot is not carrying a payload. If we perform the decomposition using Drake, we

see that the remaining payload parameters are both fully identifiable and identifiable

independently of each other.

To validate this method in simulation, we gather data from 10 simulated sinusoidal

trajectories, each with increasing frequency, for 17421 data points in total. The results

were sufficient, and we decide that this method is more reliable for our purposes, at

least in simulation.

𝛼𝑝 G.T. Estimate Error

𝑚𝑝 1.0 1.000 0.000
𝑚𝑝𝑐𝑥𝑝 0.025 0.0250 0.000
𝑚𝑝𝑐𝑧𝑝 0.01 0.00907 9.30× 10−4

𝑚𝑝𝐺𝑦𝑦𝑝 0.0457 0.0445 2.00× 10−4

Table 5.3: Results of payload identification on a 2-link arm using the direct payload
identification method.

Simulated Panda Arm

Now we attempt to estimate an object grasped by a simulated Franka Panda arm, to

see if the method holds in three dimensions. Similarly to the previous experiment,

59

we execute three sinusoidal trajectories for data collection. Since the robot’s con-

troller has a perfect model of the object in simulation, there is no need for trajectory

alignment, as the controller can track the executed position exactly while holding the

object. We also do not perform any filtering, as there is no noise in the simulation.

We run these experiments on a simulated object that has a mass of 0.37 [kg], center

of mass (0.0, 0.0, 0.0) [m], moments of inertia (8.51e-3, 5.96e-4, 7.65e-4) [kg·m2], and

products of inertia (1.11e-4, 1.70e-4,-1.28e-4) [kg·m2].

The results are what we expect, with very low absolute error, validating this

method on a 7-degree-of-freedom system.

𝛼 G.T. Estimate Error

𝑚𝑝 0.370 0.370 < 1× 10−3

𝑚𝑝𝑐𝑥𝑝 0.0 −4.37× 10−6 −4.37× 10−6

𝑚𝑝𝑐𝑦𝑝 0.0 8.15× 10−6 8.15× 10−6

𝑚𝑝𝑐𝑧𝑝 0.0 5.65× 10−6 5.65× 10−6

𝑚𝑝𝐺𝑥𝑥𝑝 3.17× 10−4 3.43× 10−4 2.6× 10−5

𝑚𝑝𝐺𝑦𝑦𝑝 4.20× 10−4 4.33× 10−4 1.3× 10−5

𝑚𝑝𝐺𝑧𝑧𝑝 5.33× 10−4 5.29× 10−4 4.0× 10−6

𝑚𝑝𝐺𝑥𝑦𝑝 0.0 1.62× 10−5 1.62× 10−5

𝑚𝑝𝐺𝑥𝑧𝑝 0.0 −6.58× 10−6 −6.58× 10−6

𝑚𝑝𝐺𝑦𝑧𝑝 0.0 −6.76× 10−6 −6.76× 10−6

Table 5.4: Results of payload identification on a simulated Panda arm. The data is
collected from three sinusoidal trajectories, and the resulting absolute error is very
low.

5.2 Sensitivity Analysis

After showing that we can obtain a reasonable estimate of an object’s inertial pa-

rameters in three dimensions, we want to understand how sensitive these estimates

are to noise in the robot’s sensors before moving on to hardware. Beginning with a

baseline of a near-perfect estimate in simulation, we can inject random noise in the

inputs and measure the discrepancy in performance. We run these experiments using

the same object as the previous section.

60

5.2.1 Sensitivity to Noise in State Measurements

In this experiment, we inject Gaussian noise with a standard deviation 𝜎 = 0.01

into both of the q and q̇ logs from the simulation. We expect to see noise in these

measurements, as the joint position encoders are imperfect and susceptible to noise.

We run the same simulation 18 times, sampling an array of Gaussian noise to add to

the trajectory in each trial. This value of sigma was chosen because it modeled the

observed discrepancies between the loaded and unloaded trajectories in our real data

most closely.

We find that small errors in the state observations lead to large errors in the accel-

eration calculations, likely due to using finite differences to carry out the calculation.

This suggests that we should try another method for calculating the accelerations in

the presence of noise.

Figure 5-3: The mean squared error and standard deviation for each lumped inertial
parameter when random Gaussian noise with 𝜎 = 0.01 is added to the joint position
and velocity observations in simulation. The left plot shows when the accelerations
are calculated from the noisy measurements, and the right shows when they are
calculated from smooth measurements.

What we see is that the estimator cannot estimate even the mass of an object

when there is that much noise in the joint torque sensors. This could be due to

large discontinuities in the accelerations that are large enough to cause biases in the

estimation. However, it is still unclear whether this is due to the two trajectories

used to calculate the torque residuals are becoming unaligned due to the noise, or if

it is because of the volatile nature of the accelerations. To test this, we run the same

experiment but instead calculate the accelerations using the joint state values before

61

the noise is added, so that they are smooth. The estimates have very little error in

comparison, as seen in Figure 5-3.

This experiment shows that while the estimation procedure is relatively robust to

noise in the state observations and even discrepancies between the loaded and un-

loaded trajectories, there is trouble when the noise is propagated into the calculated

accelerations. Thus, having smooth accelerations is crucial for obtaining good esti-

mates, and important to take care in how we are differentiating the signals, especially

when noise is involved.

5.2.2 Sensitivity to Noise in Torque Measurements

We expect that adding noise to the torque observations will cause significant errors in

estimation, and test this theory. In this experiment, we run 10 trials, each with the

same trajectory and no torque observation filtering. First, we inject Gaussian noise

with 𝜎 = 0.01 into the joint torque observation. Looking at how mass is estimated

over time, we see that while there is initially more volatility, the result does converge

(Figure 5-4). Across multiple trials, we see that the error is very small and robust to

noise.

Next, we increase the standard deviation of the noise by an order of magnitude,

to 𝜎 = 0.1. Now we begin to see that the estimation procedure is not as robust, and

while the estimate converges on some trials, it often does not, leading to higher error.

An example of a trial where the mass estimate does not converge is shown in Figure

5-4.

These experiments have shown us that filtering the observed data is a necessary

part of the estimation process. When we return to the problem on hardware, we keep

these design choices in mind.

5.3 Robot Experiments

We now experiment on the Panda robot, with real objects, using the insights from

prior experiments in simulation.

62

Figure 5-4: Plotted on the y-axis are the mass estimates at each step of the data
matrix construction. The data was collected in simulation with Gaussian noise with
𝜎 = 0.1 added to the torque observations. While the estimates begin by jumping
around, they eventually stabilize but do not converge to the correct value of 0.37kg.

5.3.1 Identifying the Panda

Noting the issues of conditioning that we have uncovered, we still attempt to identify

a real Panda robot. The benefits of having a fully-calibrated system mean that we

need less information to identify object with our pipeline going forward. Given the

issues with consistent equation decomposition, we experiment to see if beginning with

an initial condition. Fortunately, there are two physically feasible initial conditions

Figure 5-5: The mean squared error and standard deviation for each lumped inertial
parameter when random Gaussian noise with 𝜎 = 0.01 and 𝜎 = 0.1 is added to the
joint torque observations in simulation.

63

Figure 5-6: Comparison of the measured torques from the Panda vs. the model
predicted torques of our dynamic model. The outlier in the right plot is due to an
outlier in the calculated accelerations.

provided from [1] and [2] (Fig. 3-1). We choose to use [2] as an initial condition, as

their results appear to be closer to physical reality.

We collect 10 trajectories for training, using the sinusoidal trajectory scheme and

filter both the calculated accelerations and the observed joint torques. We include

joint friction coefficients to the lumped parameters and use auto-differentiation in

order to recover the data matrix.

Without a ground truth set of inertial parameters for the Panda, the error metric

we must rely on is the tracking error between the filtered measured torques from the

robot and the new model’s torques when estimating the same trajectory. What we

notice is that the estimate we obtain results in low error between the measured torques

and the model-predicted torques (Figure 5-6. However, the actual results of the

inertial parameters are not physically feasible, which we demonstrate by highlighting

some of the estimated parameters in bold in Table 5.5.

Specifically, we notice that the mass estimate for the 7th link, which would ulti-

mately be used to identify the payload, is negative. This is unsuitable to proceed with

payload estimation and demonstrates how physical feasibility is not guaranteed, even

when using a physically feasible initial condition. In order to make this method work,

we would need a procedure for ensuring physically feasible estimates via semi-definite

64

𝛼𝑟 Link 1 Link 2 Link 3 Link 4 Link 5 Link 6 Link 7

𝑚 1.000 2.647 1.965 0.833 1.447 1.548 -0.170
𝑐𝑥 0.000 -0.011 0.233 -0.398 -0.002 0.149 -0.095
𝑐𝑦 0.000 -1.123 0.005 1.988 0.001 -0.053 -0.105
𝑐𝑧 0.000 0.067 -0.654 -0.001 -0.451 -0.058 -0.574
𝐼𝑥𝑥 1.006 0.469 0.629 0.375 0.324 0.041 -0.047
𝐼𝑥𝑦 0.000 -0.006 -0.000 0.121 -0.001 0.025 -0.002
𝐼𝑥𝑧 0.000 0.001 0.154 0.001 -0.002 0.008 0.024
𝐼𝑦𝑦 1.006 0.046 0.700 0.053 0.341 0.045 -0.045
𝐼𝑦𝑧 0.000 0.082 -0.011 -0.002 0.016 -0.007 -0.010
𝐼𝑧𝑧 0.008 0.463 0.071 0.430 0.015 0.068 -0.054
𝜇𝑣 0.035 0.242 0.140 -0.099 -0.007 -0.087 -0.100
𝜇𝑐 -0.310 -0.431 -0.257 -0.406 -0.454 -0.401 -0.384
𝜇𝑜 0.400 -0.645 -0.360 0.752 -0.049 -0.227 -0.010

Table 5.5: Estimated dynamic parameters of the Franka Emika Panda using an initial
condition from [2]. While these values produce good dynamic results, they are not
physically feasible or realistic, as highlighted by a few parameters in bold.

constraints.

5.3.2 Object Estimation

While we were initially unsuccessful in obtaining a model of the Panda, we proceed

to estimate a payload using the torque residual method.

Ground Truth Dataset

A significant challenge in validating our results is finding a dataset of objects that

have known, ground truth inertial parameters. Finding the mass of any object is

trivial given common weight measurement tools, but finding the center of mass and

inertia requires either very tedious experimentation or special measurement tools.

For objects where we have a mesh or CAD model available, we can measure the

mass, then integrate over a mesh of the object to find the center of mass and inertia,

assuming a constant density. This method is not perfect, but it allowed us to compare

our results to some baseline. If the object is simple enough, we can hand-calculate

ground truth values using primitives.

65

Figure 5-7: The 2lb dumbbell that we attempt to estimate with payload identification

Even generating a wide variety of objects to test our method in simulation has

challenges. We only care about an object’s inertial parameters for testing, the visual

and geometric properties of the simulated object are insignificant. However, creating

a random inertial profile is very difficult, as the parameters need to satisfy the physical

feasibility constraints.

Estimating a Dumbbell

To test our method on a real world object, we choose to use a Series 8 Fitness™ 2lb

dumbbell (Figure 5-7). The material of the dumbbell is unknown, but we assume that

it has uniform density. We began with this object because we can estimate ground

truth inertial properties by hand by approximating the volume as three cylinders.

In this real-world experiment, we first collect ten sinusoidal trajectories of various

frequencies while the robot is not carrying the object. Then, we collect data from

the same trajectories again, this time with the object manually placed within the

robot’s grasp. We note that by doing the placement manually, we cannot guarantee

that the object’s origin frame, which is defined between the robot fingers, will be the

same each time. We expect this to result in slightly inconsistent center of mass and

inertia estimations. The data is aligned using dynamic time warping and the payload

parameters are computed using the torque residual method.

In this primary real-world experiment, we also analyzed how the estimates changed

with respect to noise, by filtering the observations in one estimation and leaving them

unfiltered in another.

66

No Filtering Filtering

𝛼𝑝 Ground Truth Estimate Error Estimate Error

𝑚𝑝 0.902 0.9079 5.9× 10−3 0.9086 6.6× 10−3

𝑚𝑝𝑐𝑥𝑝 0.0 1.359× 10−3 1.359× 10−3 −5.596× 10−4 5.596× 10−4

𝑚𝑝𝑐𝑦𝑝 0.0 −5.359× 10−3 5.359× 10−3 −5.166× 10−3 5.166× 10−3

𝑚𝑝𝑐𝑧𝑝 0.0 −1.978× 10−3 1.978× 10−3 3.031× 10−4 3.031× 10−4

𝑚𝑝𝐺𝑥𝑥𝑝 2.440× 10−4 −4.882× 10−3 5.126× 10−3 5.759× 10−3 5.515× 10−3

𝑚𝑝𝐺𝑦𝑦𝑝 2.026× 10−3 −0.05246 0.0545 0.01987 0.0178
𝑚𝑝𝐺𝑧𝑧𝑝 2.026× 10−3 −9.934× 10−3 7.908× 10−3 6.153× 10−3 4.127× 10−3

𝑚𝑝𝐺𝑥𝑦𝑝 0.0 −3.802× 10−3 3.802× 10−3 −1.130× 10−3 1.130× 10−3

𝑚𝑝𝐺𝑥𝑧𝑝 0.0 −2.983× 10−3 2.983× 10−3 2.112× 10−3 2.112× 10−3

𝑚𝑝𝐺𝑦𝑧𝑝 0.0 −3.322× 10−3 3.322× 10−3 4.765× 10−3 4.765× 10−3

Table 5.6: Results of estimating a dumbbell on hardware using the direct payload
identification method, comparing the results using unfiltered data vs. filtered data.

We first notice that for each parameter except mass, we see better results with

respect to the ground truth when the data is filtered. Regardless, we can still expect

to see absolute error within 1 × 10−2 for each parameter, which is not ideal. This

is up to 1cm or 10g. If we analyzed the relative error instead of absolute, we would

see that 𝑚𝑝𝐺𝑦𝑦𝑝, for instance, is very high, nearly 800%. However, there are quite

a few explanations for why we may see error this high on the real system. Firstly,

the ground truth values are not an accurate representation of the real properties of

the object; they are only an approximation. It is possible that our estimate is a

better measure of the object’s inertial properties than our hand-calculated values;

perhaps it is true that the dumbbell has higher density at its ends. Additionally, as

mentioned previously, there is significant error introduced when the object is placed

in the robot’s grasp by a human. Since the coordinate frame of the object is defined

with respect to where it is grasped, having an inexact grasp point will affect the

estimates of the center of mass and inertia. Data is also not sampled as frequently

on the real system than in simulation, meaning that with noise present, the estimate

may not be as accurate. This could be mediated by sampling at a higher frequency.

Lastly, a subtle difference in the inertia could be caused by the fact that the fingers of

the gripper are open when the unloaded trajectories are collected, but closed enough

to grasp the object when collecting the loaded trajectories.

67

While the results are respectable in terms of absolute error, unfortunately the

estimated inertia tensor does not satisfy all of the constraints of a physically feasible

answer. This suggests that vanilla least-squares optimization is not sufficient; there

are additional semi-definite constraints that are necessary in order to insure that the

inertia tensor is both positive-definite and satisfies the triangle equality. However, is

a physically feasible inertia tensor necessary for a simulated object? This question

is still unanswered, but if we make this a requirement, the results would need to be

projected to the nearest feasible solution, even if the estimated parameters perform

well dynamically.

Overall, we find that we can obtain reasonable estimates of an objects inertial

parameters with a real robotic system, if we disregard physical feasibility. The esti-

mates are not perfect, especially in the inertia, but we do not have a solid ground

truth comparison and hypothesize that they are still sufficient for a Real2Sim asset.

More engineering will be needed in order to obtain more accurate ground truth com-

parisons and to remove human error in the estimates. A future step will be to see

how this estimated object behaves in a simulation.

5.4 Best Trajectories

Historically, sinusoidal trajectories have been the most widely used as inputs for

identifying systems. We wanted to see if the payload identification could also work

while performing a pick-and-place task, so that it can fit more seamlessly into a

Real2Sim pipeline.

Now that we can obtain reasonable estimates of an object’s inertial parameters

with a baseline method, we seek to tailor the method more towards the Real2Sim

problem. While having the robot perform sinusoidal motions for estimation in an

object estimation pipeline is not unrealistic, it would be much more efficient if the

estimation occurred while the robot was already moving to place the object on a

table or back in a bin. In these experiments we seek to answer whether or not we

can still reliably estimate with less exciting data. We hypothesize that for payload

68

estimation, a pick-and-place trajectory will be sufficient, given that there are not not

many parameters to estimate and plenty of data still available.

In this experiment, we compare the mean and standard deviation of the error from

the ground truth lumped parameters across 10 trials for both sinusoidal trajectories

of varying frequencies and pick-and-place trajectories with varying waypoints. The

sinusoidal trajectories each have an amplitude of 0.3 radians, and the frequencies of

each joint are sampled uniformly from the interval [1, 5] rad/s. The pick-and-place

trajectories start and end positions are sampled uniformly from a 0.3 × 0.6 × 0.3m3

box of space both in front of and behind the robot.

During the estimation procedure with the pick-and-place trajectories, we notice

that the condition number of the data matrix is much higher, i.e. on the order of

1 × 103. This is to be expected if not all of the axes of rotation are being properly

excited. In comparison, the average condition number for a data matrix constructed

from a sinusoidal trajectory was about 8.

We notice the effect of this in our results, shown in Figure 5-8. While the error is

relatively low for both, the difference in the distribution of error across the parameters

is striking. Sinusoidal trajectories result in an error distribution closer to uniform,

whereas the pick-and-place data results in high error along certain axes of rotation, In

this case it appears there is not enough vertical excitation to estimate the z-component

of the center of mass or the moments of inertia about the x or y-axes. This would

occur if the robot’s hand is moving relatively planar to the ground. This could be

avoided by incorporating a motion such as a lift after the object is grasped, which

is generally incorporated into a pick-and-place trajectory regardless. In conclusion,

when constructing pick-and-place trajectories for object identification, we should keep

in mind whether the object is being excited at all axes of rotation, and consider design

decisions to ensure this is true.

69

Figure 5-8: The difference in lumped parameter errors from estimation on sinusoidal
trajectories vs. pick-and-place trajectories. The pick-and-place trajectories result
in much higher error along certain axes of rotation, whereas sinusoidal gives more
constant error across the parameters.

70

Chapter 6

Conclusion

6.1 Summary of Results

We presented two classes of methods that can be used to identify the inertial param-

eters of a payload: estimating the dynamic parameters of the robot arm first and

estimating the payload parameters directly. After attempting to identify the robot’s

dynamic parameters, we find that this requires much more engineering effort than it

may be worth, as we need to find a set of base lumped parameters and address issues

with physical feasibility. There is value in having a robust model of the arm, but

given that it is bespoke to each robot and must be accurate enough to not propagate

error into the object estimate, we decide to focus our efforts on the direct payload

identification method.

We find that direct payload identification with torque residuals works sufficiently

well, even with real robot data, and can be integrated into a Real2Sim pipeline. For

example, we learn that pick-and-place trajectories can be used for data collection, as

long as there are motions which excite all three axes of rotation. There likely is no

additional trajectory optimization that must be done in order to obtain a good esti-

mate; the addition of extra motions via human design is likely sufficient. Additionally,

we find that filtering the input data, specifically the acceleration and torque observa-

tions, is shown to be consequential to the estimate quality and must be incorporated

into the overall method.

71

6.2 Challenges

The challenges faced in this project were mainly related to attempts to estimate the

parameters of a robot. While this problem has been solved and understood thoroughly

in theory, there are many practical issues of implementation on real hardware. Firstly,

we would need to find a set of base lumped parameters to estimate rather than our

initially proposed lumped parameters, due to issues of identifiability and parameters

of some links being linearly dependent on the parameters of other links. Additionally,

in order to perform payload identification, the model of the robot that we estimate

must be physically feasible and physically realistic. While physical feasibility can be

ensured via semi-definite constraints, we cannot guarantee physical reality. The issue

of physical feasibility also reappears in the problem of direct payload estimation. We

find that it is necessary to impose constraints on the payload parameters in order to

ensure that they are possible in nature.

Hardware challenges also manifested themselves. One significant challenge was

finding objects that could be easily grasped by the robot’s fingers. While we would

like to test objects that have non-zero centers of mass, lopsided objects such as these

were difficult to grasp and would often slip. In a sterilized data collection scenario,

these issues can be fixed by further engineering. However, in a Real2Sim pipeline, we

may have significant trouble with ensuring objects are ridigly grasped.

6.3 Future Directions

The future direction of this work mainly involves further integration with the Real2Sim

pipeline. The perception problem is the main barrier; we would like to be able to cal-

culate the object’s inertial properties with respect to a chosen antipodal grasp point

on a point cloud that can be directly mapped to the object mesh. This would provide

much better precision of the origin’s location with respect to the center of mass, as

there is currently human-introduced error.

Adaptive control is another natural direction. We focus on offline estimation in

72

this work, but online system has also been explored in previous works. With a fast

enough estimation procedure, the robot could learn about the object in real-time, or

even choose exploratory motions to excite all of the parameters.

Another crucial future step is to examine how the objects perform in simulation

with estimated inertial parameters, but it is hard to define good metrics. We eventu-

ally expect to out-perform existing Real2Sim methods, especially for objects that are

not of constant density. When the full pipeline becomes solidified, we plan to create

a dataset that has accurate dynamic properties many types of common objects. We

hope that this pipeline can be used to create simulation-ready assets that are more

dynamically accurate than what is currently available.

73

74

Bibliography

[1] Claudio Gaz, Marco Cognetti, Alexander Oliva, Paolo Robuffo Giordano, and
Alessandro De Luca. Dynamic identification of the franka emika panda robot
with retrieval of feasible parameters using penalty-based optimization. IEEE
Robotics and Automation Letters, 4(4):4147–4154, 2019.

[2] Fernando Díaz Ledezma and Sami Haddadin. Ril: Riemannian incremental learn-
ing of the inertial properties of the robot body schema. In 2021 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 9354–9360, 2021.

[3] H. Mayeda, K. Osuka, and A. Kangawa. A new identification method for serial
manipulator arms. IFAC Proceedings Volumes, 17(2):2429–2434, 1984. 9th IFAC
World Congress: A Bridge Between Control Science and Technology, Budapest,
Hungary, 2-6 July 1984.

[4] Russ Tedrake. Underactuated Robotics. 2023.

[5] Richard M. Murrray, Zexiang Li, and S. Shankar Sastry. A Mathematical IN-
troduction to Robotic Manipulation, chapter 4. CRC Press, Taylor and Francis
Group, 1994.

[6] Gregory L. Long. Fundamentals of Robot Mechanics. Quintus-Hyperion Press,
2015.

[7] Chirstopher G. Atkeson, Chae H. An, and John M. Hollerbach. Rigid body load
identification for manipulators. In 1985 24th IEEE Conference on Decision and
Control, pages 996–1002, 1985.

[8] Chae H. An, Christopher G. Atkeson, and John M. Hollerbach. Estimation
of inertial parameters of rigid body links of manipulators. In 1985 24th IEEE
Conference on Decision and Control, pages 990–995, 1985.

[9] M. Gautier and W. Khalil. On the identification of the inertial parameters of
robots. In Proceedings of the 27th IEEE Conference on Decision and Control,
pages 2264–2269 vol.3, 1988.

[10] Yiwen Chen, Xue Li, Sheng Guo, Xian Yao Ng, and Marcelo Ang. Real2sim
or sim2real: Robotics visual insertion using deep reinforcement learning and
real2sim policy adaptation, 2022.

75

[11] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron,
Ravi Ramamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance
fields for view synthesis, 2020.

[12] William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution 3d
surface construction algorithm. In Proceedings of the 14th Annual Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH ’87, page 163–169,
New York, NY, USA, 1987. Association for Computing Machinery.

[13] Simon Le Cleac’h, Hong-Xing Yu, Michelle Guo, Taylor A. Howell, Ruohan Gao,
Jiajun Wu, Zachary Manchester, and Mac Schwager. Differentiable physics sim-
ulation of dynamics-augmented neural objects, 2023.

[14] Xuan Li, Yi-Ling Qiao, Peter Yichen Chen, Krishna Murthy Jatavallabhula,
Ming Lin, Chenfanfu Jiang, and Chuang Gan. PAC-neRF: Physics augmented
continuum neural radiance fields for geometry-agnostic system identification. In
The Eleventh International Conference on Learning Representations, 2023.

[15] Eric Heiden, David Millard, and Gaurav S. Sukhatme. Real2sim transfer using
differentiable physics. R:SS Workshop on Closing the Reality Gap in Sim2real
Transfer for Robotic Manipulation, 2019.

[16] Wisama Khalil. Modeling, Identification, and Control of Robots, chapter 12.
Elsevier Science, 2004.

[17] Nikos Mavrakis and Rustam Stolkin. Estimation and exploitation of objects’
inertial parameters in robotic grasping and manipulation: A survey. Robotics
and Autonomous Systems, 124:103374, 2020.

[18] Jiajun Wu, Ilker Yildirim, Joseph J Lim, Bill Freeman, and Josh Tenenbaum.
Galileo: Perceiving physical object properties by integrating a physics engine
with deep learning. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and
R. Garnett, editors, Advances in Neural Information Processing Systems, vol-
ume 28. Curran Associates, Inc., 2015.

[19] Trevor Standley, Ozan Sener, Dawn Chen, and Silvio Savarese. image2mass:
Estimating the mass of an object from its image. In Sergey Levine, Vincent
Vanhoucke, and Ken Goldberg, editors, Proceedings of the 1st Annual Conference
on Robot Learning, volume 78 of Proceedings of Machine Learning Research,
pages 324–333. PMLR, 13–15 Nov 2017.

[20] Yong Yu, T. Arima, and S. Tsujio. Estimation of object inertia parameters
on robot pushing operation. In Proceedings of the 2005 IEEE International
Conference on Robotics and Automation, pages 1657–1662, 2005.

[21] Nikos Mavrakis, Amir M. Ghalamzan E., and Rustam Stolkin. Estimating an
object’s inertial parameters by robotic pushing: A data-driven approach. In 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 9537–9544, 2020.

76

[22] Rechard P. Paul. Robot Manipulators: Mathematics, Programming, and Control,
chapter 8. MIT Press, 1981.

[23] P. Coiffet. Robot technology: Interaction with the environment. volume 2.

[24] Wisama Khalil, Maxime Gautier, and Philippe Lemoine. Identification of the
payload inertial parameters of industrial manipulators. In Proceedings 2007 IEEE
International Conference on Robotics and Automation, pages 4943–4948, 2007.

[25] Claudio Gaz and Alessandro De Luca. Payload estimation based on identified co-
efficients of robot dynamics — with an application to collision detection. In 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 3033–3040, 2017.

[26] H. Olsen and G. Bekey. Identification of parameters in models of robots with
rotary joints. In Proceedings. 1985 IEEE International Conference on Robotics
and Automation, volume 2, pages 1045–1049, 1985.

[27] A. Mukerjee and D. Ballard. Self-calibration in robot manipulators. In Pro-
ceedings. 1985 IEEE International Conference on Robotics and Automation, vol-
ume 2, pages 1050–1057, 1985.

[28] B. Armstrong, O. Khatib, and J. Burdick. The explicit dynamic model and iner-
tial parameters of the puma 560 arm. In Proceedings. 1986 IEEE International
Conference on Robotics and Automation, volume 3, pages 510–518, 1986.

[29] franka_ros. https://frankaemika.github.io/docs/franka_ros.html. Ac-
cessed: 2023-04-05.

[30] Yvonne R. Stürz, Lukas M. Affolter, and Roy S. Smith. Parameter identification
of the kuka lbr iiwa robot including constraints on physical feasibility. IFAC-
PapersOnLine, 50(1):6863–6868, 2017. 20th IFAC World Congress.

[31] M. Gautier and W. Khalil. A direct determination of minimum inertial parame-
ters of robots. In Proceedings. 1988 IEEE International Conference on Robotics
and Automation, pages 1682–1687 vol.3, 1988.

[32] M. Gautier. Numerical calculation of the base inertial parameters of robots. In
Proceedings., IEEE International Conference on Robotics and Automation, pages
1020–1025 vol.2, 1990.

[33] Wolfgang Rackl, Roberto Lampariello, and Gerd Hirzinger. Robot excitation
trajectories for dynamic parameter estimation using optimized b-splines. pages
2042–2047, 05 2012.

[34] Patrick M. Wensing, Sangbae Kim, and Jean-Jacques E. Slotine. Linear matrix
inequalities for physically consistent inertial parameter identification: A statisti-
cal perspective on the mass distribution. IEEE Robotics and Automation Letters,
3(1):60–67, 2018.

77

https://frankaemika.github.io/docs/franka_ros.html

[35] Giovanni Sutanto, Austin S. Wang, Yixin Lin, Mustafa Mukadam, Gaurav S.
Sukhatme, Akshara Rai, and Franziska Meier. Encoding physical constraints in
differentiable newton-euler algorithm, 2020.

[36] Andy Lambert. aalamber/real2sim-payload-id, 2023.

[37] Russ Tedrake and the Drake Development Team. Drake: Model-based design
and verification for robotics, 2019.

[38] Gilbert Strang. Linear Algebra and its Applications: Third Edition. Thomson
Learning, 1988.

[39] H. Sakoe and S. Chiba. Dynamic programming algorithm optimization for spoken
word recognition. IEEE Transactions on Acoustics, Speech, and Signal Process-
ing, 26(1):43–49, 1978.

[40] Kongming Wang and Theo Gasser. Alignment of curves by dynamic time warp-
ing. The Annals of Statistics, 25(3):1251 – 1276, 1997.

[41] wannesm, khendrickx, Aras Yurtman, Pieter Robberechts, Dany Vohl, Eric
Ma, Gust Verbruggen, Marco Rossi, Mazhar Shaikh, Muhammad Yasirroni,
Todd, Wojciech Zieliński, Toon Van Craenendonck, and Sai Wu. wan-
nesm/dtaidistance: v2.3.5, January 2022.

[42] Russ Tedrake. Robotic Manipulation. 2022.

[43] Jaime Peraire and Sheila Widnall. Lecture l26 - 3d rigid body dynamics: The
inertia tensor, September 2008.

[44] S. Butterworth. On the Theory of Filter Amplifiers. Experimental Wireless &
the Wireless Engineer, 7:536–541, October 1930.

78

	Introduction
	Preliminaries
	What Are the Inertial Parameters?
	Linearity of Composite Bodies
	System Identification
	Constraints on Physical Feasibility

	The Equations of Motion
	One-Link Robot Case
	Two-Link Robot Case
	Linearity in Lumped Parameters

	Related Work
	Real2Sim
	Object Inertial Parameter Estimation
	Estimation as a Free Body
	Estimation as a Payload (Extension of Robot Arm)

	Robot Dynamic Parameter Estimation
	Identifying Industrial Robots
	Identifiability Analysis
	Trajectories for Excitation
	Estimation with Physical Feasibility

	Methods
	Method 1: Full-Arm Symbolic Decomposition
	Estimating the Robot's Dynamic Parameters
	Friction Modeling
	Linear Decomposition and Data Matrix Construction
	Using an Initial Condition
	Estimating the Inertial Parameters of the Payload

	Method 2: Direct Payload Identification with Torque Residuals
	Trajectory Alignment

	Identifiability Analysis
	Data Collection Details
	Object Body Frames
	Trajectory Type
	Filtering

	Experiments & Results
	Validating Each Method
	Full-Arm Symbolic Decomposition
	Torque Residual Decomposition

	Sensitivity Analysis
	Sensitivity to Noise in State Measurements
	Sensitivity to Noise in Torque Measurements

	Robot Experiments
	Identifying the Panda
	Object Estimation

	Best Trajectories

	Conclusion
	Summary of Results
	Challenges
	Future Directions

