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Abstract—The difficulty of modelling deformable contact
is a well-known problem in soft robotics and is particularly
acute for compliant interfaces that permit large deformations,
where the problem of inferring exact contact locations and
manipuland pose is challenging. We present a model for the
behavior of a highly-deformable dense geometry sensor in
its interaction with objects; the forward model predicts the
deformation of a mesh given the pose and geometry of a
contacting rigid object. We use this model to develop a fast
approximation to solve the inverse problem: estimating the
contact patch when the sensor is deformed by arbitrary objects.
This inverse model can be easily identified through experiments
and is formulated as a sparse Quadratic Program (QP) that can
be solved efficiently online. The proposed model serves as the
first stage of a pose estimation pipeline for robot manipulation.
We demonstrate the proposed inverse model through real-time
estimation of contact patches on a contact-rich manipulation
problem in which oversized fingers screw a nut onto a bolt, and
as part of a complete pipeline for ICP-based pose-estimation
and tracking. Our results demonstrate a path towards realizing
soft robots with highly compliant surfaces that perform complex
real-world manipulation tasks.

I. INTRODUCTION

We imagine a future with robots that are able to make
contact anywhere on their bodies in order to successfully
execute tasks. Soft robot skins fundamentally change the
mechanics of contact, act as low-pass filters for impacts, and
potentially reduce the bandwidth requirements for control.
Deformable skin changes point contacts into patch contacts
which permit torsional friction, distribute loads across a
larger surface area of the robot and object, and generally
help to sustain contact. Soft skin can also provide passive
robustness to geometric uncertainty, and as we demonstrate
here, is conducive to rich tactile sensing.

Tactile sensing is increasingly used in robot manipulation
since it affords a direct way of detecting the state of the
manipuland through contact [1]. This is particularly relevant
for manipulation in highly cluttered environments, such as
homes, where vision-based sensors suffer from occlusions,
varying lighting, and challenging material properties. Recent
developments in the field have ushered in a new class of
dense-geometry visuo-tactile sensors [2]-[4]. Novel mate-
rials coupled with imaging sensors capture high resolution
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Fig. 1: Real-time contact patch tracking on the Soft-bubble
sensor in the “dual-finger” manipulation task of screwing a
nut on a bolt. The rectified point clouds from the sensors are
shown in blue and the estimated contact patch in red.

geometric information that enables the estimation and mea-
surement of contact geometry and locations, forces, slip, and
other properties essential for precise manipulation. Observing
contact geometry allows the tactile sensing problem to be
formulated as a 3D-perception problem, for which a wide
range of proven techniques exist. However, key issues with
these sensors remain, including lack of sufficient mechanical
robustness - they are subject to a large degree of wear and
tear - and modelling difficulties in capturing their contact and
deformation behavior [5]. Although data-driven techniques
such as deep neural networks can help circumvent modeling
difficulties, these are data (and sensor duty-cycle) intensive
during the training phase. Development of first principles
models of sensors not only enables simulation and analysis,
but can be incorporated within model-based state-estimation
and control frameworks.

Inspired by the human fingertip, the Soft-bubble [6] is
a highly compliant, air-filled dense-geometry tactile sensor.
These sensors have several ideal mechanical characteristics
- they are durable, lightweight, and easy to fabricate and
the compliant, high-friction surface produces stable contact
patches between manipulator and manipuland. As a visuo-



tactile sensor, it provides a high resolution depth image of
the deformed contact surface. In previous work, these soft-
bubbles have been used to classify manipulated objects as
well as estimate their pose [6]. The extreme compliance of
the Soft-bubble poses its own challenges, however. When an
object deforms the membrane, deformation does not occur
only at the patch in contact, but everywhere. It is difficult
to distinguish which parts of the deformation are directly
caused by the manipuland and which parts are the result
of internal air pressure and elastic membrane behavior. If
these extraneous non-contact points are not filtered out, direct
methods for pose-estimation using the depth image, such as
Iterative Closest Point (ICP), often fail to find an accurate
alignment.

In this paper, we present two key contributions towards
addressing these challenges: (i) we present a forward model
based on first principles of continuum mechanics to describe
a highly-deformable air-filled membrane that makes contact
with a rigid object of a given geometry; (ii) we then utilize
this model to solve the inverse problem of identifying the
contact patch based solely on the depth information from
the sensor - we develop an approximate formulation to solve
this problem using a sparse convex Quadratic Program (QP)
which renders it solvable in real-time. While the forward
model enables simulation and analysis, the inverse model
enables online contact patch tracking necessary for a per-
ception pipeline that performs object pose estimation.

We demonstrate the efficacy of the proposed method in
two ways: (i) a dual-arm rich-contact manipulation problem
in which an oversized nut is screwed onto a bolt as shown
in Figure 1 where contact patches are tracked online, and
(ii) combining the contact patch estimation with with a con-
ventional dual-stage ICP-based tracker to robustly estimate
manipuland pose.

II. BACKGROUND AND MOTIVATION

The field of tactile sensing has seen dramatic growth
in the recent years [1] spurred by developments in novel
fabrication techniques and signal processing methods [7].
Thus, its applications to dextrous robot manipulation have
greatly expanded [8]. Increasingly, there has been an interest
in integrating tactile sensing within state-estimation [9], often
incorporating models of contact mechanics. A novel devel-
opment in the field has been the growth of a class of visuo-
tactile sensors that are ideal for characterizing the geometry
of the object being sensed as well as identifying its pose
relative to the manipulator. These high-resolution, dense-
geometry, tactile sensors, such as GelSight [2], GelSlim [3],
and FingerVision [4], use cameras to gather large amounts
of data over relatively small contact areas and use either
a combination of precise lighting and stereo algorithms,
or machine learning to generate precise height maps of
contacting geometry. This depth information is then utilized
for pose estimation [10], force distribution estimation [5],
[11] and feedback control for tactile tasks [12].

Difficulties in modelling contact mechanics, behavior of
soft deformable surfaces, and handling large amounts of

multi-modal information have often been cited as motiva-
tions for employing data-driven techniques in tactile state-
estimation and control. Recent work seeks to use deep
learning for predicting contact forces/slip [13], [14], grasp
stability identification [15], [16] or for direct end-to-end
control [17].

Nevertheless, finding a first principles physical model of
tactile behavior is appealing, since it often provides im-
proved understanding, and allows integration into simulation,
planning and control model-based frameworks. Moreover,
current state-of-art machine learning methods often require
large amounts of data in order to generalize sufficiently —
generating a sufficient volume of training and test data can be
impractical or even infeasible for sensors that need to make
contact in order to sense. Many tactile sensors, including
gel-based tactile sensors, are prone to degradation over such
usage cycles.

Differing from gel-based visuo-tactile sensors, the Soft-
bubble [6] utilizes an inflated opaque membrane with an
off-the-shelf depth camera pointed at its interior surface.
Due to its simple construction and its use of a naturally
resilient elastic membrane, this sensor can withstand repeated
large deformations without significant degradation. Further,
its ability to deform around a contacting object more deeply
than thin gel-based sensors results in a larger portion of the
object’s geometry being captured in the output depth map.
This sensor’s high resolution depth sensing, along with its
ability to provide a large, high-friction contact patch make
it an ideal contacting surface for manipulators.

We develop an efficient model-based formulation describ-
ing the deformation of a membrane subject to external
contact. Most relevant to our approach, is a recent method for
GelSlim sensors [5] that directly use measured deformations
in a FEM model to estimate contact forces, an approach
sensitive to experimental noise given it requires to compute
second order derivatives from experimental data. Our ap-
proach solves this issue by computing a statistical best fit to
experimental data constrained to satisfy the laws of physics.

We show in subsequent sections how this formulation can
be employed within both a forward simulation as well as
an inverse or sensing model that can capture the contact
patch induced through contact between a soft sensor and
the external world.

III. SENSOR MODEL:
MEMBRANE AS AN ASSEMBLY OF FLAT ELEMENTS

The soft contact surface of our sensor can be mathemati-
cally described as a membrane [18], [19]. The temporal dy-
namics of the membrane’s deformation are the result of fast
time-scale traveling waves across the surface of the sensor;
however, since these fast dynamics cannot be resolved by
a 60 Hz depth camera, we can ignore membrane dynamics
and instead use a quasi-static approximation describing the
static equilibrium between internal stresses in the membrane
and external contact forces. Thus our formulation does not
involve time derivatives and does not introduce state. Since
most of the deformation is caused by external forces pushing



into the membrane, we neglect the effect of friction forces
for the estimation of deformation. That is, the contact surface
is modeled as frictionless. This is justified by the agreement
with the experiments presented in Section V.

We make a linear approximation to the deformation of the
membrane from a reference surface configuration Sy initially
pressurized at an absolute pressure F. The kinematics of the
membrane is approximated such that each material point xg
in the reference configuration Sy deforms into a point x in
the current configuration S according to

r = X + U(.’Bo)ﬁo(xo), (1)

where 7ig(xg) is the outward normal to the surface in the
reference configuration and u(x¢) is a scalar field describing
displacements in the normal direction only. Full mathemati-
cal descriptions [18], [19] also incorporate in-plane displace-
ments and can describe a much richer range of deformations
such as wrinkling and folding. The approximation in terms
of a single scalar field u(xg) is justified by the observation
that, when pressurized, the membrane of the sensor does not
wrinkle or fold onto itself unless extreme contact loads are
applied.

To further simplify the model, a homogeneous and
isotropic in-plane stress is assumed, similar to the surface
tension at the interface between two fluids [20]. The surface
tension at the reference configuration is then characterized
by a single scalar 7y, which must be determined as part
of a system identification process as a function of Fy. For
this particular state of stresses, the out-of-plane balance of
momentum reduces to

2By +P =0 inS, 2

with B being the mean curvature and P the applied absolute
pressure, which is the well known Young-Laplace equation
[18].

We discretize the reference surface Sy with a mesh of
triangle elements A§ defined by the nodal points x; of
the mesh. The deformation of the surface is then described
in a Lagrangian manner by the motion of the mesh nodal
points x ; in the reference surface Sy to nodal positions x;
in the current surface configuration S. In the notation above,
1 indexes the nodes of the mesh. Similarly, e indexes all
triangle elements of the mesh.

For small displacements from the reference configuration,
the mean curvature of a flat membrane element can be
approximated as 2B = V?2u, with the Laplace operator V?(-)
taken in a local two-dimensional frame for the flat triangle
element. Thus the momentum balance in Eq. (2) reduces to

Y%Viu+p=0 in AS. (3)

In Eq. (3), u(x) represents small displacements from the ref-
erence configuration and pressure p(x) represents deviations
from the reference pressure F. That is, the absolute pressure
is given by P = Py + p.

Discretization of Eq. (3) in a local element frame 7
by a standard Finite Element Method (FEM) leads to the

local stiffness matrix kf ,, where indexes a, b refer to local
nodal points in element e. The global stiffness matrix of
the system K is then obtained from each element stiffness
matrix kg , using the standard assembly procedure from
FEM [21, §6.2.13]. The pressure term in Eq. (3) is easily
lumped to obtain a diagonal matrix multiplying the vector
of pressure unknowns. The final discrete equation reads

Ku = diag(A)p, @)

where u is the vector of displacements, p is the vector of
normal stresses, A is a vector that at the i-th entry contains
an area associated with the i-th node in the mesh and diag(v)
denotes the operator that forms a diagonal matrix with the
elements of v. With n the number of nodes in the mesh, u,
p and A are vectors in R™. The stiffness matrix K € R"*"
is symmetric and positive definite.

A. Internal Pressure

The normal loads in Eq. (4) are split into a single scalar
pressure p, internal to the sensor and a contact pressure at
each point p. external to the sensor as

Ku = —diag(A)p, + Ap,, o)

where p, and p. denote deviations from a nominal value
and are zero in the reference configuration. While the total
absolute pressure inside the sensor P = Py+p, must always
be positive, pressure deviations p, can either be positive,
indicating an increase of pressure, or negative indicating a
decrease in pressure. Contact pressure p. however is always
positive since contact with an external object can only push
into the membrane.

The total absolute pressure inside the sensor relates to the
volume of air V' within the sensor by the ideal gas law as

Vo
Va
where V is the volume of the sensor in the reference
configuration. An expression for the volume in terms of the

displacements u follows from Gauss’s theorem as the surface
integral

P(V) =P ©)

1

V= f/w-'fz(oc)de, (7)
3Js

To obtain a linear expression of V' with the displacements
Eq. (7) is approximated as

1

V%*/w-’ﬁ,o(wo)dzwo, (8)
3Js

Using the parametric representation for « in Eq. (1) leads to
the desired expression for the volume as

V(u) =V + %ATu, 9)

which can then be used in Eq. (6) to update the pressure as
a function of the deformations w.



Fig. 2: Kinematics of contact between the deformable mem-
brane of the sensor and an external rigid object.

B. Contact Constraints

Contact constraints are necessary for simulation purposes.
Consider an external rigid object located in a position that
interferes with the location of the membrane in its reference
configuration, as shown in Fig. 2. A point x(j that in
the reference configuration is located inside the object must
necessarily move in order to avoid an impossible interpene-
tration. Since Eq. (1) establishes that points can only move
in the normal direction, a potential contact point y; on
the object corresponding to xg j is determined by casting
a ray from xg j in the direction opposite to the membrane’s
normal. The signed distance between point y; and point xy
in the current configuration can be computed as

bk = (Y — Tk) - No,k (10)
which after substituting xj, in Eq. (1) can be written as
bk = (Y — Tok — ko) - ok = Pok — uk,  (11)

where ¢, denotes the signed distance between y;, and g 1,
a negative quantity indicating interpenetration. The set of all
signed distances is placed within a single vector ¢ of size n.,
the number of contact candidates. Equation (11) is written
in vector form as

¢ = ¢o + Hu, (12)
with ¢ and ¢ in R™ and H, a sparse matrix in R"*"
with Hj,; = —1 for the k-th contact corresponding to the

ray cast from the ¢-th point Ty ; in the reference mesh. All
other entries in H are zero.

The contact constraints are a statement of the Signorini
boundary condition. At each point on the membrane either
the signed distance is zero and there is a positive contact
pressure acting at that point or the signed distance is positive
and the contact pressure at that point is zero since there
is no contact. This condition is formally written as the
complementarity condition

0<¢Lp.>0, (13)
or, in terms of displacements
0<¢po+Hu 1L p.>0. (14)

C. Simulation

Given an external object to the sensor, both ¢g and H
as defined in Section III-B are available as a function of the
pose of the object relative to the sensor. In addition, given a
mesh discretizing the reference configuration Sy, the stiffness

matrix K and the vector of nodal areas A in Eq. (4) are fixed
and can be pre-computed.

We observe that contact pressure in Eq. (5) can only be
non-zero (positive) at candidate nodes k that in the reference
configuration fall inside the external rigid object, see Fig. 2.
That is, we can define a vector p > 0 of size n. such
that —diag(A)p. = HT p. In other words, p.; = ux/A;
for candidate nodes for which Hy; = —1 and p.; = 0
otherwise.

Given the non-linear relationship between deformations
and the internal sensor pressure given by Egs. (6) and (9),
we propose a fixed-point iteration on the internal pressure p,,.
Given the pressure p]* at the m-th iteration, the following
MLCP is solved for the unknowns «” and "

Ku™ = Ap]' + H ™,

s.t. 0< ¢po+ Hu™ L u™ > 0. (15)

Note that we replaced —diag(A)p. = HT p in the momen-
tum balance Eq. (5).
This problem is cast as the the equivalent QP
1
m—+1 7’u,TK’U, _ pmAT’LL,

u v

= arg min
u

s.t. 0 < ¢+ Hu. (16)

which states the Karush-Kuhn-Tucker (KKT) conditions for
the QP in Eq. (15) where vector pu™ takes the role of the
KKT multipliers needed to enforce the inequality constraint
in the QP.

Since K is positive-definite the QP is convex and given
H has full rank the reduced Hessian of Eq. (16) is positive-
definite and the QP has a unique solution. Note that the
matrices K and H are sparse and therefore a QP solver that
exploits sparsity is used.

Once u™*t! is solved from Eq. (16), the enclosed air
volume is updated with Eq. (9) and the internal pressure
is updated according to the ideal gas law in Eq. (6). This
provides the value of pm*! = Pm+l — P, for the next
iteration and Eq. (16) is solved again with the updated value
of pressure. Relaxation is used on the pressure p, to attain
convergence. A relaxation factor w = 0.6 was found to work
best by trial and error. Convergence is monitored on the
relative change of p, between iterations.

Figure 3 shows the simulation results for a rigid robot
toy making contact with the sensor. Figure 3a renders the
deformed membrane in yellow and the robot toy in a
translucent green. The simulation is able to resolve the two
separate indentations caused by each leg of the toy on the
membrane. Note the bulging of the membrane between the
legs of the toy caused by an increase of air pressure inside the
sensor. Figure 3b shows a simulation of a point cloud for this
configuration colored with the distance to the time of flight
sensor with the soft membrane shown in translucent yellow
for reference. The point cloud is simulated by ray casting
from the center of the camera, in the direction of the ray 7,
for each pixel, and computing the distance from the center
of the camera to the point on the membrane hit by the ray.
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Fig. 3: Simulated soft membrane with robot toy pressed into
it. (a) Rendering of the deformed sensor for a given toy pose;
(b) Simulated point cloud colored based on distance to the
time of flight sensor.

Gaussian noise is added to each distance in accordance with
the noise levels reported by the manufacturer of the time-of-
flight sensor. See Section IV-A for details on the simulation
of the camera sensor.

IV. INVERSE PROBLEM AND CONTACT PATCH
DETERMINATION

The inverse problem consists on finding the patch of
contact given we have a point cloud measured by an internal
depth camera. This is nontrivial since the actual surface
deformation extends to regions far out from the contact patch.
This problem is aggravated as the external object pushes
deeper into the sensor causing larger deformations. Therefore
ad-hoc strategies that do not incorporate the physics of
deformation are likely to perform poorly. For instance, we
attempted to use a threshold on the point cloud distances.
We found this strategy to be highly sensitive to threshold
values even for simple convex geometries as in Fig. 7 and
to perform very poorly in cases with complex non-convex
geometries as shown in Fig. 6. More complex approaches
to fit a mesh [22] and estimate curvatures require parameter
tuning and amplify noise in the experimental data.

We propose an inverse problem strategy to find the external
contact forces producing a deformation of the sensor that best
matches the point cloud data. The overall formulation is a
convex QP that minimizes the error between the distances
measured by the real camera with those estimated by the
model, while physics of deformation are enforced as linear
constraints. In practice this strategy is shown to produce
results with low levels of noise when compared to pure
ad-hoc least square strategies, providing not only cleaner
geometric measures but also a direct prediction of regions
on which forces are applied.

A. Modeling Point Cloud Distances

The r-th point measured by the time of flight sensor is
modeled as the point x,. on the surface of the sensor in the
current configuration that results from shooting a ray with
direction 7, from the center of the camera ¢ towards the
membrane. The ray direction 7, is a known fixed quantity
for each pixel of the camera and can be found from the
specifications of the given camera model.

From Eq. (1) we have

Ty = To,r + urﬁo,m (17)

where u, is the local displacement and 7, is the normal
vector in the reference configuration. g, is found by ray-
casting from the camera into the reference configuration.
Therefore x ;. is computed once as a pre-processing step at
the beginning of the computation together with the normal
7o, and the FEM shape function vector S, such that the
displacement at x . can be interpolated with u, = ST u.

The distance from the camera center c to point x,. is given
by

d,. =+, (z, — c). (18)

Using Eq. (17) and the pre-computed local interpolation
Uy = .S’TT u for the displacement, the distance is written as

dr = do ., + (P - T00,) S  u, (19)

where do, = 7, - (xo, — ¢) is the distance in the reference
configuration Sy. This equation is cast in vector form as

with d the vector of distances in the reference configura-
tion, d the vector of distances in the current configuration
and matrix D containing at each r-th row the row vector
(Fr - T0,r) S’,T.

B. Inverse Problem Cost function

The inverse problem is formulated so that the error

f =||d — d||? between the measured distances d and the

modeled distances d is minimized. This cost is stated in

terms of displacements using Eq. 20

1

g(w) = Su"Qu+ flu, 1)

where @ = 2DTD is symmetric positive-definite and

f = 2D"dy. The reader should note that an additional term

|ldo||? is omitted from Eq. (21) since it is constant and would
have no effect on the minimization process.

C. Linearization of the Ideal Gas Law

We note that the inverse problem formulation can be cast
as an efficient-to-solve QP if the ideal gas law constraint
imposed by Eq. (6) is linearized. This linearization together
with Eq. (9) to write volume changes in terms of the
displacements leads to the following linear constraint

P,
py=——2 ATy, (22)

D. Inverse Problem and Contact Patch Estimation

The resulting inverse problem is formulated as the convex

QP:
1
arg min —ul'Qu + flu,
wz[uvpmp'v] 2
s.t. Ku + diag(A)p. = Ap,,
Py . r
—A v = 07
3V, u-+p

pe > 0. (23)
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Fig. 4: Evaluation of the inverse problem strategy with
the synthetic point cloud data generated by simulation and
shown in Fig. 3b.(a) Deformed membrane shape predicted
by solving the inverse problem. The surface is colored with
the magnitude of the contact pressure; (b) Subset of the point
cloud identified as corresponding to the contact patch.

Note that this formulation finds an optimum solution in
both u and p. as well as in the internal pressure changes
Dy Therefore, the strategy has no knowledge of the geometry
of the external object making contact with the membrane
of the sensor. Once the solution is found, the contact patch
is identified as those points of the mesh that have a non-
zero contact pressure. However, with real data containing
noise, the computed contact pressure exhibits spurious non-
zero values at regions away from the contact patch. These
values are significantly lower than those within the contact
region and can be filtered by simple thresholding.

E. Performance Against Synthetic Data

The performance of our inverse method tested against syn-
thetic point cloud data generated for the simulation presented
in Section III-C is shown in Fig. 3. Figure 4 shows the result
from the contact patch detection strategy summarized in Eq.
(23) for a given pose of the robot toy object. Estimated
deformations are shown in Fig. 4a, colored by the estimated
contact pressure. Note the low level of noise in the predicted
deformations even though the point cloud data does contain
noise. The computed contact pressure is interpolated onto
each point of the cloud and thresholding is used to identify a
subset that best corresponds to the contact patch. This subset
is shown in Fig. 4b together with the original robot toy. Note
that the methodology proposed is able to filter out the region
between the legs of the robot toy even in the presence of
high gradients and curvatures. Figure 4a shows the contour
line (magenta) corresponding to the threshold level used to
discriminate the contact patch. We chose a threshold level as
a factor of the average contact pressure ATp, /|| All;.

F. Object pose estimation using contact patches

The proposed inverse method is ideally suited to be used
within a perception pipeline for manipuland pose estimation.
We combined the contact patch estimator with a dual-stage
ICP based pose estimator as depicted in Figure 5. While [6]
demonstrated an example of pose-estimation using ICP on
the complete depth image, their approach is neither robust
nor guaranteed to work for arbitrary manipuland geometries.

soft-bubble 1
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Fig. 5: Schematic of the perception pipeline for pose esti-
mation using the contact patch estimator and a dual-stage
ICP based pose estimator; the first stage utilizes points from
the estimated contact patch and the second utilizes a local
neighbourhood of points from the rectified point-cloud.

By utilizing only the portion of the point-cloud correspond-
ing to the contact patch in a first pass at computing ICP, a
more robust initialization can be obtained for a subsequent
refinement stage utilizing points in the local neighbourhood
of the estimated contact patch. Our approach is faster than
[6], since fewer points are utilized within the ICP stages, and
is more robust since it better captures key object features,
such as corners in the vicinity of the contact patch while
rejecting portions of the bubble that are not in contact. An
implementation detail relevant to the ToF sensor used within
the Soft-bubble is that the raw point clouds captured are
subject to warping due to close distances and a rectification
stage is needed prior to subsequent processing using them.

V. EXPERIMENTS

In this section we present various experiments validating
our approach and demonstrating its efficacy in manipulation
tasks.

A. Sensor and Robot Setup

We utilized Soft-bubble sensors [6] comprised of an elastic
membrane sensing surface, an airtight hull allowing pres-
surization of the membrane, and an internal PMD pico
flexx ToF based depth sensor. On inflation, the membrane
forms a deformable spherical cap approximately 20 to 75mm
in height. For the analysis presented here, we inflated it
to a 50mm height with an internal pressure of 0.375psi.
The complete sensor assembly weighed 500 grams and was
mounted as the end-effector for the Kuka ITWA arms. The
distortion observed in the ToF sensor at the 12 - 17cm depth
was characterized using a simple linear per-pixel fit and then
rectified. The camera was set to use fixed exposure and to
stream data at 15Hz. The interface software for modelling
and control utilized components of the Drake toolbox [23].

B. Soft-bubble System Identification

System identification for the Soft-bubble consists of fitting
a single term, 7 from Equation 2, using depth measurements
of the inflated membrane in a contact-free state (since the
reference pressure P, is fixed a priori to 0.375 psi) . We
use the assumption that the bubble geometry matches a
hemisphere and thus 7, can be obtained from the analytic



Fig. 6: Real-time contact patch estimation for two test objects
pressed into the Soft-Bubble tactile sensor. The shape and
size of the contact patch clearly reflects the contacting
geometry.

form of the Young-Laplace equation. To validate our system
identification, we compare predicted and sensed point clouds
from contact with a known object at a known pose. This
was performed by using a Kuka ITWA arm to press the Soft-
bubble onto a pyramidal frustum (similar to that shown in
Figure 7) mounted at a known pose. The pose of the internal
ToF depth sensor relative to the wrist of the robot is obtained
from CAD models. Data capture and analysis for validation
takes only a few minutes and is representative of the ease-of-
use of our proposed method. Note that system identification
is only dependent on reference pressure, sensor geometry
(bubble diameter) and membrane material (latex) - as long
as the chosen material has near uniform thickness; thus, the
identified constants are identical for all additional sensors of
the same form factor making it an extremely efficient and
easy-to-deploy procedure.

C. Contact-patch Estimation

Contact patch estimation was run asynchronously and
computation time was measured at between 7-10Hz includ-
ing overhead for pointcloud data serialization/deserialization
when run on an average dual-core laptop. The contact patch
estimator produces a contact pressure map p. corresponding
to each point on the measured point cloud. In practice,
for our chosen depth sensor and its settings, this results in
~ 37,000 points being processed for every frame captured.
From the contact pressure map, the estimated contact patch
was identified by a simple thresholding operation to eliminate
spurious numerical results, where the threshold was set to
kAT p./||Al1. In our experience, a scaling factor of x = 1

is sufficient in most cases. The computed contact patch was
then published as a pointcloud to be consumed by the next
stage of our perception pipeline.

Fig. 6 shows the computed contact patch for two objects
pressed into the Soft-bubble. Note that the estimated contact
patch closely captures the geometry of the contacting sur-
face. Since our proposed method is agnostic to the object
geometry, we observe that contact patches can be estimated
for a wide variety of contacts that might to be encountered
in robot manipulation. Additional examples of contact patch
estimation with a range of objects are included in the video
accompanying this manuscript.

D. Pose Estimation

Pose estimation of known reference objects using the
dual-stage ICP approach was carried out utilizing the ICP
implementation from PCL. Figure 7 shows the results of
tracking the pose of a pyramidal frustum pressed into the
sensor. The complete pipeline runs at approximately 2-5 Hz.
While further analysis of the quality of the obtained pose-
estimates are outside the scope of this paper, qualitatively,
the computed object pose was observed to be a close-enough
fit for dexterous manipulation tasks.

Fig. 7: Pose estimation of a pyramidal frustum shape using
ICP integrated with our contact patch estimator. The sensed
pointcloud is shown in blue.

E. Dual finger manipulation

The Soft-bubble naturally lends itself to use as a compliant
fingertip for manipulation tasks. We therefore mounted two
Soft-bubble sensors on dual Kuka ITWA robot arms, as
shown in Figure 1, as an analog to a pair of fingers. We
performed an open-loop manipulation task in which the two
arms screw a nut onto a bolt and used the Soft-bubble
sensors to track the resulting contact patches. For the nut-
turning task, arm joint configurations for turning the nut
are computed using constrained optimization-based inverse
kinematics and regrasp motions are generated using a bi-
directional RRT planner [24]. The resulting contact patches
from this rich contact manipulation were computed at a rate
of 7-10Hz; Figure 1 shows a sequence of poses from the
task with the corresponding sensed pointclouds and estimated
contact patches. Not only do we accurately estimate the
contact patch, the highly deformable membrane of the sensor



provides a secure grasp on the nut. While our nut-turning task
is currently performed open-loop, our Soft-bubble sensors
provide feedback that could be used to accurately track the
grasp on the nut and detect any unwanted slip. We plan
to explore feedback control strategies using dense geometry
feedback in future work.

VI. CONCLUSIONS AND DISCUSSION

In this paper we have presented a model for the behaviour
of highly-deformable dense-geometry sensors. While our
forward model predicts deformation given the pose and
geometry of a contacting rigid object, our solution to the
converse inverse problem estimates the contact patch between
the sensor and arbitrary objects. We have shown that the
latter, formulated as a sparse convex QP, can be efficiently
computed and estimates contact patches with sufficient ac-
curacy for use as the first stage in a perception pipeline for
manipulation tasks. Used together with a dual-stage ICP-
based pose estimator, it can accurately track the pose of
objects contacting the sensor. Looking to the future, we have
demonstrated the potential of these sensors using our meth-
ods for robotic manipulation on a contact-rich manipulation
task - the sensors also act as end-effectors for over-sized
fingers screwing a nut onto a bolt.

Feedback through contact is vital for performing robust
manipulation. It can be used at short timescales as feedback
to a stabilizing controller and at large timescales to monitor
contact mode or type. A policy-based planning and execution
approach like [25] exploits contact and robot compliance to
perform manipulation tasks in the presence of uncertainty.
For each action performed from the policy, the outcome
of each action must be identified. For motions in contact,
comparison between expected contacts from planning and
observed contacts from a sensor like the Soft-bubble through
our proposed contact-patch estimator is an ideal means for
identifying the outcomes of actions.

Our proposed estimator is noteworthy for the speed
at which it can be computed and the ease of system
identification— a process that can be completed in a matter
of minutes and generalizes well to other Soft-bubble sensors
of the same materials and form-factor.

Our proposed approach is not without limitations; no-
tably shear forces and friction are currently not estimated
and this remains an open research question when utilizing
these sensors. Therefore the current methodology cannot
distinguish between similar geometries with different surface
roughness. While linearizing around operating pressure sig-
nificantly simplifies our model, it results in a sensitivity to the
inevitable under- or over-inflation of the Soft-bubble sensor.
We are currently investigating algorithmic and sensor design
improvements that will mitigate these limitations. While we
demonstrated a simple ICP-based tracker coupled with our
contact-patch estimator, further work is needed for accurate
and stable pose estimation allowing the integration of Soft-
bubble sensors into a robust and complete perception pipeline
for soft robotic manipulation.
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