
Balance control and locomotion planning for

humanoid robots using nonlinear centroidal models

by

Frans Anton Koolen

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2020

c© Massachusetts Institute of Technology 2020. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

September 30, 2019

Certified by. .
Russ Tedrake

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

Balance control and locomotion planning for humanoid

robots using nonlinear centroidal models

by

Frans Anton Koolen

Submitted to the Department of Electrical Engineering and Computer Science
on September 30, 2019, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Balance control approaches for humanoid robots have traditionally relied on low-
dimensional models for locomotion planning and reactive balance control. Results
for the low-dimensional model are mapped to the full robot, and used as inputs to
a whole-body controller. In particular, the linear inverted pendulum (LIP) has long
been the de facto standard low-dimensional model used in balance control. The LIP
has its limitations, however. For example, it requires that the robot’s center of mass
move on a plane and that the robot’s contact environment be planar. This thesis
presents control and planning approaches using nonlinear low-dimensional models,
aimed at mitigating some of the limitations of the LIP. Specifically, the contribu-
tions are: 1) a closed-form controller and region of attraction analysis for a nonlin-
ear variable-height inverted pendulum model, 2) a trajectory optimization approach
for humanoid robot locomotion over moderately complex terrain based on mixed-
integer nonlinear programming with a low-dimensional model, and 3) a quadratic-
programming based controller that uses the the results from these low-dimensional
models to control a simulation model of the Atlas humanoid robot.

Thesis Supervisor: Russ Tedrake
Title: Professor of Electrical Engineering and Computer Science

Acknowledgments

First, I’d like to thank Russ for giving me the opportunity to be a part of the Robot

Locomotion Group, for the freedom, and for the advice throughout the years. Thank

you to my committee members, Tomás Lozano-Pérez and Alberto Rodriguez. We

only had the opportunity to meet a couple of times, but I’m very thankful for your

suggestions.

Thanks to all of my labmates. You’ve made all the difference in making my time

at MIT a good experience. Thanks first and foremost for the great discussions, but

also for the lighter conversations, the many lunches we shared, the ping-pong games

(which Ani always won), the runs, and the occasional beer. A special thank you to

my main collaborators, Robin Deits, Michael Posa, and Sabrina Neuman, and to the

members of the DRC team, who made my first couple of years at MIT an intense and

exciting experience. Thank you to Steve Proulx, Mieke Moran, and Brytt Bradley.

And thanks to Tobia Marcucci for reviewing parts of this thesis, the discussions, and

the laughs.

Thank you to Martijn Wisse and the members of the Delft Robotics Laboratory,

for lighting the spark by making my introduction to robotics so much fun.

A big thanks to Jerry Pratt, for being a great example and friend, and for helping

me throughout my career. Thank you to all my friends and former colleagues at

IHMC, for fanning the flame and for all the good times.

Thank you to all my great friends at MIT, especially Affi, Albert, Alin, Ari, Ben,

Brett, Eric, Colm, Danielle, Deborah, Jess, Julie, G, Gustavo, Lindsay, Marek, Mark,

Mike G., Michel, Sara, and Thomas.

And finally, thank you to my sister and my parents. Pap, mam, thank you again

for always being there for me.

5

6

Contents

Cover page 1

Abstract 3

Acknowledgments 5

1 Introduction 19

2 Preliminaries and related work 21

2.1 The balance control problem . 21

2.2 Generic approaches to balance control and analysis 23

2.3 Dynamics of a legged robot . 25

2.4 Centroidal dynamics applied to balance control 29

2.5 A standard balance control approach 31

2.5.1 The linear inverted pendulum 31

2.5.2 Mapping to the full robot . 36

2.6 Moving beyond the standard approach 37

3 Momentum-based whole-body control 39

3.1 Introduction . 39

3.2 Related work . 40

3.3 Control framework . 42

3.3.1 Desired motions . 43

3.3.2 Contact wrenches . 46

7

3.3.3 QP formulation . 48

3.3.4 Inverse dynamics . 49

3.4 Application to humanoid walking . 49

3.4.1 Footstep plan . 50

3.4.2 Motion tasks and regularization 50

3.4.3 Desired Linear momentum rate 52

3.5 Implementation . 54

3.6 Results . 55

3.7 Discussion . 56

3.8 Conclusion . 56

4 2D balance control using non-planar CoM motion 59

4.1 Introduction . 59

4.2 Variable-height inverted pendulum 61

4.3 Necessary conditions for balance . 62

4.4 Approach and summary of previous results 64

4.4.1 Height trajectory as a virtual constraint 64

4.4.2 Orbital energy . 66

4.5 Control laws . 68

4.6 Region of attraction . 72

4.6.1 Orbital energy controller . 72

4.6.2 Clipped controller . 77

4.7 Discussion . 77

4.8 Conclusion . 80

5 Multi-contact centroidal trajectory optimization as a mixed-integer

nonlinear program 81

5.1 Introduction . 81

5.2 Problem statement . 88

5.2.1 High-level description and desired output 88

5.2.2 Environment regions . 90

8

5.2.3 Contact bodies . 91

5.2.4 Dynamics . 92

5.2.5 Contact sequence constraints 93

5.2.6 Approximate kinematic constraints 93

5.2.7 Initial and final conditions . 95

5.2.8 Optimization objective . 95

5.3 Mixed-integer programming preliminaries 95

5.3.1 Motivating example . 96

5.3.2 Mixed-integer convex programming 98

5.3.3 Mixed-integer reformulations of disjunctive constraints 102

5.3.4 McCormick envelopes . 104

5.3.5 Mixed-integer nonconvex programming 105

5.4 MINLP reformulation of the planning problem 109

5.4.1 Decision variables . 110

5.4.2 Timing . 111

5.4.3 Parameterization of continuous trajectories 111

5.4.4 Dynamics constraints . 113

5.4.5 Region assignment constraints 115

5.4.6 Contact force constraints . 117

5.4.7 CoP and contact reference point constraints 118

5.4.8 Variable bounds . 119

5.4.9 MIQP relaxation . 120

5.5 Whole-body control . 120

5.6 Implementation . 121

5.6.1 Solvers . 121

5.6.2 Problem formulation . 123

5.7 Results . 123

5.7.1 Scenarios . 124

5.7.2 Nominal performance . 124

5.7.3 Performance variability . 127

9

5.8 Discussion . 127

5.8.1 Possible extensions . 128

5.8.2 Solver performance and experiences 129

5.8.3 Whole-body control and application to a physical robot 131

5.8.4 Applications and future perspectives 131

5.9 Conclusion . 132

Bibliography 133

10

List of Figures

2-1 Cartoon demonstrating the concept of a viability kernel. Several state

evolutions are shown: a) an evolution starting outside the viability

kernel inevitably ends up in the set of failed states Xfailed; b) the system

starts in the viability kernel and comes to a rest at a fixed point; c)

an evolution that converges to a limit cycle; d) an evolution that has

the same initial state as c), but ends up in the set of failed states, e.g.

because the input trajectory was different; e) impossible evolution: by

definition, it is impossible to enter the viability kernel if the initial

state is outside the viability kernel. Adapted from [1]. 23

11

2-2 Cartoon demonstrating the concept of N -step capturability, formally

introduced in [1]. The set of captured states, or the 0-step viable-

capture basin, consists of those states from which a static equilibrium

is reachable without changing the current contact situation by taking

a step. The N -step viable-capture basin may be defined recursively as

the set of states from which a viable state trajectory exists that reaches

the (N − 1)-step viable-capture basin in finite time while taking a sin-

gle step. By definition, each N -step viable-capture basin is a subset

of the viability kernel. As N → ∞, the N -step viable-capture basins

approach the viable-capture basin. There may be a gap between the

viable-capture basin and the viability kernel, for example in the case

of a passive mechanism ‘walking’ down a slope but unable to come to a

stop [2, 3, 4]. However, for simple models of walking with a moderate

amount of actuation, the argument has been made that the gap be-

tween the viability kernel and the 2-step viable-capture basin is small

[5]. Adapted from [1]. 24

2-3 One of the simple polynomial models we studied in [6]. The model

includes stepping, center of pressure regulation, center of mass height

variation, and a lumped inertia which roughly models upper body an-

gular momentum effects. 25

2-4 The 3D linear inverted pendulum (LIP), with center of pressure p and

center of mass c at height z0 above the ground plane. The total contact

force
∑

i fc,i can be thought of as acting at the CoP and passing through

the CoM. 32

2-5 Forces acting on a legged robot: gravitational force mg and total con-

tact force
∑

i fc,i acting at the CoP. Motion of the instantaneous cap-

ture point ξ is also shown. The ICP diverges away from the CoP in a

straight line. 34

12

2-6 Example result of an LIP-based approach to simultaneously planning

the trajectory of the CoP p and the the instantaneous capture point

(divergent component of motion) ξ from [7]. Overhead view with (pre-

planned) footsteps shown as rectangles. The instantaneous capture

point ξ is repelled by the ground projection of the CoP pxy at all times

according to (2.16). At all times, p (t) must remain within the active

support polygon formed from the active foot polygons. At the final

time tf, ξ (tf) = pxy (tf), which means that the CoM will asymptotically

approach a static equilibrium above p (tf). Adapted from [7]. 35

2-7 Overhead view of N -step capture regions for the linear inverted pendu-

lum with minimum step time and maximum step length constraints in

an example state, as derived in [1]. ric ≡ ξ represents the instantaneous

capture point. 35

3-1 High level overview of information flow in controller framework. . . . 43

3-2 A unilateral contact at position ri in centroidal frame with normal ni.

The friction cone is approximated by basis vectors βi,j. 47

3-3 Overhead view of the support polygons for a two-step footstep plan.

The footstep plan used for subsequent simulation results is similar, but

consists of seven steps. 50

3-4 Overhead view of the output of the joint CoP and ICP trajectory

generator: CoP reference pr and ICP reference (ξr). 53

3-5 Main components of the software stack for the presented controller,

including simulation. The stacking structure visualizes each package’s

main dependencies. 54

3-6 Atlas walking on flat ground. 55

3-7 Histogram of controller run times. There is one sample at 1.67 ms. . . 55

4-1 Variable-height inverted pendulum model. 60

4-2 Kinematic constraints placed on CoM height trajectory f 65

13

4-3 Simulation results for orbital energy controller (4.20) with initial con-

ditions cx,0 = −0.3 [m], cz,0 = 1 [m], ċz,0 = 0 [m/s] and three values of

ċx,0: 1.0 [m/s] (top), 0.9 [m/s] (middle), and 0.8 [m/s] (bottom). The

normalized leg force is computed as fgr
mgz
· c
‖c‖ ≡

1
gz
u ‖c‖. For this plot,

gz = 9.8 [m/s2], cz,f = 1 [m]. For the third (slowest) initial condition,

the simulation was performed as if pulling on the ground were possible. 69

4-4 Simulation results for clipped controller (4.22) with initial conditions

cx,0 = −0.3 [m], cz,0 = 1 [m], ċx,0 = 0.8 [m/s], and ċz,0 = 0 [m/s]. For

this plot, gz = 9.8 [m/s2], cz,f = 1 [m]. 71

4-5 Slice at ċz,0 = 0 of the set of states from which balance can be achieved.

Note that the apparent separation between the regions on opposite

sides of the ċx,0-axis is merely a plotting artifact. For this plot, gz = 9.8

[m/s2], cz,f = 1 [m]. The full region extends outside the borders of the

plot, to infinity, along the blue sections. 76

4-6 Set of states from which balance can be achieved; comparison between

LIP (region defined by (4.15), the instantaneous capture point), orbital

energy controller (region defined by (4.25)), and clipped controller (also

corresponding to the necessary condition cz,crit (x) > 0). Slice at ċz,0 =

0 and cz,0 = cz,f for the variable-height inverted pendulum. For this

plot, gz = 9.8 [m/s2], cz,f = 1 [m]. 76

5-1 Example scenario with four environment regions and two contact bod-

ies. The light grey regions represent the actual contact geometry used

for dynamic simulation. The dark grey regions are the polyhedra

{Pi}i∈JneK, used for the trajectory optimization. The latter are es-

sentially configuration space regions for the contact reference points,

obtained by shrinking the top surfaces of the former. 89

5-2 1D contact situation with contact separation φ and contact force fc. . 96

14

5-3 Polyhedral outer approximations for the convex constraint x2 ≥ x21.

(a) Point x∗ is within the polyhedral outer approximation, but vio-

lates the original constraint. (b) Refined polyhedral outer approxi-

mation that renders the point x∗ infeasible through the addition of a

valid inequality (separating hyperplane), obtained by linearizing the

constraint function at x∗. Adapted from [8]. 101

5-4 (Piecewise) McCormick envelopes. (a) A single McCormick envelope

(in red), used to relax the bilinear constraint w = uv (green surface)

in the region 0 ≤ u ≤ 1, 0 ≤ v ≤ 1. (b) Using McCormick envelopes

with larger bounds on u and v, −1 ≤ u ≤ 1,−1 ≤ v ≤ 1, results in

a bad approximation. (c) A piecewise McCormick formulation can be

used to obtain a tighter relaxation, but at the cost of additional binary

variables used to select between the pieces. 105

5-5 Example polyhedral outer approximation for the nonconvex equality

constraint x2 = x21, with bounds on x1. (a) Point x∗ is feasible in the

polyhedral outer approximation, but lies above the original constraint

function. (b) Refined polyhedral outer approximation that renders the

point x∗ infeasible through spatial branching on x1, with one branch

with one branch for x1 ≤ xb and one branch with x1 ≥ xb. Various

heuristics exist for the selection of the branching point xb. Adapted

from [8]. 107

5-6 The Bézier curve convex hull property: for Bézier curve x (t) with

control points {x1, x2, . . . }, the curve {x (θ) | 0 ≤ θ ≤ 1} lies within the

convex hull of the control points. Adapted from https://commons.

wikimedia.org/wiki/File:Bezier_curve.svg. 112

5-7 Center of mass trajectory for scenario 2, found by SCIP with free timing.126

5-8 Result of tracking the CoM trajectory found by SCIP with free timing

for scenario 2. 126

15

https://commons.wikimedia.org/wiki/File:Bezier_curve.svg
https://commons.wikimedia.org/wiki/File:Bezier_curve.svg

16

List of Tables

3.1 List of motion tasks. 51

5.1 List of main solvers and subsolvers. 122

5.2 Problem parameters. 124

5.3 Solver performance: time to find a feasible point. Times reported by

solvers. 125

5.4 Performance variability with SCIP: time to find a feasible point when

varying the displacement ∆x of the final environment region along the

x-axis. Times reported by solver. Solution time was limited to 400 s. 127

17

18

Chapter 1

Introduction

Humanoid robots have long captured the imagination of researchers and the general

public alike. However, robots with a humanoid form factor have yet to find widespread

adoption in the real world, despite decades of research. Classically, good application

areas for robots in general have consisted of dirty, dull, and dangerous jobs. While

these application areas could also apply to humanoid robots, there is a serious question

of whether the humanoid form factor is ever the right choice, perhaps outside of the

entertainment industry.

A key argument in favor of the humanoid form factor has always been that it is

well-suited to manipulation tasks in a large variety of environments, especially those

built for humans. Examples of environments in which humanoid robots could po-

tentially outperform e.g. wheeled mobile manipulators include buildings with stairs,

very rough outdoor terrain, cluttered areas, and environments with sparse available

contact surfaces.

However, the most popular algorithms for balance and locomotion control of hu-

manoid robots have relied on certain key assumptions that are violated by the very

environments in which the humanoid form factor is supposed to shine. For example,

standard control algorithms typically assume that the ground is flat and level.

In recent years, research focus in the field of humanoid robotics has started to

shift away from this simple ‘lab’ environment, and towards having humanoid robots

do useful work in the real world, as witnessed by the DARPA Robotics Challenge

19

(DRC) and its disaster response scenario [9]. The first requirement that must be met

for a humanoid robot to be able to operate in these environments is that it be able

to robustly maintain its balance, avoiding costly falls which could damage the robot

or its environment. This thesis focuses on balance control approaches that avoid the

typical assumptions of classical balance controllers. Specifically, we explore the use

of centroidal models where the dynamics are either explicitly nonlinear in the state

and control input, or are subject to nonlinear state constraints.

The remainder of this thesis is structured as follows. Chapter 2 establishes some

preliminaries and gives a sense of the state of the art in balance control for humanoid

robots, including the limiting assumptions that most current control approaches make.

Chapter 3 presents a control framework that is used throughout to map results from

various centroidal models to the full robot. Chapter 4 presents an analysis of a 2D

nonlinear centroidal model that foregoes one of the standard assumptions, namely

that the center of mass moves on a plane. It demonstrates how center of mass height

variation can instead be used to improve balance. Chapter 5 presents a planner for 3D

locomotion over terrain with sparse footholds based on a nonlinear centroidal model.

The planning problem is formulated as a mixed-integer nonlinear program.

While an effort has been made to consolidate the mathematical notation used

throughout this thesis, notation conventions should generally be considered chapter-

specific.

20

Chapter 2

Preliminaries and related work

This chapter reviews the balance control problem for humanoid robots and provides

a literature review of the approaches used to address it.

The chapter is structured as follows. Section 2.1 provides a high-level overview

of the balance control problem for legged robots. Section 2.2 discusses some rela-

tively generic control approaches that can be applied to this balance control problem.

Section 2.3 briefly recalls properties of a legged robot’s dynamics, focusing on the

dynamics of its centroidal momentum. How these centroidal dynamics relate to the

balance control problem is discussed in section 2.4. Section 2.5 presents perhaps the

most popular approach to balance control for humanoids, and section 2.6 discusses

limitations of this approach, framing the work presented in this thesis.

2.1 The balance control problem

Perhaps stating the obvious, the primary objective of balance control for legged robots

is avoiding falls. Formalizing this statement is tricky, however. In an attempt to do

so, we will consider a state-space model of the robot’s dynamics of the form1

1Other formalisms may also be used to model legged robots, most notably hybrid dynamical
systems. However, (2.1) suffices for the current discussion.

21

ẋ (t) = f (x (t) , u (t)) (2.1)

u (t) ∈ U (x (t))

where x ∈ Rp is the robot’s state (e.g., joint positions and velocities) and u ∈ Rq is its

control input (e.g., joint torques), confined to the state-dependent set of admissible

control inputs U (x (t)) ⊆ Rq.

To formalize the concept of a ‘fall’, assume that a subset of state space is des-

ignated that consists of failed (fallen) states,2 Xfailed ⊂ Rp. Then the problem of

avoiding this set of failed states can be formalized using the theory of viability [10],

first applied to the field of legged robotics in [11]. A state x0 is called viable if and

only if there exists at least one admissible input trajectory that results in a state

trajectory x (t) starting from x0 that stays outside of the set of failed states for all

times t ≥ 0. The set of all viable states is called the viability kernel (see Fig. 2-1

for a visualization). The viability kernel is also known as the maximum controlled

invariant set [12].

If a legged robot ever finds itself in a state outside of the viability kernel, then it

either has already fallen or is doomed to fall, and a fall damage minimization strat-

egy should be employed. For states inside the viability kernel, maintaining balance

amounts to selecting any control action that keeps the state inside the viability ker-

nel. As such, under certain continuity conditions of the dynamics (2.1), only states

on the boundary of the viability kernel restrict the choice of control actions [10]. In

the interior of the viability kernel, there is freedom to choose control actions that

achieve a secondary task (e.g., walking to a goal location), or optimize a performance

metric (e.g., energy expenditure).

2Note that defining such a set may already be a difficult endeavor for a detailed state-space model
of the robot.

22

Viability kernel

X
failed impossible evolution

a) b)c)

d)
e)

Figure 2-1: Cartoon demonstrating the concept of a viability kernel. Several state
evolutions are shown: a) an evolution starting outside the viability kernel inevitably
ends up in the set of failed states Xfailed; b) the system starts in the viability kernel
and comes to a rest at a fixed point; c) an evolution that converges to a limit cycle;
d) an evolution that has the same initial state as c), but ends up in the set of failed
states, e.g. because the input trajectory was different; e) impossible evolution: by
definition, it is impossible to enter the viability kernel if the initial state is outside
the viability kernel. Adapted from [1].

2.2 Generic approaches to balance control and anal-

ysis

Unsurprisingly, computing viability kernels and associated control laws for nontrivial

systems is intractable. A generally applicable approach to attacking the balance

control is to replace viability with a strictly more conservative condition that is easier

to work with. For example, for a system with (hybrid) polynomial dynamics and a

given polynomial control law u = k (x), sum-of-squares (SOS) optimization [13] may

be used to find a Lyapunov-like polynomial barrier function of limited degree whose

zero-level set separates the set of failed states from all trajectories starting from a

given set of initial states [14]. Doing so certifies that these initial states are a subset

of the viability kernel. Other SOS-based computational approaches may be used to

search for outer approximations of the viability kernel [15].

Another generic way to somewhat simplify the problem in strictly conservative

fashion is to add the constraint that trajectories must reach a pre-specified known-

viable state. For example, one may require that trajectories converge to a given final

23

Viability kernel

Captured states

1-step viable-capture basin

∞-step viable-capture basin

X
captured

X
failed

Figure 2-2: Cartoon demonstrating the concept of N -step capturability, formally
introduced in [1]. The set of captured states, or the 0-step viable-capture basin,
consists of those states from which a static equilibrium is reachable without changing
the current contact situation by taking a step. The N -step viable-capture basin may
be defined recursively as the set of states from which a viable state trajectory exists
that reaches the (N − 1)-step viable-capture basin in finite time while taking a single
step. By definition, each N -step viable-capture basin is a subset of the viability
kernel. As N → ∞, the N -step viable-capture basins approach the viable-capture
basin. There may be a gap between the viable-capture basin and the viability kernel,
for example in the case of a passive mechanism ‘walking’ down a slope but unable
to come to a stop [2, 3, 4]. However, for simple models of walking with a moderate
amount of actuation, the argument has been made that the gap between the viability
kernel and the 2-step viable-capture basin is small [5]. Adapted from [1].

state xf that is a fixed point of the dynamics (2.1) for some allowable control input

uf ∈ U (xf). Adding this constraint corresponds to turning the problem of finding the

viability kernel into the problem of finding the backwards reachable set of xf. Again

in the context of (hybrid) polynomial dynamics, algorithmic approaches have been

developed that search for a polynomial control law that maximizes a measure of the

certified region of attraction to a fixed point subject to state and input constraints

[16].

Yet another approach is to require that a pre-specified set of states be reachable

from the initial state in finite time without visiting a failed state along the way.

The set of initial states that satisfy this property is known as the viable-capture

basin (see e.g. [17])3. In [1], we computed viable-capture basins in closed form for

various simplified linear models of legged locomotion. This paper also introduced

3The term ‘backwards reachable set’ may also applied to this concept.

24

Figure 2-3: One of the simple polynomial models we studied in [6]. The model
includes stepping, center of pressure regulation, center of mass height variation, and
a lumped inertia which roughly models upper body angular momentum effects.

the notion of N -step capturability, visualized and briefly summarized in Fig. 2-2.

Subsequent studies have employed numerical techniques to analyze more complicated

models approximately [5, 18, 19].

Although we have applied some of these relatively generic, strictly conservative

approaches to simplified polynomial models of walking (see Fig. 2-3) with moderate

success [6], none of these methods scale to the level of detailed dynamical models of

legged robots. As a result, research in synthesis and analysis of balance controllers

has in practice focused on using approximate (non-conservative) criteria for balance

maintenance. These criteria are often specific to the particularities of legged robot

dynamics. The following section provides a brief overview of these dynamics.

2.3 Dynamics of a legged robot

A legged robot is often modeled as an underactuated, articulated rigid body mecha-

nism with joint configuration vector q ∈ Rnq , joint velocity vector v ∈ Rnv , and joint

torque vector τ ∈ Rnv .4 Its dynamics are described by the well-known equations of

motion [20, 21, 22],

4The joint torque vector is collocated with the joint velocity vector, in the sense that v · τ has
the interpretation of mechanical power.

25

M (q) v̇ + b (q, v) = τ + Jc (q)T fc (2.2)

q̇ = V (q) v

where:

• M (q) is the joint-space mass matrix;

• b (q, v) is a bias term consisting of velocity-dependent terms and gravitational

effects;

• fc =
(
fTc,1 fTc,2 · · ·

)T
, with fc,i ∈ R3, is a vector of contact forces acting on

the robot;

• Jc (q) is the contact Jacobian, and

• V (q) relates the velocity vector to the time derivative of the configuration vec-

tor.5

The joint torque vector τ is constrained to be of the form

τ = STu

where u ∈ Rnv−6 and S =
[

0nv×6 Inv×nv

]
is a selection matrix that characterizes

the underactuation.

While the ‘full’ nonlinear dynamics (2.2) are useful for e.g. simulation purposes,

most controller design and analysis approaches for humanoid robots have relied on

lower-dimensional models. These models are often rooted in the dynamics of the

5Many discussions of dynamics in the robotics literature implicitly use V (q) = I, so that v = q̇.
Allowing a more general configuration-dependent linear map between v and q̇ has the advantage that
redundant parameterizations of configuration (e.g., quaternions for orientation) may be used to avoid
artificial singularities and associated numerical problems, while retaining a minimal representation
of v.

26

robot’s total centroidal momentum [23],

h =

 k

l

 ∈ R6 (2.3)

where k ∈ R3 is the angular momentum about the robot’s center of mass and l ∈ R3

is the robot’s linear momentum, expressed in an inertial frame of reference. Equiv-

alently, the momentum, interpreted as a spatial force vector [21], can be said to be

expressed in a centroidal frame [24] Φc, i.e., an inertial frame with its origin instan-

taneously at the center of mass position c and its axes aligned with those of a fixed

world frame Φw.

Euler’s laws of motion tell us that the sum of the wrenches applied to the robot

is equal to the rate of change of momentum, regardless of the complexity of the ‘full’

robot:

ḣ =
∑
i

wi (2.4)

where each wi =
(τi
fi

)
∈ R6 is a wrench consisting of a torque component τi and a

force component fi. It should be stressed that only wrenches acting externally on the

robot can cause a change in momentum, as wrenches acting between the robot’s links

cancel in the sum on the right hand side of (2.4) due to Newton’s third law.

Not only are the centroidal dynamics (2.4) low-dimensional, they are also linear

in the external wrenches acting on the robot. Furthermore, linear momentum l is just

the product of the robot’s total mass m and its center of mass velocity ċ,

l = mċ (2.5)

and so the dynamics of the center of mass are themselves (second-order) linear,

mc̈ =
∑
i

fi.

In the absence of external disturbances, the wrenches wi externally applied to a

27

humanoid robot can be split up into a wrench due to gravity, wg, and and ground

contact wrenches, wc,i:

ḣ = wg +
∑
i

wc,i, (2.6)

where the gravitational wrench may be written in terms of the gravitational acceler-

ation vector g =
(

0
0
−gz

)
as

wg =

 0

mg

 .

The contact wrenches wc,i =
(τc,i
fc,i

)
∈ R6 are typically modeled as being subject to

Coulomb’s friction law. In the special case of a point contact in static friction, where

the relative velocity between the body-fixed point and the world-fixed environment

is initially zero, the contact force must satisfy the friction cone constraint

‖fc,i − (n · fc,i)n‖ ≤ µn · fc,i (2.7)

in order to prevent slip. Here, n is the contact normal, and µ is the coefficient of

static friction. Expressed in a centroidal frame, the torque component of the contact

wrench depends on the relative position of the application point pi and the center of

mass c:6

τc,i = (pi − c)× fc,i. (2.8)

Centroidal momentum h is also fundamentally linked to the robot’s generalized

velocity vector, v. It can be shown that this relationship is also linear,7 i.e. there exists

a configuration-dependent matrix A (q) ∈ R6×(n+6), called the centroidal momentum

matrix [24, 23], such that

h = A (q) v. (2.9)

6Note that in the case of multiple point contacts or distributed loading, the torque may also have
a component normal to the contact surface.

7This can be seen as follows. Centroidal momentum h is the sum of the momenta of each of the
links (expressed in the common centroidal frame [24]), where each link momentum is the product of
the link’s (velocity-independent) spatial inertia matrix and the twist (spatial velocity) of the link. In
turn, the twist is linearly related to the joint velocity vector v through the link’s geometric Jacobian
[20]. Since each step in this chain of operations acting on the velocity vector v is linear, h is a linear
function of v.

28

Note that as a result of (2.5), the bottom three rows of A (q) are identical to the

center of mass Jacobian scaled by m.

Differentiating (2.9) and combining the result with (2.6), we find the relationship

A (q) v̇ + Ȧ (q) v = wg +
∑
i

wc,i, (2.10)

which represents a fundamental constraint on the allowable motions of the ‘full’ robot

model as a result of its contact situation, given the friction cone constraints (2.7).

2.4 Centroidal dynamics applied to balance con-

trol

The centroidal dynamics (2.6) capture the salient features of the balance control

problem for a humanoid robot, namely the gross movement of the robot as a function

of gravity and contact forces [25]. They can be used to explain the balance control

mechanisms most commonly used in humanoid robots and humans alike [26, 25]:

• taking a recovery step, which corresponds to changing the locations pi at which

the robot can push off against its environment, resulting in a different set of

possible contact wrenches;8

• the use of ankle torques, which changes the magnitude and perceived point of

application of the total contact force applied to a foot (i.e., the foot’s center of

pressure), and consequently changes the contact wrench applied at the foot;

• windmilling/lunging behaviors, which correspond to a nonzero rate of change

of centroidal angular momentum and an associated nonzero total torque about

the center of mass. This in turn corresponds to a change of the direction of the

total contact force force and associated change in linear momentum.

8In addition, taking a step may result in an impact with the ground, which results in an impulsive
force that can also be used to achieve balance [25].

29

Despite the many attractive properties of the centroidal dynamics, there are several

complicating factors for their use in control and planning approaches.

First, the constraints on the contact wrenches are nontrivial. As a result of friction

cone constraints (2.7), the sum of the contact wrenches at a given time must lie

within the so-called contact wrench cone (CWC) [27, 28, 29]. In addition, the contact

force fc,i itself and its application point pi jointly determine the torque component

of a contact wrench about the center of mass c, via the relationship (2.8). This

relationship is bilinear in contact forces and the positions of their application points,9

which results in significant issues with optimization-based planning approaches that

use both forces and positions as decision variables.

Second, kinematic limitations are not captured very well by a centroidal model.

Such limitations may be approximated using constraints on the position of the center

of mass relative to the force application points (e.g. in [30, 31]), but cannot fully

capture the kinematic workspace of the center of mass. Trajectory optimization

approaches that combine the centroidal dynamics with the full kinematics of the

robot have been proposed [32], but such approaches are currently fairly slow. In

addition, there is no angular equivalent of the center of mass that can be used to

summarize the aggregate rotational motion of the robot as a whole for use as a proxy

in kinematic constraints.

Third, centroidal models do not capture limitations on joint torques directly. How-

ever, this problem has not been as immediate in practice as the preceding two, in part

due to the availability of high-performance robots with high-torque actuators, such

as the Boston Dynamics Atlas robot [33].

Despite these limitations, centroidal models have been very widely used to in-

form the design of balance controllers and locomotion planners, leading to a kind of

‘standard’ control approach.

9Specifically, a vector constraint like c = a× b results in scalar constraints like cx = aybz − azby,
containing products of decision variables.

30

2.5 A standard balance control approach

This section discusses a commonly used control approach based on the Linear In-

verted Pendulum (LIP), a particularly simple centroidal model. Section 2.5.1 briefly

describes the model, and Section 2.5.2 discusses how control techniques based on the

LIP are typically mapped to the full robot.

2.5.1 The linear inverted pendulum

The (3D) linear inverted pendulum (LIP) [34, 35] (see Fig. 2-4) is based on the

centroidal dynamics, (2.3), together with the following assumptions:

1. centroidal angular momentum remains constant (typically zero);10

2. the ground is a (typically horizontal) plane;

3. the center of mass moves on a plane parallel to the ground.

These assumptions sidestep the complicating factors described in the previous section

to a certain extent.

The first assumption is used to roughly limit angular excursion of the robot’s

upper body, effectively prohibiting lunging behaviors. Studies have also shown that

humans tightly regulate centroidal angular momentum around zero while walking

normally [40]. Constant centroidal angular momentum implies that the sum of the

torques about the center of mass is zero, in accordance with (2.4) and (2.8).

The second assumption allows for an unambiguous definition of an overall center

of pressure (CoP), also known as zero (tangential) moment point (ZMP) p on the

ground plane, so that the sum of the contact forces can be thought of as acting at

this CoP (see Fig. 2-4). Furthermore, assumptions 1 and 2 together imply that the

total contact force acting at the CoP passes through the CoM (see Fig. 2-4). It can

be shown that the CoP must always lie within the convex hull of the positions of

10Note that there is an extension to the linear inverted pendulum that does allow for a nonzero
centroidal angular momentum rate [36, 37, 38, 1] while retaining the same form of the dynamics,
(2.16), but with the point p now interpreted as the centroidal moment pivot (CMP) [39].

31

ê
x

ê
y

ê
z

g

p

z
0

c
m

∑ifc,i

Figure 2-4: The 3D linear inverted pendulum (LIP), with center of pressure p and
center of mass c at height z0 above the ground plane. The total contact force

∑
i fc,i

can be thought of as acting at the CoP and passing through the CoM.

the robot’s contacts with the flat ground, usually referred to as the robot’s support

polygon. In the context of optimization-based control techniques, this is a linear

constraint that can be seen as a relaxation of the friction cone constraints.

The third assumption makes it so that the dynamics that relate horizontal center

of mass motion to center of pressure location (as opposed to the contact forces) are

second-order linear and decoupled in the x and y directions. When combined with

limits on the horizontal motion of the center of mass, the restriction to planar motion

also acts as an approximate kinematic limit and as a way to keep the total contact

force in check, which in turn acts as a proxy for leg joint torque limits.

We recall from section 2.3 that the rate of change of the robot’s total linear

momentum can be written as

mc̈ = mg +
∑
i

fc,i (2.11)

The three assumptions imply that the sum of the contact forces can be parameterized

32

in terms of the center of pressure (CoP) as

∑
i

fc,i = λ (c− p) .

In particular, due to the vertical force balance associated with maintaining a constant

height, we can write ∑
i

fc,i =
mgz
z0

(c− p) (2.12)

where gz is the magnitude of gravitational acceleration and z0 is the vertical separation

between the ground plane and the CoM plane.

Substituting (2.12) into (2.11), using the projection matrix P =
(

1 0 0
0 1 0
0 0 0

)
to select

the horizontal part and simplifying, we obtain the LIP dynamics

P c̈ =
gz
z0
P (c− p) (2.13)

or

c̈xy =
gz
z0

(cxy − pxy) , (2.14)

where cxy = (cxcy), pxy = (pxpy).

The linearity and extremely low dimensionality of the LIP dynamics have often

been used as a basis for joint CoM/CoP trajectory planners [41, 42, 43] and feedback

control schemes [41], or combined planning and control schemes in the form of model-

predictive control (MPC) [44, 45]. Typically, these trajectory planners assume a pre-

specified contact sequence and step timing, which are often found using heuristics

and/or graph search algorithms [46, 47].

Some of these approaches are based on a change of coordinates that separates the

horizontal motion of the CoM into an unstable (divergent) component and a stable

(convergent) component [48, 49]. It can be shown that the divergent component is

described by the motion of the instantaneous capture point (ICP) [48, 1], defined as

ξ := Pc+
ċ

ω0

. (2.15)

33

mg

c

p

Σf c,i

Pcc.

ξ
ξ

ξ .

Figure 2-5: Forces acting on a legged robot: gravitational force mg and total contact
force

∑
i fc,i acting at the CoP. Motion of the instantaneous capture point ξ is also

shown. The ICP diverges away from the CoP in a straight line.

Differentiating this definition and comparing with (2.13) shows that the ICP dy-

namics are described by

ξ̇ =

√
gz
z

(ξ − p) . (2.16)

Fig. 2-5 visualizes the forces acting on a general robot, as well as the ICP dynamics.

The divergent component of motion ξ is also known as the (instantaneous) capture

point [36, 50, 1] or extrapolated center of mass [51], and has a very useful interpreta-

tion as the point on the ground at which the center of pressure p should be maintained

such that the center of mass asymptotically converges to a static equilibrium over p.

Whenever the center of pressure is not located at the instantaneous capture point

(p 6= ξ), (2.16) means that ξ diverges away from p exponentially. As a result, if ξ

ever leaves the support polygon (i.e., the set of all possible overall center of pressure

locations in the current contact configuration), the robot must modify its support

polygon by taking a step in order to avoid exponential divergence. We used this

property in [1] to explicitly compute N -step viable-capture basins for the LIP.

In the context of the LIP, planning and control approaches that do not prioritize

regulating ξ risk not maximizing the set of states from which balance can be achieved

34

ξ(t)

p(t)
ξ(0)

ξ(tf) = p(tf)

p(0)

Figure 2-6: Example result of an LIP-based approach to simultaneously planning the
trajectory of the CoP p and the the instantaneous capture point (divergent component
of motion) ξ from [7]. Overhead view with (preplanned) footsteps shown as rectangles.
The instantaneous capture point ξ is repelled by the ground projection of the CoP
pxy at all times according to (2.16). At all times, p (t) must remain within the
active support polygon formed from the active foot polygons. At the final time
tf, ξ (tf) = pxy (tf), which means that the CoM will asymptotically approach a static
equilibrium above p (tf). Adapted from [7].

êy

êx

rankle

ric(0)
ric(∆ts)

 N
 -

ste
p

ca
pt

ur
e r

eg
ion

s

N = 2
N = 1

N = 4

N = 3
N = ∞

d1

d∞

l
max

Figure 2-7: Overhead view of N -step capture regions for the linear inverted pendulum
with minimum step time and maximum step length constraints in an example state,
as derived in [1]. ric ≡ ξ represents the instantaneous capture point.

35

for the LIP [1, 52]. See Fig. 2-6 for an example output of a planner using the

coordinate change (2.15), resulting in trajectories ξ (t) and p (t). For step recovery,

the instantaneous capture point may also be used to compute the regions on the

ground to which the robot must step in order to be able to come to a stop in N steps

or fewer, called the N -step capture regions [36, 1] (see Fig. 2-7).

Regardless of whether the change of coordinates (2.15) is used, LIP-based feed-

back control schemes compute a desired trajectory for the rate of change of linear

momentum l (t) and corresponding trajectories for the total contact force
∑

i fc,i (t)

and center of pressure p (t). A simple linear feedback controller may then be used to

track these trajectories, resulting in a reference linear momentum lr (t) or CoP pr (t)

at every control time t.

2.5.2 Mapping to the full robot

The LIP may be used as a template model to control the ‘full’ robot in various ways.

While the LIP has been the go-to template model for decades, up until recently there

has been more variation in whole-body control approaches that map control actions

stemming from strategies designed for the LIP (e.g., lr (t) or pr (t)) to control actions

for the full robot.

One link between the centroidal dynamics (2.6) and the full dynamics (2.2) is

formed by the contact forces, which appear in both. This link has been exploited in

the virtual model control approach, where approximate center of pressure tracking is

achieved in torque-controlled walking robots using the concept of a virtual toe point

[53, 42]. Virtual model control is essentially a Jacobian-transpose approach.

Another fundamental link is the relationship (2.9). This relationship has been

used in the resolved momentum control approach to implement various whole-body

behaviors on a position-controlled humanoid robot [54]. Achieving a desired momen-

tum can more generally be seen as one example of a motion task in the sense of [55],

i.e. a linear constraint on the joint velocity vector v. Additional motion tasks may

be specified in the nullspace of the momentum control task, and used to achieve e.g.

trunk orientation control and swing foot trajectory tracking. The latter task, for

36

example, may be accomplished by constructing a spline trajectory for the foot and

then using a Cartesian PD control law to compute a desired foot twist, which then

becomes the right-hand side in a linear constraint on v.

Similar control algorithms may be used for torque-controlled robots, where tasks

are typically specified at the acceleration/ force level rather than at the velocity level.

For the specific case of momentum tracking, an acceleration-level task suitable for

use in a torque-controlled setting can be found by differentiating (2.9):

ḣ = A (q) v̇ + Ȧ (q) v.

This affine relationship between ḣ and v̇ may be used to enforce a desired rate of

change of centroidal momentum (or just linear momentum) at every control time

step, thereby ‘mapping’ results from a centroidal model to the full robot. The control

framework presented in chapter 3 of this thesis is one example of a momentum-based

control approach for torque-controlled robots. We refer to this chapter for more details

on how results from a centroidal model can be mapped to the full robot. However,

for the purposes of the current discussion, performing this mapping can be seen as a

more-or-less solved problem with a standard solution.

2.6 Moving beyond the standard approach

This section discusses limitations of the ‘standard’ approach and some attempts from

the literature to avoid these limitations.

While the standard approach has many advantages, including its versatility and

relatively low computational requirements, there are also significant limitations. These

stem from the fact that there is no notion of the future in the whole-body control

approaches discussed in the previous section: the full-dimensional dynamics are never

used for planning into the future; rather they are only used to perform an instanta-

neous transformation from low-dimensional quantities to high-dimensional ones. All

of the locomotion planning must be done in terms of the low-dimensional LIP model.

37

The assumptions used to arrive at the LIP (see Section 2.5.1) thus translate into

limitations on the motion of the full robot.

The assumption of constant centroidal angular momentum prohibits lunging or

windmilling behaviors that may be used to regain balance in an emergency. The

effects of the ability to change centroidal angular momentum on balancing capability

are known when the LIP is extended to include a rough model of the rotational

inertia of the robot’s entire body, approximated as a single lumped rigid body [37,

38, 1], and they are not insignificant. It remains difficult, however, to translate

angular excursion limits of the robot’s joints into constraints on the behavior of a

centroidal template model, such as orientation constraints on the lumped body. Some

implementations simply omit constraints on angular momentum or body orientation

in the QP formulation while using a low-weight objective term to regulate towards

a nominal body pose. This allows QP solutions that result in an ‘emergent’ lunging

behavior. However, without reasoning about joint limits and future posture, this

approach could result in hard joint limit impacts, extreme postures, and unintended

collisions between the robot’s bodies or with the environment.

While properly addressing the issue of non-constant centroidal angular momentum

remains an open problem, we will not address it further in this thesis. Instead, the

focus will be on the other LIP assumptions, namely that the ground is a flat plane

and that the CoM moves on a plane parallel to the ground. These assumptions are

problematic in the challenging environments in which the humanoid form factor is

supposed to outperform wheeled robots. Control algorithms employing the LIP for

planning can typically tolerate ground height variation to a certain extent, but more

challenging terrain with sparse available footholds or handholds remains a problem.

Addressing some of the problems with the use of the LIP as a template model

will be the focus of chapters 4 and 5. However, we will first discuss the whole-body

control framework that may be used to map results of arbitrary centroidal models to

the full robot.

38

Chapter 3

Momentum-based whole-body

control

3.1 Introduction

This chapter describes a framework that may used to control a complex humanoid

robot based on results for a centroidal model, such as the linear inverted pendulum

(LIP). The framework may for example be used to implement a walking behavior

for a high-degree-of-freedom humanoid robot such as Boston Dynamics’ Atlas robot.

The presented control framework originated from the requirements of the DARPA

Robotics Challenge (DRC) and its disaster response scenario. This competition re-

quired the implementation of a wide variety of behaviors in an environment consisting

of not just flat ground, but also tougher terrain including slanted cinder blocks and

stairs.

The presented control framework was summarily introduced in [56]. A more de-

tailed description, including hardware experiments on a physical Atlas robot, was

presented in [57]. The control framework was also used by Team IHMC to secure

second place in both the DRC Trials (December 2013), and the DRC finals (June

2015).

While this chapter is heavily based on [57], the current objective is more to give a

brief introduction to the framework within the broader scope of this thesis, and this

39

chapter has been slimmed down and modified as a result. In particular, results of

hardware experiments were omitted from this chapter, and the example application

to walking was simplified and updated. The framework will be employed as a tool

throughout this thesis to map results from various centroidal models to the full robot.

The presented control framework exploits the fact that the rate of change of whole-

body centroidal momentum ḣ ∈ R6 is simultaneously affine in the joint acceleration

vector and linear in the external wrenches applied to the robot [24]. This fact is used

to formulate a compact quadratic program, solved at every control time step, which

reconciles desired motions with the available frictional contacts between the robot

and its environment.

The remainder of this chapter is structured as follows. Section 3.2 discusses related

work. Section 3.3 introduces the general control framework. Section 3.4 presents a

specific application of the framework to humanoid walking based on the LIP. Section

3.5 details the implementation of the controller used in this thesis (which is differ-

ent from the implementation used during the DRC). Section 3.6 summarily presents

results of flat-ground LIP-based walking in simulation using the controller implemen-

tation. Section 3.7 provides a brief discussion, and section 3.7 concludes the chapter.

3.2 Related work

The presented control framework can be classified as a model-based torque control

scheme. One of the first such schemes is due to Khatib [58], and was later extended

and applied to humanoid robots [59, 60, 61]. It allows the specification of (a hier-

archy of) multiple motion tasks, and can handle the case of multiple non-coplanar

ground contacts. Joint torques are essentially found by solving an unconstrained lin-

ear least squares optimization, or a hierarchy of such problems (i.e., a lexicographic

multi-objective [62, 63], or multilevel [64] optimization problem). Due to the lack of

inequality constraints, the approach may result in contact forces that violate friction

cone constraints. Other examples of this type of approach include the work of Hyon

et al. [65, 66] and of Mistry, Buchli, Righetti and Schaal [67, 68].

40

Taking unilateral ground contact into account naturally leads to the use of con-

strained optimization. Although the friction force limitations stemming from the

Coulomb friction model are naturally represented as second-order cone constraints,

the cones are often approximated using linear constraints, reducing the problem of

finding joint torques given motion tasks to a quadratic program (QP). The use of

quadratic programming in online control algorithms has seen a rise in popularity in

the last decade, at least in part due to the availability of fast and reliable QP solver

implementations [69, 70, 71, 72] and more powerful CPUs. An early example of such

QP-based control schemes is the work of Kudoh et al. [73]. Similar approaches include

the work of Macchietto [74], Stephens and Atkeson [75], Saab et al. [76], Righetti et

al. [77], Kuindersma et al. [78], Herzog et al. [79], and Feng et al. [80].

Momentum-based control has also gained popularity in recent years. Kajita et

al. were the first to propose a momentum-based whole-body control scheme, called

Resolved Momentum Control [41]. The authors recognized the fact that the whole-

body momentum of a general robot is linear in the joint velocities, and used this

to track a desired momentum reference while achieving other motion tasks. The

Resolved Momentum Control scheme relied on unconstrained linear least squares to

find joint velocity references to be tracked by a low level controller.

The relationship between momentum and joint velocities was studied in more

detail by Orin and Goswami [24]. Based on this work, Lee, Goswami, and Orin

presented a momentum-based control framework for torque-controlled robots [81, 82,

23]. This work most directly inspired the presented control framework. As opposed

to Resolved Momentum Control, the authors employed constrained optimization to

take the unilaterality of ground contacts into account. However, the framework is

limited in the types of motion tasks that can be expressed. The authors additionally

chose to split up the computation of the desired joint accelerations and contact forces

into separate optimization problems. Each of these optimization problems is easier

to solve than a general QP, resulting in reduced computation time, but also results

the approach results in a less general and somewhat less elegant control scheme.

Similar to the work of Lee and Goswami, the presented framework exploits the

41

properties of whole-body momentum, but recombines the problems of finding joint

accelerations and matching contact forces into a single, relatively compact QP. It

also enables a simple way of specifying various types of motion tasks. As an example

application, the framework ties in neatly with walking control based on instantaneous

capture point / divergent component of motion dynamics [1, 42, 43], as will be shown

in section 3.4.

3.3 Control framework

Fig. 3-1 shows the high level flow of information in the control framework. A high-

level controller, which implements e.g. a walking behavior, sets up a quadratic pro-

gram (QP) based on the following data:

1. Desired motions, in the form of motion tasks.

2. Limitations stemming from available contacts.

The QP reconciles the desired motions with the available contacts by exploiting the

relationship between whole-body momentum, joint velocities, and externally applied

wrenches due to gravity and contacts, (2.10),

A (q) v̇ + Ȧ (q) v = wg +
∑
i

wc,i (3.1)

where we recall that A (q) is the centroidal momentum matrix, v is the joint velocity

vector, wg is the wrench due to gravity, and the wc,i are contact wrenches. Quantities

are expressed in a centroidal frame, an inertial frame aligned with the global frame,

but with its origin instantaneously at the location of the center of mass, c.

The QP solver outputs desired joint accelerations, v̇d, and associated feasible

contact wrenches, wc,i, that are in agreement with these joint accelerations according

to (3.1). This guarantees that the motion is realizable within the context of the

friction-limited rigid body model. The joint accelerations and contact wrenches are

42

Torques τd

QP
solver

Motion tasks J , d

Contact
information Q , ρmax

Joint accelerations .vd

Contact
wrenches

wc, i = Qi ρi

High level
controller

Inverse
dynamics

Robot

State q,v

i i

i

Figure 3-1: High level overview of information flow in controller framework.

then used to compute desired joint torques using an inverse dynamics algorithm. The

computed torques are in turn used to determine the motor commands for the robot.

The remainder of this section is structured as follows. Section 3.3.1 discusses the

way in which desired motions may be specified. Contact wrenches are addressed in

section 3.3.2. The quadratic program is formulated in section 3.3.3. Finally, the

inverse dynamics step is discussed in section 3.3.4.

3.3.1 Desired motions

In the proposed framework, desired robot motions are represented in the form of

acceleration-level motion tasks. Motions appear on the left hand side of the momen-

tum rate balance, (3.1). We define a motion task as an equation that is linear in the

desired robot joint acceleration vector, v̇d ∈ Rnv .1 Here, nv is the number of velocity

degrees of freedom. A motion task with index i can be written as

Jiv̇d = di. (3.2)

Motion tasks will appear in the QP formulation either as (hard) constraints, or

as penalty terms in the objective function; see section 3.3.3 for more details.

We will first define some basic types of motion tasks, followed by a description of

how we typically use these tasks to track reference trajectories.

1Note that v̇d includes the spatial acceleration of the floating base joint with respect to the world.

43

Basic types

We mainly use four basic types of motion tasks: 1) joint space acceleration tasks, 2)

spatial acceleration tasks, 3) point acceleration tasks, and 4) momentum rate tasks.

In the case of joint space acceleration tasks, Ji ∈ Rnvj×nv is simply a selection

matrix, where nvj is the number of degrees of freedom of joint j, and di is the desired

joint acceleration v̇d,j:

Ji =
(

0 · · · 0 I 0 · · · 0
)
, di = v̇d,j (3.3)

To express a spatial acceleration task, we note that the twist

ϑm,jk =

 ωm,jk

vm,jk

 ∈ R6 (3.4)

of body k with respect to body j, expressed in body m’s reference frame (notation

adapted from [22]) can be written as

ϑm,jk = Jm,jk v (3.5)

where Jm,jk ∈ R6×nv is a geometric Jacobian [83, 22] (or basic Jacobian [58]). Differ-

entiating and rearranging, we find

Jm,jk v̇ = ϑ̇m,jk − J̇m,jk v (3.6)

Replacing the actual joint acceleration vector v̇ with the desired joint acceleration

vector v̇d and the spatial acceleration ϑ̇m,jk by its desired value ϑ̇m,jk,d , we can write this

as a motion task with Ji = Jm,jk and

di = ϑ̇m,jk,d − J̇
m,j
k v (3.7)

Note that spatial acceleration tasks can be expressed between any two of the robot’s

rigid bodies, not just between a body and the world.

44

Point acceleration tasks may be derived in similar fashion. In this case Ji ∈ R3×nv

is a Jacobian that maps the joint velocity vector to the Cartesian velocity of a body-

fixed point and di is the desired linear acceleration of this point minus a velocity-

dependent bias term, similar to the right hand side of (3.7).

To express a momentum rate task, we note that the relationship (2.9) can be

differentiated to find

ḣ = A (q) v̇ + Ȧ (q) v.

where we recall that A (q) is the centroidal momentum matrix. Hence, to achieve

a desired momentum rate ḣd, we can use a motion task with Ji = A (q) and di =

ḣd − Ȧ (q) v.

If only certain components of motion should be constrained, each of these basic

motion tasks can be premultiplied with a selection matrix S, i.e., SJiv̇d = Sdi. For

example, to only constrain the angular acceleration between two bodies, one can use

a spatial acceleration task in conjunction with the selection matrix S =
(
I3 03×3

)
.

Typical usage

We typically use motion tasks to track joint space or task space trajectories, in which

case the desired joint, spatial, or point acceleration contained in di is determined

using PD control with an added trajectory-based feed forward acceleration term.

As an example, consider tracking an SE (3) trajectory specifying the reference

configuration of body k with respect to body j. The reference configuration can be

represented by a homogeneous transform

T jkr (t) =

 Rj
k,r (t) pjk,r (t)

0 1

 . (3.8)

The corresponding reference twist and spatial acceleration trajectories are written in

body frame k as ϑk,jk,r (t) and ϑ̇k,jk,r(t) respectively. In this case, we use di = ϑ̇m,jk,d − J̇
m,j
k v

from (3.7)2 with m = k and with the desired spatial acceleration ϑ̇m,jk,d computed using

2The bias term J̇m,j
k v is computed based on measured, not desired velocities.

45

a double-geodesic PD control law [84], i.e.:

ϑ̇k,jk,d =

 KP,ω logSO(3)

(
Rk
k,r

)
KP,vp

k
k,r

+KDϑ
k,k
k,r + ϑ̇k,jk,r . (3.9)

Here, Rk
k,r and pkk,r are the rotation matrix and translation corresponding to the error

transform T kk,r = T kj T
j
k,r, ϑ

k,k
k,r = ϑk,jk,r − ϑk,jk is the error twist, and KP,ω, KP,v, and

KD are positive definite gain matrices. Explicit time dependence was suppressed in

the notation. In our experience, adding the feed forward reference acceleration term

allows the use of lower PD gains and improves tracking performance significantly for

dynamic motions as long as smooth trajectories are used. We typically use low-order

polynomials as reference trajectories. Slerp interpolation with a low-order polynomial

interpolation function is used for orientations.

Load-bearing bodies are typically constrained to have zero spatial acceleration

with respect to the world. Alternatively, it is possible to constrain the motion of a

load-bearing body such that it simulates damping in Cartesian space, as in Kuinder-

sma et al. [78].

3.3.2 Contact wrenches

This section concerns the right hand side of the momentum rate of change equation,

(3.1): the contact wrenches wc,i.

Unilateral ground contacts are modeled as point contacts subject to static Coulomb

friction. Flat, polygonal contact surfaces can be modeled approximately using such

point contacts at the vertices.

For point contact i with normal ni, the Coulomb friction constraint on the contact

force fc,i can be written as (see section 2.3):

‖fc,i − (ni · fc,i)ni‖ ≤ µini · fc,i (3.10)

where µi is the coefficient of static friction. The second-order cone constraint (3.10)

cannot be incorporated in a quadratic program. To allow the use of high-performance

46

Figure 3-2: A unilateral contact at position ri in centroidal frame with normal ni.
The friction cone is approximated by basis vectors βi,j.

QP solvers, we use a standard conservative polyhedral approximation to the friction

cone. The approximated friction cone is parameterized using a set of m extreme rays

of the original second-order cone as basis vectors [85] (see Fig. 3-2). That is, we

replace (3.10) with

fc,i =
m∑
j=1

ρi,jβi,j (3.11)

ρi,j ≥ 0 ∀j

where the βi,j ∈ R3 are the unit-length basis vectors and ρi,j are basis vector mul-

tipliers (force intensities). For the results presented in this thesis, we use four basis

vectors and set µi = 0.8 for all i. We may also specify finite upper limits ρmax,i,j on

the multipliers as a rough limit on the total contact force. An upper limit of zero

may also be used to for potential contact points that are not actively in contact with

the environment. Compared to simply eliminating the decision variables, this has

the advantage that the same QP structure is retained, which allows for easier use of

warm-starting facilities of QP solvers.

The contact wrench wc,i expressed in the centroidal frame is related to the contact

force fc,i by

wc,i =

 r̂i − c

I

 fc,i (3.12)

47

where ri is the location of contact point i, c is the center of mass location, and

x̂ ∈ R3×3 is the skew symmetric matrix such that x̂y = x × y for all y. Combining

(3.11) and (3.12) with the upper limits, we obtain

wc,i = Qiρi (3.13)

0 ≤ ρi ≤ ρmax,i

where

Qi =

 r̂i − cβi,1 · · · r̂i − cβi,m
βi,1 · · · βi,m

 (3.14)

is a grasp map [20], ρi =
(
ρi,1 · · · ρi,m

)T
, and ρmax,i follows the same pattern.

In practice, we use a surface normal ni that is fixed in the frame of the contacting

robot body. We prefer the extreme ray parameterization from Pollard and Reitsma

[85] to the alternative parameterization in Stewart and Trinkle [86] because the ex-

treme ray parameterization requires one fewer decision variable per contact point.

3.3.3 QP formulation

To reconcile the motion tasks (3.2) with the available contacts (3.13) while satisfying

the momentum rate balance (3.1) (with desired joint accelerations v̇d substituted for

v̇), we formulate the following QP:

minimize
v̇d,ρ

∑
i∈Io

‖Jiv̇d − di‖2Ci + ‖ρ‖2Cρ + ‖v̇d‖2Cv̇

subject to
∑
i∈Ic

‖Jiv̇d − di‖2Ci

Av̇d + Ȧv = wg +
∑
i

Qiρi

0 ≤ ρ ≤ ρmax

where the indices of the motion tasks have been split up into a subset Io, to be

incorporated into the objective function, and its complement, Ic, to be enforced as

48

a hard constraint. Here, ‖x‖2C = xTCx. The matrices {Ci}i∈Io , Cρ, and Cv̇ are cost

function weighting matrices determined by the high level controller. In particular,

Cρ and Cv̇ are used for regularization, and Cv̇ may be used to implement a damped

least squares approach [87] within this framework. Example values of these weighting

matrices are given for the walking behavior presented in section 3.4.2.

This quadratic program is solved at every controller time step for the desired joint

acceleration vector v̇d and the basis vector multiplier vector ρ. For the results in this

thesis, we used the OSQP solver [72]. Given the multipliers ρ, contact wrenches at

each contact point are computed as wc,i = Qiρi.

3.3.4 Inverse dynamics

The contact wrenches wc,i and desired joint accelerations v̇d are used as the input to

a recursive Newton-Euler inverse dynamics algorithm [88, 21] to solve (2.2), resulting

in desired joint torques τd for all joints, as well as a residual wrench that should be

exerted across a 6-degree-of-freedom floating joint that connects one of the bodies

(in this work, the pelvis) to the world. Because the desired joint accelerations are

compatible with the total contact wrench, this residual wrench is identically zero.

Using a recursive Newton-Euler algorithm obviates the need to explicitly compute

the mass matrix.

3.4 Application to humanoid walking

This section discusses an example application of the presented control framework.

The framework is used to map planning results from the LIP to a simulation model

of the Boston Dynamics Atlas robot, resulting in a basic walking behavior.

Atlas has 30 actuated degrees of freedom: 6 in each leg, 3 in the back, 7 in each

arm, and one in the neck.

Section 3.4.1 discusses the footstep plan. Section 3.4.2 presents the motion task

setup used for both the LIP-based walking behavior here, as well as throughout this

thesis. Section 3.4.3 discusses the LIP-specific generation of the linear momentum

49

0.00 0.25 0.50 0.75 1.00
-0.2

-0.1

0.0

0.1

0.2

Figure 3-3: Overhead view of the support polygons for a two-step footstep plan. The
footstep plan used for subsequent simulation results is similar, but consists of seven
steps.

rate reference.

3.4.1 Footstep plan

We use the term footstep plan to refer to a timed sequence of desired landing poses

for the feet. While locomotion over rough terrain with sparse footholds requires

special attention as to where and when to step, generating a workable footstep plan

for straight-line walking on flat ground is trivial. For the purposes of this example

application, we manually generated such a plan, consisting of equally spaced steps.

A step length of 0.4 m was used, with 0.75 s allocated for each single support phase,

and 0.55 s for each double support phase. See Fig. 3-3 for an overhead view of the

footstep plan.

The footstep plan dictates when foot-fixed contact points become active, and

provides endpoints for swing foot trajectory generation, as discussed in the next

section.

3.4.2 Motion tasks and regularization

See table 3.1 for a list of motion tasks that were used for both the LIP-based walking

example presented here, as well as the results for other centroidal models in this

thesis. The types and selection matrices refer to terminology introduced in section

3.3.1. For this application, we opted to only use ‘soft’ motion tasks, appearing as

50

Task Type Count Selection matrix S Weight Ci

Linear momentum rate control Momentum rate 1
[

03×3 I3
]

1

Foot pose control w.r.t. world Spatial acceleration 2 I6 10

Pelvis orientation control Spatial acceleration 1
[
I3 03×3

]
10

Upper body posture control Joint acceleration 17 I 10

Table 3.1: List of motion tasks.

objective terms in the QP.

The desired value for the linear momentum rate task will be discussed in section

3.4.3.

Desired spatial accelerations for the foot motion tasks are composed of a feed-

forward term and a PD feed-back term, as in (3.9). During a stance phase, the

feed-forward term is zero, and only the derivative gains for the angular component of

the feed-back term are non-zero. This is to dampen out unwanted of the feet while

still being compliant to the environment. For a swing phase, we generate a simple

polynomial trajectory for the origin of a reference point on the sole of the foot. The

trajectory is constructed given:

• the swing duration, from the footstep plan;

• the initial position of the sole reference point;

• the final desired position of the sole reference point, from the footstep plan;

• a desired height at the midpoint of the trajectory;

• a final desired vertical foot velocity.

Based on these data, a cubic trajectory is constructed for the component of the tra-

jectory in the horizontal plane, and a quadratic is used for the vertical component.

These trajectories are a function of an interpolation parameter θ, ranging from 0 to 1,

which itself is a quintic polynomial of time with zero initial and final first and second

derivatives. This results in a smooth interpolation with gradual acceleration and de-

celeration. The desired angular acceleration is computed based on slerp interpolation

51

between the initial actual and final desired orientation, with a quintic polynomial

interpolant.

The desired angular acceleration for the pelvis orientation task is computed sim-

ilarly. For the pelvis, the final desired orientation matches the orientation of the

upcoming desired footstep in the footstep plan.

The right-hand sides for the joint-space tasks for the upper body simply stem

from PD control towards fixed, nominal joint angles.

The weighting matrices Cv̇ and Cρ, which respectively regularize joint accelerations

and contact force basis wrench multipliers, were set to Cv̇ = 0.05 ·I and Cρ = 0.001 ·I.

These values were tuned rather roughly by increasing them until linear momentum

rate of change tracking started to deteriorate in simulation.

3.4.3 Desired Linear momentum rate

Given the footstep plan, the overall motion of the robot is planned and controlled

based on instantaneous capture point (ICP) dynamics, (2.16), briefly introduced in

section (2.5). This part of the walking behavior is specific to the use of the LIP, and

may be replaced if another centroidal model is used.

In earlier work, we used the simple ICP trajectory generation procedure of [7] (see

Fig. 2-6). Here, we instead formulate a quadratic program to simultaneously find a

piecewise-polynomial reference CoP trajectory pr (t) and an associated desired ICP

trajectory ξr (t), with constraints stemming from:

• the (linear, low-dimensional) ICP dynamics (2.16);

• initial and final ICP positions;

• initial and final CoP positions;

• C1 continuity of the CoP trajectory;

• the fact that the CoP must at all times be in the currently active support

polygon, as dictated by the footstep plan.

52

0.00 0.25 0.50 0.75 1.00
-0.2

-0.1

0.0

0.1

0.2

Figure 3-4: Overhead view of the output of the joint CoP and ICP trajectory gener-
ator: CoP reference pr and ICP reference (ξr).

These constraints are implemented by parameterizing the CoP trajectory p (t) as a

piecewise Bézier curve and exploiting the Bézier convex hull property to turn con-

straints on the trajectory p (t) into constraints on the control points of the pieces.

See section 5.4.3 for a more in-depth discussion of a similar application of the Bézier

convex hull property. See Fig. 3-4 for the output (pr, ξr) of this trajectory generation

approach.

To track the resulting ξr trajectory, we use (2.16) as the basis for an ICP control

law aimed at tracking these desired values:

pd = ξ − 1

ω0

ξ̇r + kic (ξ − ξr) (3.15)

where pd is the desired location of the CoP and kξ > 0 is a proportional feedback gain

(we use kξ = 3). We find that the feedforward term involving ξ̇d greatly improves

tracking performance compared to the control law presented in [42].

Given a desired CoP obtained from (3.15), the horizontal component of the desired

linear momentum rate of change is computed based on (2.12):

P l̇d = Pmc̈ = P
mgz
z0

(c− pd) (3.16)

where P =
(

1 0 0
0 1 0
0 0 0

)
. This serves as the horizontal linear momentum rate of change

for the control framework. The desired vertical linear momentum rate of change

is provided by a simple PD controller with a constant reference CoM height, using

critically damped gains with a proportional gain of 10.

53

osqp

OSQP.jl

major contributor minor contributor third partymain author

MathOptInterface.jl

Parametron.jl RigidBodyDynamics.jl

StaticArrays.jl

QPControl.jl

QPWalkingControl.jl

DifferentialEquations.jlMeshCat.jl

RigidBodySim.jl

part of JuliaRobotics
organization

written in Julia written in C

Figure 3-5: Main components of the software stack for the presented controller, includ-
ing simulation. The stacking structure visualizes each package’s main dependencies.

3.5 Implementation

Except for the quadratic program solver (OSQP, [72]), the implementation of the

controller used in this thesis was done using a pure Julia software stack. See Fig. 3-5

for an overview of the software stack, and see [89] for a more in-depth description.

The entire stack is freely available and published under permissive software licenses.

To highlight a few of these packages:

• RigidBodyDynamics.jl3 implements various dynamics and kinematics algorithms.

• RigidBodySim.jl4 is used for simulation and visualization.

• Parametron.jl5 enables efficient formulation and solution of instances of a pa-

rameterized family of optimization problems in a solver-independent way.

• QPControl.jl6 implements the parts of the controller framework that are inde-

pendent of robot morphology (section 3.3).

• QPWalkingControl.jl7 implements the humanoid-specific parts of the controller

on top of QPControl.jl (section 3.4).

3https://github.com/JuliaRobotics/RigidBodyDynamics.jl
4https://github.com/JuliaRobotics/RigidBodySim.jl
5https://github.com/tkoolen/Parametron.jl
6https://github.com/tkoolen/QPControl.jl
7https://github.com/tkoolen/QPWalkingControl.jl

54

https://github.com/JuliaRobotics/RigidBodyDynamics.jl
https://github.com/JuliaRobotics/RigidBodySim.jl
https://github.com/tkoolen/Parametron.jl
https://github.com/tkoolen/QPControl.jl
https://github.com/tkoolen/QPWalkingControl.jl

Figure 3-6: Atlas walking on flat ground.

Figure 3-7: Histogram of controller run times. There is one sample at 1.67 ms.

The controller is run at a simulated 500 Hz. For the simulation results presented in

this thesis, there are no external disturbances acting on the robot and state estimation

is perfect.

3.6 Results

See Fig. 3-6 for results of an 18-second simulation of Atlas walking in a straight

line on flat ground using the momentum-based control framework and the walking

behavior detailed in section 3.4.

Fig. 3-7 shows a histogram of controller runtime durations during this simulation,

obtained on a desktop machine with an Intel Core i7-6950X CPU @ 3.00GHz run-

ning Linux. No special precautions were taken to limit jitter, apart from using the

performance CPU power governor.

55

3.7 Discussion

The presented approach can be interpreted in various ways. It can be seen as a way

to perform partial feedback linearization for underactuated robots that are in contact

with their environment. Indeed, the feedback control laws all act in joint acceleration

space, under the nominal dynamics v̇ = v̇d. This allows feedback gains to generally

be chosen more-or-less independent of any specific robot’s inertial parameters, as the

joint accelerations and expected contact wrenches are transformed into joint torques

during the model-based inverse dynamics step. Alternatively, the approach can be

seen as a type of degenerate model-predictive control approach, using a horizon of

just a single time step.

The controller implementation presented here is missing some of the robustness

improvements that allowed it to work on the physical Atlas robot [57, 90]. These

techniques include augmenting the ICP control law (3.15) with an integral term,

and integrating the desired joint accelerations v̇d to obtain a desired velocity signal

that can be tracked using high-rate joint-local controllers, augmented by the feed-

forward torque component τd. Despite these missing features, Fig. 3-7 shows that the

implementation is already fast enough to be run on a physical robot while comfortably

hitting the 500 Hz deadlines. Jitter may be further reduced through the use of a

realtime kernel patch.

In contrast to e.g. [78], an important advantage of momentum-based control

approaches like the presented control framework is that the high-rate tracking com-

ponent of the controller does not make any fundamental assumptions regarding the

motion of the robot. This will allow us to switch away from the LIP as the source of

the linear momentum reference trajectory in the following chapters.

3.8 Conclusion

This chapter presented a QP-based control framework that may be used to track a

desired centroidal momentum or center of mass trajectory, while simultaneously sat-

56

isfying secondary motion tasks and taking limitations due to static Coulomb friction

into account. A walking behavior based on LIP dynamics was presented as an ex-

ample application of the control framework. Subsequent chapters will investigate the

use of other centroidal models to find a centroidal momentum reference.

57

58

Chapter 4

2D balance control using

non-planar CoM motion

4.1 Introduction

While the centroidal dynamics, (2.6), are low-dimensional and control-affine in the

contact wrenches, the constraints on these contact wrenches are nontrivial: contact

is unilateral, and forces must remain within friction cones. For this reason, the

centroidal dynamics are often further simplified by adding artificial constraints on

the external wrenches, or equivalently, on the motion of the robot. Most commonly,

angular momentum about the CoM is assumed to be constant (typically zero), and

CoM height is assumed to be an affine (typically constant) function of horizontal

CoM position. These assumptions define the Linear Inverted Pendulum (LIP) [34],

which has long been a fixture in the design of balancing and walking controllers for

legged robots. The LIP naturally leads to control strategies involving stepping and

regulation of the center of pressure (CoP).

Although the LIP dynamics are easy to work with, the CoM height assumption

in particular is overly constraining. This becomes apparent when the robot is e.g.

required to dynamically step up onto a platform. Moreover, varying CoM height in

an appropriate manner can be used as an additional mechanism to achieve balance.

Recently, efforts have been made to finally move away from the CoM height as-

59

c
c.

ex

ez

mg

fc

Figure 4-1: Variable-height inverted pendulum model.

sumption. In [91], the dynamics of the divergent component of motion, also known as

the instantaneous capture point, are extended to 3D and used to find a control law.

In [92], numerical techniques are used to find quadratic height trajectories that solve

the balancing problem for a variable-height inverted pendulum model. An important

earlier work derived conditions that characterize when a given CoM height trajectory

leads to balance [50], however without paying much attention to the constraint of

unilateral contact.

This chapter studies a 2D variable-height inverted pendulum model (see Fig. 4-1)

and provides three main contributions. First, we derive an intuitively appealing outer

approximation to the set of initial CoM positions and velocities that allow balance to

be achieved, in the sense of convergence to a fixed point of the dynamics. Second, we

design two closed-form balance control laws based on [50] (in contrast to the numerical

techniques used in [92]). Third, we derive the exact regions of attraction of these

control laws in closed form using quantifier elimination, explicitly taking unilateral

contact into account. These regions of attraction are also inner approximations to

the set of CoM states from which balance can be achieved. We show that the region

of attraction for one of the controllers matches the outer approximation, and hence

achieves balance from any state from which balance can possibly be achieved.

The remainder of the chapter is structured as follows. Section 4.2 derives the

dynamics of the variable-height model under consideration. Section 4.3 derives nec-

essary conditions for balance, i.e., the outer approximation. We then summarize the

60

results of [50] (section 4.4), which form the basis of the control laws (section 4.5) and

the derivation of their regions of attraction (section 4.6). Section 4.7 discusses the

results, and section 4.8 concludes the chapter.

Code and additional figures accompanying the chapter can be found at https:

//github.com/tkoolen/VariableHeightInvertedPendulum.

4.2 Variable-height inverted pendulum

The equations of motion of the 2D variable-height inverted pendulum (see Fig. 4-1)

are

mc̈ = mg + fc (4.1)

where c = (cx, cz) is the CoM position relative to the fixed point foot, m is the robot’s

total mass, g = (0,−gz) is the gravitational acceleration vector, and fc =
∑

i fc,i is the

total contact force (see section 2.3). We assume that angular momentum about the

CoM remains constant, implying that the line of action of the ground reaction force

must pass through the CoM. This allows the ground reaction force to be parameterized

as

fc = mcu (4.2)

where u is a scalar control input. Combining (4.2) and (4.1), we find

c̈ = g + cu (4.3)

as the dynamics of the variable-height inverted pendulum. We assume unilateral

contact (pulling on the ground is impossible), so we require that

u ≥ 0. (4.4)

By inspection, fixed points of the dynamics (4.3) must satisfy ċx = ċz = 0, cx = 0,

and zu = gz, so cz > 0. We are interested in achieving ‘balance’, in the sense of

61

https://github.com/tkoolen/VariableHeightInvertedPendulum
https://github.com/tkoolen/VariableHeightInvertedPendulum

asymptotic convergence to a fixed point of the dynamics1 at a specified desired final

height cz = cz,f > 0.

Consider a state like the one depicted in Fig. 4-1, and suppose the initial horizontal

velocity, ċx, is ‘too large’ in some sense. To achieve balance, a large value of u can

be used to decrease ċx quickly. However, this also has the effect of increasing ċz, and

over time, cz, as a byproduct. The challenge is to control both horizontal and vertical

CoM position with a single control input by exploiting the state-dependent variation

of the effect of u in the nonlinear dynamics (4.3).

4.3 Necessary conditions for balance

In this section we investigate conditions that must be satisfied in any case if balance

is to be achieved.

Let the state of the variable-height inverted pendulum be x = (cx, cz, ċx, ċz). Start-

ing from x, convergence to the fixed point requires that the horizontal CoM position

cx and velocity ċx satisfy

cxċx < 0 (4.5)

This is because ċx would otherwise increase without bound, since (4.3) and (4.4)

imply that sign (c̈x) = sign (cx).

Another necessary condition for balance stems from the extreme control policy of

choosing u = 0 for all time. This policy results in a ballistic CoM trajectory. We

will show that it is impossible to reach a fixed point of the dynamics from state x if

the cz-intercept of the ballistic trajectory starting from x is nonpositive, making it

impossible to achieve balance.

The ballistic trajectory starting from state x is

cbal (x, t) =

 cx,bal (x, t)

cz,bal (x, t)

 =

 cx + ċxt

cz + ċzt− 1
2
gzt

2

 . (4.6)

1Note that we are not interested in achieving asymptotic stability of a fixed point, which is
impossible in the variable-height inverted pendulum.

62

Let T be the time at which cx,bal (x, T) = 0, T = − cx
ċx

, and let

cz,crit (x) = cz,bal (x, T) = cz −
ċzcx
ċx
− gzx

2

2ċ2x

be the cz-intercept of the ballistic trajectory.

Lemma 1 Suppose cz,crit (x) ≤ 0 and assume (4.5), so that T ≥ 0. Then no state

cx,f = (cx,f, cz,f, ċxf, ċz f) for which cx,f = 0 and cz,f > 0 is reachable from x given the

dynamics (4.3) and input limit (4.4).

Proof 1 The time derivative of cz,crit (x) along trajectories of (4.3) is

d

dt
cz,crit (x) =

∂cz,crit (x)

∂c
ċ+

∂cz,crit (x)

∂ċ
(gz + cu)

= u
cx
ċx

1

ċ2x

(
gzx

2 + ċx(cxċz − ċxcz)
)
.

The condition cz,crit (x) ≤ 0 can be rearranged to find

ċx(cxċz − ċxcz) ≥ −
gzx

2

2
.

Together with u ≥ 0 according to (4.3), cx
ċx
< 0 according to (4.5), and gz > 0, we

infer that
d

dt
cz,crit (x) ≤ 0

so we conclude that cz,crit cannot increase along trajectories of (4.3), and if cz,crit (cx,f) >

cz,crit (x), then cx,f must not be reachable from x. Noting that cz,crit (cx,f) = cz,f and

cz,f > cz,crit (x) completes the proof.

Since any fixed point of the dynamics must satisfy cx,f = 0 and cz,f > 0, Lemma 1

provides the condition

cz,crit (x) > 0 (4.7)

as a useful necessary condition for balance, describing an outer approximation of the

set of states that allow balance. In the following sections, we will derive a feedback

63

control law with a region of attraction described exactly by (4.7), assuming only

unilateral contact and no kinematic constraints or actuation limits. This will show

that the outer approximation is tight.

4.4 Approach and summary of previous results

Our general approach to control is to design and enforce a virtual constraint [93].

Virtual constraints were first applied to the variable-height inverted pendulum in

[50]. This section summarizes their results, providing no new contributions.

4.4.1 Height trajectory as a virtual constraint

Consider the time-invariant virtual holonomic constraint

cz = f (cx) (4.8)

where f describes a desired CoM height trajectory.

We will assume that the initial value and slope of the CoM height trajectory match

the initial state x0 = (cx,0, cz,0, ċx,0, ċz,0), as depicted in Fig. 4-2:

f (cx,0) = cz,0 (4.9a)

f ′ (cx,0) =
ċz,0
ċx,0

. (4.9b)

Differentiating (4.8) twice with respect to time gives

c̈z = f ′ (cx) c̈x + f ′′ (cx) ċ
2
x.

Substituting this into (4.3), we can solve for the input u required to enforce the

virtual constraint:

u =
gz + f ′′ (cx) ċ

2
x

f̄ (cx)
(4.10)

64

f (cx,0) = cz,0

.c0

slope:
z0
.

cx,0
.

f (0) = cz,f

z = f (x)

Figure 4-2: Kinematic constraints placed on CoM height trajectory f .

where

f̄ (cx) = f (cx)− f ′ (cx) cx. (4.11)

The dynamics of the unconstrained degree of freedom cx are simply

c̈x = ux. (4.12)

Example 1 For the LIP, f is an affine function, fully specified by the continuity

constraints (4.9):

f (cx) = cz,0 +
ċz,0
ċx,0

cx.

The required input simplifies to a constant,

u =
gz
cz,0

showing that as long as cz,0 > 0, the condition u ≥ 0 is always satisfied (no pulling

on the ground). Equation (4.12) becomes

c̈x =
gz
cz,0

cx, (4.13)

the familiar LIP dynamics. N

By not artificially constraining f to be an affine function, balance can be achieved

from more initial states than what is allowed by the LIP dynamics. We now investigate

65

how the requirement of achieving balance constrains f .

4.4.2 Orbital energy

Orbital energy can be used to decide which states converge to the fixed point while

tracking a given height trajectory f .2 We will first introduce orbital energy for the

LIP, and then generalize to arbitrary f .

LIP

For the LIP, orbital energy [34] is a well-known conserved quantity, defined as:

ELIP (cx, ċx) =
1

2
ċ2x −

gz
2z0

c2x. (4.14)

The fact that LIP orbital energy is conserved can be shown by taking the time

derivative of (4.14) and plugging in the dynamics (4.13). To achieve balance, conser-

vation of orbital energy implies that the initial orbital energy must be the same as

the orbital energy at the fixed point,

ELIP (cx,0, ċx,0) = ELIP (0, 0) = 0

If (4.5) is also satisfied at x0, this results in the familiar condition

cx,0 +

√
cz,0
gz
ċx,0 = 0. (4.15)

The left hand side is known as the instantaneous capture point [36, 1], extrapolated

center of mass [51], or divergent component of motion [49].

2Note that orbital energy is not the same as the total energy of the system.

66

Variable-height model

Perhaps a less known fact is that a conserved orbital energy exists for any C2 height

trajectory f . As derived in [50], the orbital energy associated with f is

Ef (cx, ċx) =
1

2
ċ2xf̄

2 (cx) + gzc
2
xf (cx)− 3gz

∫ cx

0

f (ξ) ξdξ (4.16)

with f̄ (cx) as defined in (4.11). Analogous to the LIP, the fact that orbital energy

is conserved can be (tediously) verified by taking the time derivative and plugging

in the dynamics (4.12). Again, balance requires that cx,0 and ċx,0 have opposite sign

and that

Ef (cx,0, ċx,0) = Ef (0, 0) = 0.

With the continuity constraints from (4.9), this requirement simplifies to

3gz

∫ cx,0

0

f (ξ) ξdξ = k (4.17)

with

k =
1

2
(ċx,0cz,0 − ċz,0cx,0)2 + gzx

2
0cz,0.

In general, the integral on the left hand side of (4.17) may not be computable in

closed form, but if we restrict the class of height trajectories f to polynomials,

f (cx) =
n∑
i=0

αic
i
x,

then the integral is readily evaluated and (4.17) can be written as a linear constraint

on the coefficients αi:

3gz

n∑
i=0

1

i+ 2
αic

i+2
x,0 = k. (4.18)

This constraint will be used to find a feedback control law in the following section.

67

4.5 Control laws

This section presents two feedback control laws based on virtual constraints and

orbital energy.

We will take height trajectory f to be a cubic polynomial (n = 3), and impose

four linear constraints that uniquely determine its coefficients:

1) the final desired height: f (0) = cz,f;

2–3) the continuity constraints (4.9);

4) the orbital energy constraint (4.18).

These constraints can be written concisely as
1 0 0 0

1 cx,0 c2x,0 c3x,0

0 1 2x0 3x20
3
2
gzx

2
0 gzx

3
0

3
4
gzx

4
0

3
5
gzx

5
0

︸ ︷︷ ︸

A

α0

α1

α2

α3

=

cz,f

cz,0
ċz,0
ċx,0

k

.

The determinant of matrix A is
gzx70
10

, showing that a solution exists as long as cx,0 6= 0.

We omit the solution for the coefficients αi here, since the expressions are some-

what long and uninformative. It is important to note however that the αi will depend

rationally on x0 (as well as cz,f and gz). Substituting the αi back into f shows that f

is also a rational function of cx and x0. Furthermore, note that the term ċ2x in (4.10)

can be solved for given f and cx using (4.16), since Ef (cx, ċx) = 0 by construction of

f . This observation allows us to even find u in closed form, as a rational function of

only cx and x0 after substitution into (4.10):

u = U (cx, x0) =
p (cx, x0)

q (cx, x0)
(4.19)

where p (cx, x0) and q (cx, x0) are polynomials of respective total degrees 20 and 21 in

the variables (cx, x0).

68

−0.3 −0.2 −0.1 0.0
x [m]

0.0
0.2
0.4
0.6
0.8
1.0

_ x
 [

m
/s

]

x+
q
zf
g _x=0

−0.3 −0.2 −0.1 0.0
x [m]

0.0
0.5
1.0
1.5
2.0
2.5

n
o
rm

a
li

ze
d

 l
e
g

 f
o
rc

e
 [

-]

−0.4 −0.2 0.0 0.2
x [m]

0.0

0.2

0.4

0.6

0.8

1.0

z
[m

]

c_0

−0.3 −0.2 −0.1 0.0
x [m]

0.0
0.2
0.4
0.6
0.8
1.0

_ x
 [

m
/s

]

x+
q
zf
g _x=0

−0.3 −0.2 −0.1 0.0
x [m]

0.0
0.2
0.4
0.6
0.8
1.0
1.2

n
o
rm

a
li

ze
d

 l
e
g

 f
o
rc

e
 [

-]

−0.4 −0.2 0.0 0.2
x [m]

0.0

0.2

0.4

0.6

0.8

1.0

z
[m

]

c_0

−0.3 −0.2 −0.1 0.0
x [m]

0.0
0.2
0.4
0.6
0.8
1.0

_ x
 [

m
/s

]

x+
q
zf
g _x=0

−0.3 −0.2 −0.1 0.0
x [m]

−1.0
−0.5

0.0
0.5
1.0
1.5
2.0

n
o
rm

a
li

ze
d

 l
e
g

 f
o
rc

e
 [

-]

−0.4 −0.2 0.0 0.2
x [m]

0.0

0.2

0.4

0.6

0.8

1.0

z
[m

]

c_0

Figure 4-3: Simulation results for orbital energy controller (4.20) with initial condi-
tions cx,0 = −0.3 [m], cz,0 = 1 [m], ċz,0 = 0 [m/s] and three values of ċx,0: 1.0 [m/s]
(top), 0.9 [m/s] (middle), and 0.8 [m/s] (bottom). The normalized leg force is com-
puted as fgr

mgz
· c
‖c‖ ≡

1
gz
u ‖c‖. For this plot, gz = 9.8 [m/s2], cz,f = 1 [m]. For the third

(slowest) initial condition, the simulation was performed as if pulling on the ground
were possible.

69

To arrive at a feedback controller, our strategy is to essentially ‘continually re-

solve’ for the CoM height trajectory f by substituting the current state x for x0 in

(4.19). This substitution also greatly simplifies the expression. The resulting control

law is:

u = U (cx, x) = −7a2 +
3cz,fa

3 − gza
b

− 10a3b

gz
. (4.20)

with

a =
ċx
cx

b = ċz − az. (4.21)

We will refer to this control law as the ‘orbital energy controller’. The orbital

energy controller has the property that it keeps the CoM height on the cubic height

trajectory f in the absence of external disturbances to the dynamics (4.3). This is

because the control law ensures that ẋ is tangent to the constraint manifold described

by cz = f (cx) since it stems from (4.10), and because f is uniquely specified by the

initial conditions.

Note the singularities at cx = 0 and b = 0. The singularity at cx = 0 is due to the

fundamental lack of effect of the control input u on c̈x when cx = 0. The singularity

at b = 0 occurs when the CoM velocity vector points from the CoM toward the point

foot. This implies that the necessary condition for balance derived earlier, (4.7), is

not satisfied, so states for which b = 0 are not of interest. The root cause of this

singularity is the fact that the input u that enforces constraint (4.8) is not uniquely

defined in this case.

See Fig. 4-3 for the results of simulations with the orbital energy controller,

starting from three example initial conditions. Note that the orbital energy controller

will attempt to pull on the ground if the initial velocity is very low, as shown by the

negative normalized ground reaction forces. To address this, we will also consider the

following ‘clipped controller’:

u = max (U (cx, x) , 0) . (4.22)

70

−0.3 −0.2 −0.1 0.0
x [m]

0.0
0.2
0.4
0.6
0.8
1.0

_ x
 [

m
/s

]

x+
q
zf
g _x=0

−0.3 −0.2 −0.1 0.0
x [m]

0.0
0.5
1.0
1.5
2.0
2.5

n
o
rm

a
li

ze
d

 l
e
g

 f
o
rc

e
 [

-]

−0.4 −0.2 0.0 0.2
x [m]

0.0

0.2

0.4

0.6

0.8

1.0

z
[m

]

c_0

Figure 4-4: Simulation results for clipped controller (4.22) with initial conditions
cx,0 = −0.3 [m], cz,0 = 1 [m], ċx,0 = 0.8 [m/s], and ċz,0 = 0 [m/s]. For this plot,
gz = 9.8 [m/s2], cz,f = 1 [m].

71

Fig. 4-4 shows that this clipped controller successfully achieves balance from the

same state that resulted in pulling on the ground with controller (4.20).

In addition to the limitation of unilateral contact, there are two other issues that

require more attention compared to the LIP:

1. the height trajectory may not be kinematically feasible due to robot geometry

and joint limits;

2. actuation limits may be violated.

Barring unilaterality of contact, kinematics, and actuation limits, it would be possible

to achieve balance from any state. In this chapter, we choose not to address kinematics

or actuation limits. Instead, we focus on the fundamental implications of unilateral

contact.

4.6 Region of attraction

We now derive the regions of attraction of the orbital energy controller (4.20) (in

Section 4.6.1) and the clipped controller (4.22) (in Section 4.6.2). These regions of

attraction are also inner approximations of the set of initial states from which balance

can be achieved. The inner approximation for the clipped control law will turn out

to be the same as the outer approximation derived in Section 4.3.

4.6.1 Orbital energy controller

For the orbital energy controller (4.20), we will consider passing through a state for

which the controller outputs u < 0 at any time to be a failure. Observe that if (4.5)

holds, then by construction of f , cx will converge to 0, so cx is between cx,0 and 0 for

all time. Hence, requiring that u ≥ 0 for all time is the same as requiring (4.5) and

U (δcx,0, x0) ≥ 0 ∀δ ∈ [0, 1] (4.23)

The task is now to find an explicit description of the set of initial conditions that

72

satisfy (4.23). Condition (4.23) can be written equivalently as

p (δcx,0, x0) q (δcx,0, x0) ≥ 0 ∀δ ∈ [0, 1] . (4.24)

with p and q as defined by (4.19). The conditions (4.5) and (4.24) together form a

first-order formula over the reals in the variables x0, δ, gz, cz,f [94]. For completeness,

we should add that gz > 0 and cz,f > 0.

In this context, a first-order formula in variables y1, . . . , yn is an expression written

by combining a set of polynomial equations and inequalities in y1, . . . , yn using the

logical conjunction (∧), disjunction (∨), and negation (¬) operators, while some or

all of the variables are quantified over by universal and/or existential quantifiers

(e.g., ∀y1 , ∃y2). Variables that are not quantified over are called free. For any

first-order formula over the reals, there is an equivalent quantifier-free formula, i.e.,

a formula without any universal or existential quantifiers, by the famous Tarski-

Seidenberg theorem [95]. The process of finding an equivalent quantifier-free formula

is known as quantifier elimination.

Example 2 [94] Quantifier elimination can be applied to the first-order formula

a 6= 0 ∧
(
∃x such that ax2 + bx+ c = 0

)
in variables a, b, c, x (with a, b, c free) to find the familiar equivalent quantifier-free

formula b2 − 4ac ≥ 0. N

Cylindrical Algebraic Decomposition (CAD) methods can be used to solve quan-

tifier elimination problems [94]. The worst case running time of modern CAD-based

algorithms is polynomial in the number of polynomials in the input formula and their

degree, but exponential in the number of free variables [94]. Implementations include

QEPCAD B [96] and Mathematica’s CylindricalDecomposition function [97].

We used Mathematica’s implementation to find a quantifier-free formula that is

equivalent to the conjunction of (4.24), (4.5), gz > 0 and cz,f > 0. It should be

noted that applying the CAD algorithm directly took too long, but using the variable

73

substitutions

a0 =
ċx,0
cx,0

b0 = ċz,0 − a0cz,0

analogous to (4.21), we were able to reduce the number of free variables in (4.23) from

six (x0, gz, and cz,f) to four (a0, b0, gz, and cz,f), which made the problem tractable.

After conversion to a first-order formula (analogous to the step from (4.23) to (4.24)),

the CAD algorithm was able to solve the problem in less than two seconds. The result

(after simplification) is that initial states must satisfy

a0 < 0 ∧ 7gz + 20a0b0 +
√

9g2z + 120a20gzzf ≤ 0. (4.25)

See Fig. 4-5 for a 3D slice of this region at ċz,0 = 0, in terms of cx,0, ċx,0, and cz,0.

See Fig. 4-6 for a 2D slice at ċz,0 = 0 and cz,0 = cz,f, as well as a comparison to the

region for the LIP with fixed point foot, a line defined by the instantaneous capture

point, and the necessary condition (4.7).

For ċz,0 = 0 and fixed cz,0, Figs. 4-5 and 4-6 show that balance can be achieved

from a double cone in the (cx,0, ċx,0) plane, with a nappe in each quadrant where

cx,0 and ċx,0 have opposite sign. The double cone geometry is due to the fact that

in (4.25), cx,0 and ċx,0 only appear as the ratio a0 = ċx,0
cx,0

. Informally speaking, the

‘size’ of the double cone increases as cz,0 increases, as can be expected from intuition.

Increasing ċz,0 also grows the double cone (not shown in figures). If ċz,0 > 0, there

exist (unrealistic) states with cz,0 < 0 for which balance can be achieved.

Figs. 4-5 and 4-6 suggest (for ċz = 0) that if balance can be achieved from

(cx,0, cz,0, ċx,0, ċz,0), then balance can also be achieved from (cx,0, cz,0, cċx,0, ċz,0), for any

c ≥ 1. In other words, dilating the initial horizontal velocity can never compromise

the ability to achieve balance. Indeed, we were able to prove this dilation property for

any ċz,0 using Mathematica functions, including the same CAD techniques described

earlier, as long as cz,0 > 0.3 This implies that for fixed cx,0, ċz,0, and cz,0 > 0, the

3For the unrealistic case of cz,0 ≤ 0, a counterexample was found with a0 = −1, cz,0 = − 9
16 ,

ċz,0 = 13
8 , c = 2, gz = 1, and cz,f = 1.

74

constraint u ≥ 0 and the restriction to cubic CoM height trajectories only impose a

lower limit on the initial velocity at which the CoM approaches cx = 0, and no upper

limit. An upper limit could come from the robot’s kinematics or actuation limits,

not investigated in this chapter. Indeed, for high initial velocities, CoM height can

become unrealistically high.

The double cone in Fig. 4-6 can be compared to the line defined by the instanta-

neous capture point for the LIP, (4.15). The most interesting comparison is between

the LIP line and the line associated with the lower limit on horizontal velocity for the

variable-height model, for the case cz,0 = cz,f. The slope of this line can be found by

maximizing a0 subject to (4.25). For cz,0 = cz,f and ċz,0 = 0, the optimal value can

be found in closed form:

a0 =
ċx,0
cx,0
≤ −

√
5 +
√

15

10

√
gz
cz,0
≈ −0.94

√
gz
cz,0

. (4.26)

We can compare this to the LIP by rewriting (4.15) as

ċx,0
cx,0

= −
√

gz
cz,0

which shows that for a given value of cx,0, the orbital energy controller can achieve

balance from states that have an initial horizontal velocity up to about 6% slower

compared to the LIP.

We can also compare this lower velocity limit to the necessary condition derived

from the ballistic trajectory in Section 4.3. With ċz,0 = 0, condition (4.7) evaluated

at x = x0 can be rearranged to find

ċx,0
cx,0

< − 1√
2

√
gz
cz,0
≈ −0.71

√
gz
cz,0

(4.27)

implying that for fixed cx,0, it is impossible to achieve balance from initial horizontal

velocities that are more than about 39% lower than the balancing velocity for the

LIP.

75

c
x,0

.

c
x,0

c
z,0

Figure 4-5: Slice at ċz,0 = 0 of the set of states from which balance can be achieved.
Note that the apparent separation between the regions on opposite sides of the ċx,0-
axis is merely a plotting artifact. For this plot, gz = 9.8 [m/s2], cz,f = 1 [m]. The full
region extends outside the borders of the plot, to infinity, along the blue sections.

Clipped controller
Orbital energy controller

x0 + z f

g
x0 = 0

z crit(x0) = 0

- 0.5 0.5
x0

- 1.5

- 1.0

- 0.5

0.5

1.0

1.5
x0

.

.

Figure 4-6: Set of states from which balance can be achieved; comparison between LIP
(region defined by (4.15), the instantaneous capture point), orbital energy controller
(region defined by (4.25)), and clipped controller (also corresponding to the necessary
condition cz,crit (x) > 0). Slice at ċz,0 = 0 and cz,0 = cz,f for the variable-height
inverted pendulum. For this plot, gz = 9.8 [m/s2], cz,f = 1 [m].

76

4.6.2 Clipped controller

We now use the results for the orbital energy controller to derive the region of attrac-

tion of the clipped controller.

Note that if the orbital energy controller produces u < 0, then the output of the

clipped controller is u = 0, meaning that the CoM will follow the ballistic trajectory

(4.6). We will show that for any state satisfying necessary condition (4.7), following

the ballistic trajectory will eventually bring the state in the region of attraction of

the orbital energy controller.

For states satisfying (4.5), following the ballistic trajectory means that ċx remains

constant and |cx| decreases. This implies that the ratio a = ċx
cx

approaches −∞

as cx approaches 0. We will thus examine what happens to the conditions (4.25),

describing the region of attraction of the orbital energy controller, as a0 approaches

−∞. The first condition, a0 < 0, will certainly be satisfied. The second condition

will be satisfied as long as cz,0 > 0:

lim
a0→−∞

7gz + 20a0ċz,0 − 20a20cz,0 +
√

9g2z + 120a20gzzf = −∞cz,0 ≤ 0

since the quadratic term dominates. Here, we have substituted the definition b0 =

ċz,0 − a0cz,0 into (4.25).

We now note that if necessary condition (4.7) is satisfied, then following the bal-

listic trajectory will make cz > 0 in some open interval around cx = 0, so cz,0 > 0

will indeed be satisfied as a0 → −∞. We thus conclude that the region of attraction

of (4.22) matches the outer approximation given by (4.7): if the ballistic trajectory

starting from the current state has a cz-intercept greater than zero, then the clipped

controller (4.22) will make the state converge to the fixed point at cz = cz,f.

4.7 Discussion

A limitation of the presented control approach is that, similar to typical LIP-based

approaches, kinematic limits and actuator limits are not taken into account. This

77

poses more of a problem for the presented model than for the LIP. Indeed, using

control laws (4.20) or (4.22), ground reaction forces and CoM heights may become

very large for high initial horizontal velocities, i.e. with a large value of − ċx,0
cx,0

. For the

clipped controller, similar issues occur at very low initial horizontal velocities, which

result in entering the region of attraction of the orbital energy controller at a very

large value of − ċx,0
cx,0

, in turn resulting in extreme control actions. More work is needed

to study the implications of kinematics and actuation limits on balance achievement

using CoM height control.

We based our orbital energy control law on a cubic CoM height trajectory. All of

the techniques used in this chapter still apply with higher order polynomials. How-

ever, the limiting factor in our analysis is the computational cost of quantifier elimina-

tion. For example, with a quartic CoM height trajectory and the additional constraint

that the second derivative of the trajectory be zero at cx = cx,0, the CAD algorithm

ran for several hours before we decided to terminate it. This is interesting, because

the main determinant of worst-case computational cost, the number of free variables,

remains the same4. It could be the case that the cubic trajectory has special prop-

erties that result in a drastically easier quantifier elimination problem. It is also

interesting that the clipped version of the controller corresponding to the cubic tra-

jectory, (4.22), is already able to achieve balance from any state from which balance

can possibly be achieved.

The presented model and approach do not explicitly take friction cone constraints

into account. However, the angle between the ground reaction force vector fgr and the

vertical axis is the same as the angle between the CoM position, c, and the vertical

axis. It can be shown that if balance is achievable from initial state x0 according to

(4.25) then the greatest angle between c and the vertical axis that occurs while using

either controller is at x0.

With these caveats in mind, the analysis presented in this chapter can still provide

insight into the relative importance of CoM height control and other balancing mech-

4The change of variables (4.21) still results in the same reduction in the number of variables for
this quartic polynomial.

78

anisms. Since the clipped orbital energy controller (4.22) achieves balance from any

state that satisfies necessary condition (4.7), (4.27) applies: the controller achieves

balance from initial horizontal CoM velocities that are up to 39% lower than the

horizontal velocity that results in balance for the LIP, a significant difference. In the

presence of kinematic constraints and actuation limits, this provides a useful upper

bound on the effectiveness of CoM height control. An interesting property of CoM

height control is that its effectiveness, quantified in terms of a lower limit on hori-

zontal CoM velocity, increases with horizontal displacement between the CoM and

the point foot, as shown by (4.27). This is in contrast to stepping, CoP control, and

control of centroidal angular momentum, for which effectiveness does not depend on

horizontal CoM position at a fixed horizontal CoM velocity [1]. For cx,0 = −0.4 [m],

cz,0 = cz,f = 1 [m], gz = 9.8 [m/s2], and ċz,0 = 0 [m/s], CoM height control can be

used to achieve balance from the same lower limit on ċx,0 as could be achieved with a

2.3 [cm] change in CoP for the orbital energy controller, and an 11.7 [cm] change for

the clipped controller (executing a ballistic trajectory).

Assessing to what degree CoM height control is used for balance in humans is an

interesting topic. Long jump athletes that land on their feet can be observed to keep

their CoM height low during the landing phase to avoid falling backwards. Humans

seem to increase their CoM height when required to stop abruptly without taking

additional steps. It would be interesting to know to what degree humans vary CoM

height (with respect to a nominal trajectory) in order to regain balance during more

periodic motions, such as walking and running.

We note that extending our results to a 3D model is not trivial, contrary to the LIP.

Typically, virtual constraint approaches shine when the degree of underactuation5

is one. A possible direction of future research is to include e.g. lateral center of

pressure control as an additional input in a 3D model, so as to maintain one degree

of underactuation. Another possible approach is to use decoupled lateral and sagittal

plane controllers [98]. In general, combining CoM height control with other stabilizing

mechanisms is a topic of future research.

5The number of degrees of freedom minus the number of inputs.

79

We employed quantifier elimination techniques. While these techniques can be

extremely powerful, they do not scale well. In addition, the end results are not

always as clean as condition (4.25). Nevertheless, there may be other problems in

legged locomotion that could benefit from the application of these techniques.

4.8 Conclusion

This chapter investigated the use of CoM height variation to achieve balance, subject

to unilateral contact. For a 2D variable-height inverted pendulum model, we derived

an outer approximation of the set of states from which balance is achievable. We

presented a controller based on orbital energy, and derived its region of attraction.

We also studied a clipped version of this controller, and showed that it achieves

balance from any state for which balance is physically possible to achieve.

80

Chapter 5

Multi-contact centroidal trajectory

optimization as a mixed-integer

nonlinear program

5.1 Introduction

The previous chapter presented an approach that breaks away from the linear in-

verted pendulum’s limiting assumption of planar center of mass (CoM) motion, and

results in a control law with trivial computational cost and interesting theoretical

guarantees. However, as alluded to in section 4.7, the approach has some severe lim-

itations when it comes to using the results to achieve real robot locomotion in a rich

contact environment. The online control law was designed based on a 2D centroidal

model without contact changes, kinematic constraints, contact force constraints, or

even variation of the center of pressure (CoP). In contrast, this chapter presents an

offline planning approach based on a 3D multi-contact centroidal model that allows

for (approximate) kinematic constraints as well as contact force constraints, including

both Coulomb friction and upper limits on magnitude.

The main goal of the presented planning approach is to provide reference trajec-

tories to a whole-body tracking controller [80, 99, 57, 100], allowing a high-degree-of-

81

freedom (high-DoF) humanoid robot to navigate its environment. In particular, this

work targets the momentum-based control approach presented in chapter 3, which

requires a reference trajectory for the robot’s total linear momentum (or its CoM), as

well as a footstep plan, i.e., a timed sequence of contacts, including reference positions

for the robot’s extremities when contact is first established.

The problem of optimizing over locomotion plans that allow a high-DoF humanoid

robot to traverse complex terrain is hard for several reasons, chief among which are

the following:

• Trajectory optimization problems based on detailed models of high-DoF robots

translate into nonlinear optimization problems with many decision variables

and constraints.

• Even centroidal models are still subject to bilinear constraints, stemming from

joint optimization over contact positions and contact forces and the desire to

limit centroidal angular momentum rate (see section 2.3).

• Modeling and optimizing over contact changes requires special care due to

abrupt changes in dynamics (discussed in more detail in section 5.3.1).

• The value of locomotion plans increases dramatically if the plans can be found

quickly. User-interactive rates are desirable, but ideally, good plans would be

generated at sufficiently high rates to allow embedding in a model-predictive

control (MPC) approach.

Several recent studies have focused on this challenging problem. On the fast-but-

limited end of the spectrum, a simple extension of the LIP was employed in [101]

to plan locomotion over terrain consisting of moderate-size rolling hills based on the

divergent component of motion and a so-called enhanced centroidal moment pivot

(essentially a slightly modified CoP/ZMP). However, this approach cannot guarantee

that the contact forces associated with the planned trajectory are actually achievable,

and doesn’t properly handle the case of multiple non-coplanar contacts. Bretl and

Lall point out some of these issues in the simpler context of static equilibrium [102].

82

Furthermore, contact sequence timing and footstep placement are prespecified, which

vastly simplifies the problem but neglects an important part of it. Such cascaded

approaches are numerous in the literature.

Moving towards slower but more capable approaches, [103] propose a planner

that finds a centroidal momentum trajectory on moderately rough terrain given a

contact sequence by reasoning about the set of achievable contact wrenches (contact

wrench cone, or CWC) and using a convex outer approximation of the rate of change

of centroidal angular momentum to avoid the bilinearities described in section 2.3.

[104] also propose a centroidal planning algorithm given a contact sequence based on

properties of the CWC, but using a dual formulation. Convex outer approximations

of the bilinear angular momentum rate constraints are also used in [105]. While

these approaches can handle the multi-contact case properly, a possible issue is that

they allow constraints on angular momentum rate to be violated, sometimes to a

significant degree. Moreover, these approaches still rely on a prespecified contact

sequence. Recent approaches can separately find reasonable contact sequences for

locomotion over rough terrain using heuristics and optimization [106, 107], but for

truly dynamic locomotion over such terrain, it would be preferable to explicitly include

the robot’s dynamics in the contact planning problem, at least at the centroidal level.

At the other extreme of the slow-versus-capable spectrum, off-line nonlinear opti-

mization techniques have been employed in e.g. [108, 109] based on the full dynamics

of the robot. Intermediate solutions using a detailed kinematic model but a centroidal

dynamics model were used in [32, 110] and showed impressive results in simulation,

but these approaches still have a rather high computational cost. Remarkably, ap-

proaches based on nonlinear optimization have recently been extended into the MPC

domain at impressively large scale. Such methods include differential dynamic pro-

gramming (DDP) and its variants, particularly the iterative Linear Quadratic Reg-

ulator approach (iLQR) [111, 112, 113, 114]. However, nonlinear MPC at the scale

of a humanoid robot has not yet been demonstrated, and will require considerable

engineering effort [115, 116, 117]. Additionally, there are likely to be significant issues

with local minima, and convergence to a solution, especially within the time budget

83

needed for online control, is not guaranteed.

A recent line of research has proposed avoiding the drawbacks of the cascaded

approach and the convergence problems associated with gradient-based optimization

by formulating trajectory optimization problems involving contact as mixed-integer

programs. These approaches explicitly optimize over contact mode sequences, while

also taking constraints stemming from the continuous-time dynamics into account.

Using the mixed-integer programming formalism has several advantages. First,

integer decision variables (specifically, binary variables) are a natural fit to model the

on-off behavior of contact between the robot and its environment. Second, typical

solvers do not require a starting point to arrive at a solution (though a good start-

ing point may improve solver performance). Third, standard mixed-integer solvers

maintain both upper and lower bounds on the optimal objective function value dur-

ing the solution process, and can thereby provide a certificate of global optimality

when these bounds match. While mixed-integer optimization is NP-complete in the

number of integer variables, specialized solvers have been developed that typically do

much better in practice than the theoretical worst case.

In [118], mixed-integer optimization was applied to plan footsteps over rough ter-

rain. An early mixed-integer-based trajectory optimization approach is [119], where

mixed-integer quadratic programming (MIQP) was applied to a trajectory optimiza-

tion problem stemming from a linear centroidal model of a bipedal robot, and solved

approximately in an MPC setting. In [31], the author applies trajectory optimization

based on MIQP to a 2D model of the Boston Dynamics LittleDog robot, jumping

between staggered platforms. The model includes Coulomb friction constraints, and

the approach uses an off-the-shelf MIQP solver. In [120], similar ideas are applied to

a 3D LittleDog model, while employing a contact wrench cone margin as a robustness

metric. In [121], MIQP trajectory optimization is applied to a planar multi-link hu-

manoid model. This approach, called LVIS (Learning from Value function IntervalS),

partially solves a large number of these trajectory optimization problems off-line, and

uses the bounds on the optimal objective value provided by the solver to approximate

the value function of the optimal control problem over a region of the state space.

84

The on-line control problem then reduces to a simpler, one-step mixed-integer MPC

problem with the objective of minimizing the approximated value function value one

time step in the future.

While these approaches produce encouraging results, they share a common draw-

back, rooted in the use of mixed-integer quadratic programming: the underlying

dynamics model must be piecewise affine in order to fit into the MIQP framework.

This means that the bilinear dependence of angular momentum rate of change on

contact positions and contact forces (see section 2.3) cannot be modeled natively,

which may result in non-physical trajectory optimization results.

MIQP’s lacking expressivity in the face of bilinear constraints can be sidestepped

to a certain degree through the use of piecewise McCormick envelopes [31] (discussed

in more detail in section 5.3.5). However, piecewise McCormick envelopes require

a number of integer variables, used to select between the pieces, that is at least

logarithmic in the number of pieces (see e.g. [122]), and a fairly high number of pieces

is required to achieve sufficiently low violation of the original bilinear constraints over

a large region. This is problematic, as the number of integer variables is strongly

correlated with solve time. The use of piecewise McCormick envelopes in planning

approaches for humanoid robots is particularly problematic: for humanoids, the base

of support is typically small compared to that of the quadruped robots used in the

experiments of [31] and [120], reducing the margin of error for angular momentum

constraint violation.

In this work, we ‘bite the bullet’ by switching away from the use of MIQP solvers

and associated techniques used to fit nonlinear problems into the MIQP framework.1

Instead, we embrace the nonlinearity and adopt the use of dedicated mixed-integer

nonlinear programming (MINLP) tools, allowing us to enforce angular momentum

rate constraints up to a prespecified, arbitrarily tight tolerance.

Dedicated MINLP solvers, such as SCIP [123], BARON [124], and COUENNE

1We note that [31] also explored using an MINLP formulation, and reported computational
performance many times worse than the MIQP relaxation. However, these results were just for one
possible problem formulation and were obtained using the COUENNE solver, which is known to be
less performant than e.g. SCIP and BARON.

85

[125], internally use specialized methods for dealing with bilinear constraints, includ-

ing the McCormick envelope approach used in [31], but employ them in an adaptive

fashion. This leads to a better tradeoff between accuracy and computation time. In

addition, solvers such as SCIP employ an array of primal heuristics to quickly find

good feasible points, even in the absence of a good starting point. These primal

heuristics subsume and extend many approaches used to solve bilinear optimization

problems in the controls literature, such as bilinear alternations and relaxed com-

plementarity reformulations (MPEC, mathematical program with equilibrium con-

straints) [126].

Another problem with the state of the art in mixed-integer trajectory optimization

is the use of a direct transcription in conjunction with basic Euler integration and

fixed time steps. Since the number of integer variables is proportional to the number

of time steps, and solve times in practice heavily depend on the number of integer

variables, relatively few time steps and large time intervals are commonly employed.

For example, [121] used a mere 10 knot points with 50 ms time intervals for the

simplified 2D humanoid model. At this point, integration accuracy can become a

real issue. In addition, the formulations used in [31, 121] allow every end effector to

make or break contact with the environment at every time step. It seems unlikely

that the optimal mode sequence involves switching contacts at every 50 ms (or less,

if we want to improve integration accuracy), and so it seems wasteful and unnatural

to use so many integer variables, searching over the associated astronomical numbers

of possible mode sequences.

In addition to the shift from MIQP to MINLP, we further propose to address some

of these issues in previous approaches with the following contributions:

• Using a piecewise polynomial representation of the CoM trajectory and contact

forces, which removes any concerns related to integration accuracy, and means

that longer time steps can be used.

• In particular, using a piecewise Bézier representation (Bernstein polynomial

basis) for the polynomial pieces, as this allows constraints on the Bézier control

86

points to imply constraints on the entire Bézier piece due to the Bézier con-

vex hull property (see section 5.4.3), avoiding issues with constraint violation

between knot points.

• Associating a single integer contact variable with an entire piece of the piece-

wise polynomial (corresponding to a longer time interval), thus requiring fewer

integer variables. This reduces the tension between integration accuracy and

number of integer variables.

• Reverting to a centroidal model, as opposed to the multi-link model used in

[121], to make a 3D version feasible. Limitations due to kinematics and actua-

tion are modeled approximately, by placing constraints on relative positions of

contacting bodies and the CoM and on contact force magnitudes respectively.

• Using variable time steps, which will result in additional bilinearities (as state

variables and inputs are multiplied by the time steps), but appears to reduce

the time needed to find a feasible solution in practice.

We present example results of the proposed approach, including dynamic simulations

of the Atlas robot under the controller from chapter 3.

It should be noted that the goal of this work is not to outperform existing ap-

proaches in terms of computation time, but rather to explore in a new direction and

present our experience with a set of tools that is relatively unfamiliar to the robotics

community. Furthermore, we note that approaches like LVIS [121] could be used to

obtain an online policy by using offline trajectory optimization to sample from the

optimal policy. This is in line with the recent popularity of machine learning methods

in general, in that a large amount of offline computation may be used to arrive at a

result that allows for fast online evaluation. This alleviates concerns regarding the

cost of offline computation.

The remainder of this chapter is structured as follows. Section 5.2 describes the

trajectory optimization problem we wish to solve at a high level. Section 5.3 gives

some background on mixed-integer programming. Section 5.4 details the reformula-

tion of the trajectory optimization problem as a mixed-integer nonlinear program.

87

Section 5.5 discusses how the results of the trajectory optimization are used to gener-

ate inputs for the whole-body controller. Section 5.6 describes implementation details.

Section 5.7 presents results for a few example problems. Section 5.8 discusses these

results, and we conclude the chapter in section 5.9.

5.2 Problem statement

This section establishes notation and provides a high-level conceptual description

of the planning problem we wish to solve. This problem statement is meant to be

independent of specific solution techniques, and does not require an understanding

of mixed-integer programming. However, some of the modeling choices made in this

section are indeed guided by the desire to effectively reformulate the problem as an

MINLP, as will be done in section 5.4.

Throughout this chapter, we will use JnK to denote the set of integers {1, 2, . . . , n}.

5.2.1 High-level description and desired output

We consider a robot with nc contact bodies, i.e., links that may be used to exert

forces on the contact environment.2 The contact environment consists of ne planar

environment regions at various positions and orientations, fixed in world frame Φw.

The initial position and velocity of the CoM are specified, and the initial angular

momentum about the CoM is zero. See Fig. 5-1 for an example scenario.

At a high level, the goal is to find a plan that may be used as an input to a

momentum-based tracking controller [57], resulting in locomotion over the terrain.

The plan should consist of:

• A timed contact sequence, i.e., the assignment of contact bodies to available

environment regions as a function of time. Timing may either be prespecified

or left free.

2Contact bodies are sometimes referred to as end effectors in related approaches [31, 120], and
are typically the extremities of a humanoid robot.

88

Figure 5-1: Example scenario with four environment regions and two contact bodies.
The light grey regions represent the actual contact geometry used for dynamic sim-
ulation. The dark grey regions are the polyhedra {Pi}i∈JneK, used for the trajectory
optimization. The latter are essentially configuration space regions for the contact
reference points, obtained by shrinking the top surfaces of the former.

89

• Contact locations: the 3D position of a reference point on each contact body

when it first comes into contact with an environment region.

• Trajectories for the center of mass, contact forces, and centers of pressure for

each contact body. Contact force trajectories should be within static friction

cones (no slip).

The following sections will describe various aspects of the planning problem in more

detail.

5.2.2 Environment regions

The contact environment consists of a finite set of world-fixed planar environment

regions, {Ek}k∈JneK, where region k is described by:

• Tw
k ∈ SE (3), a rigid transformation from region-local coordinates to world

coordinates, which defines the region-local reference frame Φk with respect to

Φw, such that the unit vector in the z-direction of Φk is the region’s contact

normal, nk.

• P̃k ⊂ R2, a bounded polyhedron that describes the extents of the environment

region as a subset of the x-y plane of frame Φk.

• µk ≥ 0, the coefficient of friction.

The contact normal nk and friction coefficient µk together parameterize the region’s

friction cone, Fk, defined as

Fk = {f | ‖f − (nk · f)nk‖ ≤ µknk · f} .

We denote set of contact positions in world coordinates associated with Ek (a

polyhedron in R3) as

Pk =
{
Tw
k ((x, y, 0)) | (x, y) ∈ P̃k

}
,

where Tw
k (·) denotes the application of the rigid transformation from Φk to Φw.

90

5.2.3 Contact bodies

The robot’s contact bodies (e.g., hands and feet) are denoted {Cj}j∈JncK. Contact

body Cj is has a planar contact region Sj (for a foot, the sole), which acts as the

interface between the body and any environment region with which it may be in

contact.

The configuration of Cj is summarized by the position of a single body-fixed con-

tact reference point, rj ∈ Sj. The orientation of the contact body is assumed to

conform to the environment region to which it is assigned. Whenever body Cj is not

in contact with any environment region (i.e., during swing phases), we consider the

world-frame location of rj to be immaterial for the purposes of the proposed plan-

ning approach. The exact trajectory of a contact body during swing is considered an

implementation detail that will be filled in as part of the on-line tracking controller.3

However, if body Cj is in contact with region Ek, we require that

rj ∈ Pk.

Contact body Cj has an associated center of pressure at position pj. Similar to rj,

pj is only of consequence when Cj is in contact with one of the environment regions.

When body Cj is in contact with environment region Ek, CoP pj must lie on the x-y

plane of frame Φk. Furthermore, an upper bound is specified on the distance between

the contact reference point rj and the CoP pj, denoted dp,j. This maximum distance

roughly models the extents of the body’s contact surface, and should be chosen such

that the disk

{
pj | ‖pj − rj‖ ≤ dp,j

}
∩ aff Sj (5.1)

is fully contained in the planar contact region Sj of contact body Cj, where aff Sj
denotes the affine hull of Sj. This ensures that any CoP position that satisfies

3We note that it would also be possible to formulate a problem with an explicit partitioning of
the free space as well as the environment [31], which may enable better collision avoidance. However,
we have chosen not to do so here to simplify the problem.

91

‖pj − rj‖ ≤ dp,j is actually achievable in the full robot model,4 while avoiding the

need for increased problem complexity associated with modeling foot orientation.

The contact force fc,j exerted upon body Cj acts at CoP pj, and must be within

the friction cone Fk whenever Cj is in contact with region Ek. Contact forces are

additionally limited by an upper bound on normal force,

nk · fc,j ≤ f c.

When Cj is not in contact with any environment region, we require that fc,j = 0.

5.2.4 Dynamics

When the center of mass, c, is expressed in an inertial frame of reference such as Φw,

its evolution is described by (2.11), i.e.:

c̈ = mg +
nc∑
j=1

fc,j (5.2)

where m is the robot’s total mass and g is the gravitational acceleration vector. For

simplicity, we do not consider impact events in this problem statement. The resulting

lack of impulsive forces implies that the CoM trajectory is C1-continuous.

To disallow the use of the robot’s rotational inertia as a flywheel that stores

angular momentum, as motivated in section 2.3, we require the rate of change of

angular momentum about the robot’s center of mass, k̇, to remain zero at all times:

k̇ =
nc∑
j=1

(pj − c)× fc,j = 0,

or equivalently,
nc∑
j=1

pj × fc,j = c×
nc∑
j=1

fc,j (5.3)

4The environment region polyhedra,
{
P̃k

}
k∈JneK

, should also be chosen so that if a contact

reference point rj is in Pk, the body’s planar contact region Sj can fully fit inside the actual
contact geometry in any orientation. That is, the actual contact geometry should be shrunk by
supj∈JncK supx∈Sj

‖x− rj‖.

92

As noted in section 2.4, this constraint is fundamentally bilinear in the contact forces

and their application points relative to the CoM (the CoPs, pj), making it an impor-

tant source of both computational complexity and interesting behavior.

5.2.5 Contact sequence constraints

We wish to find a timed contact sequence, i.e., an assignment of contact bodies to

available environment regions as a function of time. Valid contact sequences should

obey the following basic rules:

• Each contact body can be assigned to at most one environment region at any

given time.

• Region reassignment requires an intermediate swing phase: if a contact body

is assigned to a given environment region, it must be unassigned for a nonzero

amount of time before it can be reassigned to a different environment region.

• Depending on the application, it may be desirable to disallow jumping phases,

where none of the contact points are assigned to a region.

Finally, if the contact sequence timing is left free, we additionally specify:

• Minimum and maximum swing duration: if a body goes out of contact at time

t, it can only be reassigned to an environment region after t+ ∆t , and it must

be reassigned to a region by t+ ∆t.

• Minimum stance time: if a body comes into contact with the environment at

time t, it must remain assigned to the region until at least t+ ∆t.

5.2.6 Approximate kinematic constraints

Centroidal trajectory planning approaches achieve reduced problem complexity by

summarizing the configuration of the full robot using only the positions of the center

of mass and contact force application points. A major drawback of these approaches,

in general, is that kinematic constraints are hard to incorporate.

93

While methods have been proposed that do include the full configuration of the

robot while planning a centroidal trajectory [32], we choose not to do so, to reduce

problem complexity. Instead, we resort to merely increasing the likelihood that the

plan can be executed on the full robot by specifying kinematic constraints on the

relative positions of the CoM and the contact reference points.

Ideally, these constraints would be strictly conservative, in the sense that for

any allowable configuration of the CoM and contact reference points, there exists a

matching configuration of the full robot. Providing such a guarantee is a nontrivial

task, however, requiring a complex kinematic reachability analysis that may not be

feasible at the scale of a full humanoid robot.5 Consequently, we opt to employ the

following simple heuristics:

• Maximum CoM-to-contact distance: ‖c− rj‖ ≤ dc,j for j ∈ JncK.

• Minimum CoM-to-contact distance: ‖c− rj‖ ≥ dc,j for j ∈ JncK.

• Minimum inter-contact distance: ‖ra − rb‖ ≥ dr,a,b for a, b ∈ JncK such that

a 6= b.

• No cross-over: for select pairs of contact bodies (Ca, Cb) (notably, the feet), we

require that e · (ra − rb) ≥ de,a,b for some vector e ∈ R3, fixed in world frame

Φw.

Note that the second and third requirements will result in nonconvex constraints.

The last requirement implicitly relies on the assumption that body orientation will

not change much when the trajectory is tracked on the full robot. This is certainly a

limiting assumption, and will be further discussed in section 5.8.

5In [30], the authors propose the use of sampling and function approximation to find approximate
probability distributions describing the feasibility of CoM positions described in a contact body’s
coordinate frame. However, this approach cannot be used to formally guarantee kinematic feasibility,
and requires making the assumption that the probability of feasibility of the CoM relative to all of
the contact bodies permits can be factorized into independent feasibility probabilities relative to
each of the contact bodies.

94

5.2.7 Initial and final conditions

The initial position and velocity of the CoM are specified as c0 and ċ0, respectively.

The initial position of the contact reference point for body Cj is denoted rj,0.

Final conditions may be application-specific, but for all of the examples presented

in section 5.7, we require that the robot is in static equilibrium at the final time tf,

implying that ċ (tf) = 0 and c̈ (tf) = 0. Furthermore, we specify a desired final contact

situation: at time tf, each body Cj is specified to either be in contact with a given

environment region Em, or with none of the environment regions.

5.2.8 Optimization objective

In this study, we focus on finding a feasible point, rather than minimizing an ob-

jective function. Feasibility is of course a prerequisite for optimality, and solving a

mixed-integer feasibility problem reformulation is already an NP-complete problem.

Computational results will also show that finding a feasible point is indeed difficult

in practice.

5.3 Mixed-integer programming preliminaries

This section provides a primer on mixed-integer programming formulations and so-

lution techniques. Section 5.3.1 demonstrates by example how mixed-integer for-

mulations can be used to model problems involving rigid contact, and gives a brief

comparison to other common formulation styles. Section 5.3.2 gives an overview of

mixed-integer convex programming. Section 5.3.3 discusses ways to reformulate con-

straints involving unions of disjoint sets as mixed-integer convex programs. Such

constraints arise naturally from our description of the contact environment as a set

of disjoint planar regions. Section 5.3.4 discusses (piecewise) McCormick envelopes,

which may be used to approximate bilinear constraints. Finally, section 5.3.5 re-

views extensions of mixed-integer convex programming techniques to mixed-integer

nonconvex problems.

95

f = 0

ϕ ≥ 0
f ≥ 0

ϕ = 0

c

c

Figure 5-2: 1D contact situation with contact separation φ and contact force fc.

5.3.1 Motivating example

Consider the 1D contact situation shown in Fig. 5-2, involving a moving rigid ball as

the contact body and a fixed wall as the contact environment. In this scenario, the

contact force fc ∈ R can only be nonzero when the separation φ ∈ R is zero, and vice

versa. In a trajectory optimization problem involving contact, both fc and φ may

appear as decision variables.

A popular modeling approach for this rigid contact scenario in the context of

optimization is to use a complementarity formulation,

0 ≤ φ ⊥ fc ≥ 0

which (in the scalar case) is shorthand for

φ ≥ 0

fc ≥ 0

φfc = 0

Complementarity-based formulations have been used successfully in the context of

dynamic simulation [127, 128] as well as trajectory optimization [112, 109]. However,

without special care, complementarity-based formulations will not, in general, sat-

isfy standard constraint qualifications such as LICQ (linear independence constraint

qualifications) [126, 129], violating assumptions of some standard nonlinear program

solvers. However, specialized algorithms can be used to avoid this problem to a certain

extent.

An alternative approach is to approximate the rigid contact using a soft contact

96

model. One advantage of this approach is that it resolves paradoxes stemming from

static indeterminacy in the presence of multiple contacts. In the context of gradient-

based optimization, soft contact models have also been proposed as a solution to

the problem of vanishing gradients of contact forces with respect to configuration-

related decision variables, by allowing (nonphysical) small contact forces even when

separation is nonzero [130, 131]. However, numerical problems can arise from the fact

that small displacements cause large contact forces when contact stiffness is high.

If we suppose that fc and φ are upper-bounded by f c and φ respectively, then a

third option is to model the contact situation as:

0 ≤ φ ≤ (1− z)φ

0 ≤ fc ≤ zf c

z ∈ {0, 1}

where z is an auxiliary integer (specifically, binary) variable that takes the value

1 when the contact is active. This type of formulation, involving both continuous

variables (fc and φ) and integer variables (z) fits within the framework of mixed-

integer optimization. The integrality constraint z ∈ {0, 1} is clearly nonconvex, since

the midpoint z = 1
2

between the feasible assignments z = 0 and z = 1 is infeasible.

This third option has not been studied in the context of contact-aware planning for

robots until quite recently.

In general, a mixed-integer program can be written in standard form as

minimize f (x) (5.4)

subject to gj (x) ≤ 0, ∀j

xi ∈ Z, ∀i ∈ I ⊆ JdimxK

In a multi-contact trajectory optimization setting, the number of binary variables

needed to transcribe the trajectory optimization problem, |I|, is at least linear in the

number of contact bodies and the number of pieces in the time-discretized trajec-

97

tory. Furthermore, the complexity of the contact environment is also a factor. We

wish to support contact environments consisting of disjoint planar regions, each with

their own normal and coefficient of friction. To select between the regions, typical

approaches used so far have employed a number of binary variables that is linear in

the number of planar regions [31, 120].6 As a result, there are 2ncnpne possible assign-

ments of the binary variables,7 with nc the number of contact bodies, np the number

of trajectory pieces, and ne the number of environment regions. For 2 contact bod-

ies, 12 trajectory pieces, and 4 environment regions, that amounts to over 7.9 · 1028

possible assignments.

Despite this astronomical number of options, relatively effective solution tech-

niques exist for mixed-integer programs, which can in some cases even provide guar-

antees of global optimality in a reasonable amount of time. The following sections

briefly introduce these techniques in the special case of mixed-integer convex pro-

gramming.

5.3.2 Mixed-integer convex programming

A foundational concept in mixed-integer programming is the continuous relaxation:

the optimization problem obtained by dropping all integrality constraints from a

mixed-integer program.8 If the continuous relaxation of a mixed-integer problem is

a convex program, the original problem is a mixed-integer convex program (MICP).9

Referring to (5.4), this corresponds to the case where f and the gj are convex func-

tions.10 Subclasses include mixed-integer linear and quadratic programs (MILP and

MIQP, respectively), similarly referring to the nature of the continuous relaxation.

This section provides a very basic overview of popular solution techniques for MICPs.

6However, methods exist that require only a logarithmic number of variables (see section 5.3.2).
7In this naive analysis, we are disregarding the reduction in number of assignments due to the

use of special ordered set constraints.
8For binary variables, z ∈ {0, 1} becomes 0 ≤ z ≤ 1.
9We will use the abbreviation MICP to refer to either mixed-integer convex program or mixed-

integer convex programming, depending on context. This also goes for the terms MILP, MIQP,
MINLP, and MINCP.

10Typically, smoothness of f and the gj is also required to allow effective solution of continuous
relaxations in practice.

98

For more comprehensive tutorials, surveys, and literature reviews, see e.g. [132, 133].

MICP solvers exploit the fact that the continuous relaxation of an MICP is ef-

ficiently solvable to global optimality, being a convex optimization. Indeed, in the

(generally, unlikely) case that the solution to the continuous relaxation of an MICP

happens to also satisfy the integrality constraints, we have found the global optimum

of the MICP, since we optimized over a strictly larger search space. Moreover, if the

continuous relaxation is infeasible, then the MICP is also infeasible. If we are not

so lucky to find ourselves in one of these cases, typical solution techniques rely on

solving a sequence of iteratively refined continuous relaxations.

A basic example of such iterative refinement is branching on integer variables.

Suppose that x∗i /∈ Z for some i ∈ I in the solution x∗ to the continuous relaxation

of the MICP. Then xi may be selected for branching, in which case two subproblems

are constructed from the parent MICP by adding either xi ≤ bx∗i c or xi ≥ dx∗i e as

constraints, where b·c and d·e denote rounding down and up to the nearest integer,

respectively. These subproblems have two critical properties:

1. they divide the search space, and

2. they both exclude the so-called fractional solution x∗.

Continuous relaxations of these subproblems can then be solved (ideally, in parallel),

each resulting in new solutions. This approach may be applied recursively, resulting in

a search tree with mixed-integer programs and their associated continuous relaxations

at the nodes. If the continuous relaxation at one of the nodes is infeasible, the branch

rooted at that node may be disregarded, since expanding the node further can only

shrink the feasible set. If, at any node, x∗i /∈ Z for multiple i ∈ I, heuristic branching

rules are used to select an xi for branching.11 One objective in the design of these

rules is to quickly find good integer feasible points (i.e., points that are feasible in the

original MICP), so that an incomplete optimization can still yield valuable results.

11Many different branching rules have been proposed, and the perhaps intuitive choice of branching
on the variable whose value is farthest away from an integer (maximal fractional branching) turns
out to be one of the worst, performing about as well as random selection [134].

99

Solving an MICP to global optimality using this basic branching algorithm amounts

to brute-force enumeration of all integer variable assignments. The branch and bound

algorithm (B&B) can be used to improve on this situation by exploiting the following

observations:

1. the objective value f (x∗) for a solution x∗ to the continuous relaxation at any

node is a lower bound on the objective value of the MICP at that node, since

the feasible set of the relaxation contains the feasible set of the MICP at the

node.

2. if the solution x∗ at any node satisfies the integrality constraints, f (x∗) is an

upper bound on the objective value of the original (root) MICP.

By keeping track of the best upper and lower bound on the objective value during the

solution process, B&B can stop expanding nodes for which the lower bound is higher

than the best known upper bound. This is because further branching can only result

in subproblems with smaller feasible sets, with optimal objective values that are at

least as high as the lower bound established for their parent problem. Furthermore,

B&B can certify global optimality of the best feasible point found so far (referred to

as the incumbent) when the gap between the upper and lower bound reduces to zero.

Optimality up to a desired tolerance may be certified in similar fashion.

Branch and cut algorithms (B&C), further improve on B&B by introducing the

use of cutting planes to refine the continuous relaxations.12 In the particular case of

MILP, it is well known that the optimal value at any feasible and bounded continuous

relaxation (an LP) is attained at an extreme point of the feasible set of the relaxation.

If this extreme point, x∗, is a fractional solution, then a linear inequality is guaranteed

to exist which separates x∗ from the convex hull of the feasible set of the original MILP

(proof by separating hyperplane theorem [135]). Such an inequality is also referred

to as a cutting plane, or as a valid inequality for the feasible set of the original MILP

with respect to x∗ [132]. Many different methods have been proposed for generating

12We note that the term ‘branch and bound’ is often used in a more generic sense, referring to
‘branch and cut’ as well.

100

(a) (b)

Figure 5-3: Polyhedral outer approximations for the convex constraint x2 ≥ x21.
(a) Point x∗ is within the polyhedral outer approximation, but violates the original
constraint. (b) Refined polyhedral outer approximation that renders the point x∗

infeasible through the addition of a valid inequality (separating hyperplane), obtained
by linearizing the constraint function at x∗. Adapted from [8].

cutting planes, starting with the work of Gomory [136]. Cutting plane generation can

have a great impact on solver performance. B&C is especially valuable in the case

of mixed-binary programs, since in this case cutting planes can be generated that

are simultaneously valid for all nodes in the search tree [137, 138], while for general

integer programs the cutting planes are only valid for descendants of the node at

which they were generated.

Beyond MILP, a popular approach for solving general MICPs uses iteratively

refined polyhedral outer approximations of the feasible set [139]. Similar to cutting

plane methods, such approaches generate valid inequalities for the feasible set of the

MICP with respect to the solution x∗ of a continuous relaxation. In the case of

polyhedral outer approximation, such inequalities can be found by linearizing the

(convex) constraint functions, gj, at x∗ (see Fig. 5-3). A nonlinear (but convex)

objective function f can be handled by introducing a slack variable, t, along with the

constraint

f (x) ≤ t,

and replacing the objective to minimize with t. The new constraint function f (x)− t

can then be handled using standard polyhedral outer approximation.

Other important components of MICP solvers include presolving methods and pri-

101

mal heuristics. Presolving methods are aimed at reducing problem size and tightening

the formulation by adding valid constraints at the root note of the search tree. A

trivial example is the elimination of variables whose upper bounds equal their lower

bounds, but many more sophisticated techniques are in use. Primal heuristics are

aimed at quickly finding a good incumbent, whose associated upper bound on the

objective value can be used to quickly prune the search tree. Primal heuristics in-

clude diving methods [140]. At certain nodes, these methods select subsets of integer

variables (e.g., those that take near-integer values), and fix them to integer values

(e.g., by rounding). The associated continuous relaxation is then solved, and this

process is applied recursively, reminiscent of a depth-first search [133].

Solvers that can handle (subclasses of) MICP include open-source implementa-

tions such as Cbc [141] (MILP), GLPK [142] (MILP), and Bonmin [143] (capable

of more general MICP formulations). Commercial solver implementations are gener-

ally significantly more performant [144],13 and include Gurobi, IBM CPLEX, FICO

XPRESS, and MOSEK [145], which all support various MICP subclasses, including,

but not limited to, MILP and MIQP.

5.3.3 Mixed-integer reformulations of disjunctive constraints

Mixed-integer convex programming may be used to solve problems with constraints

of the form

x ∈
⋃
i

Si,

where the Si are convex sets and the union is finite. This application is especially

interesting in light of our description of the contact environment as a finite union

of environment regions. While each Si is convex, such disjunctive constraints are

in general nonconvex. Optimization problems involving disjunctive constraints are

referred to as disjunctive programs [146]. Such programs may be reformulated as

MICPs in various ways, allowing them to be solved using the techniques described in

13See also http://plato.asu.edu/bench.html for typically up-to-date benchmarks periodically
performed by Dr. Hans Mittelmann.

102

http://plato.asu.edu/bench.html

the previous section.

As an important special case, consider the polyhedral disjunctive constraint

x ∈
⋃
i

Pi, (5.5)

where each Pi is a bounded polyhedron. By the Minkowski-Weyl theorem, each

Pi may be described either as the convex hull of a finite number of vertices (the

V-representation) or as the intersection of a finite number of halfspaces (the H-

representation). Each of these representations gives rise to various mixed-integer

reformulations, each with different properties. We refer to [147] for a survey of

such reformulations, and will only highlight one reformulation here, based on the

H-representation.

In the H-representation, each Pi is described as

Pi = {x | Aix ≤ bi} .

Given this representation, one traditional way to implement constraint (5.5) in a

mixed-integer setting is to use a big-M formulation,14

Aix ≤ bi +Mi (1− zi) (5.6)∑
i

zi = 1

zi ∈ {0, 1} ∀i

where we introduced auxiliary binary indicator variables, zi, along with constants Mi

(either scalars or vectors of appropriate size). Note that only one zi can be nonzero.

If zi = 1, the corresponding inequality constraint reduces to Aix ≤ bi. For inequality

constraints associated with zero-valued zi variables, we have

Aix ≤ bi +Mi (5.7)

14Note that this formulation is rather ad-hoc; it is just meant to show the style of big-M formu-
lations.

103

As long as eachMi is chosen large enough to ensure that constraint (5.7) is never active

for any x ∈
⋃
iPi, we have succeeded in constructing a mixed-integer reformulation

of the disjunctive constraint (5.5).

5.3.4 McCormick envelopes

While MICP reformulations of disjunctive polyhedral constraints can be used to

model the problem of assigning contact bodies to regions and enabling or disabling

associated constraints, fundamentally nonlinear constraints such as (5.3) are not

MICP-representable, motivating the use of mixed-integer nonconvex programming

(MINCP). However, before we delve into MINCP techniques, we will first discuss a

commonly used approach to approximate bilinear constraints in an MICP formula-

tion. Consider a constraint of the form

w = uv

where w ∈ R, u ∈ R, and v ∈ R are all decision variables. If u and v are bounded,

u ≤ u ≤ u, and v ≤ v ≤ v, the tuple (u, v, w) is confined to a bounded set S,

S = {(u, v, w) | u ≤ u ≤ u, v ≤ v ≤ v, w = uv} .

To approximate the constraint (u, v, w) ∈ S in an MINCP, a commonly used approach

is to simply use a convex hull relaxation,

(u, v, w) ∈ convS.

The convex hull is classically referred to as a McCormick envelope [148], and is visu-

alized in Fig. (5-4a). It is a polyhedron, representable as a set of linear constraints

in an MICP.

If the upper and lower bounds on u and v are tight, the maximal violation of

the original bilinear constraint w = uv may be acceptable. But with larger bounds,

the quality of the approximation decreases drastically, as shown in Fig. 5-4b. To

104

(a) (b) (c)

Figure 5-4: (Piecewise) McCormick envelopes. (a) A single McCormick envelope
(in red), used to relax the bilinear constraint w = uv (green surface) in the region
0 ≤ u ≤ 1, 0 ≤ v ≤ 1. (b) Using McCormick envelopes with larger bounds on u
and v, −1 ≤ u ≤ 1,−1 ≤ v ≤ 1, results in a bad approximation. (c) A piecewise
McCormick formulation can be used to obtain a tighter relaxation, but at the cost of
additional binary variables used to select between the pieces.

mitigate this problem, the intervals [u, u] and/or [v, v] may be subdivided, after which

McCormick envelopes with smaller constraint violation may be constructed for these

subregions of the (u, v) space (see Fig. 5-4c). However, containment of (u, v, w) in

at least one of the McCormick envelope pieces is a disjunctive polyhedral constraint

of the form (5.5). Consequently, auxiliary mixed-integer variables are needed for the

associated MICP reformulation, resulting in artificial combinatorics and a tradeoff

between computation time and constraint violation.

5.3.5 Mixed-integer nonconvex programming

This section gives a very brief overview of mixed-integer nonconvex programming

(MINCP), which corresponds to the case that the f or gj in (5.4) are nonconvex.

MINCPs are necessarily mixed-integer nonlinear programs (MINLPs), though the

converse is not true. We note that in the literature, the term MINCP is used as often

as MINLP, which is often contrasted with MICP subclasses with linear constraints

such as MILP and MIQP. Although MINLPs with nonlinear but convex f and gj

are indeed a step up in difficulty, especially compared to MILP, the biggest gap in

efficacy of solution techniques comes with the switch to nonconvex f and gj. Not only

105

that, MINCP instances may be undecidable [149], though that problem is avoided

if the decision variables are constrained to a bounded polyhedral set. Still, some

easier problems may be solved to provably global optimality in reasonable time using

existing MINLP solvers. For an excellent survey of applications, models, and solution

methods for MINLP (including both nonlinear MICP and MINCP), see [8].

Solution methods for MINCP are often founded in those for MICP. In particular,

tree search techniques like B&B and B&C have extensions to MINCP. The main

additional challenge with MINCP is that even the continuous relaxation at a node

in the search tree is a hard optimization problem, with potentially a disconnected

feasible set and multiple local optima. One consequence of this is that guaranteed

lower bounds on the objective function are not as easily obtainable.

The polyhedral outer approximation approach described in section 5.3.2, used for

general MICPs, may be extended to the MINCP case. The key remains to ensure

that any polyhedral relaxation solution x∗ that violates the original constraints is

infeasible after refinement of the relaxation. However, when constraint functions are

nonconvex, it is not always possible to exclude a point x∗ that is feasible in a given

polyhedral outer approximation by adding a linear inequality, as was the case in Fig.

5-3. Fig. 5-5 demonstrates this issue for the nonconvex equality constraint x2 = x21

with x1 in the interval [x1, x1]. In this case, x∗ can be excluded from a subsequent,

refined polyhedral approximation by subdividing the interval into two subintervals.

The subproblems for each subinterval become branches in the search tree, and can be

handled as usual. This approach, called spatial branch & bound (sBB), is considered

the best-known method for solving MINCPs [8]. It effectively extends the notion

of branching on integer variables, familiar from MICP, to continuous variables. In

the case of bilinear constraints, sBB can be thought of as producing a piecewise

McCormick formulation, but adaptively refined as part of the tree search process.

MINCP solvers often require a symbolic problem formulation: merely providing

black-box functions for constraint evaluation is not enough. Based on the symbolic

description, such solvers build an expression tree with variables or constants at the leaf

nodes and basic operations (+, sin, ·, etc.) at the non-leaf nodes. An auxiliary variable

106

(b)

(b)

Figure 5-5: Example polyhedral outer approximation for the nonconvex equality con-
straint x2 = x21, with bounds on x1. (a) Point x∗ is feasible in the polyhedral outer
approximation, but lies above the original constraint function. (b) Refined polyhedral
outer approximation that renders the point x∗ infeasible through spatial branching
on x1, with one branch with one branch for x1 ≤ xb and one branch with x1 ≥ xb.
Various heuristics exist for the selection of the branching point xb. Adapted from [8].

is introduced for the output of each non-leaf node, effectively factorizing the constraint

function into simpler constraints, involving only these basic operations. Solvers have

a library of suitable outer approximations for the finite set of operations they support,

which are typically more effective than basic linearization cuts. Moreover, the white-

box problem formulation allows advanced solvers to determine local convexity of a

subgraph of the expression tree for a constraint function when it is restricted to a

suitably small subinterval, in which case specialized methods may be applied [150].15

Note that sBB heavily relies on the availability of known bounds on the decision

variables. The most straightforward way to ensure that variables are suitably bounded

is to explicitly specify (perhaps redundant) bounds in the problem description. How-

ever, typical solvers also implement bounds tightening techniques, which are used to

infer tighter variable bounds on the basis of the objective and constraint functions.

A very basic example is the use of interval propagation to infer that x2 ∈ [0, 2] given

x1 ∈ [0, 1] and the constraint x2 = 2x1. Bounds tightening techniques are another

reason that solvers often require symbolic problem descriptions. Bounds tightening

15As an example, consider the nonconvex constraint x2 ≥ sin (x1). If, in a particular subproblem,
x1 is restricted to the interval [π, 2π], then the constraint function restricted to the interval is convex.

107

techniques generally trade off between time and accuracy, as optimizing for the tight-

est possible variable bounds on x amounts to solving 2 dimx problems of similar

complexity to the original MINCP.

Similar to the MICP case, modern MINCP solvers rely heavily on primal heuristics

for performance, so as to quickly find a good incumbent. See [133] for a recent

dissertation on such techniques, applied mostly to the SCIP solver. Here, we discuss a

few techniques that apply to MINCP, though we note that most originate from MICP.

Examples include feasibility pump techniques, large neighborhood search strategies,

and MPEC (mathematical program with equilibrium constraints) relaxations.

Feasibility pump techniques alternate between solving a continuous relaxation (a

nonlinear program) to find a point that is likely fractional and heuristically rounding

the integer variables to find an integer-feasible point that may violate the continuous

constraints. The hope is that this alternating sequence converges to a feasible point

of the original MINCP.

Large neighborhood search techniques heuristically determine a region around a

reference point in the search space (for example, a bounded polyhedral region around

the incumbent, or around the solution of an LP relaxation), and fix a subset of the

integer variables. The goal is to arrive at a sub-MIP that is easier to solve, also

because tighter variable bounds can be established in the neighborhood, leading to

fewer possible integer assignments and tighter outer relaxations.

MPEC-based heuristics apply only to mixed-binary programs [126].16 A binary

constraint such as z ∈ {0, 1} is rewritten as z (1− z) = 0, a complementarity con-

straint. To avoid the constraint qualification issues mentioned in section 5.3.1, the

complementarity constraint is relaxed to z (1− z) ≤ θ, where θ is a scalar parameter,

whose value may initially be set to, e.g., 1
4
, and is iteratively reduced while feasi-

ble solutions are found. The relaxations are solved using a gradient-based nonlinear

program solver.

MINCP-capable solvers include free/open-source implementations such as SCIP

16This description is based on https://scip.zib.de/doc/html/heur__mpec_8h.php, which doc-
uments the SCIP implementation of this heuristic.

108

https://scip.zib.de/doc/html/heur__mpec_8h.php

[123] and COUENNE [125], where we note that development of SCIP is more active

than that of COUENNE. Proprietary solvers include BARON [124], ANTIGONE

[151], LindoGlobal [152], and Artelys Knitro.17 These solvers can often be configured

to use various subsolvers for continuous relaxations (NLP solvers such as Ipopt [153]

and filterSQP [154]) and for MICP sub-problems (see section 5.3.2 for examples).

5.4 MINLP reformulation of the planning problem

This section describes how we reformulate the problem posed in section 5.2 as a

finite-dimensional mixed-integer nonlinear program using the techniques described in

section 5.3. Our general strategy is to limit the number of nonconvex constraints and

the number of variables involved with unavoidable nonconvex constraints as much as

possible, and to exploit the standard tools for working with disjoint sets from the

mixed-integer literature. Furthermore, we restrict our usage of nonconvex constraints

to bilinear constraints, as handling of such constraints is most mature and ubiquitous

among MINCP-capable solvers. We will employ a Bézier curve parameterization for

the continuous trajectories.

Section 5.4.1 lists the main decision variables and establishes an indexing con-

vention. Section 5.4.2 discusses contact sequence timing constraints. Section 5.4.3

addresses the parameterization of continuous trajectories, such as that of the center of

mass. Section 5.4.4 details the transcription of constraints stemming from the dynam-

ics. Section 5.4.5 derives constraints on the binary variables that enforce the contact

sequence requirements. Section 5.4.6 handles constraints on the contact forces, and

section 5.4.7 addresses constraints on the CoPs and contact reference points. Finally,

section 5.4.8 discusses additional, redundant variable bounds.

17We note that support for non-convex quadratic constraints is planned to be added to Gurobi
9.0, but this version is not available at the time of writing.

109

5.4.1 Decision variables

This section is mainly meant for future reference, and we refer to subsequent sections

for precise interpretations of the indexing convention and decision variables.

Since sets of decision variables are defined on several axes, indexing can become

unwieldy. We establish the following indexing convention:

• j ∈ JncK: contact body index.

• k ∈ JneK: environment region index.

• i ∈ JnpK: time piece index for piecewise trajectories.

Defining Bn,m as the set of Bézier curves with n control points in Rm (having nm

scalar decision variables) and using d to denote the degree of the CoM trajectory, the

main decision variables are:

• ∆t[i] ∈ R: trajectory piece durations (if variable timing is used).

• zj,k[i] ∈ {0, 1}: binary contact indicators.

• c[i] ∈ Bd,3: center of mass trajectory pieces.

• fc,j[i] ∈ Bd−2,3: pieces of the total contact force exerted upon body Cj, expressed

in world frame Φw.

• f̃c,j,k[i] ∈ Bd−2,3: pieces of the individual contact forces exerted upon body Cj
from region Ek, expressed in local frame Φk.

• rj[i] ∈ R3: contact reference points in world frame Φw.

• r̃j,k[i] ∈ R2: region-local contact reference points in the x-y plane of frame Φk.

• pj[i] ∈ Bd,3: pieces of CoP trajectories in world frame Φw.

• p̃j,k[i] ∈ Bd,2: pieces of region-specific CoP trajectories, defined in the x-y plane

of frame Φk.

We note that certain auxiliary variables have been omitted, and will be introduced

later.

110

5.4.2 Timing

Contact sequence timing may either be prespecified or left free. In either case, we

break up the trajectory into np pieces, and refer to the duration of trajectory piece i

as ∆t[i]. If timing is prespecified, the ∆t[i] are simply data. If timing is left free, the

∆t[i] are decision variables, and we add the constraints

∆t[i] ≤ ∆t[i] ≤ ∆t[i] ∀i ∈ JnpK

in partial fulfillment of the timing requirements specified in section 5.2.5.

For future use, we also introduce auxiliary variables ∆tsq[i] and constraints

∆tsq[i] = ∆t[i]2 ∀i ∈ JnpK .

Note that these constraints are bilinear in the decision variables when timing is left

free. Again, if timing is prespecified, the ∆tsq[i] are just data.

5.4.3 Parameterization of continuous trajectories

We opt to represent the trajectories of the center of mass, c (t), contact forces, fc,j (t),

and CoPs, pj (t), as composite (piecewise) Bézier curves defined on the interval [0, tf],

where tf =
∑np

i=1 ∆t[i]. That is, for x ∈ {c, fc,j, pj},

x (t) =

{
x[i] (θ[i] (t)) if t[i− 1] ≤ t ≤ t[i]

where the {x[i]}i∈JnpK are the individual Bézier curves for each piece, t[0] = 0, t[i] =

t[i− 1] + ∆t[i], t[np] = tf, and

θ[i] (t) =
t− t[i− 1]

∆t[i]
, ∆t[i] = t[i]− t[i− 1]

serves as a phase (interpolation) variable for piece i. For a piecewise-Bézier curve in

R3 of order n, each Bézier piece is defined by n 3-dimensional control points, which

will serve as decision variables.

111

Figure 5-6: The Bézier curve convex hull property: for Bézier curve x (t) with con-
trol points {x1, x2, . . . }, the curve {x (θ) | 0 ≤ θ ≤ 1} lies within the convex hull of
the control points. Adapted from https://commons.wikimedia.org/wiki/File:

Bezier_curve.svg.

The main advantage of this parameterization is that it allows us to exploit the

convex-hull property of Bézier curves (see Fig. 5-6): the entire curve for piece i,

{xi (θ) | 0 ≤ θ ≤ 1}, is contained in the convex hull of the control points for piece i.

This means that we can (conservatively) translate infinite-dimensional constraints on

trajectories into low-dimensional constraints on the control points. As a special case,

the convex-hull property allows us to easily establish valid upper and lower bounds

on the decision variables, which often result in better solver performance, as noted in

section 5.3.

For the experiments presented in section 5.7, we use piecewise cubic Bézier curves

to represent c (t) (i.e., d = 4). To match the degree of c̈ (t) according to the CoM

dynamics, (5.2), we use piecewise linear curves for the fc,j (t). Guided by the degree

of the right-hand side of the nonlinear angular momentum rate constraint, (5.3), we

choose the degree of the pj (t)’s to be the same as that of c (t). The break points for

each of the continuous trajectories are aligned.

To ensure continuity of the CoM trajectory at the break points, we require that

for i ∈ Jnp − 1K

c[i+ 1] (0) = c[i] (1)

which simply means that the last control point of c[i] (·) should be constrained to be

equal to the first control point of c[i + 1] (·). To additionally ensure differentiability

at the break points, we use the chain rule to find

112

https://commons.wikimedia.org/wiki/File:Bezier_curve.svg
https://commons.wikimedia.org/wiki/File:Bezier_curve.svg

ċ[i] (t) =
dc[i] (θ[i] (t))

dt
=
∂c[i] (θ[i] (t))

∂θ[i]

dθ[i]

dt
=
c′[i] (θ[i] (t))

∆t[i]
,

where the prime denotes a derivative with respect to a phase variable. We therefore

require that for i ∈ Jnp − 1K,

c′[i+ 1] (0)

∆t[i+ 1]
=
c′[i] (1)

∆t[i]

or equivalently

c′[i+ 1] (0) ∆t[i] = c′[i] (1) ∆t[i+ 1].

Note that these are linear constraints on the control points of the c[i] if the contact

sequence timing is prespecified, since the derivative operator simply applies a linear

transformation to the control points. However, with variable timing, these constraints

become bilinear in the decision variables.

The initial and final conditions on the CoM trajectory from section 5.2.7 also

translate into constraints on the control points of the Bézier curves.

5.4.4 Dynamics constraints

To enforce the CoM dynamics (5.2), we differentiate the CoM trajectory pieces once

more to find

c̈[i] (t) =
c′′[i] (θ[i] (t))

∆t[i]2
.

We now introduce a slack piecewise Bézier trajectory for the total contact force, fc (t),

and subject it to the constraint

fc[i] (t) =
nc∑
j=1

fc,j[i] (t) .

This allows (5.2) to be written as

c′′[i] (θ[i]) = (mg + fc[i] (θ[i])) ∆tsq[i] ∀θ[i] ∈ [0, 1] , i ∈ JnpK

113

This implies that the control points of the Bézier curve pieces on either side of the

equation must match.18 Again, this is a linear constraint on the control points of c

and fc when the timing is fixed, which becomes bilinear in the control points of fc

and the ∆tsq with variable timing. In the latter case, the introduction of the slack

trajectory fc (t) reduces the number of variables involved in the bilinear constraint.

To handle the inherently nonlinear angular momentum rate constraint, (5.3), we

first note that the slack trajectory fc (t) can also be used to replace
∑nc

j=1 fc,j (t) in

this constraint:

nc∑
j=1

pj (t)× fc,j (t) = c (t)× fc (t) ∀t ∈ [0, tf]

We then substitute the piecewise Bézier parameterization of the trajectories, resulting

in
nc∑
j=1

pj[i] (θ)× fc,j[i] (θ) = c[i] (θ)× fc[i] (θ) ∀θ[i] ∈ [0, 1] , i ∈ JnpK

In practice, we compute the required cross products of Bézier curve pieces symbol-

ically in terms of the control point decision variables by converting each piece to

the monomial basis (an invertible linear transformation of the control points), after

which a standard polynomial multiplication routine can be used. Note again that

this constraint is nonlinear even with fixed contact sequence timing.

Without loss of generality, we normalize the contact forces by setting the total

mass m of the robot in the reformulated problem equal to one.

18One way to see this is as follows. Each constraint can be rewritten as x(θ [i]) = 0, where x is a
Bézier curve. A Bézier curve is simply a polynomial in the Bernstein basis, restricted to the interval
[0, 1]. Its coefficients (control points) are just an invertible linear transformation away from those of
a polynomial of the same degree that is expressed in the monomial basis, and in the monomial basis
it is clear that all of the coefficients need to be zero for the polynomial to be identically zero.

114

5.4.5 Region assignment constraints

To encode the rules that govern allowable contact sequences, as described in section

5.2.5, we introduce binary contact indicator variables

zj,k[i] ∈ {0, 1} ,

where zj,k[i] = 1 if and only if contact body Cj is in contact with environment region

Ek during trajectory piece i. Note that if body Cj is not assigned to any region during

piece i, i.e.,

zj,k[i] = 0 ∀k ∈ JneK

or equivalently

ne∑
k=1

zj,k[i] = 0

then body Cj is in a swing phase.

To ensure that each contact body is assigned to at most one environment region

at any given time, we add the constraints

ne∑
k=1

zj,k[i] ≤ 1 ∀i ∈ JnpK , j ∈ JncK . (5.8)

We note that these constraints take the specific form of type-1 special ordered set

(SOS1) constraints, which most mixed-integer solvers handle using specialized rou-

tines that improve search efficiency in branch and bound algorithms, compared to

generic handling of linear constraints on binary variables [155].

Next, the requirement that environment region reassignments be interleaved with

swing phases must be met. To do so, we first introduce notation for the differences

between the contact indicator variables for consecutive trajectory pieces:

∆zj,k[i] = zj,k[i+ 1]− zj,k[i], i ∈ Jnp − 1K .

Considering each contact body Cj individually, we inspect the sum of absolute differ-

115

ences over all environment regions,

ne∑
k=1

|∆zj,k[i]| .

We find that there are three cases:19

1.
∑ne

k=1 |∆zj,k[i]| = 0: body Cj is assigned to the same environment region during

piece i and piece i+ 1;

2.
∑ne

k=1 |∆zj,k[i]| = 1: body Cj is assigned to an environment region during piece

i and is unassigned during piece i+ 1, or vice versa;

3.
∑ne

k=1 |∆zj,k[i]| = 2: body Cj is assigned to different environment regions during

piece i and piece i+ 1.

The third case should be disallowed, so we require that

ne∑
k=1

|∆zj,k[i]| ≤ 1, ∀i ∈ Jnp − 1K , j ∈ JncK . (5.9)

These are (convex) `1-norm constraints, which can be incorporated using the standard

procedure of introducing continuous slack variables

0 ≤ sj,k[i] ≤ 1 ∀i ∈ Jnp − 1K , j ∈ JncK , k ∈ JneK

along with the constraints

sj,k[i] ≥ +∆zi,j,k

sj,k[i] ≥ −∆zi,j,k
ne∑
k=1

sj,k[i] ≤ 1.

19Due to the binary nature of the contact indicator variables and the SOS1 constraint (5.8),∑ne

m=1 |∆zi,j,m| > 2 is impossible.

116

If jumping is not allowed, we can simply add the constraints

nc∑
j=1

ne∑
k=1

zj,k[i] ≥ 1, ∀i ∈ JnpK ,

which ensure that at least one body is assigned to a region during every trajectory

piece.

Finally, to ensure that the duration of each swing phase is upper-bounded by ∆t,

we rely on the timing constraints for each piece as described in section 5.4.2, but we

must also disallow consecutive swing phases.20 This is easily accomplished by adding

the constraints

ne∑
k=1

zj,k[i] +
ne∑
k=1

zj,k[i+ 1] ≥ 1, ∀i ∈ Jnp − 1K , j ∈ JncK .

Initial and final conditions on the contact situation simply result in fixings of the

zj,k[1] and zj,k[np].

5.4.6 Contact force constraints

Constraints on the contact forces (see section 5.2.3) depend on whether a given contact

body is assigned to the region, as well as the environment region description. To

enforce these constraints, we first split up the contact force Bézier pieces into region-

specific components, expressed in region-local coordinates. The two are related by

the Bézier curve constraints

fc,j[i] =
ne∑
k=1

Rw
k f̃c,j,k[i] ∀j ∈ JncK , i ∈ JnpK

where Rw
k ∈ SO (3) is the rotation component of the rigid transformation Tw

k . In

region-local coordinates, we then constrain the control points of the f̃c,j,k[i] to lie

within the friction cone Fk, exploiting the Bézier curve convex hull property. These

are second-order cone constraints, for which more advanced solvers have special sup-

20Note that consecutive stance phases (assigned to the same region) should still be allowed.

117

port. Similar to the construction used in the motivating example of section 5.3.1, we

add constraints

0 ≤
(
f̃c,j,k[i]

)
z
≤ zj,k[i]f c ∀j ∈ JncK , k ∈ JneK , i ∈ JnpK

to meet the requirement that forces can only be exerted when there is contact and to

upper-bound contact force normal components. Here, (x)z extracts the z-component

of vector x. Again, these Bézier curve constraints translate into constraints on control

points.

5.4.7 CoP and contact reference point constraints

Similar to the treatment of the contact forces, we have decision variables for the

region-local coordinates of the CoPs pj and contact reference points rj. For all j ∈

JncK , k ∈ JneK , i ∈ JnpK,

r̃j,k[i] ∈ R2

refers to the x-y coordinates of body j’s contact reference point in local frame Φk

during piece i. These local coordinates are only valid if body j is in contact with

region k. In the local coordinates, the polyhedral region constraints from section

5.2.3 should be satisfied:

r̃j,k[i] ∈ P̃k (5.10)

We then introduce additional auxiliary decision variables r̂j,k[i], representing the dif-

ference between the contact reference points in world coordinates and the transformed

contact reference points in local coordinates:

r̂j,k[i] = rj[i]− Tw
k

 r̃j,k[i]

0

after which we use a big-M formulation to ensure equality if body j is in contact with

region k:

−Mr (1− z) ≤ r̂j,k[i] ≤Mr (1− z)

118

where Mr is a suitably large constant.

The per-contact CoP’s pj are handled in very similar fashion. However, since each

pj[i] is a Bézier curve, we apply the constraints to the 2-dimensional control points of

p̃j,k[i]. Furthermore, we omit the equivalent of (5.10), and instead add the quadratic

constraints

‖pj[i]− rj[i]‖2 ≤ d
2

p,j

to fulfill the CoP distance requirement, (5.1). This polynomial constraint is again

conservatively approximated using constraints on the control points of the pj[i]. We

opt to implement these constraints in world coordinates because this avoids having

the number of these quadratic constraints scale with the number of contact regions.

The approximate kinematic constraints from section 5.2.6 translate directly into

constraints on the control points of the CoM and the contact reference points.

5.4.8 Variable bounds

As noted in section 5.3.5, the search space should be suitably bounded so as to avoid

formulating an undecidable problem. Moreover, section 5.3.5 notes the importance of

having tight variable bounds in an MINCP setting, so that the initial outer approxi-

mations of nonconvex constraint functions are not unnecessarily conservative.

While we rely on the solvers’ bounds tightening capabilities to an extent, adding

explicit bounds on at least a subset of the decision variables as a seed is required.

Some solvers, such as BARON, will return an error code if a problem has insufficient

variable bounds. Furthermore, variable bounds that may seem redundant, given e.g.

the initial conditions and approximate kinematic constraints, can drastically change

solver performance and also reduce the performance gap between different solvers due

to differences in bounds tightening techniques.

Aside from the bounds discussed in previous sections, the main ‘redundant’, man-

ually added variable bounds we use are on:

• squared piece time durations: ∆t[i]2 ≤ ∆tsq[i] ≤ ∆t[i]2;

119

• contact reference points in world frame (rj[i]): bounding box around environ-

ment regions {Pk}k∈JneK (computed from V-representations);

• CoM control points in world frame (c[i]): obtained by offsetting the contact

reference points bounding box;

• contact reference points in local frames (r̃j,k[i]): obtained from bounding boxes

around the P̃k polyhedra.

• CoP control points in world frame and local frames (pj[i], p̃j,k[i]): obtained by

offsetting bounding boxes for rj[i] and r̃j,k[i];

• tangential components of contact forces in local frames (f̃c,j,k[i]): from friction

cone and upper limit on contact normal force, f c.

5.4.9 MIQP relaxation

Our computational results include a comparison between solving the MINCP reformu-

lation of the planning problem directly using a dedicated MINCP solver, and solving

an MIQP relaxation of this problem using a dedicated MIQP solver, after approx-

imating the nonconvex quadratic constraints using piecewise McCormick envelopes

(see section 5.3.4). The polyhedral disjunctive constraints are reformulated as mixed-

integer/linear constraints using a 1-dimensional version of the method presented in

[156], which uses a number of binary variables and constraints that is logarithmic in

the number of McCormick envelope pieces.

5.5 Whole-body control

Using the results of the trajectory optimization as inputs to the whole-body controller

from chapter 3 is fairly straightforward. We use the motion task setup and weights

described in section 3.4.2.

The piecewise-Bézier CoM trajectory is used unaltered as the reference for a PD

controller on CoM position, which in turn outputs a desired value for the linear mo-

120

mentum rate of change motion task, thus replacing the ICP-based linear momentum

reference generation from section 3.4.3. Trajectories for the contact forces and CoPs

are not used for online tracking. The trajectories found by the MINLP solver simply

provide a certificate that the center of mass trajectory is indeed feasible given the

contact sequence (in similar vein to e.g. [104]). This also makes it unnecessary to add

constraints or objective terms to the trajectory optimization aimed at smoothening

individual contact forces.

Turning the sequence of contact reference points into a footstep plan that in-

cludes the orientations of the contact bodies at touchdown is slightly less trivial.

The sequence of desired touchdown orientations of a given contact body is computed

recursively, starting from the body’s actual orientation at t = 0. Each subsequent

touchdown orientation is computed by finding the closest orientation to the previous

orientation, subject to the constraint that the z-axis be aligned with the normal nk of

the environment region Ek with which the body is coming into contact. Here, great-

circle distance is used as the metric to minimize, and we use the well-known analytic

solution for this problem.

Given the footstep plan, the foot trajectory generation proceeds as described in

section 3.4.2.

5.6 Implementation

The implementation was done in Julia. The main code base is available at https:

//github.com/tkoolen/CentroidalTrajOpt.jl.

Section 5.6.1 describes the various solvers that were used. Section 5.6.2 describes

software used for problem formulation.

5.6.1 Solvers

See table 5.1 for a list of used solvers. MINLP solvers use one or more subsolvers

for both mixed-integer linear relaxations or nonlinear continuous relaxations / refor-

mulations, which are also listed. BARON ships with Ipopt, FilterSD and FilterSQP

121

https://github.com/tkoolen/CentroidalTrajOpt.jl
https://github.com/tkoolen/CentroidalTrajOpt.jl

Table 5.1: List of main solvers and subsolvers.

Solver Version Julia wrapper Role

BARON 18.8.24 BARON.jl21 MINLP solver

SCIP 6.0.2 SCIP.jl22 MINLP solver

CPLEX 12.8.0 Not used. MILP subsolver for SCIP, BARON

Ipopt 3.12.12 Ipopt.jl23 NLP subsolver for SCIP, complementarity comparison

WORHP 1.13 N/A NLP subsolver for SCIP

as nonlinear subsolvers, but subsolver versions are unknown. Ipopt was built with

ASL and METIS, with HSL for linear solver implementations, and with Intel MKL

as the BLAS/LAPACK implementation. SCIP was built with this version of Ipopt as

well as the WORHP NLP solver, in addition to using CPLEX as the (mixed-integer)

linear program solver.

Minimal parameter tuning was performed for these solvers. Default settings were

used for Ipopt. The following parameter settings were used for BARON:

• AllowFilterSD: 1

• AllowFilterSQP: 1

• AllowIpopt: 1

• threads: 10 (on a machine with 10 physical cores)

Parameters for SCIP were as follows:

• Emphasis setting: feasibility

• Presolving hyperparameter: aggressive

• Heuristics: aggressive

• heuristics/rens/freq: -1

21https://github.com/joehuchette/BARON.jl
22https://github.com/SCIP-Interfaces/SCIP.jl
23https://github.com/JuliaOpt/Ipopt.jl

122

https://github.com/joehuchette/BARON.jl
https://github.com/SCIP-Interfaces/SCIP.jl
https://github.com/JuliaOpt/Ipopt.jl

For Ipopt, we set linear solver to ma27 (a fast solver that is part of HSL).

The last of these settings disables the RENS (Relaxation Enforced Neighborhood

Search) heuristic, which often takes a long time, but appears to never be successful

in finding a feasible point.

5.6.2 Problem formulation

For whole-body control, the software stack described in section 3.5 is used. The

software stack for trajectory optimization comprises mainly of the following packages:

• JuMP.jl24 is used as the optimization modeling language.

• Polyhedra.jl25 is used for polyhedron representation conversions.

• AxisArrays.jl26 is used to simplify storing and access of decision variables.

• MultilinearOpt.jl27 (based on PiecewiseLinearOpt.jl [157]) is used to automati-

cally generate the MIQP relaxation of the MINCP.

• StaticUnivariatePolynomials.jl28 is used to represent and manipulate polynomi-

als, both in monomial and Bernstein basis.

All of these packages are free and open source. Of these packages, only the last was

fully written by the author.

5.7 Results

This section presents results of computational experiments. All results were obtained

on a desktop machine with an Intel Core i7-6950X CPU @ 3.00GHz. Section 5.7.1

presents the benchmark scenarios. Section 5.7.2 presents nominal performance results,

and section 5.7.3 investigates performance variability in the face of small changes to

the problem formulation.

24https://github.com/JuliaOpt/JuMP.jl
25https://github.com/JuliaPolyhedra/Polyhedra.jl
26https://github.com/JuliaArrays/AxisArrays.jl
27https://github.com/joehuchette/MultilinearOpt.jl
28https://github.com/tkoolen/StaticUnivariatePolynomials.jl

123

https://github.com/JuliaOpt/JuMP.jl
https://github.com/JuliaPolyhedra/Polyhedra.jl
https://github.com/JuliaArrays/AxisArrays.jl
https://github.com/joehuchette/MultilinearOpt.jl
https://github.com/tkoolen/StaticUnivariatePolynomials.jl

Table 5.2: Problem parameters.

Parameter Value Description

∆t 0.6 s Min. trajectory piece time.

∆t 1.5 s Max. trajectory piece time.

dp,j (∀j) 0.0626 m Max. distance from CoP to contact reference point.

dc,j (∀j) 1.05 m Max. distance between CoM and contact reference points.
dc,j (∀j) 0.8 m Min. distance between CoM and contact reference points.
dr,1,2 0.2919 m Min. distance between foot contact reference points.

5.7.1 Scenarios

Results are presented for two scenarios. Referring to the scenario of Fig. 5-1, the

scenarios are:

1. Only regions E1 and E2 are present, and the trajectory consists of np = 4 pieces.

2. Regions E1, E2, E3, and E4 are all present, and the trajectory consists of np = 10

pieces.

In both scenarios, the only contact bodies are the feet. The intial state is the same

in both scenarios, and the goal is to end up with both feet in the environment region

with highest index. See Table 5.2 for a list of additional problem parameters, shared

between the scenarios.

5.7.2 Nominal performance

See Table 5.3 for the time taken by BARON and SCIP to find a feasible point for

the trajectory optimization problems for each scenario. See Fig. 5-7 for an example

CoM trajectory with scenario 2. Unless stated otherwise, the resulting trajectory

was successfully executed in simulation on the full robot using the momentum-based

control framework.

We expected that the fixed-timing version would be easier to solve than the version

with variable timing, due to the lower number of bilinear constraints. To evaluate

this hypothesis, we first found a solution with variable timing, after which a fixed-

timing problem was formulated using the values from the variable timing problem.

124

Table 5.3: Solver performance: time to find a feasible point. Times reported by
solvers.

Solver Scenario Timing Time (s) Notes

BARON
1

Variable 189
Fixed 106

2
Variable 4453
Fixed 2294

SCIP
1

Variable 0.53
Fixed 0.52

2
Variable 21.83
Fixed Time limit (1800)

Ipopt
1

Variable 3.876
Fixed 8.575

2
Variable 35.228 Ipopt problem

restoration phase failed,
constraints violated, plan
execution failed.

Fixed 32.30 Ipopt problem
restoration phase failed,
constraints violated, plan
execution failed.

The results are also listed in table 5.3.

Binary constraints of the form z ∈ {0, 1} can be reformulated as complementarity

constraints, z (1− z) = 0. This allows a gradient-based solver like Ipopt to be used

instead of a dedicated MINLP solver. This approach was used to generate the entries

for Ipopt in Table 5.3.

SCIP typically finds feasible points using one of the following heuristics:

• subnlp, which applies NLP local search to the problem after fixing all integer

variables, tends to be successful for smaller problems like scenario 1.

• alns (adaptive large neighborhood search [158]), which orchestrates eight pop-

ular large neighborhood search (LNS) heuristics (see section 5.3.5), tends to be

successful for larger problems like scenario 2.

See Fig. 5-8 for freeze frames of a simulation with the momentum-based controller

used to track this CoM trajectory. Foot position tracking errors at touchdown are

generally within 2.5 cm. There is occasionally some foot slip.

125

Figure 5-7: Center of mass trajectory for scenario 2, found by SCIP with free timing.

Figure 5-8: Result of tracking the CoM trajectory found by SCIP with free timing
for scenario 2.

126

Table 5.4: Performance variability with SCIP: time to find a feasible point when
varying the displacement ∆x of the final environment region along the x-axis. Times
reported by solver. Solution time was limited to 400 s.

Scenario ∆x (mm) Time (s)

1

-2 0.57
-1 0.52
0 0.53
1 0.48
2 0.50

2

-2 21.86
-1 Time limit
0 21.83
1 Time limit
2 Time limit

5.7.3 Performance variability

Mixed-integer solvers are infamous for having rather unpredictable performance char-

acteristics [159]. We investigated performance variability in finding the first feasible

point by varying the position of the origin of the final environment region (E2 in

scenario 1, E4 in scenario 2) along the x-axis of Φw within a 5 mm interval centered

around the nominal case discussed in section 5.7.2. See Table 5.4 for the resulting

solution times with SCIP.

5.8 Discussion

This chapter represents an exploratory study, with formulation and solution tech-

niques that have not yet received much attention from the robotics community.This

work should be considered an initial assessment of these techniques, and a starting

point for future studies.

We believe that there is much to learn from the mixed-integer optimization com-

munity, particularly from primal heuristics devised for mixed-binary nonconvex pro-

grams and outer approximation methods. We note that the methods of [105] and [29]

can be considered implementations of these outer approximation methods.

The remainder of this section focuses on the following areas: possible extensions

127

(section 5.8.1), experience with the solvers (section 5.8.2), and issues with whole-

body tracking and use on a physical robot (section 5.8.3). Section 5.8.4 provides

some future perspectives.

5.8.1 Possible extensions

We note that there are many possible variations of the presented problem statement

and MINLP reformulation, corresponding to various tradeoffs between problem com-

plexity and fidelity. As a result of practical experience with MINLP solvers and to

simplify exposition, we chose a fairly basic problem formulation.

The presented formulation is most notably missing any notion of orientation of

the contact bodies and of the pose of the full robot beyond center of mass position.

Future work could explore approximating the pose of the robot with the pose of a

lumped rigid body used to approximate the trunk. This would allow for more accurate

approximate kinematic constraints, which are the main impediment to application on

a physical robot.

The formulation does not include any contact torques normal to the contact sur-

faces. Experiments with adding a friction-limited normal torque component suggested

that this addition results in a much longer time to find a feasible point. Perhaps it

would be better to switch from a formulation with time-variant body-fixed CoPs, pi,

as decision variables to a formulation with several body-fixed contact points, more

akin to the QP formulation used in the whole-body controller.

Friction coefficients were modeled as being dependent only on the environment

region. However, each contact body could be made of a different material, in which

case the coefficient of friction depends on the combination of environment region and

contact body. Modeling this situation would be straightforward.

In our problem statement, we conflated time duration constraints for the swing

phases with those for the stance phases. Supporting a different minimal swing time

and minimal stance time could be done using additional indicator constraints.

128

5.8.2 Solver performance and experiences

The performance of the MINLP solvers used for the computational experiments is

perhaps not as good as one might hope. The relative unpredictability in the time

to find the first feasible point is especially worrisome. However, we stress that we

did not specify any initial point, while other approaches can be quite sensitive to the

seed.

Compared to a direct reformulation using complementarity constraints and so-

lution using Ipopt, the benchmarks in the previous section show that a dedicated

mixed-integer nonlinear program solver like SCIP can improve performance, espe-

cially for larger problems.

As noted, typical MINLP solvers orchestrate various subsolvers, used to solve

continuous relaxations and linear outer approximations. Each of the subsolvers may

have various parameters that affect performance. In addition, the tree search itself

may involve an array of different heuristics, and these heuristics also have associated

parameters. Additional frequency and priority parameters govern at which nodes

each of these heuristics are applied. Tuning all of these parameters can be a daunt-

ing process, with further frustration stemming from performance variability between

problem instances. SCIP has over 1600 tunable parameters, while BARON only

exposes a fairly limited set of parameters to the user, relying more on pre-tuned,

hardcoded defaults. Some guidelines for parameter tuning can be found in [160], and

we note the usefulness of SCIP’s emphasis meta-parameters. An advantage of SCIP

over BARON is that it is possible to query statistics regarding how often each primal

heuristic was applied to a particular problem, how much time it required, and whether

it was successful in finding a feasible point. A basic parameter tuning approach is to

de-prioritize primal heuristics that take a lot of time but are not often successful.

Quickly finding a first feasible point is of great importance, both to provide any-

time capability and to effectively prune the search tree when minimizing an objective

function. We note that whether or not an objective function is specified may have

a large effect on the time required to find the first feasible point. In our experience,

129

it is preferable to first solve a feasibility problem to find a feasible point, and then

reoptimize with the desired objective function.

We expected that fixing the timing of the contact sequence a priori would result in

vastly reduced times to find a first feasible point, due to the greatly reduced number

of nonconvex constraints, as well as a reduced number of variables involved in such

constraints. Instead, we found that fixing the timing to values found by solving a

problem with variable timing lead to increased solution times or inability to find a

solution within reasonable time limits with SCIP, and reduced, but still long solution

times with BARON.

As briefly mentioned in section 5.7.3, performance variability is a frustrating real-

ity of mixed-integer nonlinear program solvers, both when finding an initial feasible

point and while improving objective function bounds. This is a result of the heavy

reliance on heuristics, in combination with tree search and rounding methods that of-

ten rely on floating point number comparisons. Performance may degrade or improve

significantly depending on the number of regions and the number of trajectory pieces,

as well as solver build options and available subsolvers, where we note that switching

to subsolvers that are supposed to be better on paper can sometimes result in worse

performance for the benchmarks we tested. More worryingly, very minor changes to

the problem formulation can have large effects, especially for large problems. Such

changes include the order in which constraints are defined and very minor changes in

the locations of environment regions, as demonstrated in section 5.7.3.

We note that SCIP has a modular plugin structure that allows users to define

their own constraint types and heuristics. Future work could explore implementing

plugins to embed problem-specific knowledge, leading to more efficient pruning and

exploration of the search tree. We also briefly explored the use of SCIP’s dedicated

polyhedral indicator constraint type, to replace manual mixed-integer reformulations

of polyhedral disjunctive constraints. This foray did not immediately prove fruitful,

but it may be worth exploring SCIP’s support for indicator constraints over arbitrary

constraint types (superindicator constraints) to model disjunctive second-order cone

constraints related to friction cones, and to simplify problem formulation in general.

130

5.8.3 Whole-body control and application to a physical robot

The approximate nature of the kinematic constraints used for planning is currently

the biggest hurdle standing in the way of finding plans that are likely to be executable

on a physical robot.

A more subtle problem stems from the fact that the planned trajectory is found

on the basis of zero rate of change of angular momentum. We do not actually enforce

this as a motion task in the whole-body control framework, because we also desire

to keep the orientation of the upper body in check, a conflicting goal. This means

that the success of tracking on the full robot, even in simulation, is not guaranteed.

Despite the lack of a formal guarantee, we have found that success in simulation is

very likely. However, there are occasional issues with rotational foot slip, as a result

of a rate of change of vertical angular momentum associated with pelvis orientation

tracking combined with fast leg swings. These issues can be mitigated to a certain

extent by decreasing pelvis orientation tracking gains. Angular-momentum-aware

swing foot trajectory generation could also improve this situation [161].

The proposed approach consumes a description of the local contact environment

in the form of a small number of polyhedra. In practice, methods from [162] could be

used to extract such a polyhedral environment description, but this integration step

is beyond the scope of this thesis.

5.8.4 Applications and future perspectives

There are several possible applications of the presented approach. First, results of

an MINLP feasibility problem could be used to warm-start a trajectory optimization

involving the full-dimensional dynamics. This may mitigate some of the limitations

related to approximate kinematic constraints and lack of orientation information,

while potentially providing a significant speedup compared to a cold start.

Second, a library of MINLP trajectory optimization results could be created of-

fline for a variety of scenarios, and used as samples that guide the search for an

online policy using function approximation / learning techniques. This approach was

131

explored in [121] in the context of MIQP, where the value function for an optimal

control problem was approximated based on upper and lower bounds on the objective

function. However, the slow progress towards establishing nontrivial upper and lower

bounds in the case of MINLP with longer time horizons may prove prohibitive.

A compelling alternative is the use of more direct reinforcement learning ap-

proaches, which have recently been successfully transferred to the physical robot from

the simulation environment in which they were trained [163]. A main advantage of

these approaches is that there are fewer restrictions on the problem formulation: the

plant system can be considered more of a black box. In addition, the computation

is trivial to parallelize on one machine or even distribute across multiple machines.

In contrast, state-of-the-art MINLP solvers appear unable to fully exploit even the

available threads on a single machine.29 On the other hand, the approach of [163]

has so far only successfully been shown to transfer to a physical quadruped robot,

and the reduced margin of error stemming from humanoids robots’ reduced base of

support may yet prove a significant hurdle.

5.9 Conclusion

This chapter presented a centroidal trajectory optimization approach that relies on

the use of dedicated mixed-integer nonlinear program solvers. The approach explic-

itly takes bilinear constraints associated with whole-body angular momentum into

account. The feasibility of the resulting center of mass trajectory is certified by asso-

ciated contact force trajectories that satisfy friction cone constraints associated with

the contact environment, modeled as a set of polyhedral regions. This center of mass

trajectory was subsequently as the input to a momentum-based whole-body control

framework, and used to achieve locomotion over the terrain in simulation.

29We note of course that different problems can still be trivially distributed over available machines,
in the context of building a library of MINLP solutions.

132

Bibliography

[1] T. Koolen, T. De Boer, J. Rebula, A. Goswami, and J. Pratt, “Capturability-

based analysis and control of legged locomotion, part 1: Theory and application

to three simple gait models,” The International Journal of Robotics Research,

vol. 31, no. 9, pp. 1094–1113, 2012.

[2] T. McGeer, “Passive dynamic walking,” The International Journal of Robotics

Research, vol. 9, no. 2, pp. 62–82, 1990.

[3] M. J. Coleman and A. Ruina, “An uncontrolled walking toy that cannot stand

still,” Physical Review Letters, vol. 80, no. 16, p. 3658, 1998.

[4] D. G. Hobbelen and M. Wisse, “Limit cycle walking,” in Humanoid Robots,

Human-like Machines, IntechOpen, 2007.

[5] P. Zaytsev, S. J. Hasaneini, and A. Ruina, “Two steps is enough: No need to

plan far ahead for walking balance,” in 2015 IEEE International Conference on

Robotics and Automation (ICRA), pp. 6295–6300, IEEE, 2015.

[6] M. Posa, T. Koolen, and R. Tedrake, “Balancing and step recovery capturability

via sums-of-squares optimization,” in Robotics: Science and Systems, pp. 12–16,

2017.

[7] J. Englsberger, T. Koolen, S. Bertrand, J. Pratt, C. Ott, and A. Albu-Schäffer,

“Trajectory generation for continuous leg forces during double support and

heel-to-toe shift based on divergent component of motion,” in 2014 IEEE/RSJ

133

International Conference on Intelligent Robots and Systems, pp. 4022–4029,

IEEE, 2014.

[8] P. Belotti, C. Kirches, S. Leyffer, J. Linderoth, J. Luedtke, and A. Mahajan,

“Mixed-integer nonlinear optimization,” Acta Numerica, vol. 22, pp. 1–131,

2013.

[9] E. Krotkov, D. Hackett, L. Jackel, M. Perschbacher, J. Pippine, J. Strauss,

G. Pratt, and C. Orlowski, “The DARPA robotics challenge finals: results and

perspectives,” Journal of Field Robotics, vol. 34, no. 2, pp. 229–240, 2017.

[10] J.-P. Aubin, Viability theory. Springer Science & Business Media, 2009.

[11] P.-B. Wieber, “On the stability of walking systems,” in Proceedings of the in-

ternational workshop on humanoid and human friendly robotics, 2002.

[12] F. Blanchini, “Set invariance in control,” Automatica, vol. 35, no. 11, pp. 1747–

1767, 1999.

[13] P. A. Parrilo, Structured semidefinite programs and semialgebraic geometry

methods in robustness and optimization. PhD thesis, California Institute of

Technology, 2000.

[14] S. Prajna and A. Jadbabaie, “Safety verification of hybrid systems using barrier

certificates,” in International Workshop on Hybrid Systems: Computation and

Control, pp. 477–492, Springer, 2004.

[15] M. Korda, D. Henrion, and C. N. Jones, “Convex computation of the maxi-

mum controlled invariant set for polynomial control systems,” SIAM Journal

on Control and Optimization, vol. 52, no. 5, pp. 2944–2969, 2014.

[16] A. Majumdar, R. Vasudevan, M. M. Tobenkin, and R. Tedrake, “Convex op-

timization of nonlinear feedback controllers via occupation measures,” The In-

ternational Journal of Robotics Research, vol. 33, no. 9, pp. 1209–1230, 2014.

134

[17] J.-P. Aubin, “Viability kernels and capture basins of sets under differential

inclusions,” SIAM Journal on Control and Optimization, vol. 40, no. 3, pp. 853–

881, 2001.

[18] C. Mummolo, L. Mangialardi, and J. H. Kim, “Numerical estimation of bal-

anced and falling states for constrained legged systems,” Journal of Nonlinear

Science, vol. 27, no. 4, pp. 1291–1323, 2017.

[19] A. Del Prete, S. Tonneau, and N. Mansard, “Zero step capturability for

legged robots in multicontact,” IEEE Transactions on Robotics, vol. 34, no. 4,

pp. 1021–1034, 2018.

[20] R. M. Murray, A mathematical introduction to robotic manipulation. CRC press,

1994.

[21] R. Featherstone, Rigid body dynamics algorithms. Springer, 2008.

[22] V. Duindam, Port-Based Modeling and Control for Efficient Bipedal Walking

Robots. PhD thesis, University of Twente, 2006.

[23] D. E. Orin, A. Goswami, and S.-H. Lee, “Centroidal dynamics of a humanoid

robot,” Autonomous Robots, pp. 1–16, June 2013.

[24] D. E. Orin and A. Goswami, “Centroidal momentum matrix of a humanoid

robot: Structure and properties,” in 2008 IEEE/RSJ International Conference

on Intelligent Robots and Systems, pp. 653–659, IEEE, 2008.

[25] J. E. Pratt, S. Bertrand, and T. Koolen, Stepping for Balance Maintenance

Including Push-Recovery, pp. 1–48. Dordrecht: Springer Netherlands, 2018.

[26] C. Runge, C. Shupert, F. Horak, and F. Zajac, “Ankle and hip postural strate-

gies defined by joint torques,” Gait & posture, vol. 10, no. 2, pp. 161–170, 1999.

[27] H. Hirukawa, S. Hattori, S. Kajita, K. Harada, K. Kaneko, F. Kanehiro,

M. Morisawa, and S. Nakaoka, “A pattern generator of humanoid robots walk-

135

ing on a rough terrain,” in Proceedings 2007 IEEE International Conference on

Robotics and Automation, pp. 2181–2187, IEEE, 2007.

[28] S. Caron, Q.-C. Pham, and Y. Nakamura, “Stability of surface contacts for

humanoid robots: Closed-form formulae of the contact wrench cone for rectan-

gular support areas,” in 2015 IEEE International Conference on Robotics and

Automation (ICRA), pp. 5107–5112, IEEE, 2015.

[29] H. Dai and R. Tedrake, “Planning robust walking motion on uneven terrain

via convex optimization,” in 2016 IEEE-RAS 16th International Conference on

Humanoid Robots (Humanoids), pp. 579–586, IEEE, 2016.

[30] J. Carpentier, R. Budhiraja, and N. Mansard, “Learning feasibility constraints

for multi-contact locomotion of legged robots,” in Robotics: Science and Sys-

tems, p. 9p, 2017.

[31] A. K. Valenzuela, Mixed-integer convex optimization for planning aggressive

motions of legged robots over rough terrain. PhD thesis, Massachusetts Institute

of Technology, 2016.

[32] H. Dai, A. Valenzuela, and R. Tedrake, “Whole-body motion planning with cen-

troidal dynamics and full kinematics,” in 2014 IEEE-RAS International Con-

ference on Humanoid Robots, pp. 295–302, IEEE, 2014.

[33] G. Nelson, A. Saunders, and R. Playter, “The PETMAN and Atlas robots at

Boston Dynamics,” Humanoid Robotics: A Reference, pp. 169–186, 2019.

[34] S. Kajita and K. Tani, “Study of dynamic biped locomotion on rugged terrain-

derivation and application of the linear inverted pendulum mode,” in Robotics

and Automation, 1991. Proceedings., 1991 IEEE International Conference on,

pp. 1405–1411 vol.2, Apr 1991.

[35] S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, and H. Hirukawa, “The 3D linear

inverted pendulum mode: a simple modeling for a biped walking pattern gener-

136

ation,” in Intelligent Robots and Systems, 2001. Proceedings. 2001 IEEE/RSJ

International Conference on, vol. 1, pp. 239–246 vol.1, 2001.

[36] J. Pratt, J. Carff, S. Drakunov, and A. Goswami, “Capture point: A step

toward humanoid push recovery,” in Humanoid Robots, 2006 6th IEEE-RAS

International Conference on, pp. 200–207, Dec 2006.

[37] S.-H. Lee and A. Goswami, “Reaction mass pendulum (RMP): An explicit

model for centroidal angular momentum of humanoid robots,” in Proceedings

2007 IEEE International Conference on Robotics and Automation, pp. 4667–

4672, IEEE, 2007.

[38] B. Stephens, “Humanoid push recovery,” in 2007 7th IEEE-RAS International

Conference on Humanoid Robots, pp. 589–595, IEEE, 2007.

[39] M. B. Popovic, A. Goswami, and H. Herr, “Ground reference points in legged

locomotion: Definitions, biological trajectories and control implications,” The

International Journal of Robotics Research, vol. 24, no. 12, pp. 1013–1032, 2005.

[40] H. Herr and M. Popovic, “Angular momentum in human walking,” Journal of

experimental biology, vol. 211, no. 4, pp. 467–481, 2008.

[41] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and

H. Hirukawa, “Biped walking pattern generation by using preview control of

zero-moment point,” in 2003 IEEE International Conference on Robotics and

Automation (Cat. No. 03CH37422), vol. 2, pp. 1620–1626, IEEE, 2003.

[42] J. Pratt, T. Koolen, T. De Boer, J. Rebula, S. Cotton, J. Carff, M. Johnson,

and P. Neuhaus, “Capturability-based analysis and control of legged locomo-

tion, part 2: Application to M2V2, a lower-body humanoid,” The International

Journal of Robotics Research, vol. 31, no. 10, pp. 1117–1133, 2012.

[43] J. Englsberger, C. Ott, M. A. Roa, A. Albu-Schäffer, and G. Hirzinger, “Bipedal

walking control based on capture point dynamics,” in 2011 IEEE/RSJ Inter-

137

national Conference on Intelligent Robots and Systems, pp. 4420–4427, IEEE,

IEEE, Sept. 2011.

[44] P.-B. Wieber, “Trajectory free linear model predictive control for stable walking

in the presence of strong perturbations,” in 2006 6th IEEE-RAS International

Conference on Humanoid Robots, pp. 137–142, IEEE, 2006.

[45] R. J. Griffin and A. Leonessa, “Model predictive control for dynamic footstep

adjustment using the divergent component of motion,” in 2016 IEEE Interna-

tional Conference on Robotics and Automation (ICRA), pp. 1763–1768, IEEE,

2016.

[46] J. Chestnutt, M. Lau, G. Cheung, J. Kuffner, J. Hodgins, and T. Kanade,

“Footstep planning for the Honda ASIMO humanoid,” in Proceedings of the

2005 IEEE international conference on robotics and automation, pp. 629–634,

IEEE, 2005.

[47] J. Kuffner, S. Kagami, K. Nishiwaki, M. Inaba, and H. Inoue, “Online foot-

step planning for humanoid robots,” in 2003 IEEE International Conference on

Robotics and Automation (Cat. No. 03CH37422), vol. 1, pp. 932–937, IEEE,

2003.

[48] D. Witt, “A feasibility study on powered lower-limb prostheses,” in Proceedings

of the Institution of Mechanical Engineers, Conference Proceedings, vol. 183,

pp. 18–25, SAGE Publications Sage UK: London, England, 1968.

[49] T. Takenaka, T. Matsumoto, and T. Yoshiike, “Real time motion generation

and control for biped robot - 1st report: Walking gait pattern generation,” in

2009 IEEE/RSJ International Conference on Intelligent Robots and Systems,

pp. 1084–1091, IEEE, 2009.

[50] J. E. Pratt and S. V. Drakunov, “Derivation and application of a conserved

orbital energy for the inverted pendulum bipedal walking model,” in Robotics

138

and Automation, 2007 IEEE International Conference on, pp. 4653–4660, April

2007.

[51] A. L. Hof, M. Gazendam, and W. Sinke, “The condition for dynamic stability,”

Journal of Biomechanics, vol. 38, no. 1, pp. 1–8, 2005.

[52] L. Lanari, S. Hutchinson, and L. Marchionni, “Boundedness issues in planning

of locomotion trajectories for biped robots,” in 2014 IEEE-RAS International

Conference on Humanoid Robots, pp. 951–958, IEEE, 2014.

[53] J. Pratt and G. Pratt, “Intuitive control of a planar bipedal walking robot,” in

Proceedings. 1998 IEEE International Conference on Robotics and Automation

(Cat. No. 98CH36146), vol. 3, pp. 2014–2021, IEEE, 1998.

[54] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and

H. Hirukawa, “Resolved momentum control: Humanoid motion planning based

on the linear and angular momentum,” in Proceedings 2003 IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems (IROS 2003), vol. 2,

pp. 1644–1650, IEEE, 2003.

[55] B. Siciliano and J. Slotine, “A general framework for managing multiple tasks

in highly redundant robotic systems,” in Proceedings of the 5th International

Conference on Advanced Robotics, vol. 2, pp. 1211–1216, IEEE, 1991.

[56] T. Koolen, J. Smith, G. Thomas, S. Bertrand, J. Carff, N. Mertins, D. Stephen,

P. Abeles, J. Englsberger, S. Mccrory, et al., “Summary of Team IHMC’s Virtual

Robotics Challenge entry,” in 2013 13th IEEE-RAS International Conference

on Humanoid Robots (Humanoids), (Atlanta, GA), pp. 307–314, IEEE, IEEE,

2013.

[57] T. Koolen, S. Bertrand, G. Thomas, T. De Boer, T. Wu, J. Smith, J. Engls-

berger, and J. Pratt, “Design of a momentum-based control framework and

application to the humanoid robot Atlas,” International Journal of Humanoid

Robotics, vol. 13, no. 01, p. 1650007, 2016.

139

[58] O. Khatib, “A unified approach for motion and force control of robot manip-

ulators: The operational space formulation,” IEEE Journal on Robotics and

Automation, vol. 3, pp. 43–53, Feb. 1987.

[59] O. Khatib, L. Sentis, J. Park, and J. Warren, “Whole-body dynamic behavior

and control of human-like robots,” International Journal of Humanoid Robotics,

vol. 1, no. 1, pp. 29–43, 2004.

[60] L. Sentis and O. Khatib, “Synthesis of whole-body behaviors through hier-

archical control of behavioral primitives,” International Journal of Humanoid

Robotics, vol. 2, no. 04, pp. 505–518, 2005.

[61] L. Sentis, Synthesis and Control of Whole-Body Behaviors in Humanoid Sys-

tems. Doctor of philosophy, Stanford University, 2007.

[62] M. Ehrgott, Multicriteria optimization, vol. 491. Springer Science & Business

Media, 2005.

[63] A. Escande, N. Mansard, and P.-B. Wieber, “Hierarchical quadratic program-

ming: Fast online humanoid-robot motion generation,” The International Jour-

nal of Robotics Research, vol. 33, no. 7, pp. 1006–1028, 2014.

[64] A. Migdalas, P. M. Pardalos, and P. Värbrand, Multilevel optimization: algo-

rithms and applications, vol. 20. Springer Science & Business Media, 2013.

[65] S.-H. Hyon, J. Hale, and G. Cheng, “Full-body compliant human-humanoid

interaction: Balancing in the presence of unknown external forces,” vol. 23,

pp. 884–898, Oct. 2007.

[66] S.-H. Hyon, R. Osu, and Y. Otaka, “Integration of multi-level postural balancing

on humanoid robots,” in Proc. 2009 IEEE Int. Conf. Robot. Automat., pp. 1549–

1556, IEEE, May 2009.

[67] L. Righetti, J. Buchli, M. Mistry, and S. Schaal, “Inverse dynamics with optimal

distribution of ground reaction forces for legged robots,” in Emerging Trends in

140

Mobile Robotics - Proceedings of the 13th International Conference on Climb-

ing and Walking Robots and the Support Technologies for Mobile Machines,

(Singapore), pp. 580–587, World Scientific Publishing Co. Pte. Ltd., 2010.

[68] M. Mistry, J. Buchli, and S. Schaal, “Inverse dynamics control of floating base

systems using orthogonal decomposition,” in 2010 IEEE international confer-

ence on robotics and automation, no. 3, (Anchorage, Alaska), pp. 3406–3412,

IEEE, 2010.

[69] L. di Gaspero and E. Moyer, “QuadProg++.”

http://quadprog.sourceforge.net/, 2015.

[70] Gurobi Optimization, Inc., “Gurobi optimizer reference manual.”

http://www.gurobi.com, 2015.

[71] J. Mattingley and S. Boyd, “CVXGEN: Code generation for convex optimiza-

tion.” http://cvxgen.com/, 2015.

[72] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “OSQP: An

operator splitting solver for quadratic programs,” in 2018 UKACC 12th Inter-

national Conference on Control (CONTROL), pp. 339–339, IEEE, 2018.

[73] S. Kudoh, T. Komura, and K. Ikeuchi, “The dynamic postural adjustment with

the quadratic programming method,” in Intelligent Robots and Systems, 2002.

IEEE/RSJ International Conference on, vol. 3, pp. 2563–2568, IEEE, 2002.

[74] A. Macchietto, V. Zordan, and C. R. Shelton, “Momentum control for balance,”

in ACM Transactions on graphics (TOG), vol. 28, p. 80, ACM, 2009.

[75] B. J. Stephens and C. G. Atkeson, “Dynamic balance force control for compliant

humanoid robots,” in 2010 IEEE/RSJ international conference on intelligent

robots and systems, pp. 1248–1255, IEEE, IEEE, 2010.

[76] L. Saab, O. E. Ramos, F. Keith, N. Mansard, P. Soueres, and J. Fourquet, “Dy-

namic whole-body motion generation under rigid contacts and other unilateral

constraints,” Robotics, IEEE Transactions on, vol. 29, no. 2, pp. 346–362, 2013.

141

[77] L. Righetti, J. Buchli, M. Mistry, M. Kalakrishnan, and S. Schaal, “Optimal

distribution of contact forces with inverse dynamics control,” The International

Journal of Robotics Research, Jan. 2013.

[78] S. Kuindersma, F. Permenter, and R. Tedrake, “An efficiently solvable quadratic

program for stabilizing dynamic locomotion,” in Proceedings of the Interna-

tional Conference on Robotics and Automation (ICRA), (Hong Kong, China),

May 2014.

[79] A. Herzog, L. Righetti, F. Grimminger, P. Pastor, and S. Schaal, “Balanc-

ing experiments on a torque-controlled humanoid with hierarchical inverse dy-

namics,” in Proceedings of the IEEE International Conference on Intelligent

Robotics Systems, 2014.

[80] S. Feng, E. Whitman, X. Xinjilefu, and C. G. Atkeson, “Optimization-based full

body control for the DARPA Robotics Challenge,” Journal of Field Robotics,

vol. 32, no. 2, pp. 293–312, 2015.

[81] S.-H. Lee and A. Goswami, “Ground reaction force control at each foot : A

momentum-based humanoid balance controller for non-level and non-stationary

ground,” in Proc. 2010 IEEE/RSJ Int. Conf. Intelligent Robots and Systems,

pp. 3157–3162, 2010.

[82] S.-H. Lee and A. Goswami, “A momentum-based balance controller for hu-

manoid robots on non-level and non-stationary ground,” Autonomous Robots,

vol. 33, no. 4, pp. 399–414, 2012.

[83] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot modeling and control.

Wiley New Jersey, 2006.

[84] F. Bullo and R. Murray, “Proportional derivative (PD) control on the Euclidean

group,” tech. rep., California Institute of Technology, 1995.

142

[85] N. Pollard and P. Reitsma, “Animation of humanlike characters: Dynamic

motion filtering with a physically plausible contact model,” in Yale Workshop

on Adaptive and Learning Systems, 2001.

[86] D. Stewart and J. C. Trinkle, “An implicit time-stepping scheme for rigid body

dynamics with coulomb friction,” in Robotics and Automation, 2000. Proceed-

ings. ICRA’00. IEEE International Conference on, vol. 1, pp. 162–169, IEEE,

2000.

[87] S. Buss, “Introduction to inverse kinematics with jacobian transpose, pseudoin-

verse and damped least squares methods,” tech. rep., University of California,

San Diego, 2004.

[88] J. Y. Luh, M. W. Walker, and R. P. Paul, “On-line computational scheme for

mechanical manipulators,” Journal of Dynamic Systems, Measurement, and

Control, vol. 102, no. 2, pp. 69–76, 1980.

[89] T. Koolen and R. Deits, “Julia for robotics: Simulation and real-time control

in a high-level programming language,” 2019 IEEE International Conference

on Robotics and Automation (ICRA), 2019.

[90] M. Johnson, B. Shrewsbury, S. Bertrand, T. Wu, D. Duran, M. Floyd, P. Abeles,

D. Stephen, N. Mertins, A. Lesman, et al., “Team IHMC’s lessons learned from

the DARPA Robotics Challenge Trials,” Journal of Field Robotics, vol. 32,

no. 2, pp. 192–208, 2015.

[91] J. Englsberger and C. Ott, “Integration of vertical COM motion and angular

momentum in an extended capture point tracking controller for bipedal walk-

ing,” in IEEE-RAS International Conference on Humanoid Robots, (Osaka,

Japan), 2012.

[92] O. E. Ramos and K. Hauser, “Generalizations of the capture point to nonlinear

center of mass paths and uneven terrain,” in Humanoid Robots (Humanoids),

2015 IEEE-RAS 15th International Conference on, pp. 851–858, Nov 2015.

143

[93] A. Shiriaev, J. W. Perram, and C. Canudas-de Wit, “Constructive tool for

orbital stabilization of underactuated nonlinear systems: Virtual constraints

approach,” Automatic Control, IEEE Transactions on, vol. 50, no. 8, pp. 1164–

1176, 2005.

[94] B. F. Caviness and J. R. Johnson, Quantifier elimination and cylindrical alge-

braic decomposition. Springer Science & Business Media, 1998.

[95] A. Seidenberg, “A new decision method for elementary algebra,” Annals of

Mathematics, pp. 365–374, 1954.

[96] C. W. Brown, “QEPCAD B: a program for computing with semi-algebraic sets

using CADs,” ACM SIGSAM Bulletin, vol. 37, no. 4, pp. 97–108, 2003.

[97] A. Strzeboński, “Solving systems of strict polynomial inequalities,” Journal of

Symbolic Computation, vol. 29, no. 3, pp. 471–480, 2000.

[98] X. Da, O. Harib, R. Hartley, B. Griffin, and J. W. Grizzle, “From 2D design of

underactuated bipedal gaits to 3D implementation: Walking with speed track-

ing,” IEEE Access, vol. 4, pp. 3469–3478, 2016.

[99] A. Herzog, N. Rotella, S. Mason, F. Grimminger, S. Schaal, and L. Righetti,

“Momentum control with hierarchical inverse dynamics on a torque-controlled

humanoid,” Autonomous Robots, vol. 40, no. 3, pp. 473–491, 2016.

[100] S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai, F. Permenter,

T. Koolen, P. Marion, and R. Tedrake, “Optimization-based locomotion plan-

ning, estimation, and control design for the atlas humanoid robot,” Autonomous

Robots, vol. 40, no. 3, pp. 429–455, 2016.

[101] J. Englsberger, C. Ott, and A. Albu-Schäffer, “Three-dimensional bipedal walk-

ing control based on divergent component of motion,” IEEE Transactions on

Robotics, vol. 31, no. 2, pp. 355–368, 2015.

144

[102] T. Bretl and S. Lall, “Testing static equilibrium for legged robots,” IEEE Trans-

actions on Robotics, vol. 24, no. 4, pp. 794–807, 2008.

[103] H. Dai et al., Robust multi-contact dynamical motion planning using contact

wrench set. PhD thesis, Massachusetts Institute of Technology, 2016.

[104] S. Caron and A. Kheddar, “Multi-contact walking pattern generation based on

model preview control of 3D COM accelerations,” in 2016 IEEE-RAS 16th In-

ternational Conference on Humanoid Robots (Humanoids), pp. 550–557, IEEE,

2016.

[105] B. Ponton, A. Herzog, S. Schaal, and L. Righetti, “A convex model of humanoid

momentum dynamics for multi-contact motion generation,” in 2016 IEEE-RAS

16th International Conference on Humanoid Robots (Humanoids), pp. 842–849,

IEEE, 2016.

[106] S. Tonneau, A. Del Prete, J. Pettré, C. Park, D. Manocha, and N. Mansard,

“An efficient acyclic contact planner for multiped robots,” IEEE Transactions

on Robotics, vol. 34, no. 3, pp. 586–601, 2018.

[107] S. Tonneau, N. Mansard, C. Park, D. Manocha, F. Multon, and J. Pettré, “A

reachability-based planner for sequences of acyclic contacts in cluttered envi-

ronments,” in The International Journal of Robotics Research, pp. 287–303,

Springer, 2018.

[108] I. Mordatch, E. Todorov, and Z. Popović, “Discovery of complex behav-

iors through contact-invariant optimization,” ACM Transactions on Graphics

(TOG), vol. 31, no. 4, p. 43, 2012.

[109] M. Posa, C. Cantu, and R. Tedrake, “A direct method for trajectory optimiza-

tion of rigid bodies through contact,” The International Journal of Robotics

Research, vol. 33, no. 1, pp. 69–81, 2014.

145

[110] A. Herzog, S. Schaal, and L. Righetti, “Structured contact force optimization for

kino-dynamic motion generation,” in 2016 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), pp. 2703–2710, IEEE, 2016.

[111] E. Todorov and W. Li, “A generalized iterative LQG method for locally-optimal

feedback control of constrained nonlinear stochastic systems,” in Proceedings of

the 2005, American Control Conference, 2005., pp. 300–306, IEEE, 2005.

[112] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization of complex

behaviors through online trajectory optimization,” in 2012 IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems, pp. 4906–4913, IEEE,

2012.

[113] F. Farshidian, E. Jelavic, A. Satapathy, M. Giftthaler, and J. Buchli, “Real-time

motion planning of legged robots: A model predictive control approach,” in 2017

IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids),

pp. 577–584, IEEE, 2017.

[114] M. Neunert, F. Farshidian, A. W. Winkler, and J. Buchli, “Trajectory opti-

mization through contacts and automatic gait discovery for quadrupeds,” IEEE

Robotics and Automation Letters, vol. 2, no. 3, pp. 1502–1509, 2017.

[115] J. Carpentier and N. Mansard, “Analytical derivatives of rigid body dynamics

algorithms,” in Robotics: Science and Systems (RSS 2018), 2018.

[116] B. Plancher and S. Kuindersma, “A performance analysis of parallel differential

dynamic programming on a GPU,” in International Workshop on the Algorith-

mic Foundations of Robotics (WAFR), Merida, Mexico, 2018.

[117] S. Neuman, T. Koolen, J. Drean, J. Miller, and S. Devadas, “Benchmarking

and workload analysis of robot dynamics algorithms,” in 2019 IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems (IROS) (Accepted),

2019.

146

[118] R. Deits and R. Tedrake, “Footstep planning on uneven terrain with mixed-

integer convex optimization,” in 2014 IEEE-RAS International Conference on

Humanoid Robots, pp. 279–286, IEEE, 2014.

[119] A. Ibanez, P. Bidaud, and V. Padois, “Emergence of humanoid walking behav-

iors from mixed-integer model predictive control,” in 2014 IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems, pp. 4014–4021, IEEE,

2014.

[120] B. Aceituno-Cabezas, C. Mastalli, H. Dai, M. Focchi, A. Radulescu, D. G.

Caldwell, J. Cappelletto, J. C. Grieco, G. Fernández-López, and C. Semini,

“Simultaneous contact, gait, and motion planning for robust multilegged loco-

motion via mixed-integer convex optimization,” IEEE Robotics and Automation

Letters, vol. 3, no. 3, pp. 2531–2538, 2017.

[121] R. Deits, T. Koolen, and R. Tedrake, “LVIS: Learning from value function

intervals for contact-aware robot controllers,” in 2019 International Conference

on Robotics and Automation (ICRA), pp. 7762–7768, IEEE, 2019.

[122] R. Misener, J. P. Thompson, and C. A. Floudas, “APOGEE: Global optimiza-

tion of standard, generalized, and extended pooling problems via linear and

logarithmic partitioning schemes,” Computers & Chemical Engineering, vol. 35,

no. 5, pp. 876–892, 2011.

[123] A. Gleixner, M. Bastubbe, L. Eifler, T. Gally, G. Gamrath, R. L. Gottwald,

G. Hendel, C. Hojny, T. Koch, M. E. Lübbecke, S. J. Maher, M. Miltenberger,

B. Müller, M. E. Pfetsch, C. Puchert, D. Rehfeldt, F. Schlösser, C. Schubert,

F. Serrano, Y. Shinano, J. M. Viernickel, M. Walter, F. Wegscheider, J. T.

Witt, and J. Witzig, “The SCIP Optimization Suite 6.0,” ZIB-Report 18-26,

Zuse Institute Berlin, July 2018.

[124] M. R. Kılınç and N. V. Sahinidis, “Exploiting integrality in the global opti-

mization of mixed-integer nonlinear programming problems with baron,” Opti-

mization Methods and Software, vol. 33, no. 3, pp. 540–562, 2018.

147

[125] P. Belotti, “COUENNE: a user’s manual,” tech. rep., Technical report, Lehigh

University, 2009.

[126] L. Schewe and M. Schmidt, “Computing feasible points for binary MINLPs with

MPECs,” Mathematical Programming Computation, vol. 11, no. 1, pp. 95–118,

2019.

[127] M. Anitescu and F. A. Potra, “Formulating dynamic multi-rigid-body contact

problems with friction as solvable linear complementarity problems,” Nonlinear

Dynamics, vol. 14, no. 3, pp. 231–247, 1997.

[128] D. E. Stewart and J. C. Trinkle, “An implicit time-stepping scheme for rigid

body dynamics with inelastic collisions and Coulomb friction,” International

Journal for Numerical Methods in Engineering, vol. 39, no. 15, pp. 2673–2691,

1996.

[129] S. Scholtes and M. Stöhr, “How stringent is the linear independence assumption

for mathematical programs with complementarity constraints?,” Mathematics

of Operations Research, vol. 26, no. 4, pp. 851–863, 2001.

[130] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-based

control,” in 2012 IEEE/RSJ International Conference on Intelligent Robots and

Systems, pp. 5026–5033, Oct 2012.

[131] M. Neunert, M. Stäuble, M. Giftthaler, C. D. Bellicoso, J. Carius, C. Gehring,

M. Hutter, and J. Buchli, “Whole-body nonlinear model predictive control

through contacts for quadrupeds,” IEEE Robotics and Automation Letters,

vol. 3, pp. 1458–1465, July 2018.

[132] G. Cornuéjols, “Valid inequalities for mixed integer linear programs,” Mathe-

matical Programming, vol. 112, no. 1, pp. 3–44, 2008.

[133] T. Berthold, Heuristic algorithms in global MINLP solvers. Verlag Dr. Hut

Munich, 2014.

148

[134] T. Achterberg, T. Koch, and A. Martin, “Branching rules revisited,” Operations

Research Letters, vol. 33, no. 1, pp. 42–54, 2005.

[135] D. Bertsimas and J. N. Tsitsiklis, Introduction to linear optimization, vol. 6.

Athena Scientific Belmont, MA, 1997.

[136] R. Gomory, “An algorithm for the mixed integer problem,” tech. rep., RAND

Corp., Santa Monica, CA, 1960.

[137] E. Balas, S. Ceria, G. Cornuéjols, and N. Natraj, “Gomory cuts revisited,”

Operations Research Letters, vol. 19, no. 1, pp. 1–9, 1996.

[138] R. A. Stubbs and S. Mehrotra, “A branch-and-cut method for 0-1 mixed convex

programming,” Mathematical programming, vol. 86, no. 3, pp. 515–532, 1999.

[139] P. Bonami, L. T. Biegler, A. R. Conn, G. Cornuéjols, I. E. Grossmann, C. D.

Laird, J. Lee, A. Lodi, F. Margot, N. Sawaya, and A. Wächter, “An algorithmic

framework for convex mixed integer nonlinear programs,” Discrete Optimiza-

tion, vol. 5, no. 2, pp. 186 – 204, 2008. In Memory of George B. Dantzig.

[140] E. Danna, E. Rothberg, and C. Le Pape, “Exploring relaxation induced neigh-

borhoods to improve MIP solutions,” Mathematical Programming, vol. 102,

no. 1, pp. 71–90, 2005.

[141] J. Forrest and R. Lougee-Heimer, “Cbc user guide,” in Emerging theory, meth-

ods, and applications, pp. 257–277, INFORMS, 2005.

[142] A. Makhorin, “GNU linear programming kit,” Moscow Aviation Institute,

Moscow, Russia, vol. 38, 2001.

[143] P. Bonami and J. Lee, “BONMIN user’s manual,” Numer Math, vol. 4, pp. 1–32,

2007.

[144] T. Koch, T. Achterberg, E. Andersen, O. Bastert, T. Berthold, R. E. Bixby,

E. Danna, G. Gamrath, A. M. Gleixner, S. Heinz, et al., “MIPLIB 2010,”

Mathematical Programming Computation, vol. 3, no. 2, p. 103, 2011.

149

[145] E. D. Andersen and K. D. Andersen, “The MOSEK interior point optimizer

for linear programming: an implementation of the homogeneous algorithm,” in

High performance optimization, pp. 197–232, Springer, 2000.

[146] E. Balas, “Disjunctive programming,” in Annals of Discrete Mathematics,

vol. 5, pp. 3–51, Elsevier, 1979.

[147] J. P. Vielma, “Mixed integer linear programming formulation techniques,” Siam

Review, vol. 57, no. 1, pp. 3–57, 2015.

[148] G. P. McCormick, “Computability of global solutions to factorable nonconvex

programs: Part i - convex underestimating problems,” Mathematical program-

ming, vol. 10, no. 1, pp. 147–175, 1976.

[149] R. C. Jeroslow, “There cannot be any algorithm for integer programming with

quadratic constraints,” Operations Research, vol. 21, no. 1, pp. 221–224, 1973.

[150] M. Tawarmalani and N. V. Sahinidis, “A polyhedral branch-and-cut approach

to global optimization,” Mathematical Programming, vol. 103, no. 2, pp. 225–

249, 2005.

[151] R. Misener and C. A. Floudas, “ANTIGONE: algorithms for continuous/integer

global optimization of nonlinear equations,” Journal of Global Optimization,

vol. 59, no. 2-3, pp. 503–526, 2014.

[152] Y. Lin and L. Schrage, “The global solver in the LINDO API,” Optimization

Methods & Software, vol. 24, no. 4-5, pp. 657–668, 2009.

[153] L. T. Biegler and V. M. Zavala, “Large-scale nonlinear programming using

IPOPT: An integrating framework for enterprise-wide dynamic optimization,”

Computers & Chemical Engineering, vol. 33, no. 3, pp. 575–582, 2009.

[154] R. Fletcher and S. Leyffer, “User manual for filterSQP,” Numerical Analysis

Report NA/181, Department of Mathematics, University of Dundee, Dundee,

Scotland, vol. 35, 1998.

150

[155] E. M. L. Beale and J. A. Tomlin, “Special facilities in a general mathematical

programming system for non-convex problems using ordered sets of variables,”

OR, vol. 69, no. 447-454, p. 99, 1970.

[156] J. P. Vielma and G. L. Nemhauser, “Modeling disjunctive constraints with a

logarithmic number of binary variables and constraints,” Mathematical Pro-

gramming, vol. 128, no. 1-2, pp. 49–72, 2011.

[157] J. Huchette and J. P. Vielma, “Nonconvex piecewise linear functions: Advanced

formulations and simple modeling tools,” arXiv preprint arXiv:1708.00050,

2017.

[158] G. Hendel, “Adaptive large neighborhood search for mixed integer program-

ming,” 2018.

[159] A. Lodi and A. Tramontani, “Performance variability in mixed-integer program-

ming,” in Theory Driven by Influential Applications, pp. 1–12, INFORMS, 2013.

[160] E. Klotz and A. M. Newman, “Practical guidelines for solving difficult mixed

integer linear programs,” Surveys in Operations Research and Management Sci-

ence, vol. 18, no. 1-2, pp. 18–32, 2013.

[161] T. Seyde, A. Shrivastava, J. Englsberger, S. Bertrand, J. Pratt, and R. J. Grif-

fin, “Inclusion of angular momentum during planning for capture point based

walking,” in 2018 IEEE International Conference on Robotics and Automation

(ICRA), pp. 1791–1798, IEEE, 2018.

[162] J. P. Marion, Perception methods for continuous humanoid locomotion over

uneven terrain. PhD thesis, Massachusetts Institute of Technology, 2016.

[163] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun, and

M. Hutter, “Learning agile and dynamic motor skills for legged robots,” Science

Robotics, vol. 4, no. 26, p. eaau5872, 2019.

151

	Cover page
	Abstract
	Acknowledgments
	1 Introduction
	2 Preliminaries and related work
	2.1 The balance control problem
	2.2 Generic approaches to balance control and analysis
	2.3 Dynamics of a legged robot
	2.4 Centroidal dynamics applied to balance control
	2.5 A standard balance control approach
	2.5.1 The linear inverted pendulum
	2.5.2 Mapping to the full robot

	2.6 Moving beyond the standard approach

	3 Momentum-based whole-body control
	3.1 Introduction
	3.2 Related work
	3.3 Control framework
	3.3.1 Desired motions
	3.3.2 Contact wrenches
	3.3.3 QP formulation
	3.3.4 Inverse dynamics

	3.4 Application to humanoid walking
	3.4.1 Footstep plan
	3.4.2 Motion tasks and regularization
	3.4.3 Desired Linear momentum rate

	3.5 Implementation
	3.6 Results
	3.7 Discussion
	3.8 Conclusion

	4 2D balance control using non-planar CoM motion
	4.1 Introduction
	4.2 Variable-height inverted pendulum
	4.3 Necessary conditions for balance
	4.4 Approach and summary of previous results
	4.4.1 Height trajectory as a virtual constraint
	4.4.2 Orbital energy

	4.5 Control laws
	4.6 Region of attraction
	4.6.1 Orbital energy controller
	4.6.2 Clipped controller

	4.7 Discussion
	4.8 Conclusion

	5 Multi-contact centroidal trajectory optimization as a mixed-integer nonlinear program
	5.1 Introduction
	5.2 Problem statement
	5.2.1 High-level description and desired output
	5.2.2 Environment regions
	5.2.3 Contact bodies
	5.2.4 Dynamics
	5.2.5 Contact sequence constraints
	5.2.6 Approximate kinematic constraints
	5.2.7 Initial and final conditions
	5.2.8 Optimization objective

	5.3 Mixed-integer programming preliminaries
	5.3.1 Motivating example
	5.3.2 Mixed-integer convex programming
	5.3.3 Mixed-integer reformulations of disjunctive constraints
	5.3.4 McCormick envelopes
	5.3.5 Mixed-integer nonconvex programming

	5.4 MINLP reformulation of the planning problem
	5.4.1 Decision variables
	5.4.2 Timing
	5.4.3 Parameterization of continuous trajectories
	5.4.4 Dynamics constraints
	5.4.5 Region assignment constraints
	5.4.6 Contact force constraints
	5.4.7 CoP and contact reference point constraints
	5.4.8 Variable bounds
	5.4.9 MIQP relaxation

	5.5 Whole-body control
	5.6 Implementation
	5.6.1 Solvers
	5.6.2 Problem formulation

	5.7 Results
	5.7.1 Scenarios
	5.7.2 Nominal performance
	5.7.3 Performance variability

	5.8 Discussion
	5.8.1 Possible extensions
	5.8.2 Solver performance and experiences
	5.8.3 Whole-body control and application to a physical robot
	5.8.4 Applications and future perspectives

	5.9 Conclusion

	Bibliography

