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Abstract— Wind power represents one of the most promising
sources of renewable energy, and improvements to wind turbine
design and control can have a significant impact on energy
sustainability. Although wind energy has not been a canonical
research area in robotics, we argue here that many robotics
techniques (physical system design, modeling and control, and
policy learning techniques) can in fact have a large impact
on wind energy research. Pursuing this goal, in this paper we
develop a small, fully functional robotic wind turbine, capable
of variable speed operation and individual pitch actuation. We
analyze the power output of the turbine under different oper-
ating conditions, comparing to predictions from aerodynamic
simulators. Using inverse dynamics control we demonstrate
high-frequency blade pitch control synchronized to rotor angle.
Finally, using a novel Reinforcement Learning policy search
algorithm, we show that the system can quickly optimize its
energy output in an online and fully model-free manner.

I. INTRODUCTION

Energy issues pose one of the greatest challenges facing
society. More than 86% of the world’s energy currently
comes from (unsustainable) fossil fuels, and worldwide en-
ergy demand continues to grow rapidly [1]. Wind power
represents one of the most promising sources of renewable
energy: currently wind is more economically feasible than
solar or biomass for electricity generation, with some projec-
tions predicting wind, given good environmental conditions
and proper government subsidies, to be of similar cost
to fossil fuels for electricity generation [2]. Despite this
promise, significant improvements in the deployment and
control of wind turbines are needed if wind is to contribute
a significant portion of electricity worldwide [3].

Although wind energy has not historically received much
attention in robotics, we argue here that the robotics com-
munity as a whole has a great deal to offer to wind re-
search. At this point the purely aerodynamic properties of
wind turbines are well understood, and the challenge is to
extract maximum power (or to minimize adverse structural
loads) under unsteady and uncertain operating conditions,
a common theme in much recent work in robotics. Thus,
the control and modeling techniques developed in robotics
have the potential to greatly influence how wind turbines
are deployed. Furthermore, despite the rise in wind power
installations, there are remarkably few physical systems
dedicated to research work, and most current research in
wind power is conducted entirely in simulation. This is
another facet where robotics can have a large impact: by
designing small and low-cost systems for research work,
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Fig. 1. Picture of our micro wind turbine in operation.

robotics has the opportunity to greatly accelerate research
in the wind community as a whole.

In this paper, we present first steps in bridging wind
and robotics research. We have developed a micro wind
turbine (which we call the Turbot, for turbine robot, pictured
in Figure 1) with individual blade pitch control, variable
rotational speed and power output, all controlled by an
external computer; we describe the design of this system
and its software in Section III. In Section IV-A we then
analyze the power output of the system under different
operation conditions, and compare this to the power predicted
by turbine simulation software developed at the National
Renewable Energy Laboratory; the results show that over-
all the turbine behaves qualitatively as expected, but with
significant differences that underscore the value of testing
on a real system versus simulation alone. We demonstrate
the individual pitch control mechanism of the turbine in
Section IV-B, highlighting the need for inverse dynamics
control to achieve accurate tracking. Finally, in Section IV-
C we apply an extension of recent work in policy search
Reinforcement Learning to autonomously optimize power
output of the turbine in a model-free, online manner.

II. BACKGROUND AND RELATED WORK

Wind energy has received a great deal of attention in
recent years, and there is a vast amount of work on the
design, modeling, and control of wind turbines. A full review
of relevant literature is beyond the scope of this paper,
and we focus instead only on those elements of turbine
design and control that are most relevant to the presentation
here. However, there are several introductory texts on wind
energy in general, and we refer the reader to these for more



information [4], [5]. A number of papers survey more recent
control work and challenges [6], [7].

The two trends in turbine controls work that relate most
directly to this paper is work on individual pitch control
(IPC) and maximum power optimization. While many con-
trol strategies use collective pitch adjustments to change
the behavior of the turbine, a number of recent approaches
have focused on individually pitching blades, typically to
decrease adverse structural loads [8], [9], [10]. This control
is often performed by transforming the system to a angle-
independent coordinate frame via the so-called “d-q” or
Coleman transformations [8], [11], [9], linearizing a steady-
state model in this coordinate frame, and then converting the
resulting inputs back to actual pitch commands. Alternative
work considers periodic control directly [12], [13], but we
note that the final output of both these systems is largely
periodic blade commands, which is the focus on the control
strategies for IPC in this paper.

The second piece of related work is research on power
optimization using collective pitch control, which is precisely
the problem we focus on using policy search techniques.
Most initial work in this area was largely model based,
and focused on methods for accurately tracking the opti-
mal control setpoints under changing conditions [14], [15],
[16]. Alternatively, newer work has focused on model free-
methods for optimizing power coefficients, using extremum
seeking control [17] or finite difference methods [18]. These
approaches are conceptually similar to the proposed approach
here, but are strictly first-order methods, do not efficiently
reuse past trajectories, and were tested only in simulation.

Since this paper is about a physical platform, we also
briefly discuss turbine controls work on real hardware.
The vast majority of research in advanced wind control
techniques (including all papers cited above) is performed
entirely in simulation: the ubiquity of standard simulation
packages such as FAST [19] and WTPerf [20], as well as the
cost involved with work on a a full-scale turbine, have made
full system real-world experiments a rarity in wind research.
Notable exceptions to this include work on the Controls
Advanced Research Turbine (CART) [21], including work
on load reduction [22] and individual pitch control [23].
However, work on the CART has focused largely on model-
based approaches, largely due to the fact that significant
effort has been invested in ensuring accurate models for this
particular turbine. We also know of some work on smaller
scale turbines [24], but know of no such systems with active
pitch control; indeed, we would argue that the hardware
needed for individual pitch control on a micro turbine, for
example, has only become available on a large scale in recent
years.

A. Motivating Challenges

Although we mentioned in the introduction that wind
power involves challenging control tasks with many open
question, we want to close by briefly elaborating upon some
of the control and design challenges posed by modern wind
turbine systems. We make no claims to having solved these

Fig. 2. Illustration of wind shear and turbulent effects on awind turbine.
Based upon [25].

problems in the current paper, but they have motivated much
of our current work in wind energy, and they highlight the
richness and complexity of the control challenges involved.
Our hope is that these challenges, along with the initial
systems presented in this paper, will motivate the robotics
community as a whole to take on some of these problems.

Our first example highlights the inherent complexity of
wind power even in a seemingly simple situation, a single
turbine sitting on even terrain. Modern wind turbines are
massive constructions, with rotor diameters of over 100
meters [26], and this introduces a variety of unsteady aerody-
namic conditions. Wind speed increases with height above
ground level, an effect known as wind shear, pictured in
Figure 2. For large turbines, the result is that the wind
at the top of the turbine is moving much faster than the
wind at the bottom, often times necessitating a changing
control strategy within one blade revolution; indeed such
asymmetric forces were one of the original motivations for
individual pitch control. Added to this general trend in
mean wind speed are turbulent fluctuations and gusts [25],
some operating within the time scale of a single revolution
and some persisting for multiple revolutions. Given these
variations, the optimal control strategy for a single turbine
operating under seemingly simple conditions can be quite
complex.

Second, we note that single turbine installations are be-
coming rather uncommon: most commercial wind energy
sites now house wind farms, collections of many turbines
operating in close proximity. The adverse aerodynamic con-
ditions are typically only exacerbated in such situations:
the blades of upwind turbines shed vortices that mix with
the incoming flow and the turbine towers themselves create
turbulent wakes that spread to downwind turbines. Figure 3
shows an illustration of wakes effects on a wind farm, as
well as a photograph showing such interactions in the Horns
Rev offshore wind farm. The end result of these conditions
is that most wind farms space turbines very far apart to
mitigate the risks as much as possible, but still feel these
effects [28]. Any improvements in control or design that can
enable turbines to be moved closer together can result in the



Fig. 3. (Top) Illustration of wake effects on a turbine farm, based upon
[25]. (Bottom) Photograph from Horns Rev 1 offshore wind farm[27],
illustrating wake effects in a physical system.

capture of significantly more wind energy.
With these problems as general motivation, we now

present our robotic turbine platform, along with analysis,
control, and policy search methods that employ techniques
based upon robotics and learning methods to control and
optimize this system.

III. HARDWARE AND SOFTWARE DESIGN

The Turbot is a fully functional wind turbine, with a
blade radius of 1.52 meters and a maximum power output of
300W DC. The system is based upon the Extractor turbine
designed by Alternate Power Technologies, Inc.1, but with
significant modifications. We replaced the mechanical blade
pitch mechanism of the Extractor turbine with servo motors
attached to each blade root; this allows us to individually
control the turbine blades at very high frequencies. We
transmit data and power signals to the servos using a slip
ring in the turbine nacelle and track the rotor angle using
an encoder off the main rotor shaft. Offboard, the power
generated by the system is fed into a board that both monitors
the power output by the system, and can programmably
vary its resistance (this in turn produces more or less torque
on the generator). Finally, a simple wind tunnel built using
commodity fans powers the turbine itself. All the elements
are controlled by an offboard computer via the Lightweight
Communication and Marshaling (LCM) software [29], a
message-passing framework developed for the DARPA urban

1http://www.vpturbines.com

Fig. 4. Block diagram of the hardware components in the Turbot.
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Fig. 5. Mechanical diagram of the turbine hub and nacelle.

challenge. A block diagram of these components is shown
in Figure 4.

One element we want to highlight is the total cost of
the system, which is approximately $3,250 for the turbine
and associated hardware ($1,000 for the Extractor turbine,
$1,550 for the Dynamixel servos, $350 for encoder and
slip ring, $250 for the power monitoring hardware and
$100 for various cables and wiring) plus $2,600 for the
wind tunnel ($2,100 for fans, and $500 for lumber). We
are not aware of any low-cost micro turbines that have the
capabilities of our system (individual pitch control, variable
speed operation); thus, we feel the platform itself has the
potential to significantly impact small and academic-scale
research in wind power. We are happy to share detailed
design specifications with anyone wishing to build a similar
system.

A. Hub and Nacelle Design

The turbine hub and nacelle house the pitch actuators,
rotor encoder, and generator, as shown in Figure 5. To control
blade pitch, we use three Dynamixel EX-106+ servo motors2

attached to the blade roots. The servos are daisy chained
together and controlled digitally via an RS-485 link, which
allows for setpoint control at 250 Hz with less than 1ms
latency (in addition to the onboard PD controller in the
servos). A picture of the hub and servo is shown in Figure
6.

2http://www.robotis.com/xe/dynamixel en



Fig. 6. Front view of the turbine hub and a closeup of the servomotor
used for pitch control.

Fig. 7. Internals of the turbine nacelle, showing the generator, encoder and
slip ring.

Since the hub itself rotates, to provide data and power to
the servos we use a Mercotac 430 slip ring3 in the nacelle,
and run the wires through the rotor shaft. The nacelle also
houses a US Digital HB5M encoder4 off the main shift
used to track the orientation of the rotor (necessary both
to estimate speed and to synchronize blade orientation with
rotor angle) as well as the generator itself, a Delco 12SI
alternator modified for use with the Extractor turbine. The
components of the nacelle are shown in Figure 7.

B. Power Control and Monitoring

To monitor and regulate the power output by the turbine
we attach a resistor to the DC power output lines, and moni-
tor current and voltage using a Phidgets USB A/D converter
and associated voltage and current measuring devices.5 Inn
order to regulate the power output it is important to be able
to vary the effective resistance: lower resistance will impose
a larger torque on the generator, and some intermediate (but
unknown) resistance is needed to maximize power output.
Thus, we place two high-power resistors (0.31 and 5 Ohm
respectively) in series, and short the later with a MOSFET
controlled by a PWM signal at 25kHz. By varying the duty
cycle of the PWM from 0 to 1, we can smoothly interpolate
between a resistance of 5.31 and 0.31 Ohms. The circuit
diagram for this device, as well as a photograph of the board,
is shown in Figure 8.

3http://www.mercotac.com
4http://www.usdigital.com
5http://www.phidgets.com

Fig. 8. Circuit diagram (left) and photograph (right) of theprogrammable
resistor and power monitoring board.

Fig. 9. Block diagram of the software architecture for controlling the
Turbot.

C. Software Architecture

The turbine is controlled via an offboard computer, run-
ning a software system built upon the LCM message passing
framework. LCM offers an attractive architecture for building
such a system, as the different drivers and controllers can be
developed in a modular fashion, and the system has built-
in logging and playback capabilities. The basic software
architecture is shown in Figure 9. In addition to the three
driver modules that manage the servos, the encoder, and the
power board, we use two basic controllers: 1) a collective
pitch that controls all the blades equally, using a simple
integral control loop (although the servos internally have
a PD controller, the friction in the drive train and steady
aerodynamic forces often cause these to have a steady state
error, which we correct via an integral controller), and 2) an
independent pitch controller that synchronizes blade pitch of
the different blades with rotor angle using inverse dynamics;
this element will be discussed further in Section IV-B. Also
illustrated in Figure 9 is a policy search procedure that we
will describe in Section IV-C, which uses collective pitch
control and feedback from the power board to optimize
energy output, and a MATLAB graphical user interface that
allows for easy visualization and control of the different
modules.

D. Wind Tunnel

To power the turbine, we constructed a small circular wind
tunnel using wood and commodity commercial fans. The
tunnel is eight feet long (a four foot contraction section and



Fig. 10. Rear view of the wind tunnel used for powering the Turbot.

a four foot straight section), with an output diameter of 1.72
meters (20 cm larger than the diameter of the turbine), and
generates an average wind speed of 6.5 m/sec over this area
(approximately 13.5 miles per hour). This is not fast enough
to reach the rated power output of 300W, but is still able to
generate a significant amount of power at high rotational
speeds. A photograph of the fans powering the tunnel is
shown in Figure 10.

IV. ANALYSIS AND RESULTS

A. Modeling and Power Output Analysis

Our first set of experiments characterize the power output
of the Turbot relative to a simulated model of the system,
under a variety of different operating conditions. Specifically,
we independently varied the (collective) blade pitch angleof
the turbine from 4 to 17 degrees in 24 equal increments, and
the resistance from 1.8 to 5 Ohms in 14 equal increments,
for a total of 336 different operating conditions. For each
setting, we let the turbine run for five seconds (to settle to
the steady state power output), and recorded the resulting
power.

In addition, we developed a simulated model of the Turbot
system using the WTPerf aerodynamics simulator [20],
an industry standard tool developed by the National Wind
Technology Center for predicting the the performance of
wind turbines using a technique known as blade element
momentum (BEM) theory [4]. A full description of the
WT Perf simulator or BEM theory is beyond the scope of
this paper, but briefly, the simulator takes as input the phys-
ical properties of the system such as the number of blades
and their shape, the lift and drag curves of the blade airfoil,
and aerodynamic constants such as the density and viscosity
of the air. It then computes the aerodynamic properties of
the blades, along with momentum-based properties of the
turbine power output as a whole, to compute steady-state
power output for different operating conditions of the turbine.

The resulting power curves, for both the real and simulated
systems, are shown in Figure 11. The figures show power
output in Watts, indicated by color, as a function of pitch
angle andtip speed ratio, the ratio of the blade’s tip speed
to the incoming wind speed; although this may seem a
somewhat unusual way of describing the operating conditions
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Fig. 11. Real (top) and simulated (bottom) power curves for theTurbot
under different operating conditions. Power levels indicated by color are in
Watts.

of the turbine (since the actual control inputs are blade pitch
and generator resistance, both of which affect the rotation
speed and hence tip speed ratio), describing the power output
as a function of tip speed ratio is the standard in the wind
literature for a number of reasons: the coefficient of power
(the ratio of captured to available power) can be roughly
approximated as a function of blade pitch and tip speed ratio
independent of wind velocity, and a fixed generator torque
and pitch angle can potentially have two different equilibrium
points in terms of the rotor speed.

Figure 11 also emphasizes both the the benefits and draw-
backs of simulation models. Qualitatively, the two power
curves look quite similar: they both have a characteristic
“triangle” shape, and the optimal operating conditions areat
similar points. But the figures also differ in crucial respects:
the optimal tip speed ratio on the real system is significantly
higher than for the simulated system, and the range of near-
optimal points is significantly smaller. Indeed, if one wereto
simply choose the operating conditions of the turbine based
upon the simulated model (as is often done in practice), then
we would be operating at a substantially suboptimal point.
This highlights the usefulness of experimentation on real
systems and the development of learning methods that can
optimize performance without relying on an a priori model



of the system, both areas where the robotics community has
a great deal of experience.

B. Independent Pitch Control

Our second set of experiments demonstrate the feasi-
bility of independent pitch control (IPC) on the Turbot.
Independent pitch control was a crucial design requirement
for our system since, as discussed in Section II, many
modern control approaches exploit individual pitch control.
Yet IPC on a micro turbine is a challenging task: in order
to maintain reasonable tip speed ratios, micro turbines must
rotate much faster than large turbines (the maximum power
output from the previous section occurs at a tip speed ratio
of 6.25, corresponding to a rotor speed of 510 RPM on
the Turbot). IPC requires at a minimum that we be able to
vary the blade pitch on the order of one rotational period,
typically synchronized with the absolute rotor angle in order
to account for spatial effects such as wind shear. Thus, we
need both high frequency control and accurate compensation
for the servo motor dynamics in order to accurately track the
desired pitch angles.

To achieve accurate independent pitch control, we employ
an inverse dynamics control system. The dynamics of the
motors are well-modeled by a second order system

q̈ = k1(q − u) + k2q̇ + k3sign(q̇) + k4 (1)

whereq denotes the motor angle,u denotes the control input
(corresponding to the desired angle setpoint),k1, . . . , k4 are
parameters of the system, and where the system is non-
linear due to the sign term, which captures the effects of
Coulomb friction. We fit this model to the data using system
identification procedures: we generate data by commanding
a sequence of “chirp” commands (sinusoidal inputs and
varying frequencies and magnitudes), then minimize the
simulation error of the model (the deviation between the
observed and predicted sequences, simulated over the entire
sequence of inputs) using non-linear optimization.

Suppose now that we want to command the blade pitchq
to be some known function of the rotor angleθ

qd = f(θ). (2)

We analytically differentiate this function to achieve desired
velocity and accelerations

q̇d = f ′(θ)θ̇, q̈d = f ′′(θ)θ̇ + f ′(θ)θ̈ (3)

and where we will typically assume for simplicity that the
rotor speed is constanẗθ = 0. Now, instead of simply
commanding the desired angleu = qd, we invert the
dynamics model and command the input

u = qd + (q̈d − k2q̇
d
− k3sign(q̇

d)− k4)/k1 (4)

which can be interpreted as adding a feedforward com-
pensator to the desired position, based upon the dynamical
model.

Figure 12 shows the pitch tracking performance using the
inverse dynamics versus simple PD control. We commanded
a desired angle ofqd(θ) = 12 − 2.9 sin(θ), with the rotor
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Fig. 12. Individual Pitch Control tracking performance using Inverse
Dynamics (top), and PD (bottom) control.

spinning at 525 RPM. The top plot of Figure 12 shows
tracking performance of the inverse dynamics controller:
in this case we are able to track the reference trajectory
quite accurately even at high speeds, with an RMSE of 0.26
degrees. In contrast, the bottom plot shows the performance
of a simple PD controller attempting to track the trajectory;
here the settling time of the motor dynamics cause the actual
trajectory to lag significantly behind the desired trajectory,
a well-known effect in PD control. While it would also
be possible to adaptively tune the phase and amplitude of
the desired trajectory to make the PD controller match the
desired behavior, the inverse dynamics approach essentially
does this automatically through its model of the dynamics.

C. Policy Search for Online Parameter Optimization

Finally, our last experiments on the turbine return to col-
lective pitch control, but demonstrate the promise of learning
and adaptive control approaches for optimizing performance.
The general approach is motivated by the fact that, as shown
in Section IV-A, choosing the optimal operating conditions
for the turbine based purely on a model can lead to highly
suboptimal plans. Assuming that we typically would not want
to sweep out the entire parameter space for most policies
(especially as the dimension of the policies grows), a natural
alternative is to usepolicy search Reinforcement Learning
methods [30], [31] to optimize policy parameters online.
Specifically, we will apply policy search to optimize the
operating conditions of the turbine (the pitch angle and tip
speed ratio or resistance) to maximize power output in an
entirely online fashion, without a model of the system.

Our approach is based upon recent work in policy gradient
techniques, notably the REINFORCE algorithm [30] and



work on importance sampling in this domain [32], but
includes significant modifications that make it perform must
better in our domain. LetR(w) denote the reward for policy
parametersw ∈ R

n (in this case the pitch angle and
load resistance of the turbine). Our method is based upon
computing the second order Taylor approximation to this
function

R(w) ≈ R(w0)+gT (w−w0)+
1

2
(w−w0)

TH(w−w0) (5)

where g ∈ R
n and H ∈ R

n×n denote the gradient and
Hessian ofR(w0) respectively. Of course, since the reward
is unknown without a model of the dynamics, we cannot
compute these terms analytically. But, givenm samples of
the reward for a number of different parametersw(i) we can
compute them in a least squares sense






φ(w(1) − w0)
T

...
φ(w(m) − w0)

T











vec(H)
g

R(w0)



 ≈







R(w(1))
...

R(w(m))






(6)

where

φ(w(i)
− w0) ≡





vec((w(i) − w0)(w
(i) − w0)

T )
w(i) − w0

1



 (7)

is the vector of all first and second order terms appearing in
the expansion and vec denotes the vectorization of a matrix.
This approximation is analogous to finite differencing [31],
except that we are computing a second order approximation
to the function. Given this approximation, we employ a trust
region optimization strategy, which selects the next iterate of
w as

wt+1 ← wt + arg max
∆wTQ∆w≤1

1

2
∆wTH∆w + gT∆w (8)

where Q ∈ R
n×n defines the trust region. Although this

problem is non-convex whenH is not negative definite (for
instance if we are not at a local optimum, or if we do not
have sufficient samples to obtain an accurate least-squares
estimate), it can still be solved exactly using a semidefinite
relaxation [33, Appendix B]. Most numerical trust-region
methods avoid solving this subproblem exactly [34], as it
can itself by quite time consuming, but we argue that policy
search is a natural fit for exact trust region methods: since the
dimensionality of the problem is typically relatively small,
and since the computational time is typically much less than
the execution time on the real system, exact trust region
optimization is well-suited to this task.

To select the parameters where we sample the reward func-
tion, we follow standard practice of most RL policy search
methods, and sample parameters according to a stochastic
policy wt + ǫt, where

ǫt ∼ N (0,Σt) (9)

and the covarianceΣt is an input parameter to the overall
policy search procedure, typically chosen to be diagonal or
even isotropic. In order to reuse samples from past iterations
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intervals for our trust region policy search method optimizing power output.
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(particularly important given that we are estimating a full
Hessian), we use importance weighting as described in [32],
and solve aweighted least squares problem to estimate the
Hessian; in our final implementation we sample only one set
of policy parameters at each iteration, and are still able to
obtain accurate estimates of the cost surfaces. Finally, we
propose to useQ = Σ−1

t as the trust region, since roughly
speaking this requires that parameter updates lie within the
same region as our typical parameter exploration.

To evaluate our policy search approach, we randomly
initialized policies with arbitrary pitch angles and resistance
values within some range. We then ran our trust region
policy search approach for 40 iterations, using the power
output averaged over two seconds (after three seconds of
settling time) as the reward signal. Figure 13 shows the
evolution of the reward versus iteration number, averaged
over 10 trials (with different starting parameters), along
with 95% confidence intervals. Also shown is the average
reward obtained by trusting the WTPerf simulation model
and using its prescribed optimal operating point. Despite



receiving very little feedback from the system, just the
average power for a small number of situations without
any model of the system, our algorithm is able to quickly
obtain near-optimal parameter settings, typically withinabout
15 iterations (75 seconds of real-time operation). Figure 14
shows the evolution of the policy parameters for a typical
run of the policy search; as expected the method quickly gets
to (and remains in) a near-optimal region of the parameter
space.

V. CONCLUSIONS AND FUTURE WORK

This paper has presented a robotic wind turbine system,
with a focus on controlling and optimizing the system using
techniques familiar to the robotics community: physical
system design, inverse dynamics control, and model-free Re-
inforcement Learning policy search. Although the methods
can attain impressive performance on the tasks we consider,
we fully admit that the challenges posed by wind energy go
well beyond what we directly consider in this paper. Next
steps for the research involve integrating the policy search
and individual pitch control mechanisms to cope with static
obstructions in the incoming airflow. Building upon this, the
eventual goal is to develop a system that can autonomously
adjust to dynamic disturbances, such as those caused by an
upwind turbine, using a combination of both model-based
and model-free optimization techniques.
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