
Capturing Distributions over Worlds for Robotics
with Spatial Scene Grammars

by

Gregory Izatt

B.S., California Institute of Technology (2014)
S.M., Massachusetts Institute of Technology (2017)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2022

c○ Massachusetts Institute of Technology 2022. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

March 1, 2022

Certified by. .
Russ Tedrake

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Capturing Distributions over Worlds for Robotics with Spatial

Scene Grammars

by

Gregory Izatt

Submitted to the Department of Electrical Engineering and Computer Science
on March 1, 2022, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Having a precise understanding of the distribution over worlds a robot will face is
critical to most problems in robotics. This distribution informs mechanical and soft-
ware design specifications, provides strong priors to perception, and quantifies the
real-world relevance of simulation and lab testing. However, representing and quan-
tifying this distribution is an open and difficult problem, as these worlds can vary in
myriad continuous and discrete ways. This thesis is concerned with a particular class
of probabilistic procedural models – spatial scene grammars – that are tailored to
describe hybrid discrete-and-continuous distributions over environments with varying
numbers, types, and spatial poses of objects. We develop a spatial scene grammar
formulation that is sufficiently expressive to capture the structure of practically rele-
vant environments, but is carefully restricted to remain amenable to various forms of
probabilistic inference. We show that we can sample diverse scenes from these gram-
mars, even under the presence of constraints on scene contents and object poses; that
we can parse scenes with this grammar model via a novel set of mixed-integer parsing
techniques to achieve detailed scene understanding and part-level outlier detection;
and that we can fit unknown parameters in the model to data via an approximate
expectation-maximization algorithm.

Thesis Supervisor: Russ Tedrake
Title: Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

It takes a village to write a thesis, and this one is no exception. I have so many people

– and a few robots – to thank for so many kinds of support.

I owe enormous and heartfelt thanks to Russ, who has been gracious, patient,

encouraging, and an excellent kind of challenging since the beginning – even (and

especially) as I wandered between projects and ideas. Each of the members of my

committee – Alberto and Leslie – have likewise been mentors to me across projects

and contexts for years, and for that I am deeply grateful. And I’ll never forget Seth,

who welcomed me (when I wasn’t much more than a cold-call email from an undergrad

across the country) to MIT and kicked off my career in this wonderful field.1

My lab has been a source of constant inspiration and camaraderie – and a vital

wellspring of energy and ideas to fuel the long grind inherent to a project like this one.

The same goes for mentors and friends around CSAIL and MIT – I could always count

on running into y’all at robotics seminars or in the Infinite and having a stimulating

conversation (or mutual vent). I’m especially grateful to the members of the MIT

DRC and Hyperloop teams for teaching me so much about being a good engineer and

teammate, and for generally being a blast to work with.

I’m blessed with friends innumerable. Thanks, in particular, to my many amazing

friends at Sidpac – SPEC, the HoH, officers, helpers, trustees, my undergrads, and

all y’all at the front desk – as well as those farther flung across Boston and the wider

world, for giving me amazing homes to go back to and joining me in adventures of

sorts I couldn’t imagine when I started. And finally, thank you to Hannah and my

family – each of you being loving, supportive, and distracting at exactly the right

times. I wouldn’t have made it without y’all.

1Funnily enough, the project we planned together when we wrote my NSF GRFP proposal was
also about distributions over environments.

5

6

Contents

1 Introduction 23

1.1 Scene Grammars, Trees, and Parsing 25

1.2 Organization of this Thesis . 27

1.3 Related Work . 29

1.3.1 Choice of representation . 29

1.3.2 Choice of model type . 30

1.3.3 Robotics applications . 32

2 Formulation of Spatial Scene Grammars 35

2.1 Introduction . 35

2.2 Related Work . 36

2.3 Formulation . 38

2.3.1 Node types to capture common discrete relationships 40

2.3.2 Rule types to capture common continuous relationships 42

2.4 Specifying and Enforcing Constraints 43

2.4.1 HMC for sampling from pose constraints 44

2.4.2 Projection-based constraint resolution 45

2.5 Scene Generation Tools . 46

2.5.1 Spatial scene grammar codebase 46

2.5.2 Automatic mesh generation tool 46

2.5.3 Blender rendering over IPC 47

2.6 Example Grammars . 48

2.6.1 Gaussian mixture model grammar 48

7

2.6.2 Singles-pairs grammar . 49

2.6.3 Cluttered sink grammar . 51

2.6.4 Dimsum table grammar . 56

2.7 Discussion . 62

2.7.1 Expressiveness-invertibility trade-off 63

2.7.2 Constituency vs dependency grammars 63

2.7.3 Sampling under constraints 64

3 Scene Parsing 67

3.1 Introduction . 67

3.1.1 The MAP parsing problem . 68

3.2 Related Work . 69

3.3 Common Setup . 71

3.3.1 MAP parse tree selection on the supertree 71

3.3.2 Supertree simplification via "equivalent sets" 72

3.4 Pose-optimizing MICP MAP Parsing 73

3.4.1 Problem setup . 75

3.4.2 Implementation of 𝑃 (𝑜|𝑇) . 75

3.4.3 Implementation of 𝑃𝜃(𝑇) . 76

3.5 Proposal-based IP Parsing . 84

3.5.1 Proposal generation . 85

3.5.2 Formulation . 87

3.5.3 Implementing 𝑃𝜃(𝑇) . 88

3.5.4 Enforcing 𝑃 (𝑜|𝑇) = 1 . 91

3.6 Additional Features Common to Both Methods 91

3.6.1 Nonlinear optimization post-processing 91

3.6.2 Multiple solutions . 92

3.7 Experiments . 92

3.7.1 Case studies on singles-pairs grammar variations 93

3.7.2 Case studies and comparison on sink grammar 100

8

3.8 Discussion . 102

3.8.1 Scaling concerns and alternative optimization approaches . . . 102

3.8.2 Future directions . 105

4 Parameter Estimation 107

4.1 Introduction . 107

4.2 Related Work . 107

4.3 An Approximate EM Approach . 109

4.3.1 Measuring distances between sets of scenes 110

4.4 Experiments . 112

4.4.1 Comparison with EM for GMMs 112

4.4.2 Case study on the dimsum table grammar 114

4.4.3 Case study on the sink grammar 119

4.5 Discussion . 123

4.5.1 Extension to variational EM 124

4.5.2 Comparison to sampling-based parameter estimation 124

5 Discussion and Future Work 127

5.1 Closing the Vision Gap . 127

5.1.1 Consuming pose proposals . 128

5.1.2 Alternate perceptual spaces 132

5.2 Downstream Robotics Applications 136

5.2.1 Rich priors for perception . 136

5.2.2 Design and verification considering all possible worlds 137

5.2.3 Performance estimation with tuned world models 139

5.3 Grammars vs General Procedural Models 140

9

10

List of Figures

1-1 Examples of scenes generated by the tools developed in this thesis – in

this case, using a spatial scene grammar describing the arrangements

of objects on a restaurant table. (See Section 2.6.4 for details.) 24

1-2 Sketches of scene grammars describing the occurrence and placement of

dishware in a cluttered sink (top) or on a restaurant table (bottom),

along with example scenes following each grammar. A random draw

from a scene grammar activates random subsets of the available rules,

which generates a scene with a random number of objects in random

poses. Each example scene is annotated with a scene tree representing

the hierarchy of relationships between objects corresponding to rules

in the grammar. 26

2-1 Grammar structure implementing a 3-component Gaussian mixture

model (GMM) whose parameters capture the mixture weights 𝑤𝐴, 𝑤𝐵, 𝑤𝐶 ,

mixture means 𝜇𝐴, 𝜇𝐵, 𝜇𝐶 , and mixture covariances Σ𝐴,Σ𝐵,Σ𝐶 48

11

2-2 These two grammar variations for the singles-pairs environment de-

scribe very similar distributions over objects that can appear either

on their own or in spatially correlated pairs. In each variation, the

Pair node has a different spatial meaning. In the constituency varia-

tion, the objects in the pair are both randomly offset from a Pair node

that has no geometry of its own. In the dependency variation, the

Pair node is at the same pose as one of the objects, and the second

object is randomly offset from the Pair (or, equivalently stated, is ran-

domly offset from the first object). We will show in Chapter 3 that

the constituency variation is significantly harder to parse, as it requires

guessing the unknown pose of each Pair node. 50

2-3 The structure of the grammar used to describe sinks. The Sink is

a REPEATING-SET node that produces a random number of Ob-

jects at random poses. Each object is an OR node that specializes

into either a Bowl, Plate, or TerminalCup. TerminalCups di-

rectly produce geometry, while Bowls and Plates have the option

of additionally producing more objects relative to themselves through

BowlContents or PlateContents intermediate nodes, each of

which can produce a random number of TerminalObjects at ran-

dom poses relative to themselves. TerminalObjects specialize into

one of the three types of terminal scene geometry types. Equivalent

sets of nodes (i.e. logical groupings of nodes with deterministically

related poses) are boxed together. 54

2-4 Two example scenes from our cluttered sink dataset, each annotated

with scene trees indicating how they can be explained using the sink

grammar. 55

2-5 The structure of a simplified form of the sink grammar that is used as

a baseline for comparison. This grammar models the distribution over

appearance rate and pose independently for each object type without

modeling any other relationships between objects. 56

12

2-6 Top: The structure of the grammar used to describe tables at a dim-

sum restaurant. The Table produces a set of logical intermediate

nodes that produce PlaceSetting nodes at the four seats of the

table, as well as possible SharedSteamer, SharedTeapot, and

SharedBowl nodes that produce a random number of their associ-

ated object type. These Shared* objects are all randomly placed in a

common reference frame, while objects within a PlaceSetting are

randomly placed in the frame of reference of that node. Equivalent sets

of nodes (i.e. logical groupings of nodes with deterministically related

poses) are boxed together. Bottom: Two examples drawn from this

grammar annotated with their scene trees, and the same two examples

rendered with our Blender-server tool (Section 2.5.3). 57

2-7 Four table environments sampled under the constraint that tables must

satisfy the Items-on-table, Items-non-penetration, Tall-stack,

and Many-stacks constraints from Section 2.6.4, using the conditional

sampling techniques from Section 2.4. These constraints ensure that

all objects are on the tabletop and are not colliding with each other;

that the tallest stack of steamer trays is at least 4 trays high; and that

there are at least 3 stacks of trays. 60

2-8 The structure of a simplified form of the table grammar that is used as

a baseline for comparison. This grammar models the distribution over

appearance rate and pose independently for each object type without

modeling any other relationships between objects. 61

3-1 An abbreviated form of the singles-pairs grammar, and an illustration

of its corresponding supertree. Any possible scene from the grammar

occurs as a subtree of this supertree. 72

13

3-2 Pictorial depiction of the decision-making process formulated in each

parsing method when parsing observations (represented in 2D as teal

crosses) from the singles-pairs grammar. MICP parsing chooses a

parse tree for the scene by selecting a subtree of the supertree that

spans the set of observed nodes. (One such subtree has its edges high-

lighted in red in each figure.) Subtrees are weighted by their total tree

log-probability, which is influenced by the number of types of active

children of each active node, and the relative poses of active parent-

child pairs. In MICP parsing, the pose of the intermediate Pair node

is simultaneously optimized with continuous variables. IP parsing in-

stead samples a set of proposed poses for each intermediate node type

and adds an edge for every pair of possible parent-child poses. 74

3-3 Depiction of the most important decision variables in the MICP parsing

formulation, as they relate to parsing a two-observation scene from the

singles-pairs grammar. Binary activation variables 𝑛.𝑎 select whether

each node in the supertree participates in the parse, and continuous

pose variables 𝑥 determine the pose of the nodes in each equivalent set

(where each equivalent set is depicted with a shaded box). Possible

correspondences of the observed objects to the various places they can

be produced in the supertree are depicted in cyan, and are selected

between with binary correspondence variables 𝑏𝑛,𝑛̂. 77

14

3-4 Depiction of the most important decision variables in the IP parsing

formulation, as they relate to parsing a two-observation scene from the

singles-pairs grammar. Binary activation variables 𝑛.𝑎 select whether

each node in the supertree participates in the parse. Within each equiv-

alent set (indicated with shaded boxes, i.e. 𝑆1, 𝑆2, etc), a candidate

node poses is selected from a set of proposals (shown in a rounded

box) using binary selection variables 𝑆𝑖.𝐵. For each parent/child pair

in the supertree, each combination of choices of parent and child pose

from respective their proposal sets induces a different cost based on

the relative pose relationship of those nodes. Appropriate constraints

and costs on these binary variables ensures that only legal parse trees

that explain the observed nodes are selected by the parsing procedure. 89

3-5 Example scenes drawn from the singles-pairs constituency and depen-

dency grammar variations, as parsed by both the MICP (top row in

each subfigure) and IP (bottom row in each subfigure) techniques.

Parses before and after the NLP-based post-processing step are illus-

trated. The ground truth scene tree for this scene is illustrated next

to the input scene for comparison. 94

3-6 (Top) Assessment of parsing accuracy of both methods on the singles-

pairs grammar. Across 𝑁 random samples from the corresponding

grammar (𝑁 = 60 for the constituency grammar under the MICP

method; 𝑁 = 120 otherwise), we indicate the percent of parses that

match or beat the log-likelihood score of the ground truth tree for the

sampled scene before (upper number) and after (lower, bolded num-

ber) performing NLP-based post-processing. (Bottom) Comparison

of runtime of both parsing methods on randomly sampled (𝑁 = 20

per column) scenes from the singles-pairs grammar, as the complexity

of the grammar is increased by increasing the maximum number of

objects that the grammar can produce. Note the log scale on the y axis. 96

15

3-7 The best 4 parses for example scenes drawn from the dependency

(top) and constituency (bottom) variations of the singles-pairs gram-

mar. Each parsing method produces 10 integer-unique solutions, from

which the best 4 unique parse trees are extracted. Integer solutions

do not necessarily correspond to unique parse trees, depending on the

grammar and formulation details, so 4 unique solutions are not always

available. Each scene is annotated with its total tree log-probability

("ll"). The optimal parse tree from each technique matches or beats

the ground-truth parse tree that was used to generate the scene. . . . 99

3-8 Left Example MAP parses from 6 scenes from the sink dataset. Both

parsing methods return the same MAP parse tree for all scenes in the

dataset. Right Plots visualizing parsing process runtime across the 68

scenes in the dataset. Each point is a run of the corresponding parsing

process asked to produce the top 10 scenes. The parsing methods

returned the same MAP parse tree for all scenes; timing differences can

be primarily attributed to differing setup times and minor formulation

differences. 101

3-9 The best 4 parses for an example scene from the sink dataset. Be-

cause the sink grammar is constructed as a dependency grammar with

no unobserved equivalent sets, both MICP and IP parsing techniques

produce the same solution set in similar time. 102

4-1 Correlation between fitting errors of a baseline GMM EM implementa-

tion [1] and our approximate EM algorithm on 30 randomly-initialized

GMM parameter estimation trials. Each dot is a trial. Each score is

computed as the Earth mover’s distance between the ground truth and

corresponding estimated model. The close correlation in fitting error

empirically supports that our method reduces to vanilla EM in this case.113

16

4-2 Top: Samples from before and after approximate-EM fitting of the

table grammar to the target dataset. The scenes before and after fitting

are sampled under the same set of pose constraints that require object

origins to be above the table surface with adequate horizontal clearance

to not interpenetrate other objects. Additional regularity in object

placement is due to tightly fit grammar parameters. Bottom left:

Samples from the target dataset. Bottom right: Samples from the

baseline grammar after fitting to the target dataset. These scenes are

sampled under similar pose constraints to the full grammar. Note that

these scenes fail to accurately capture the arrangements of individual

place settings or steamer stacks. 115

4-3 Evolution of the estimated log-evidence of the dataset under the model

(left) and the two-sample MMD distribution distance metric between

the model and dataset (right) while fitting the table grammar and

its baseline version to the target dataset. MMD traces across training

are separated out for each object (dashed lines) alongside the mean

across objects (solid line). MMD estimates at the last iteration of

both methods are included for reference. 116

4-4 Scatterplots of sampled x-y locations of a handful of object types from

the Table grammar generated by sampling 30 scenes from each model

(under the same constraints used to generate the target dataset) and

plotting the x-y location of all object of the corresponding type from

those scenes on the table surface. Samples from the baseline (orange)

and full (blue) grammar models after fitting are overlaid with samples

from the target dataset (blue). The bounds of each plot correspond

exactly to the size of the table. 117

4-5 Plots of some selected parameters of the table grammar during the

fitting process (solid lines) compared to the ground truth values used

to generate the target dataset (dashed lines). 117

17

4-6 Evolution of the estimated log-evidence of the dataset under the model

(left) and the two-sample MMD distribution distance metric between

the model and dataset (right) while fitting the sink grammar and

its baseline version to a dataset of example sinks. MMD traces across

training are separated out for each object class (dashed lines) alongside

the mean across all object classes (solid line). MMD estimates at the

last iteration of both methods are included for reference. 119

4-7 Plots of some selected parameters of the sink grammar during the

fitting process. 120

4-8 Histograms of the best parse tree score of each scene in the dataset

before and after fitting. The fitting process increases the likelihood

assigned to trees in the target dataset, at the expense of likelihood

of trees not following the same distribution. Example parse trees,

with nodes and edges colored by their calculated likelihood (red-low

to green-high), are shown for a few of the outlier scenes. 122

5-1 Left: Synthetic RGB[D] images with full segmentation and pose labels

from a synthetic dataset of cardboard boxes in cluttered piles. Right:

Using that dataset, we train a custom 3D-RCNN implementation to

detect and segment these objects and regress their poses and shapes;

the proposed box poses and shapes are illustrated in the bottom-right.

(The color for each box instance in each subfigure are randomly chosen

and do not correspond between images.) While detection and segmen-

tation performance is excellent, rotation and shape estimation prove

unreliable. 129

18

5-2 An illustration of a pipeline for merging independently segmented point

clouds from multiple views into a combined, segmented point cloud.

Each segment is indicated by points of a different color. Point clouds

from multiple RGB[D] images are segmented using Mask-RCNN (left)

and overlaid in world frame (middle). A graph is constructed over all

segments across all independent views, with edge weights increasing

with segment overlap (as defined by the total number of nearby points).

Graph clusters correspond roughly to objects (right), providing multi-

view, segmented point clouds that are typically detailed enough for

deformable ICP to succeed. 130

5-3 Given a single segmented point cloud from Fig 5-2 corresponding to a

single box, we can randomly initialize many runs of deformable ICP to

estimate possible poses and sizes of the box. The distribution over the

resulting estimated side lengths for a box with actual side lengths [0.2,

0.2, 0.5] (marked with dashed red lines) is illustrated here. A perfect

result would be sharp peaks at the location of the red lines. Due

to occlusion, partial observation, and noise, our approach frequently

underestimates sizes in each axis. 131

5-4 Left: We train a convolutional neural network (CNN) to predict dense

descriptor images from RGB images by rendering paired RGB example

inputs with hand-designed target dense descriptor images. Top right:

After supervised training the CNN is able to consistently regress these

dense descriptor images from unlabeled inputs. Bottom right: In

contrast, applying the self-supervised descriptor learning technique of

[2] leads to noisy and indistinct features for these highly-symmetric

objects. 133

19

5-5 Results from a pilot experiment in which we add a custom keypoint

heatmap-prediction head to a MaskRCNN [3] backbone. We find

that MaskRCNN provides reasonable object detections and segmen-

tations (left) and corner keypoint predictions (right) when trained on

fully-supervised data. Each row is a different scene; target keypoint

heatmaps are illustrated in the middle column for comparison. . . . 134

20

List of Tables

2.1 The set of rule types supported by our grammar, along with their ex-

pression for forward sampling and log-density evaluation. Each rule

type describes a parameterized, stochastic distribution on the trans-

lation and rotation of a child node 𝑛𝑐 conditioned on the pose of its

parent node 𝑛𝑝, in terms of each of node’s translation 𝑡 and rotation 𝑟

components. Distinction is made between the different frames in which

translational and rotational offsets are expressed, as offsets expressed

in the parent’s frame are bilinear in the participating pose variables

and require special handling during scene parsing in Chapter 3. Terms

𝐹 (Σ) and 𝐹 (𝑍) represent normalizers that are a function of the indi-

cated distribution parameters. 41

21

22

Chapter 1

Introduction

Having the ability to reason about, explain, and quantify the natural variation in

the world is a fundamental aspect of intelligence. We humans have the ability to

not just recall many of the kitchens we have experienced, but to imagine an infinite

number of new ones – and of course, we quickly adapt to new kitchens as soon as

we enter them by applying our knowledge of how kitchens are structured in general.

This kind of knowledge is directly useful when designing robots: if we’re designing a

dishwashing robot for home kitchens, knowing the distribution of kitchens our robot

will be operating in tells us exactly what kitchen layouts, dish arrangements, and

object properties we will need to prepare for.

Unfortunately, for complex real-world environments like kitchens, it’s not at all

clear how to write down a good probabilistic model – and not necessarily obvious

what the defining traits of a "good" model would even be. Some guiding practical

questions include:

1. Should the environment be represented as objects, primitive geometry, images,

language, or something else?

2. Should the model be able to readily sample new environments?

3. Should the model be able to explain environments, e.g. by providing quantita-

tive density estimates or proposals over underlying structure?

23

Figure 1-1: Examples of scenes generated by the tools developed in this thesis – in
this case, using a spatial scene grammar describing the arrangements of objects on a
restaurant table. (See Section 2.6.4 for details.)

4. If the model has parameters, how can those be determined from data?

Depending on the application, one may have different priorities that influence

model design choices. In our case, one of our primary motivations is in using this

model as design and verification tool for robots: given the task of designing a dish-

washing robot, we’d like to use our model to try to understand how well a prototype

robot might work in diverse real kitchens. At design time, we might gather real-world

data taken from real kitchens, and use that data to construct our model. During de-

velopment, we would like to at least be able to draw samples from our model and test

our robot in simulation – ideally, we’d be able to use structure in our model to enable

more principled control synthesis, too. And finally, during deployment, we’d like to

be able to check that the environments we encounter really do follow the model.

To meet these requirements, we believe we should model environments at

an object level (for compatibility with simulation) with a minimally complex

parametric model (for data efficiency and explain-ability). This model needs to

24

be able to be generate realistic sample environments while also being possible

to invert (in order to explain a given scene and to fit model parameters). This is a

difficult set of requirements to meet! Even if we assume that the world is composed

of rigid objects with known shapes, different worlds will contain different numbers

and classes of objects in different configurations, where the presence, types, and pose

of those objects may covary. This joint continuous-and-discrete structure is the crux

of this modeling problem, and trying to tackle it has encouraged the development of

the tools and techniques reported in this thesis.

1.1 Scene Grammars, Trees, and Parsing

A scene grammar is a probabilistic procedural model that specifies a recipe for gen-

erating scenes as a list of symbols (or "object types") and production rules. Equiv-

alently, a scene grammar specifies that all scenes have some underlying common

tree-structured relationships among objects, and that scenes can be generated by

sampling those trees starting from their corresponding root objects.1 (See Figures

1-1 and 1-2 for a few visual examples.)

A scene grammar can be designed to capture a wide variety of relationships be-

tween objects in a scene, and excels at capturing hierarchical structure. For example,

one could describe the generation of a room by describing how the room generates

a random set of furniture within it at random poses on the floor, and each piece of

furniture in turn produces a random amount of clutter within or on top of it. In this

description, the room, furniture, and clutter are the object types in the grammar,

and furniture-goes-in-room and clutter-goes-on-furniture are examples of production

rules. In such a grammar, the existence and poses of each object depends only on

the existence and pose of their parent object: this natural expression of conditional

independence is a great feature of scene grammars that we will exploit throughout

this thesis.
1This concept is closely related to formal grammars: a scene grammar is a context-free attribute

grammar over a set of object types, where the attributes are poses. We explore this connection a
little more in Chapter 2.

25

Figure 1-2: Sketches of scene grammars describing the occurrence and placement of
dishware in a cluttered sink (top) or on a restaurant table (bottom), along with
example scenes following each grammar. A random draw from a scene grammar
activates random subsets of the available rules, which generates a scene with a random
number of objects in random poses. Each example scene is annotated with a scene
tree representing the hierarchy of relationships between objects corresponding to rules
in the grammar.

26

A scene tree is a closely related annotation of a scene. Given a room with some

set of furniture and clutter, a scene tree is a tree whose nodes are objects in the scene

and edges are production rules from the grammar. Samples from a scene grammar

are thus scene trees: a sample from the room grammar has the room as the scene tree

root, connected by directed edges to each piece of furniture it contains; and, in turn,

any clutter produced by a given piece of furniture will be placed in the tree under

the furniture from which it was generated. In this way, scene trees are the structure

by which we can relate any given scene to a corresponding grammar: they encode

by which rule and under which parent each object was produced, and thus make it

possible to evaluate how well the given scene is explained by the grammar.

Unfortunately, scenes are typically observed as unordered sets of objects (and

that’s assuming someone has already solved the perception problem for us). Given a

grammar and an observed scene, inferring the best scene tree that explains the objects

in the scene with the grammar is the scene parsing problem. Parsing scene trees from

scenes can be particularly hard: depending on the details of the grammar, any scene

might be described by an exponential number of different scene trees, and finding

"legal" trees that follow all of the grammar rules may require carefully grouping

objects in specific ways. Even worse, some grammars may even involve object types

that aren’t observable at all: a grammar might describe the production of a cluster of

objects on a table, where the "cluster center" is itself an object in the grammar that

can not be directly observed (and must instead be inferred). In these cases, scene

parsing requires inferring the existence and pose of those hidden object types, making

the problem doubly difficult.

1.2 Organization of this Thesis

The primary contribution of this thesis is a detailed formulation of a particular class of

scene grammars, which we refer to as spatial scene grammars, along with constrained

sampling, scene parsing, and parameter estimation techniques that make it possible

to apply this tool to a broad range of environments and problems.

27

Chapter 2 provides details on the formulation of spatial scene grammars. This

chapter refines work from [4] into a unified grammar framework that is tightly in-

tegrated with novel parsing and parameter estimation techniques presented in sub-

sequent chapters. This chapter includes detailed remarks on some of the major de-

sign decisions and difficulties in authoring scene grammars, including the important

functional differences between constituency- and dependency-style grammars and the

trade-off between model expressiveness and parsing difficulty. This chapter also de-

scribes how to perform constrained sampling from spatial scene grammars – that is,

how to use a scene grammar to produce scenes that follow additional content or pose

constraints.

Chapter 3 presents two novel optimization-based formulations for scene parsing.

One technique sets up a mixed-integer optimization that simultaneously decides the

scene tree structure and the pose of each active node in the scene. We also present

a novel integer-optimization parser that produces a set of heuristic proposals for

possible poses for each node type in the grammar, and searches for the optimal way to

utilize those proposals to produce a valid scene parse. We benchmark these strategies

against each other in terms of their solution quality and run-time scaling with respect

to grammar and scene complexity.

Chapter 4 presents an approximate expectation-maximization (EM) framework

for grammar parameter estimation that generalizes the concepts from [4], along with

experiments evaluating its effectiveness.

Chapter 5 discusses pilot experiments performed in the course of this thesis ex-

ploring how to close the gap between our object-focused grammars and the unlabeled

images we get from our robots. This chapter also discusses a few broad ideas for

future work, including possible downstream applications in robotics and alternative

procedural model formulations.

28

1.3 Related Work

This thesis is focused on the problem of capturing distributions over worlds from the

perspective of a roboticist. Tackling this problem requires making two major design

choices in sequence:

1. What representation do we choose for a "world"?

2. How do we parameterize a distribution over that representation?

1.3.1 Choice of representation

The first of these decisions is enormously consequential: what representation of worlds

should we use? This decision declares the scope of our modeling problem.

The representation of choice for much of the machine learning and computer vision

community is images (or other representations close to perception: voxel grids, point

clouds, lightfields, or even language). These formats are appealing, as they are both

tremendously rich – the space of all images could be argued to contain (an image of)

every possible world – and they correspond one-to-one with the sensors we put on our

robots. The past few years have seen a wave of popular and successful deep neural

generative models that can capture detailed realistic distributions over images and

text (e.g. [5, 6]). Related model architectures have been shown to be able to capture

distributions over more geometric (and for us, often more useful) world representations

like voxel grids [7], point clouds [8], and light fields [9, 10]. The cost of weaker

structural assumptions is an enormous hunger for data, and significant unresolved

questions concerning model correctness and explanability.

We instead choose to describe a world as a set of objects. Most robotics simulators

(and a corresponding majority of internal robotics world models) rely strongly on

breaking the world down into a set of objects with known (or parameterized varying)

geometry, and using that geometry as an abstraction for reasoning about how the

world can be interacted with, and how the world will evolve. In this way, moving

from pixels to objects vastly simplifies the modeling problem by imposing physical

29

structure that we know to be present and common in the world.

1.3.2 Choice of model type

The second of these decisions is to decide what modeling strategy we’ll use to describe

our chosen representation of worlds (or to decide whether we need a model in the first

place).

Do we really need a model?

In the modern data-rich era, a tempting approach is to avoid specifying a model at

all. This strategy corresponds to a dramatically non-parametric distribution modeling

paradigm: instead of specifying some structured model to capture a distribution over

worlds, we instead collect a sufficiently large dataset of examples to use as a proxy. A

natural drawback of this approach is that, as the domain of interest grows in dimen-

sionality, the amount of data required to ensure good coverage grows exponentially

– which may limit these approaches from scaling beyond "narrow" environments for

single-application robots. Still, this nonparameteric, data-driven approach is an ap-

pealing research direction: for example, [11] illustrates that, even if an analysis like

adversarial example search is treated as a search across a finite set of observed ex-

amples, there’s room for clever algorithms to efficiently utilize those examples by

reasoning about how each observation is related. In our case, we wish to truly reason

about novel environments that our robots have never seen before – preferably in a

data-efficient way – which, fundamentally, demands some form of model.

Types of models

A typical modeling approach would instead be to make assumptions about the rules

by which the world is assembled – whether by using highly parameterized and flexi-

ble neural approaches (as discussed above), or more classic symbolic-AI approaches.

Naturally, there is a long and rich history of probabilistic scene modeling using such

structured models. L-systems [12] and shape grammars [13] literally describe the

30

shape of objects by using rules to describe how to "grow" the object out of primitive

geometry. Scene grammars instead describe the scene at the level of objects, though

the amount of detail they aim to capture can vary: [14–16] all describe scenes from

objects all the way down to the polygon, line segment, or pixel level, while [17–20] use

objects as their terminal level of detail. One step above a scene grammar would be

to instead describe a distribution over scene graphs, in which an object can have rela-

tionships to more than one other object. These models are more complex to sample

from and do inference over, although it has been shown to be possible with MCMC

methods [21]). Scene graph models are well suited to producing variations on existing

content [22] and providing rich priors and structures for object-level, pixel-level, and

point cloud perception [23, 24]. Even richer models – whether based on probabilis-

tic programming [25–27], autoregressive neural models [28, 29], or hybrid procedural

models with deep learning components (e.g. [28, 30]) – can in principle capture any

distribution over any scenes, at the cost of significant model complexity, extremely

difficult inference problems, and for deep neural models, data inefficiency.

In this work, we focus on using scene grammars as a modeling tool. We have

found that scene grammars strike an appealing balance between expressiveness, in-

terpretability, and structure. Scene grammars are founded on the strong structural

assumption that the world can be assembled by following a set of simple context-free

rules. We will show that we can take advantage of this simple structure to formu-

late novel principled optimization and inference algorithms that reason about a wide

range of worlds. This simplicity naturally comes at the expensive of expressive abil-

ity – but as our results demonstrate, we can still use scene grammars to describe a

range of complex robotics-relevant scenes. Scene grammars are easy to design (unlike

many shape grammars) and sample from (unlike some scene graph models that only

provide a joint density over scenes). It is, however, not trivial to invert or "parse"

a scene using a scene grammar model; nor is it clear how best to fit the parameters

of a scene grammar model to observed data. We provide novel solution strategies for

these problems as contributions of this thesis.

31

1.3.3 Robotics applications

While large-scale applications of these tools is beyond the scope of this thesis, it is

worth surveying where distributional world models fit into robotics, as it informs

what properties and traits we should prioritize when we are designing our model.

Both robot policies and vision systems have been demonstrated to be trainable

exclusively in sim if the sim-to-real gap is sufficiently small [31–33]. In particular,

BayesSim [34] demonstrates a method for explicitly aligning the distribution of simu-

lated rollouts to real ones (in the space of friction and mass parameters) to get better

sim-to-real alignment. Many of these techniques are inspired by sim-to-real problems

in reinforcement learning of dynamic tasks, and hence focus on the alignment of dy-

namics between simulation and reality. However, work more similar to ours focused

on the alignment of scene content has also begun to accelerate. MetaSim [18] trains

a neural distribution transformer to adjust scene object arrangements to make them

more realistic (as measured by a distribution distance in a deep image embedding

space), and experimentally demonstrates that performing that alignment quantita-

tively improves downstream task performance. [20] extends that system to better

align the number of objects in addition to their poses. [35] corroborates that it’s

important to get the scene contents to be realistically distributed to achieve good

transfer. While there is a growing body of realistic environments to use for training

agents (e.g. [36, 37]), they can be limited in scope and diversity. The work in this

thesis is motivated by a desire to generate rich data in the style of those datasets,

but with the ability to customize the model to describe scenes of interest, generate

arbitrarily many new environments, and reason about how new environments fit the

model. These sorts of procedural scene generators are becoming increasingly pop-

ular: see [35] and [38] for two recent and powerful programmable scene generation

pipelines.

Having a good model over environments is also critically useful for analyzing and

improving the robustness of a given system. [39], for example, provides rate estimates

for rare events by carefully sampled simulations, but requires a prior distribution

32

over worlds that forms the basis for those rate estimates. These world models can be

powerful sanity checks and regularizers for systems at runtime. [40] shows that even

just using an autoencoder as a world model can provide reliable anomaly and novelty

detection abilities. Scene grammars and trees have been shown to be widely useful

as a prior to improve perception or planning performance: for example, [23] uses a

graph structure over body parts to ensure human part detections are at reasonable

relative poses, and [41] uses learned information about typical relative placements to

improve the reliability of a pick-and-place system. For a world model to be useful

in those situations, it needs to not only provide new world samples, but also reason

about how well hypothetical or observed worlds fit the model – which is exactly what

our parsing procedure is designed to enable.

33

34

Chapter 2

Formulation of Spatial Scene

Grammars

2.1 Introduction

This chapter provides a precise formulation of a class of procedural models we call

spatial scene grammars. Spatial scene grammars are a subclass of scene grammars,

which are themselves a class of probabilistic procedural model. Scene grammars

describe distributions over sets of objects by declaring a set of probabilistic generative

rules that can be applied to grow a scene out of parts. Spatial scene grammars focus

on describing scenes composed of rigid objects from a finite set of object types with

a-priori known geometry. Their random variables describe the discrete number of

objects, the discrete type of each object, and the continuous pose of each object.

This restriction in scope allows us to be particular about the kinds of distributions

over object count, type, and pose that are supported – and to ensure that we’re

treating spatial relationships between object poses particularly carefully.

All procedural models face a fundamental trade-off between their expressive power

and the ease with which they can be inverted. Stated another way: the more expres-

sive and complex any given procedural model becomes, the harder it is to "invert"

or otherwise do inference over the latent variables of that model. In the case of scene

grammars, we refer to this model inversion process as scene parsing, by which process

35

we reconstruct a scene tree that explains how the grammar rules created an observed

set of objects. As a core contribution of this thesis, we will show over the course of

this chapter and Chapter 3 that by carefully restricting the kinds of spatial relation-

ships described by a scene grammar to exactly those described in our spatial scene

grammar formulation, we can formulate scene parsing as a tractable mixed-integer

optimization problem.

2.2 Related Work

As discussed in Chapter 1, scene grammars (and the related and sometimes overlap-

ping concepts of L-systems, shape grammars, and scene graphs) have a rich history in

the fields of computer vision and computer graphics, but are just starting to appear in

robotics applications. The notion of using context-free grammar (CFG) rules to build

objects or scenes by parts dates back at least as far as L-systems, which combine a

standard CFG over strings with a system for rendering generated strings into natural

(usually branching) structures like trees [12]. This logic can be applied to building up

shapes by grammar rules via shape grammars [13,42], which have been applied to de-

scribe shapes of buildings [43–45] and general triangulated polygons [46]. These shape

grammar formulations often "grow" geometry from atomic shapes or drawing rules,

which lends them incredible expressive power at the cost of complexity and control

difficulty. Indeed, that these shape grammars can be over-expressive and unintuitive

has motivated work on guided sampling [45] and grammar inference [47–49].

We instead focus on modeling scenes by top-down design at the level of objects

and their spatial relationships. A significant amount of work in this area uses gram-

mars over scene parts either as models for scene understanding, or as regularizers

for perception tasks. [14], for example, defines a simple grammar that describes a

scene as being composed of a random number of spatially patterned parts, each of

which can produce additional parts within or relative to itself, or terminate and pro-

duce a rectangular surface. [50], likewise, advocates for the general application of

AND-OR grammars that terminate in image patches as a model for describing im-

36

ages in general. This line of work has evolved to include more complex grammars

that separately model foreground objects with bounding boxes [15], group objects

by functionality rather than spatial relationships [51], or consider additional simul-

taneous attribute and dependency structure to simultaneously capture constituency,

relative pose, and style information [23]. These works have tended to include support

for additional lateral, non-context-free relationships between objects in the scene for

additional expressive power. In a separate line of work, [16] describes a similarly-

structured probabilistic CFG over image parts and their 2D poses, but restricts the

poses of objects to fall on a discrete grid as a prerequisite for their inference strategy.

These grammars all ultimately terminate by generating image patches, lines, or other

image features.

A more limited body of work – but one that shares many of the same underlying

grammar tools and techniques – instead focuses more closely on capturing geomet-

ric structure. [17] learns a scene grammar from 3D datasets annotated with hierar-

chies that breaks down scenes constituently from rooms, to objects, to oversegmented

geometric regions. [18] utilizes a CFG-structured scene grammar to generate their

scenes, which they post-process with a neural distribution transformer to make more

realistic; [20] demonstrates that they can use a recurrent network to improve the dis-

tribution modeling ability of this grammar. Beyond grammars, [22] reasons about

spatial relationships between objects and object classes using a scene graph struc-

ture. [19] models a scene with an underlying scene tree similar in concept to our own

– but their scene trees encode a specific set of physical contact and support relation-

ships in a scene rather than generic grammar production rules. [19] also illustrates

that they can solve the parsing problem for this scene tree representation by using

a combination of importance-resampling and MCMC, in contrast to our all-at-once

mixed-integer optimization approach.

Our grammar formulation is strongly inspired by the common grammar struc-

tures shared among many of these works. Our spatial scene grammar formulation

is fundamentally a probabilistic CFG, as in [15–18] and others. We do not directly

support lateral non-context-free relationships between objects in the grammar like

37

those in [15,23], as they greatly complicate the scene parsing processes; however, we

do support such arbitrary constraints over tree structure and poses that are handled

during a conditioned sampling process. (This constraint specification is spiritually

similar to the one used in [38].) We use a variation on the AND-OR-SET discrete

logic from [15] [23]. While many of these works describe relative pose distributions

with Normal distributions (or more – e.g. [17] captures attribute relationships with

kernel density estimation), our use of Bingham distributions1 in a scene grammar is

novel to the best of our knowledge.

2.3 Formulation

A spatial scene grammar is a stochastic, attributed, parameterized context-free gram-

mar {𝒩 ,ℛ, 𝑃𝒩𝜃 , 𝑃ℛ𝜃 , 𝑁𝑟𝑜𝑜𝑡, 𝑥𝑟𝑜𝑜𝑡}. This grammar is defined over node types 𝒩 .2 Each

node type 𝑁 ∈ 𝒩 has a continuous pose attribute 𝑁.𝑥 ∈ 𝑆𝐸(3)3, and associated ge-

ometry 𝑁.𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦 that it will produce in the final scene; this geometry can be empty

if the node doesn’t produce an observable artifact. The set of production rules ℛ rep-

resent how a node (i.e. an instantiated symbol) can produce a child node. The rules

are organized by their parent node: each node type 𝑁 ∈ 𝒩 has an associated list of

production rules 𝑁.ℛ = [𝑅0, ..., 𝑅𝑀], each of which describes the possible production

of a single additional child object.

In this definition, a node can simultaneously activate multiple rules to generate

multiple children. Specifically, a parent node 𝑛𝑝 of type 𝑁 activates a subset of its

rules ℛ𝑎𝑐𝑡𝑖𝑣𝑒 ⊂ 𝑁.ℛ following a discrete distribution over 𝑛𝑝’s rules (parameterized

by 𝜃):

𝑃𝑁
𝜃 (ℛ𝑎𝑐𝑡𝑖𝑣𝑒).

When active, a given rule 𝑅 produces a child node 𝑛𝑐 of fixed type 𝑅.𝑁 with its

pose drawn from a continuous distribution (also parameterized by 𝜃) that is condi-

1For an overview of Bingham distributions as applied to robotics, [52] is an excellent reference.
2These node types are equivalent to "symbols" in a formal grammar. We use "node type" instead

to clarify the connection to scene trees (which are graphs over nodes of these types).
3We use notation 𝐴.𝐵 to indicate 𝐵 is a property of 𝐴.

38

tioned on the parent’s pose

𝑃𝑅
𝜃 (𝑛𝑐.𝑥|𝑛𝑝.𝑥).

This is expressive enough to describe, for example, a child whose pose is a distribution

in the parent’s frame of reference.

A draw from the grammar is a tree 𝑇 of nodes, each having a concrete spatial

pose. The tree is stored as a set of parent-ruleset pairs 𝑇 = {𝑛𝑝,ℛ𝑎𝑐𝑡𝑖𝑣𝑒}; for a given

node 𝑛𝑝, ℛ𝑎𝑐𝑡𝑖𝑣𝑒 is 𝑛𝑝’s set of active rules, which serves as the list of outgoing edges

to child nodes 𝑅.𝑛𝑐 for each rule 𝑅 ∈ ℛ𝑎𝑐𝑡𝑖𝑣𝑒. A tree is drawn from the grammar

by initializing a tree with a root node of type 𝑁𝑟𝑜𝑜𝑡 at predetermined pose 𝑥𝑟𝑜𝑜𝑡 and

recursively sampling children from unexpanded nodes until no unexpanded nodes

remain (see Algorithm 1).

An observed scene 𝑜 is constructed by collecting the geometry-producing nodes

from 𝑇 . Critically, the observed scene 𝑜 does not always reveal the full structure of

the tree, because only those nodes that produce geometry are observable, and there

may be multiple trees that produce the same observations. (For example, the centers

of clusters of objects may be represented with nodes, but only the actual objects in

the cluster show up in the observed scene.) Each node 𝑁 of type 𝒩 deterministically

produces geometry 𝒩 .𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦 at pose 𝑁.𝑥.

The joint probability of a sampled tree 𝑇 is

𝑃 (𝑇) =
∏︁

𝑛𝑝,ℛ𝑎𝑐𝑡𝑖𝑣𝑒∈𝑇

𝑃𝑁𝑝

𝜃 (ℛ𝑎𝑐𝑡𝑖𝑣𝑒|𝑛𝑝)
∏︁

𝑅∈ℛ𝑎𝑐𝑡𝑖𝑣𝑒

𝑃𝑅
𝜃 (𝑅.𝑛𝑐.𝑥|𝑛𝑝.𝑥), (2.1)

where the outer product iterates over parent nodes 𝑛𝑝 and their actives rule sets

ℛ𝑎𝑐𝑡𝑖𝑣𝑒 implied by their successors in the tree, where 𝑁𝑝 indicates the node type of

corresponding parent node 𝑛𝑝. The inner product iterates over the individual active

rules 𝑅 and their produced child nodes 𝑛𝑐 associated with that parent.

The relationship between a parent node and its children is factored into the discrete

choice (corresponding to 𝑃𝑁
𝜃) made by the parent to produce that child set, and

the continuous choice (corresponding to 𝑃𝑅
𝜃) made to place each child at its pose

relative to the parent. In the following sections, we enumerate additional structure

39

Algorithm 1: Forward sampling a scene from a grammar.
Input : a root node 𝑟𝑜𝑜𝑡
Output: a sampled scene tree

/* Build scene-tree top-down, starting from the supplied root
node. */

𝑛𝑜𝑑𝑒_𝑞𝑢𝑒𝑢𝑒 = [𝑟𝑜𝑜𝑡]
𝑡𝑟𝑒𝑒 = 𝑇𝑟𝑒𝑒([𝑟𝑜𝑜𝑡])
while 𝑙𝑒𝑛(𝑛𝑜𝑑𝑒_𝑞𝑢𝑒𝑢𝑒) ≥ 0 do

𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑛𝑜𝑑𝑒_𝑞𝑢𝑒𝑢𝑒.𝑝𝑜𝑝()
/* Sample what this parent is going to produce. */
𝑟𝑢𝑙𝑒𝑠 = 𝑝𝑎𝑟𝑒𝑛𝑡.𝑠𝑎𝑚𝑝𝑙𝑒_𝑟𝑢𝑙𝑒𝑠()
for rule in rules do

/* Sample the pose of each child being produced. */
𝑐ℎ𝑖𝑙𝑑 = 𝑟𝑢𝑙𝑒.𝑠𝑎𝑚𝑝𝑙𝑒_𝑐ℎ𝑖𝑙𝑑()
𝑛𝑜𝑑𝑒_𝑞𝑢𝑒𝑢𝑒.𝑝𝑢𝑠ℎ(𝑐ℎ𝑖𝑙𝑑)
𝑡𝑟𝑒𝑒.𝑎𝑑𝑑_𝑛𝑜𝑑𝑒(𝑐ℎ𝑖𝑙𝑑)
𝑡𝑟𝑒𝑒.𝑎𝑑𝑑_𝑒𝑑𝑔𝑒(𝑝𝑎𝑟𝑒𝑛𝑡, 𝑐ℎ𝑖𝑙𝑑)

/* Return only those nodes that produce scene geometry. */
return [node for node in tree if node.has_geometry]

and restrictions we can impose on these distributions to enable our ultimate goal of

making posterior scene tree parsing more tractable.

2.3.1 Node types to capture common discrete relationships

The kinds of children a parent creates are chosen by sampling a set of production

rules from parent node. In general, this is a draw from a joint distribution over

𝑀 = |𝑁.ℛ| binary variables representing the activation of each possible rule, requiring

2𝑀 parameters to describe. It is particularly popular in the scene grammar literature

to instead describe these relationships with combinations of simple AND and OR rules

in the style of AND-OR trees [15, 23]. Inspired by this approach, we define a small

set of parent node types that represent more structured patterns of rule activation

that can be described with vastly fewer parameters:

1. AND node type: The parent node provides a list of production rules, all of

which are activated every time. This requires 0 parameters.

40

XYZ Rules
Name Child translation expression Log-density expression Parameters
Fixed offset 𝑛𝑐.𝑡 = 𝑛𝑝.𝑡+ 𝑡𝑜 0. 𝑡𝑜 ∈ 𝑅3

World frame Nor-
mal 𝑛𝑐.𝑡 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇,Σ)

−0.5𝛿𝑇Σ𝛿 − 𝐹 (Σ)
𝛿 = 𝑛𝑐.𝑡− 𝜇

𝜇 ∈ R3,Σ ∈ R3 > 0

World frame Nor-
mal offset 𝑛𝑐.𝑡 ∼ 𝑛𝑝.𝑡+𝑁𝑜𝑟𝑚𝑎𝑙(𝜇,Σ)

−0.5𝛿𝑇Σ𝛿 − 𝐹 (Σ)
𝛿 = 𝑛𝑐.𝑡− 𝑛𝑝.𝑡− 𝜇

𝜇 ∈ R3,Σ ∈ R3 > 0

Parent frame Nor-
mal offset

𝑛𝑐.𝑡 ∼ 𝑛𝑝.𝑡 + 𝑛𝑝.𝑟 ×
𝑁𝑜𝑟𝑚𝑎𝑙(𝜇,Σ)

−0.5𝛿𝑇Σ𝛿 − 𝐹 (Σ)
𝛿 = 𝑛𝑝.𝑟𝑇 (𝑛𝑐.𝑡− 𝑛𝑝.𝑡− 𝜇)

𝜇 ∈ R3,Σ ∈ R3 > 0

Rotation Rules
Name Child rotation expression Log-density expression Parameters
Uniform rotation 𝑛𝑐.𝑟 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝑆𝑂(3)) 0. None.
Fixed offset 𝑛𝑐.𝑟 = 𝑛𝑝.𝑟 ×𝑅𝑜 − log(𝜋2) 𝑅𝑜 ∈ 𝑆𝑂(3)

World frame Bing-
ham distribution 𝑛𝑐.𝑟 ∼ 𝐵𝑖𝑛𝑔ℎ𝑎𝑚(𝑀,𝑍)

tr 𝑍𝑀𝑇 𝑞𝑞𝑇𝑀 − 𝐹 (𝑍)
𝑞𝑞𝑡 ← 𝑛𝑐.𝑟 (Sec. 3.4.3) 𝑀 ∈ R4×4, 𝑍 ∈ R4

Parent frame Bing-
ham distribution 𝑛𝑐.𝑟 ∼ 𝑛𝑝.𝑟×𝐵𝑖𝑛𝑔ℎ𝑎𝑚(𝑀,𝑍)

tr 𝑍𝑀𝑇 𝑞𝑞𝑇𝑀 − 𝐹 (𝑍)
𝑞𝑞𝑇 ← (𝑛𝑝.𝑟)𝑇 (𝑛𝑐.𝑟) (Sec. 3.4.3) 𝑀 ∈ R4×4, 𝑍 ∈ R4

Table 2.1: The set of rule types supported by our grammar, along with their ex-
pression for forward sampling and log-density evaluation. Each rule type describes
a parameterized, stochastic distribution on the translation and rotation of a child
node 𝑛𝑐 conditioned on the pose of its parent node 𝑛𝑝, in terms of each of node’s
translation 𝑡 and rotation 𝑟 components. Distinction is made between the different
frames in which translational and rotational offsets are expressed, as offsets expressed
in the parent’s frame are bilinear in the participating pose variables and require spe-
cial handling during scene parsing in Chapter 3. Terms 𝐹 (Σ) and 𝐹 (𝑍) represent
normalizers that are a function of the indicated distribution parameters.

2. OR node type: The parent node provides a list of production rules, one of

which is chosen at random to be activated. This requires 𝑀 − 1 parameters.

3. INDEPENDENT SET node type: The parent node provides a list of pro-

duction rules, each of which is activated randomly, independent of the other

rules. This requires 𝑀 parameters.

4. REPEATING SET node type: The parent node provides a single production

rule, which is activated 𝑘 ∼ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(1...𝑀𝑟𝑒𝑝) times. This requires 𝑀𝑟𝑒𝑝

parameters.

This set of node types is complete, in that any pattern of child activation can be

implemented by chaining AND and OR nodes in an appropriate pattern.

41

2.3.2 Rule types to capture common continuous relationships

Each production rule 𝑅 under parent 𝑛𝑝 that is activated produces a new child node 𝑛𝑐

with random pose 𝑥 drawn from a rule-specific conditional distribution 𝑝𝑅𝜃 (𝑛
𝑐.𝑥|𝑛𝑝.𝑥).

We separate this spatial relationship into conditional distributions over the transla-

tional and rotational components, which can frequently be modeled as being inde-

pendent from one another. The separate translation and rotation parts of the pose

are referred to as 𝑛.𝑡 and 𝑛.𝑟 respectively.

In Table 2.1, we provide a detailed list of distinct kinds of conditional distributions

over translation and rotation. We focus most strongly on cases where translation dis-

tributions can be captured using Normal distributions, and rotational distributions

can be captured using Bingham distributions.4 Further, we distinguish between dif-

ferent of expressing the relationships between objects: note that expressing either

translational or rotational pose distributions in the parent node frame (i.e. the "Par-

ent frame" rules) introduces bilinear relationships between the pose variables, which

must be handled as special cases in the mixed-integer convex parsing procedure in

Chapter 3.

This particular set of rule types has arisen from efforts to apply this grammar

formulation to a wide variety of scenes; empirically, each of these rule types is useful

in different circumstances, and trades off expressiveness with complexity. In our

implementation, these node rule types are implemented with a class hierarchy making

it easy to slot in new node types translational and rotational rule types – or, more

broadly, new characterizations of 𝑝𝑅(𝑛𝑐.𝑥|𝑛𝑝.𝑥). In practice, we employ a handful of

closely related rule types to make it easier to express prismatic, planar, and revolute

behavior equivalent to setting certain covariance terms to zero.

4Bingham distributions are an analogue of Normal distributions over the unit sphere appropriate
for describing distributions over unit quaternions [53]. Bingham distributions are parameterized
by an orthogonal orientation matrix 𝑀 ∈ R4×4 and a concentration vector 𝑍 ∈ R4. A helpful
overview of this distribution type is provided in [54]. For a more detailed view of applications of
this distribution type to robotics, refer to [52].

42

2.4 Specifying and Enforcing Constraints

While the context-free grammar structure we enforce is well-suited to describing pair-

wise object relationships, it is fundamentally incapable of expressing scene-wide con-

straints like "ensure the scene has exactly 𝑁 objects" or "ensure all objects are in

a non-penetrating configuration." We instead allow the user to express constraints

directly so that we can consider them during the scene sampling process.

In addition to a grammar specification, a user can provide a list of constraints

𝒞 = {𝐶(𝑇) : 𝑇 → R𝑛 ≥ 0}.

Each constraint is a function 𝐶(𝑇) mapping a scene tree 𝑇 to an 𝑛-dimensional vector,

which is constrained to be (without loss of generality) strictly elementwise positive.

We further distinguish between two classes of constraints that a user might specify:

pose constraints, which are only functions of the poses of nodes in 𝑇 , and structural

constraints, which might be a function of the number of types of nodes in 𝑇 . We use

𝒞(𝑇) ≥ 0 as shorthand to refer to evaluation of the complete constraint set at once;

and 𝒞𝑃 and 𝒞𝑆 to refer to the subsets of pose and structural constraints respectively.

Sampling scenes given this constraint set is equivalent to sampling from the con-

ditional distribution 𝑃 (𝑇 |𝐶(𝑇) ≥ 0). Unfortunately, while sampling unconditioned

trees 𝑃 (𝑇) is easy (see Algorithm 1), this conditional sampling problem is more dif-

ficult. Rejection might work for easy-to-satisfy constraint sets, but as the space of

scene trees is naturally very high-dimensional, rejection sampling can quickly be-

come an untenable strategy.5 Pose constraints in particular can be very difficult to

satisfy: a very common pose constraint is to enforce non-penetration of all objects,

which becomes hard to satisfy when objects become sufficiently cluttered. We utilize

a combination of techniques, depending on the context, to address these sampling

difficulties:

5 [38] successfully uses rejection sampling to handle similarly-posed constraints in their pro-
grammable scene generation pipeline; however, they carefully design their sampling space using
domain-specific knowledge to keep their sampling complexity in check.

43

1. To satisfy structural constraints, we rely on rejection sampling. While we have

explored guided resampling of subtrees (based on [45]) with some success, the

structural constraints we experiment with here are simple enough that rejection

sampling is sufficient.

2. For differentiable pose constraints of middling complexity, we use a more ef-

ficient Hamiltonian Monte-Carlo (HMC) sampling algorithm to find satisfying

object configurations given a fixed tree structure.6

3. For very hard-to-satisfy pose constraints, we resort to a projection approach in

which we sample a tree from 𝑃 (𝑇) and then solve a nonlinear optimization to

find the closest tree configuration that satisfies the constraints.

In practice, to produce a diverse set of trees that satisfy a constraint set, we sample

a diverse population of trees that satisfy structural constraints by rejection sampling

(1), and then apply technique (2) or (3) to transform those samples into ones that

additionally satisfy any pose constraints.

2.4.1 HMC for sampling from pose constraints

[55] demonstrates that it’s possible to use Hamiltonian Monte-Carlo [56], a relatively

sample-efficient gradient-based variant of MCMC, to find object configurations that

satisfy physical support and non-penetration constraints; we reproduce their approach

here. Given a sampled tree 𝑇0 ∼ 𝑃 (𝑇) that satisfies any structural constraints but

may or may not satisfy pose constraints 𝒞𝑃 , we sample a sequence of trees 𝑇𝑘 ∼

𝑃𝐻𝑀𝐶(𝑇 |𝒞𝑃). Like all MCMC techniques, HMC produces a sequence of samples from

a Markov process whose stationary distribution is designed to match a distribution

of interest. Here, we craft a special distribution that conditions 𝑃 (𝑇) to satisfy the

constraints by the addition of constraint penalty terms:

𝑃𝐻𝑀𝐶(𝑇 |𝒞𝑃) = 𝑃 (𝑇) *
∏︁

𝐶∈𝒞𝑃
𝒩 [0, 𝜖](min(𝐶(𝑇), 0)).

6In the case that the constraints are relatively easy to satisfy but not differentiable, one might
consider a conceptually similar, but less sample-efficient gradient-free MCMC routine instead.

44

Here, violation of each constraint 𝐶 is penalized with a Normal distribution with

small variance 𝜖. After a burn-in period, samples 𝑇𝑘 generated from this process

follow the constraint-conditioned distribution 𝑃 (𝑇 |𝒞), albeit all having of the same

structure as 𝑇0.

In practice, we use the No-U-Turn HMC Sampler [57] as implemented in the Pyro

probabilistic programming language [58] to sample from this distribution. We use a

constraint penalty 𝜖 = 10−3, which has empirically proven tight enough to produce

good samples.

2.4.2 Projection-based constraint resolution

Given a sampled tree 𝑇0 ∼ 𝑃 (𝑇) that satisfies any structural constraints but may or

may not satisfy pose constraints 𝒞𝑃 , we formulate a nonlinear optimization to find the

closest tree with the same structure, but possibly different node poses that satisfies

a constraint set

𝑇 * = Proj(𝑇0) = argmin𝑇 , ||𝑇.𝑋 − 𝑇0.𝑋||22

𝑠.𝑡. 𝒞𝑃 (𝑇) ≥ 0.

Here, the optimization holds the structure of 𝑇 fixed while searching over the poses of

its nodes, penalizing the squared norm difference between the vectorized node poses

against the original tree 𝑇0.7 In practice, we formulate and solve this optimization

with Drake [59] and SNOPT [60].

Importantly, this technique introduces bias when used to produce samples sat-

isfying the constraint set. While the population of trees 𝑇0 will follow 𝑃 (𝑇), the

distribution of the population of Proj(𝑇0) may be arbitrarily warped by the projec-

tion operation, as it will move all trees violating the constraints to the boundary

of constraint satisfaction. This is in contrast to the HMC procedure, which (after

7This includes penalizing a difference between rotations as an elementwise distance; in our im-
plementation, this distance is an L2 norm between quaternions. While it would be more technically
correct to penalize this as an angular distance, we have not found that it unduly influences the
solution quality.

45

sufficient mixing) will produce samples from 𝑃𝐻𝑀𝐶(𝑇), which approximates the in-

tended distribution. Worse still, this nonlinear projection is generally not invertible

(as it might collapse large regions of infeasible space onto single points on the bound-

ary of feasible space in a many-to-one fashion), and so has singular Jacobian that

makes accounting for this distribution transformation impossible. However, in prac-

tice, this technique is sometimes the only thing that is practically possible – and so

can be used to post-process samples to follow hard-to-otherwise-capture constraints,

like non-penetration in highly cluttered environments.

2.5 Scene Generation Tools

We have implemented this grammar and constraint formulation in a Python codebase,

and this system is tightly integrated with a handful of additional tools that we use to

produce and manipulate environments, generate geometry for use in our grammars,

and produce high-quality renders of sampled scenes. We detail these tools here.

2.5.1 Spatial scene grammar codebase

The spatial scene grammar architecture we describe in this chapter; the constraint

specification interface; the sampling, parsing, and parameter estimation routines;

and examples are implemented in a unified Python codebase available at https:

//github.com/gizatt/spatial_scene_grammars. This codebase is tightly inte-

grated with Pytorch [61] and Pyro [58] (for autograd, distribution types, and imple-

mentations of common inference routines), Drake [59] (for simulation, visualization,

and mathematical programming abstraction), and Meshcat [62] (as a visualization

tool integrated with Drake).

2.5.2 Automatic mesh generation tool

Most simulators prefer simulating convex collision geometry, but many objects avail-

able online (from e.g. Ignition Robotics [63] or TurboSquid [64]) have high-polygon-

46

https://github.com/gizatt/spatial_scene_grammars
https://github.com/gizatt/spatial_scene_grammars

count, non-convex geometry by default. To bridge this gap, we created a tool to per-

form automatic convex decompositions of such nonconvex meshes using Trimesh [65]

and V-HACD [66], and to produce a standard SDF [67] text-file output that accumu-

lates the resulting convex pieces into one simulate-able package. This tool is available

at https://github.com/gizatt/convex_decomp_to_sdf.

2.5.3 Blender rendering over IPC

Decades of research in computer graphics (and decades of parallel development in com-

puter animation, video games, etc) have fueled the creation of exceptionally powerful

rendering tools that, in the right hands, can produce photorealistic images. These

tools are being utilized by a growing body of work in computer vision and robotics to

produce exceptionally realistic training data, whether for training object perception

systems (e.g. DOPE [32]) or creating realistic depth data (e.g. Blensor [68]).

Blender [69] is a particularly popular 3D modeling and rendering tool (under

an open source GPL license) that is compatible with a broad swath of popular 3D

model and texture formats; includes a powerful and configurable (optionally GPU-

accelerated) raytracing renderer; and, critically, is easily scriptable via a Python

interface. During the course of this thesis work, we developed a tool to make it

easy to use Blender to render arbitrary collections of geometry (typically extracted

from a simulator) over an interprocess communication link. In this tool, a Blender

process hosts a server with which a client can establish a ZMQ socket connection; this

connection then allows the client to load and manipulate geometry in the Blender

scene and render images to disk. This separation keeps the client from having to

match the Python version and libraries expected by Blender, which can be difficult:

the client could, in concept, even be written in a completely different language. In

addition, we provide a Drake system block that automatically renders any geometry

in a Drake simulation scene every simulation tick using this interface. This tool is

available at https://github.com/gizatt/blender_server.

See Figures 1-1, 2-6 and 4-2 for some examples rendered using this tool.

47

https://github.com/gizatt/convex_decomp_to_sdf
https://github.com/gizatt/blender_server

Figure 2-1: Grammar structure implementing a 3-component Gaussian mixture model
(GMM) whose parameters capture the mixture weights 𝑤𝐴, 𝑤𝐵, 𝑤𝐶 , mixture means
𝜇𝐴, 𝜇𝐵, 𝜇𝐶 , and mixture covariances Σ𝐴,Σ𝐵,Σ𝐶 .

2.6 Example Grammars

Despite the careful limitations we impose on continuous distribution specifications,

this framework can be used to capture a wide variety of scenes. This grammar

framework can be viewed as a generalized, multi-level Gaussian mixture model – that

is, one where the number of modes and their hierarchy is itself stochastic – with

special handling dedicated to describing distributions of 3D poses ∈ 𝑆𝐸(3). As a

result, we inherit similar expressiveness: we can combine our primitive distributions

together to build arbitrarily complex distributions over poses. In this section, we

detail a number of grammars that describe a diverse set of scenes. These grammars

are referred to throughout this thesis.

2.6.1 Gaussian mixture model grammar

Figure 2-1 illustrates the structure of a small grammar that implements a three-

mode Gaussian mixture model. This grammar illustrates an important way that

our intentionally limited grammar formulation can be used to describe arbitrarily

complicated spatial distributions by combining Gaussian distributions in a mixture

model. We will use this grammar in Chapter 4 to compare the performance of our

parameter estimation algorithm against a baseline parameter estimation algorithm

(vanilla EM) that is typically applied to GMMs.

48

Grammar details

The GMM grammar is defined over node types

𝒩 = {Root, Point}.

The Root and Point both have associated (trivial) geometry, or otherwise have

directly observable poses. Root can generate Point by exercising one of three

rules, each of which samples the Point’s translation from a world-frame Normal

distribution, and its rotation as the identity matrix. Each of these three rules have

their own parameter sets, so this grammar describes the production of a single Point

at a time as drawn from a 3-mode Gaussian mixture model.

2.6.2 Singles-pairs grammar

This grammar describes a set of oriented objects that appear either independently

("singles") or in pairs with related pose ("pairs"). As physical analogue, we consider

modeling that aircraft might appear in the air either on their own, or in a formation

as a pair, where the two aircraft in the formation tend to be close in position and

orientation.

We provide two closely-related grammars to describe this class of scenes, as il-

lustrated in Figure 2-2. We broadly categorize the approaches one can take into

"constituency" or "dependency" grammars. In the singles-pairs constituency gram-

mar, objects in a pair are constituents of the pair itself, and the pair itself is an actual

node in the scene tree. The dependency grammar variation, on the other hand, re-

lates objects directly to each other without introducing a new "cluster center" node to

represent the intermediate abstract grouping. In both cases, a pair of objects covary

in both their translation and rotation, such that the pose of one member of a pair

could be described with a distributions expressed in the frame of the other (using

"Parent frame Normal offset" and "Parent frame Bingham distribution" rules from

Table 2.1).

49

(a)

(b)

Figure 2-2: These two grammar variations for the singles-pairs environment describe
very similar distributions over objects that can appear either on their own or in
spatially correlated pairs. In each variation, the Pair node has a different spatial
meaning. In the constituency variation, the objects in the pair are both randomly
offset from a Pair node that has no geometry of its own. In the dependency variation,
the Pair node is at the same pose as one of the objects, and the second object is
randomly offset from the Pair (or, equivalently stated, is randomly offset from the
first object). We will show in Chapter 3 that the constituency variation is significantly
harder to parse, as it requires guessing the unknown pose of each Pair node.

50

Grammar details

Both singles-pairs grammar variations are defined over node types

𝒩 = {Root, Singles, Pairs, Pair, Object}.

The Root and Object have associated geometry, or otherwise have directly ob-

servable poses.

∙ Root is an INDEPENDENT-SET node can chooses whether to produce each

of Singles, Pairs with an independent coin flip. Each is produced at the same

pose as the Root.

∙ Singles is a REPEATING-SET node that produces one or more Object nodes

using world-frame Normal and Bingham offset rules.

∙ Pairs is a REPEATING-SET node that produces one or more Pair nodes

using world-frame Normal and Bingham offset rules.

∙ Pair is an AND node that always produces two Object nodes.

– Constituency variation: Pair node produces each Object using a

parent-frame Normal and Bingham offset rule.

– Dependency variation: Pair node produces one Object at the same

pose as itself, and produces the other Object using a parent-frame Nor-

mal and Bingham offset rule. (This is equivalent to one Object being a

"parent" of the other.)

∙ Object is a terminal node with associated geometry.

2.6.3 Cluttered sink grammar

This grammar provides a structured description of cluttered arrangements of objects

in a sink. For motivation, consider the problem of verifying the performance of a

robot meant to transfer objects from a sink into a dishwasher [70]. Such a robot may

51

be particularly sensitive to certain arrangements of objects, like objects packed into

bowls or dishes tightly stacked on one another. We design a grammar that captures

some of that structure, so that we might begin to quantify how often and with what

spatial distributions those cases occur, and to detect those cases at runtime via scene

parsing.

The high-level schematic structure of the sink grammar is illustrated in Figure 2-3,

and example sinks annotated with scene trees from this grammar are illustrated in

Figure 2-4. The intent of this sink grammar is to capture the way that objects might

be randomly arranged within the sink, but that bowls and plates may additionally

have a tendency to have objects placed within or on top of them, respectively. As a

result, this grammar is based around a Sink nodes that produces a random number

of intermediate Object nodes. Each Object node will specialize into one of the

terminal node types with plate, cup, or bowl geometry; but it if specializes into a

Bowl or Plate, it may additionally produce objects inside of or on top of itself.

Grammar details

The sink grammar is defined over node types

𝒩 = {Sink, Object, Bowl, BowlContents, Plate, PlateContents,

TerminalObject, TerminalBowl, TerminalPlate, TerminalCup}.

The Sink, TerminalBowl, TerminalPlate, and TerminalCup types have as-

sociated geometry; all other types represent an object or group of objects of unre-

solved final type. (For example, a Bowl will produce both a TerminalBowl and

BowlContents.)

∙ Sink is a REPEATING-SET node that produces a random number of Objects

at random poses using world-frame Normal offset and Bingham rules. The sink

has fixed a-priori geometry.8

8World-frame offset rules are used here as the Sink is the root node and is always produced at
the same position; but parent-frame rules may be more appropriate if the Sink is to be embedded
in a bigger grammar in which the rotation of the sink might vary.

52

∙ Object is an OR node that specializes into a Bowl, Plate, or TerminalCup

at the same pose.

∙ Bowl is an AND node that produces a TerminalBowl and BowlContents

at the same pose.

∙ BowlContents is a REPEATING-SET node that produces a random num-

ber of TerminalObjects9 at random poses using parent-frame Normal and

Bingham rules.

∙ Plate is an AND node that produces a TerminalPlate and PlateCon-

tents at the same pose.

∙ PlateContents is a REPEATING-SET node that produces a random number

of TerminalObjects at random poses on top of the plate using parent-frame

Normal and Bingham rules.

∙ TerminalObject is an OR node that specializes into one of the terminal

object types TerminalPlate, TerminalBowl, TerminalCup.

∙ The Terminal[*] types are terminal nodes that are associated with appropriate

plate, cup, or bowl geometry.

Remarks on sampling difficulty

This grammar is at the extreme end of the spectrum of spatial clutter – samples from

this grammar are virtually guaranteed to be in a deeply interpenetrating configura-

tions. In fact, the samples this grammar produces are so cluttered that attempts

to impose non-penetration constraints using each of the constrained sampling tech-

niques from 2.4 usually fail. Naive samples from the grammar are extremely unlikely

to satisfy pairwise nonpenetration constraints; HMC usually fails to adequately mix

and resolve the constraint while staying within a reasonable tree configuration; and

nonlinear projection frequently fails (due to numerical issues internal to the solver)
9Bowls and Plates produces TerminalObjects rather than Objects to remove recursion.

53

Figure 2-3: The structure of the grammar used to describe sinks. The Sink is a
REPEATING-SET node that produces a random number of Objects at random
poses. Each object is an OR node that specializes into either a Bowl, Plate,
or TerminalCup. TerminalCups directly produce geometry, while Bowls and
Plates have the option of additionally producing more objects relative to themselves
through BowlContents or PlateContents intermediate nodes, each of which
can produce a random number of TerminalObjects at random poses relative to
themselves. TerminalObjects specialize into one of the three types of terminal
scene geometry types. Equivalent sets of nodes (i.e. logical groupings of nodes with
deterministically related poses) are boxed together.

54

Figure 2-4: Two example scenes from our cluttered sink dataset, each annotated with
scene trees indicating how they can be explained using the sink grammar.

or returns a scene configuration that bears little resemblance to the pre-projection

scene, indicating significant bias in warping the object distribution. However, a gram-

mar does not need to produce samples to be useful: we illustrate in Chapters 3 and

4 that this grammar still has useful applications in scene understanding and outlier

detection.

Cluttered sink dataset

To aid in parsing and parameter estimation experiments, we constructed a dataset

of sinks filled with a small set of object models using a custom virtual reality scene

construction tool. We sourced 9 sink objects (3 cups, 3 plates, and 3 bowls) from the

Ignition Robotics model database [63], and used a Razer Hydra [71] to teleoperate

the placement of randomly generated sets of these objects into a simulated sink using

Drake [59] to create a total of 68 scenes. We produced an additional dataset of 7

"outlier" scenes which were intentionally designed to violate the conventions of the

inlier scenes; these are used in Chapter 4 to test whether the parameter estimation

55

Figure 2-5: The structure of a simplified form of the sink grammar that is used as a
baseline for comparison. This grammar models the distribution over appearance rate
and pose independently for each object type without modeling any other relationships
between objects.

process helps improve the outlier detection capability of our scene grammar tool.

Simplified grammar used as a baseline

For comparative use in Chapter 4, we define a simplified version of the Sink grammar

which implements a naive approach for modeling this class of scenes. This baseline

grammar (illustrated in Figure 2-5) implements the logic one might hand-code when

implementing a simple scene generator for this class of scene: for each object type

that could occur, we place a random number of objects of that type at independent

random poses in the scene.

2.6.4 Dimsum table grammar

This grammar provides a structured description of dishware arrangements on a clut-

tered tabletop in a dimsum restaurant. Like the sink example, this grammar is moti-

vated by the problem of describing structured messes typical in human environments.

This grammar additionally demonstrates constraint specification and sampling under

constraints.

The schematic structure of this table grammar is illustrated in Figure 2-6. The

grammar is rooted at the Table, which uses some intermediate nodes to produce a

random number of teapots and serving bowls, dishes, and trays randomly placed on

56

Figure 2-6: Top: The structure of the grammar used to describe tables at a dimsum
restaurant. The Table produces a set of logical intermediate nodes that produce
PlaceSetting nodes at the four seats of the table, as well as possible Shared-
Steamer, SharedTeapot, and SharedBowl nodes that produce a random num-
ber of their associated object type. These Shared* objects are all randomly placed
in a common reference frame, while objects within a PlaceSetting are randomly
placed in the frame of reference of that node. Equivalent sets of nodes (i.e. logical
groupings of nodes with deterministically related poses) are boxed together. Bot-
tom: Two examples drawn from this grammar annotated with their scene trees, and
the same two examples rendered with our Blender-server tool (Section 2.5.3).

57

the table. The Table also produces four PlaceSettings, each of which is given a

different deterministic pose at the four edges of the table. Each PlaceSetting can

produce a Plate, a Teacup, both, or neither – with different rules capturing the

different pose distributions of plates and cups occurring on their own, versus occur-

ring together. Additionally, one of the common object types – a stackable steamer

tray, SteamerBottom – is able to appear in stacks by utilizing a recursive self-

reproduction rule. These stacks can terminate by the production of a SteamerLid

or Null (a stack ending with nothing).

Details by node

The table grammar is defined over node types

𝒩 = {Table, PlaceSettings, SharedStuff,

PlaceSetting, PlateAndTeacup, Plate, Teacup,

SharedSteamers, SharedTeapots, SharedBowls,

Teapot, ServingBowl, SteamerBottom, SteamerLid, Null}.

The Table, Plate, Teacup, Teapot, ServingBowl, SteamerBottom, and

SteamerLid nodes have associated geometry; all other types represent an object or

group of objects of unresolved final type.

∙ Table is an AND node producing intermediate PlateSettings and Shared-

Stuff nodes at the same pose.

∙ PlateSettings is an AND node that produces four PlaceSetting nodes

at four deterministic poses at the four seats at the table; each PlaceSetting is

rotated with the positive x axis pointing inwards so that it provides a common

reference frame for the objects within each PlaceSetting.

∙ PlaceSetting is an OR node that produces either a Plate, a TeaCup, a

PlateAndTeacup, or Null (a dummy node that has no geometry). The

58

Null and PlateAndTeacup nodes are produced at the same pose, while

the Plate and Teacup nodes are produced with a parent-frame Normal and

Bingham offset rule.

∙ PlateAndTeacup is an AND node that produces both Plate and Teacup

nodes, each placed using a parent-frame Normal and Bingham offset rule.10

∙ SharedStuff is an INDEPENDENT-SET node that, for each of its children

(see Figure 2-6, randomly chooses to produce that child independent of the

others with a coin flip. It produces all children at the same pose of itself.

∙ SharedSteamers, SharedTeapots, etc. are REPEATING-SET nodes that

produce a random number of their child type, placing each with a parent-frame

Normal and Bingham offset rule.

∙ SteamerBottom is an OR node that chooses between producing Null (noth-

ing) at the same pose, or either a SteamerLid or another SteamerBottom,

each placed using a parent-frame Normal and Bingham offset rule. This repre-

sents a stackable steamer tray possible producing another steamer tray or lid

stacked on top of itself.

∙ All other nodes are terminal nodes that are associated with appropriate, fixed

a-priori geometry.

Constraints

In order to enforce that samples from this grammar are physically reasonable, we

include two pose constraints on the items in the grammar:

1. Items-on-table: We enforce that each object’s horizontal placement in the

table frame is within the bounds of the table’s edges, and that each object’s

origin is above the table surface.
10The parameters of the Plate- and Teacup-producing rules from the PlaceSetting vs from

the PlateAndTeacup rule might capture different distributions over the placement of the Plate
and Teacup if they are, or are not, co-occurring.

59

Figure 2-7: Four table environments sampled under the constraint that tables must
satisfy the Items-on-table, Items-non-penetration, Tall-stack, and Many-
stacks constraints from Section 2.6.4, using the conditional sampling techniques from
Section 2.4. These constraints ensure that all objects are on the tabletop and are not
colliding with each other; that the tallest stack of steamer trays is at least 4 trays
high; and that there are at least 3 stacks of trays.

2. Items-non-penetrating: We implement non-penetration of all objects on the

tabletop; but to keep evaluation of this constraint as fast as possible, we replace

each object’s geometry with cylindrical proxy geometry. That is, for each object,

we define a "keep-out" radius, and enforce that the horizontal distance between

each pair of objects is greater than the sum of each of their keep-out radii.

Steamer trays within the same stack are exempt from this constraint.

We also use this grammar to demonstrate the application of an optional additional

structural constraint:

1. Tall-stack: When active, this constraint enforces that the tallest stack of

steamer trays is at least 4 steamers tall.

60

Figure 2-8: The structure of a simplified form of the table grammar that is used as a
baseline for comparison. This grammar models the distribution over appearance rate
and pose independently for each object type without modeling any other relationships
between objects.

2. Many-stacks: When active, this constraint enforces that the number of dis-

tinct stacks of steamer trays is at least 3.

The scenes illustrated in Figure 2-7 were sampled under this set of structural

and pose constraints using the constrained sampling methods described in Section

2.4. Scene trees were rejection-sampled from the table grammar until they satisfied

the structural constraints, and then the poses of the nodes in that accepted tree

were used to initialize an HMC chain to find configurations that were distributed

according to the grammar rules while also satisfying the Items-on-table and Items-

non-penetrating pose constraints.

Simplified grammar used as a baseline

Like the sink grammar, we define a simplified version of the Table grammar for

comparative use in Chapter 4 which models the occurrence rate and pose distribution

of each object type independently. This baseline grammar is illustrated in Figure 2-8.

We also define a similar constraint set to the full grammar:

1. Items-on-table: We enforce that each object’s horizontal placement in the

table frame is within the bounds of the table’s edges, and that each object’s

origin is above the table surface.

2. Items-non-penetrating: We implement horizontal non-penetration of objects

61

on the tabletop using the same cylindrical approximation used in the full gram-

mar version of this constraint. However, because we know stacks of steamers and

lids can co-occur with similar horizontal positions, we exempt steamer-steamer,

steamer-lid, and lid-lid pairs from this non-penetration constraint.

Decoration rules

While we’ve kept this table grammar relatively limited in order to simplify parsing

and parameter estimation, it is easy to add additional rules and object types to

generate even more interesting scenes with additional content and clutter. The tables

illustrated in Figure 1-1 are generated by using the rules and constraints we have

previously specified for the dimsum grammar, and then post-processing generated

scenes by applying an additional set of decoration rules that:

∙ Sometimes place chopsticks on each plate.

∙ Fill each steamer tray and shared serving plate with random food models.

The complete scene after applying these rules is made physically reasonable by forward

simulation.

2.7 Discussion

In this chapter, we have detailed a scene grammar formulation and shown that it can

be used to describe a handful of interesting environments. We have also illustrated

that we can combine a grammar with additional structural and pose constraints to

further shape the induced distribution over worlds in ways that are not natural to

express within the grammar itself. In the course of designing and implementing this

grammar model, we have negotiated numerous design trade-offs and learned a handful

of valuable lessons – the most important of which we remark on here.

62

2.7.1 Expressiveness-invertibility trade-off

In our grammar formulation, discrete and continuous randomness are carefully sepa-

rated. At sampling time, a node first randomly samples which production rules will

be activated to determine the set of child nodes that will be produced. Then, each

rule independently samples a random pose for its corresponding child. Our set of node

types makes it possible to express any discrete relationship between a parent and its

active child set by appropriate composition of AND and OR rules. However, the legal

relationships between a parent and child’s pose are very restricted: in particular, the

rules we enumerate in Table 2.1 only allow for unimodal Normal-like relationships.

This restriction is an intentional departure from some previous work: in [4], we

allowed production rules to describe any continuous relationship between nodes to be

employed by allowing rules to be written in a probabilistic programming language.

While it is tempting to try to achieve as much expressiveness as possible, we have

found that restricting the types of rules to only these "nice" analytic forms is worth-

while, as it makes the inverse problem of scene parsing much easier. (This is one of

the primary subjects of Chapter 3.) Many complex pose relationships (e.g. objects

with multimodal pose distributions relative to their parent) can be approximated by

introducing more discrete structure to capture that relationship more accurately, in

the same way that adding mixture components in a Gaussian mixture model can

allow modeling of non-Gaussian distributions. For example, a plate on a table might

be described as appearing with a roughly bimodal pose distribution – rightside-up,

or upside-down – which we can capture in our grammar with two distinct produc-

tion rules representing the production of a plate in either upside-down or rightside-up

orientations.

2.7.2 Constituency vs dependency grammars

The singles-pairs grammar introduced above is an example of a scene that can be

described by multiple grammars – and, as we will explore in Chapter 3, not all gram-

mars are created equal! One way of categorizing grammars is to distinguish between

63

constituency and dependency grammars. These terms are borrowed from linguistics:

constituency grammars describe the way that elements of sentence group together

to form parts and phrases, with each word being a constituent of a phrase. In a

scene grammar, objects may be described as constituents of some higher level group-

ing of objects, which itself is a node in the tree. The constituency and dependency

variations of the singles-pairs grammar in Figure 2-2 highlights this difference: in

the constituency variation, a pair of objects are distributed around a common "pair

center" parent node, while in the dependency variation, one object is instead offset

directly from the other.

A direct consequence of describing a scene with a constituency grammar is the

introduction of intermediate hidden nodes whose poses might be difficult to recover.

For example, in the singles-pairs constituency grammar, the "pose" of a pair of ob-

jects is somewhere between them, and to parse a scene, one has to decide exactly

where that "pair" center is located. As discussed in Chapter 3, this transforms this

problem from a purely discrete search over possible parse tree structures to a joint

discrete and continuous search over tree structures and unknown poses. While we

will show that we can still tackle that inference by mixed-integer optimization, it

comes with a significant complexity and performance overhead. Indeed, Chapter 3

includes quantitative experiments demonstrating that if one has the choice between

equivalent constituency and dependency grammars for a given class of scenes, one

should almost certainly choose the dependency variation.11

2.7.3 Sampling under constraints

In this chapter, we present three techniques for resolving different kinds of constraints

at sampling time: rejection sampling for resolving structural constraints; HMC for

sampling trees that produces unbiased samples of trees from the original distribution

that satisfy pose constraints; and a nonlinear projection procedure for handling pose

11From the perspective of general procedural models, dependency grammars are "constructive"
models (according to the language of [72]) in which every decision in the model produces an observ-
able artifact.

64

constraints that are practically too difficult to sample under the penalty method used

by the HMC procedure. These strategies provide partial solutions to the constrained

sampling problem, but each has its own limitations. As described in Section 2.4,

the rejection sampling approach is unbiased but inefficient, and the NLP projection

approach is relatively efficient but might arbitrarily warp the distribution of samples

away from the distribution induced by the grammar.

HMC seems ideal in that, as penalties increase and under perfect mixing, it pro-

duces samples of node poses precisely from 𝑃 (𝑇 |𝐶(𝑇) ≥ 0) conditioned on the chosen

tree structure. However, 𝑃 (𝑇) is really a distribution over both tree structures and

node poses; to choose the tree structure itself, we use rejection sampling to satisfy any

structural constraints, or otherwise pick a structure at random without regard to the

pose constraints. However, the likelihood of a tree structure itself may be dependent

on the pose constraints – and this dependence isn’t captured in our procedure.

As an example, consider a grammar that produces 𝑁 ∼ Uniform[0, 10] objects in

a bin, combined with a pose constraint that all objects must fit inside the bin in a

non-penetrating configuration. If the bin can only fit 5 objects, then the constrained

distribution over scenes will have zero probability of having more than 5 objects,

and might have relatively less likelihood of having 4 or 5 objects since there are

fewer configurations of those objects that fit in the bin. Our existing procedure won’t

capture that final detail: it will instead produce scenes with a uniform random number

of objects and try to make each scene independently satisfy the constraints. While

we can easily reject those scenes in which pose constraint satisfaction is determined

to be impossible (due to obviously poor final solutions), we’re likely to over-represent

scenes with many objects. A complete solution to resolve this bias could be assembled

by synthesizing techniques from [45] and [21]. In particular, it should be possible to

utilize a reversible-jump MCMC approach to construct a random walk over scene trees

by combining random resampling of subtrees (to search over discrete tree structures)

with HMC over node poses (to find likely node poses given a fixed tree structure).

65

66

Chapter 3

Scene Parsing

3.1 Introduction

Given a scene grammar and an observed scene, one might ask a fundamental question:

"How would this grammar have generated this scene?" Scene parsing seeks the answer

to this question. Given an observed set of objects 𝑜 as a set of objects with fully

observed poses and geometry, one can "parse" the scene under a grammar by finding

a scene tree from that grammar that explains all of the objects. We frame scene

parsing as a posterior inference problem: the scene grammar is a procedural model

providing 𝑝(𝑜, 𝑇), and scene parsing is inverting that model by sampling sampling

trees likely under the posterior 𝑝(𝑇 |𝑜).

This inverse problem can be very hard. The grammar may be capable of pro-

ducing an incredible number of unique trees – related to the fact that there may be

exponentially many ways of grouping or relating observed objects together – but only

a few of those tree structures will be legal under the grammar. Even worse, many

grammars involve additional unobservable node types representing abstract object

groupings and cluster centers, each of which needs to be correctly proposed and as-

sociated with its constituent objects in the parse tree. Worse still, each of these

latent intermediate nodes may have an associated pose that must be simultaneously

estimated and optimized.

Perhaps as a consequence of this fundamental difficulty, greedy and heuristic pars-

67

ing strategies are common in the scene parsing literature. Unfortunately, these pro-

cedures typically require problem or grammar-specific heuristics, and can easily yield

suboptimal or completely infeasible parses. In this chapter, we present an approach

for principled all-at-once parsing by utilizing integer programming to perform opti-

mization over the space of all parse trees while maintaining usable performance for

practically-sized scenes and grammars. Beyond direct use as parsing techniques, we

hope that the strategies used to formulate these parsing optimizations are inspiring to

readers as strategies for performing principled, exhaustive exploration over different

scene structures, with potential applications in areas like formal control synthesis and

verification.

3.1.1 The MAP parsing problem

Given a grammar and an observed node set, we frame the maximum-a-posterior

(MAP) parsing problem as an optimization that searches the space of all parse legal

trees from the grammar to find the one that optimally explains the scene. We present

and compare two variations on this approach.

∙ Section 3.4: Pose-optimizing MICP Parsing We show that we can write

a mixed-integer convex program (MICP) that simultaneously searches over the

structure and node poses of a scene tree from the grammar while optimizing a

log-likelihood score. As a MICP, this problem can be solved to global optimality

relatively efficiently with off-the-shelf solvers.

∙ Section 3.5: Proposal-based IP Parsing While the MICP approach is

complete (in the sense that the approach can parse scenes from any grammar

using rules from Chapter 2), it scales relatively poorly as grammar complexity

increases. We present a second approach that takes a middle ground between

MICP parsing and more classic heuristic approaches: for any intermediate nodes

whose presence and pose is uncertain, we heuristically generate a population of

candidate poses for those nodes, and then use a similarly-structured integer

program (IP) to find the best way to glue those candidate nodes together into

68

an optimal parse tree. This gluing optimization is guaranteed to recover the

best parse tree given the proposal set, so the suboptimality of the resulting

parse tree decreases as more (or more accurate) intermediate node proposals are

generated. In comparison to the MICP approach, this technique is applicable

to a wider variety of scene grammars and has better scaling behavior, at the

cost of requiring heuristic proposal generation.

Both of these approaches ultimately find an optimal parse tree by solving an

MICP, which can be solved efficiently by a number of commercial solvers. This class

of mathematical programs has several appealing properties. MICP solvers provide

certificates of either global optimality or infeasibility (by way of a branch-and-bound

optimization process), meaning that we can be certain that the parse tree we produce

is either the best one, or that the set of observed objects we’ve encountered can’t be

explained by our grammar at all. Even further, the optimization process makes it pos-

sible to extract not just the globally optimal solution, but the top 𝑁 optimal solutions.

Depending on the grammar and parsing formulation, this sometimes means that we

can try to collect multiple, diverse parse trees that provide alternative explanations

for a scene. These diverse solutions are useful for evaluating parsing uncertainty or

ambiguity, and prove useful in performing parameter estimation in Chapter 4.

In Section 3.7, we provide a quantitative comparison and analysis of the per-

formance of these parsing techniques on a handful of grammars. In particular, we

illustrate the significant difference the grammar formulation can make on the effective-

ness of each parsing technique: given output-equivalent dependency and constituency

grammars for a scene, we show that the dependency grammar is significantly easier

to parse in terms of both runtime scaling and the accuracy and diversity of parsing

results.

3.2 Related Work

Unfortunately, common dynamic programming and chart-based parsing techniques

from formal grammars are hard to apply to scene grammars, as scene grammars typ-

69

ically have continuous inherited attributes and produce unordered outputs. Despite

that difficulty, scene grammar parsing has attracted significant attention as a tool for

scene understanding. Heuristic parsing methods that combine bottom-up and top-

down structure proposals with greedy parse tree construction have historically been

successful [4, 14,73], but can be inconsistent for grammars where intermediate struc-

ture is hard to guess. Reversible-jump MCMC (RJMCMC) provides an appealing

framework with which to search the space of varying-size parse trees [19,21,45,51,74],

but this technique only works when one can engineer an effective jump proposal. To

sidestep these difficulties, we focus on a novel all-at-once mixed-integer optimization

parser which is guaranteed to find the optimal parse tree.

Scene parsing can also be viewed as a special class of inverse procedural modeling

(IPM) as it is applied to more general procedural models. For example, one instan-

tiation of IPM is vision-as-inverse-graphics, which is concerned with reproducing an

observed image by figuring out the scene geometry [26,27] or even graphics code [75,76]

that produced it. These techniques rely on combinations of vision subsystems (often

conveniently trained on data generated by the model), sampling-based inference (e.g.

MCMC), and specialized code and synthesis algorithms. Vision subsystems are typi-

cally seen as proposal engines that produce samples of "reasonable" explanations for

an observed scene. Each of these pieces maps to an existing idea about scene pars-

ing. Vision systems are an analog to intermediate node proposal systems that provide

guesses of good intermediate structure for a parse tree. Sampling-based inference (i.e.

performing MCMC over parse trees) is the direct analog of the RJMCMC techniques

of [19, 45]. And the code synthesis approach in [76] utilizes a SAT-based search to

find parse trees to describe a given object with constructive solid geometry, which is

very similar in spirit to our integer programming approach.

70

3.3 Common Setup

Given a grammar with parameters 𝜃 and an observed set of objects 𝑜, finding the

maximum a posterior (MAP) tree

argmax
𝑇

𝑝𝜃(𝑇 |𝑜)

is a general approach for "parsing" the scene, in the sense that such a MAP tree would

be the best possible explanation for the scene using the grammar. Being able to find

this optimal scene tree would be broadly useful, but this posterior inference problem

can be extremely hard. The best scene tree 𝑇 for a given scene may be ambiguous;

may require proposing new hidden structure; and generally requires searching over

diverse paths for explaining the scene.

Because the set of observed objects is unordered and attributed, common ap-

proaches to parsing from formal grammars are not helpful. We instead approach this

parsing problem by enumerating the space of all parse trees for our grammar with

a set of binary variables, and writing a cost and constraint set to extract the MAP

parse tree as an integer program.

We can rewrite our objective

argmax
𝑇

𝑃𝜃(𝑇 |𝑜) = argmax
𝑇

log(𝑃 (𝑜|𝑇)𝑃𝜃(𝑇))

by taking a log and applying Bayes’ rule. In this optimization, we might search

over all trees 𝑇 , where 𝑝(𝑜|𝑇) is an indicator function that the observed nodes in 𝑇

precisely match observed objects 𝑜 and those trees that match the observed nodes are

ranked by their tree score 𝑃𝜃(𝑇).

3.3.1 MAP parse tree selection on the supertree

To facilitate the search over the space of all parse trees in the grammar, we construct

a "supertree" 𝑆𝑇 from the grammar, which is constructed in such a way that any

71

Figure 3-1: An abbreviated form of the singles-pairs grammar, and an illustration of
its corresponding supertree. Any possible scene from the grammar occurs as a subtree
of this supertree.

tree 𝑇 is a subgraph of 𝑆𝑇 1. This supertree is constructed by initializing a tree at

𝑁𝑟𝑜𝑜𝑡, and for each node of type 𝑁 , attaching one child for every rule 𝑅 in 𝑁.ℛ of

type 𝑅.𝑁 that would be produced by that rule. (See Figure 3-1 for an example.) If

the grammar is recursive, then we bound the depth of the supertree to keep it finite.

This supertree 𝑆𝑇 proves to be a convenient data structure for parameterizing

the space of all scene trees in the grammar, which we will utilize in both parsing

strategies.

3.3.2 Supertree simplification via "equivalent sets"

A repercussion of the restriction on node types in Section 2.3.1 is that represent-

ing complex logical relationships often requires chaining the primitive AND-OR-SET

types together, leading to a bloat of node types. (The sink grammar (Figure 2-3)

is an extreme example, requiring many intermediate nodes to implement logic like

1This approach is similar in spirit to [16], which forms an enormous factor graph over every
possible (discretized) placement of every possible node type. In our case, we instead capture node
poses with continuous attributes, leading to a much smaller tree over all generations.

72

"a bowl produces geometry, but might also produce some number of objects inside

of it".) However, these intermediate almost always have trivial pose relationships to

their parents or children: we might distinguish between a Bowl, the TerminalBowl

that implements its geometry, and its abstract BowlContents that decides whether

the bowl contains anything, but they all have the same pose.

In general, we frequently encounter supertrees that have with sets of intermediate

nodes whose poses are constant offsets from one another. To take advantage of this

property, we define a partition of a supertree into "equivalent sets" of nodes, such

that the pose of each node in an equivalent set are deterministically related. We can

detect these equivalent sets with a simple graph algorithm: collect the nodes in the

supertree, connect those parent and child pairs whose corresponding production rules

are fixed offset rules, and find connected subgraphs of the resulting graph to find

equivalent sets. By construction, the pose of the nodes any node in an equivalent set

can be recovered from the pose of any other node in the equivalent set. Equivalent

sets are illustrated in the grammar specification Figures (2-1, 2-2, and 2-3) as blue

boxes drawn around sets of nodes.

Finding these equivalent sets corresponds to simplifying the grammar and su-

pertree to only those spatial relationships that provide critical information for pars-

ing. In both parsing strategies, we consider whether each node in the supertree is

active, but only consider the contribution of poses at the level of equivalent sets.

3.4 Pose-optimizing MICP MAP Parsing

Our first optimization-based approach to solving the parsing problem is to parame-

terize the space of all possible parse trees under the grammar with a number of binary

variables that choose the structure of the parse tree, and an additional set of con-

tinuous variables that control the poses of the nodes in the resulting parse tree. We

construct an optimization over these mixed binary and continuous variables whose

solution is the optimal parse for the scene. We use the supertree as our guide for

allocating these decision variables: if we allocate a binary activation variable and

73

Figure 3-2: Pictorial depiction of the decision-making process formulated in each
parsing method when parsing observations (represented in 2D as teal crosses) from
the singles-pairs grammar. MICP parsing chooses a parse tree for the scene by
selecting a subtree of the supertree that spans the set of observed nodes. (One such
subtree has its edges highlighted in red in each figure.) Subtrees are weighted by
their total tree log-probability, which is influenced by the number of types of active
children of each active node, and the relative poses of active parent-child pairs. In
MICP parsing, the pose of the intermediate Pair node is simultaneously optimized
with continuous variables. IP parsing instead samples a set of proposed poses for
each intermediate node type and adds an edge for every pair of possible parent-child
poses.

74

continuous pose variable for each node in the supertree, we can formulate a MICP

to find settings of those variables to optimize 𝑃 (𝑇) while matching the observations

(i.e. enforcing 𝑃 (𝑜|𝑇) = 1).

Ideally, we would frame a convex MIP (i.e. MICP), which we would attempt to

solve relatively efficiently to global optimality with a branch-and-bound approach.

Unfortunately, the implementation of 𝑃 (𝑇) might require enforcing some number

of nonconvex costs and constraints; certain continuous relationships between nodes

lead to nonconvex costs, and even simply constraining the optimized poses to lie

∈ 𝑆𝐸(3) is itself a nontrivial nonconvex constraint. As a result, a significant amount

of this section is devoted to describing how to get rid of those nonconvexities by a

combination of reparameterization and convex approximation.

3.4.1 Problem setup

Assume a grammar with supertree 𝑆𝑇 and an observed node set 𝑜. For each node 𝑛

in 𝑆𝑇 , we add a binary variable 𝑛.𝑎 indicating whether is active, and a continuous

pose variable 𝑛.𝑥 ∈ 𝑆𝐸(3) = (𝑛.𝑡 ∈ R3, 𝑛.𝑟 ∈ R3×3) representing the pose of that

node if it is active. Any tree in the grammar (up to the recursion bounds used to

generate the supertree) corresponds to a pattern of these node activation variables

and a particular choice of node poses; and given these variables, we can compute

𝑃 (𝑇) and 𝑃 (𝑜|𝑇).

3.4.2 Implementation of 𝑃 (𝑜|𝑇)

To constrain that we only consider trees that match our observed set, for each node

𝑛̂ ∈ 𝑜, we add binary variables 𝑏𝑛,𝑛̂ for each 𝑛 ∈ 𝑆𝑇 of matching node type. A given

𝑏𝑛,𝑛̂ being active indicates that we’re explaining the existence of observed node 𝑛̂ with

75

node 𝑛 in the our parse tree. We impose constraints

∀𝑛̂ ∈ 𝑜
∑︁

same-type 𝑛∈𝑆𝑇

𝑏𝑛,𝑛̂ =1

∀𝑛 ∈ 𝑆𝑇
∑︁

same-type 𝑛̂∈𝑜

𝑏𝑛,𝑛̂ ≤𝑛.𝑎

which enforce that all observed nodes are explained exactly once, no latent node

is used to explain more than one observation, and a latent node that can produce

geometry is active if and only if it explains an observation.

When a correspondence 𝑏𝑛,𝑛̂ is active, we require that the latent node pose precisely

matches the observed node pose. We implement this with a Big-M formulation:

∀{𝑛, 𝑛̂} of matching type :

|𝑛̂.𝑡− 𝑛.𝑡| ≤ 𝑀𝑡 * (1.− 𝑏𝑛,𝑛̂)

|𝑛̂.𝑟 − 𝑛.𝑟| ≤ 𝑀𝑅 * (1.− 𝑏𝑛,𝑛̂)

which constrains a node translation and rotation to be elementwise equal to its corre-

sponding observed node, but free to vary if not corresponded. To choose the tightest

possible 𝑀𝑅 and 𝑀𝑡, choose 𝑀𝑅 = 2, since elements of the rotation are bounded in

[−1, 1], and set 𝑀𝑡 to be the largest expected translational distance (in any of the x-y-

z axes separately) between nodes of this type in the grammar. Given these choices for

𝑀𝑅 and 𝑀𝑡, these constraints will be functionally deactivated and hence not influence

the optimal solution when their corresponding binary variables are inactive.

3.4.3 Implementation of 𝑃𝜃(𝑇)

Implementing 𝑃𝜃(𝑇) requires constraining these variables to only encode legal trees,

and encoding the objective term 𝑃𝜃(𝑇) of those trees.

76

Figure 3-3: Depiction of the most important decision variables in the MICP parsing
formulation, as they relate to parsing a two-observation scene from the singles-pairs
grammar. Binary activation variables 𝑛.𝑎 select whether each node in the supertree
participates in the parse, and continuous pose variables 𝑥 determine the pose of the
nodes in each equivalent set (where each equivalent set is depicted with a shaded
box). Possible correspondences of the observed objects to the various places they can
be produced in the supertree are depicted in cyan, and are selected between with
binary correspondence variables 𝑏𝑛,𝑛̂.

77

𝑥 ∈ 𝑆𝐸(3)

We parameterize poses with translation vector and rotation matrix components 𝑛.𝑥 =

(𝑛.𝑡 ∈ R3, 𝑛.𝑟 ∈ R3×3). We impose the constraint

𝑛.𝑟 ∈ 𝑆𝑂(3) : 𝑛.𝑟𝑇𝑛.𝑟 = 1, 𝑑𝑒𝑡(𝑛.𝑟) = +1

with the mixed-integer convex outer approximation employed by [77]. These con-

straints allocate binary variables to partition the range of each element of 𝑛.𝑟, and

impose piecewise convex outer approximations (i.e. McCormick envelopes, [78]) on

their bilinear products as they appear in the 𝑆𝑂(3) orthogonality constraints. As

this is an expensive constraint, we are careful to only apply it where necessary: any

node that produces geometry does not need this constraint applied, as that node’s

rotation will either be constrained to be equal to a matching-type observed node’s

rotation, or will not enter into the objective. (As discussed in Sections 3.3.2 and 3.4.3,

in practice, we can actually avoid expressing this constraint in an even wider set of

circumstances.)

Tree structure constraints

For each parent node 𝑛𝑝 and its set of children 𝑛𝑐
𝑖 in 𝑆𝑇 , we enforce

𝑛𝑐
𝑖 .𝑎 ≥ 𝑛𝑝.𝑎, ∀𝑖

𝑛𝑟𝑜𝑜𝑡.𝑎 = 1

which constrains that the children can only be active if the parent is active, and that

the root of the supertree is always active.

Depending on the type of 𝑛𝑝, 𝑛𝑝 being active may imply different constraints on

the activation of the children, which we translate into constraints:

1. AND Node: 𝑛𝑐
𝑖 .𝑎 = 𝑛𝑝.𝑎, ∀𝑖: if the parent is active, all children are active.

2. OR Node:
∑︀

𝑖 𝑛
𝑐
𝑖 .𝑎 = 𝑛𝑝.𝑎: if the parent is active, exactly one child is active.

78

3. INDEPENDENT SET: No constraints.

4. REPEATING SET:

(a)
∑︀

𝑖 𝑛
𝑐
𝑖 .𝑎 ≥ 𝑛𝑝.𝑎: if the parent is active, at least one child is active.

(b) 𝑛𝑐
𝑖 .𝑎 ≥ 𝑛𝑐

𝑖+1.𝑎: assuming that this ordering of the children in the child set

is consistent, enforce that the children must activate in this order.

(c) 𝑛𝑐
𝑖 .𝑡[0] ≥ 𝑛𝑐

𝑖+1.𝑡[0]: Under the consistent ordering of children, the x-component

of the children translations must increase. This constraint is not necessary,

but breaks a symmetry resulting from children of this rule being exchange-

able, decreasing the number of equivalent solutions the MIP solver must

sort through.2

log𝑃𝜃(𝑇) objective

Starting from Equation 2.1, log𝑃𝜃(𝑇) expands to a sum of densities:

log𝑃𝜃(𝑇) =∑︁
{𝑛𝑝,ℛ𝑎𝑐𝑡𝑖𝑣𝑒}∈𝑇

[︂
𝑛𝑝.𝑎× log𝑃𝑁

𝜃 (ℛ𝑎𝑐𝑡𝑖𝑣𝑒|𝑛𝑝)+
∑︁

𝑅,𝑛𝑐∈ℛ𝑎𝑐𝑡𝑖𝑣𝑒

𝑛𝑐.𝑎× log𝑃𝑅
𝜃 (𝑛𝑐.𝑥|𝑛𝑝.𝑥)

]︂

where multiplication by 𝑛.𝑎 indicates that we only include densities for those nodes

and rules active in the tree under consideration. To implement this in an MI context,

we use convex reformulations of these terms.

For the discrete density terms 𝑛𝑝.𝑎 × log𝑃𝑁
𝜃 (ℛ𝑎𝑐𝑡𝑖𝑣𝑒|𝑛𝑝), the implementation de-

pends on the node type:

1. AND Node: log(𝑃𝑁
𝜃) is always 0.

2. OR Node: log(𝑃𝑁
𝜃) =

∑︀|𝑁.ℛ|
𝑖 log(𝜃𝑁 [𝑖])*𝑛𝑐

𝑖 .𝑎, where 𝜃𝑁 is the set of parameters

controlling the Categorical probability of each rule activation for this node type.
2In practice, we’ve found that these symmetry-breaking constraints significantly improve runtime;

without them the branch-and-bound search process must sift through a set of equivalent solutions
that grows exponentially in the number of unbroken symmetries. Breaking these symmetries is also
vital to decreasing redundancy in the set of top-N solutions (see Section 3.6.2).

79

3. INDEPENDENT SET:

log(𝑃𝑁
𝜃) =

|𝑁.ℛ|∑︁
𝑖

log(𝜃𝑁 [𝑖]) * 𝑛𝑐
𝑖 .𝑎,

where 𝜃𝑁 is the set of parameters controlling Bernoulli probability of each rule

activation for this node type.

4. REPEATING SET:

log(𝑃𝑁
𝜃) =

|𝑁.ℛ|∑︁
𝑖

(log(𝜃𝑁 [𝑖])− log(𝜃𝑁 [𝑖− 1]))× 𝑛𝑐
𝑖 .𝑎,

where 𝜃𝑁 [𝑖] is the parameter controlling the Categorical probability of exactly 𝑖

children being active, with log(𝜃𝑁 [0]) = 0. Since 𝑛𝑐
𝑖 .𝑎 =⇒ 𝑛𝑐

𝑖−1, this objective

term will equal 𝜃𝑁 [𝑖] if 𝑖 children are active, or 0 if none are active (which

indicates that the parent and all of its children are inactive and should not

enter the objective).

For the continuous density terms

𝑛𝑐.𝑎× (log𝑃𝑅
𝜃 (𝑛𝑐.𝑥|𝑛𝑝.𝑥),

we need a way to deactivate the objective term log𝑃𝑅
𝜃 when 𝑛𝑐 is inactive. To

avoid bilinear relationships between the activation variable and the node pose, we

implement this deactivation with a slack formulation that adds variable 𝑛𝑐.𝑥𝑠𝑙𝑎𝑐𝑘 for

each node:

|𝑛𝑐.𝑥𝑠𝑙𝑎𝑐𝑘 − 𝑛𝑐.𝑥| ≤ 𝑀(1.− 𝑛𝑐.𝑎)

We can now express this cost term as

(1.− 𝑛𝑐.𝑎)× 𝐶 + log𝑃𝑅
𝜃 (𝑛𝑐.𝑥𝑠𝑙𝑎𝑐𝑘|𝑛𝑝.𝑥).

This term is designed such that when 𝑛𝑐.𝑎 is deactivated, the objective takes 0 value.

𝐶 is chosen to be the maximum value that can achieved by the rule probability

80

log𝑃𝑅
𝜃 (𝑛𝑐.𝑥𝑠𝑙𝑎𝑐𝑘|𝑛𝑝.𝑥) when 𝑛𝑐.𝑥𝑠𝑙𝑎𝑐𝑘 is unconstrained; for our rule types, this is the

same for any setting of 𝑛𝑝.𝑥 and is easily computable from the log-density equations in

Table 2.1. 𝑀 is chosen to be sufficiently large to not restrict the pose when the child

node is inactive: it can be chosen to be the maximum expected x, y, or z coordinate

any object of that type is reasonably expected to attain. If the child is active, then

the constant term falls away, the slack pose is constrained equal to the node pose, and

the objective is the appropriate rule log probability. If the child is inactive, then the

child pose is unconstrained, and so will be chosen to maximize log𝑃𝑅
𝜃 , which cancels

with the constant term to result in zero overall density. This functionally removes

this rule from 𝑃𝜃(𝑇) when the child is inactive, even if other constraints have been

placed on 𝑛𝑐.𝑥.

The exact functional form of log𝑃𝑅
𝜃 (𝑛𝑐.𝑥𝑠𝑙𝑎𝑐𝑘|𝑛𝑝.𝑥) depends on the rule type, as

listed in Table 2.1. For most rule types, the rule log-density can be directly imple-

mented as a quadratic objective, but there are two special cases:

1. Bingham distribution log-densities are linear in the quaternion outer product

𝑞𝑞𝑇 ; we represent the 10 unique terms in this outer product with intermediate

variables. These outer product terms have linear relationships to elements of

the rotation matrix according to the standard quaternion-to-rotation-matrix

conversion formula, which we impose as linear constraints. See Section 3.4.3 for

more details.

2. Parent-frame Normal- and Bingham-distributed offsets involve a bilinear rela-

tionship with the parent node rotation 𝑛𝑝.𝑅. When required, these bilinear rela-

tionships are approximated with piecewise McCormick Envelopes [78] that reuse

the binary variables involved in constraining the relevant rotations ∈ 𝑆𝑂(3).

81

Details of Bingham Distribution reparameterization

Given a 3 × 3 matrix of decision variables 𝑟 ∈ 𝑆𝑂(3), we wish to penalize with cost

corresponding to the Bingham log-density

𝑍𝑀𝑇 𝑞𝑞𝑇𝑀.

Here, 𝑞 is a quaternion corresponding to rotation 𝑟, and 𝑍,𝑀 are Bingham distri-

bution parameters matrices. Naively encoding this cost by adding decision variables

for 𝑞 leads to a nonconvex parameterization, since the conversion from 𝑟 to 𝑞 is not

linear.

Instead, we introduce 10 decision variables for the 10 unique bilinear terms in the

outer product 𝑞𝑞𝑇 :

𝑞𝑞𝑇 =

⎛⎜⎜⎜⎜⎜⎜⎝
𝑞20 𝑞0𝑞1 𝑞0𝑞2 𝑞0𝑞3

𝑞0𝑞1 𝑞21 𝑞1𝑞2 𝑞1𝑞3

𝑞0𝑞2 𝑞1𝑞2 𝑞22 𝑞2𝑞3

𝑞0𝑞3 𝑞1𝑞3 𝑞2𝑞3 𝑞3𝑞3

⎞⎟⎟⎟⎟⎟⎟⎠
And enforce each of these constraints:

𝑞20 + 𝑞21 + 𝑞22 + 𝑞23 = 1

𝑟 =

⎛⎜⎜⎜⎝
1− (𝑞22 + 𝑞23) 2(𝑞1𝑞2 − 𝑞0𝑞3) 2(𝑞1𝑞3 + 𝑞0𝑞2)

2(𝑞1𝑞2 + 𝑞0𝑞3) 1− 2(𝑞21 + 𝑞23) 2(𝑞2𝑞3 − 𝑞0𝑞1)

2(𝑞1𝑞3 − 𝑞0𝑞2) 2(𝑞2𝑞3 + 𝑞0𝑞1) 1− 2(𝑞21 + 𝑞22)

⎞⎟⎟⎟⎠
to ensure the (implied) quaternion is a unit quaternion that corresponds with the

desired rotation. The matrix 𝑞𝑞𝑇 assembled out of these decision variables now enters

linearly into the expression for the Bingham log-density.

Short-circuiting in observed cases

The piecewise convex approximations to the 𝑆𝑂(3) constraints and bilinear relation-

ships in the parent-frame rule cases are extremely undesireable: as illustrated in the

82

results in this chapter, having even a handful of these constraints in the parsing MICP

can increase problem size and runtime by an order of magnitude. We can avoid these

approximations by taking advantage of the fact that many nodes in the supertree have

associated geometry, and thus those nodes will either be corresponded to observed

nodes or be inactive. This means that their pose can be described taking the pose

of one of the observed nodes of matching type, rather than being directly optimized

with a decision variable. In certain cases, this lets us rewrite non-convex cost terms

in convex ways by taking advantage of our correspondence variables.

For each equivalent set of nodes in the supertree, we define that that equivalent

set is observable if and only if any node in the equivalent set being active implies

at least one observable node in the equivalent set is active. If an equivalent set is

observable under this definition, then the pose of each node 𝑛 in the equivalent set

will take the value of one of a finite list of observed poses 𝑛.𝒳 𝑜. This list of poses is

generated by, for every node 𝑛𝑜 in the equivalent set that has geometry, accumulating

𝑛̂𝑜.𝑥 from all matching-type observed nodes 𝑛̂𝑜 ∈ 𝑜.

As an immediate consequence, any node in an observable equivalent set does not

need its rotation constrained to be in 𝑆𝑂(3), as we know that if the node is active, its

rotation will be constrained to be exactly equal to an observed rotation. But further,

in the cases of the the bilinear relationships in parent-frame translation and rotation

rules, we can rewrite the costs to avoid those bilinear relationships. Examining the

Parent-frame Normal offset case, there is a bilinear relationship between node pose

variables in the parent-frame offset term 𝛿 = 𝑛𝑝.𝑟𝑇 (𝑛𝑐.𝑡 − 𝑛𝑝.𝑡 − 𝜇). If the parent

node is in an observable equivalent set, then we can replace 𝛿 with a new intermediate

variable 𝛿𝑠𝑙𝑎𝑐𝑘, which is constrained such that

∀(𝑟𝑜, 𝑡𝑜) ∈ 𝑛𝑝.𝒳 𝑜 :

|𝛿𝑠𝑙𝑎𝑐𝑘−(𝑟𝑜)𝑇 (𝑛𝑐.𝑡− 𝑡𝑜 − 𝜇)| ≤ 𝑀 * (1.− 𝑏𝑛,𝑛̂).

Here, we use the binary correspondence variable for observed node 𝑛̂ to force 𝛿𝑠𝑙𝑎𝑐𝑘

to be equal to a (linear expression of) that observed node’s pose (𝑟𝑜, 𝑡𝑜). This re-

83

moves the bilinear relationship (and its corresponding loose piecewise outer convex

approximation), in exchange for a list of linear constraints with Big-M activations.

A very similar trick can be applied to handle the bilinear term (𝑛𝑝.𝑟)𝑇 (𝑛𝑐.𝑟) in the

Parent-frame Bingham distribution case.

The combination of constraint short-circuiting and equivalent set formation is

critical to scaling this system. Without either, the kitchen-sink grammar in Figure 2-3

would require hundreds of intermediate node poses, each requiring 𝑆𝑂(3) constraints;

this leads to MICPs with excessive solve times even using powerful commercial solvers.

By applying these simplifications to the MICP, the same scenes can be parsed in

seconds because we have removed many or all of the nonconvex constraints.

3.5 Proposal-based IP Parsing

The previous MICP parsing approach is solving two problems in parallel by simul-

taneously searching for the discrete parse tree structure and the continuous poses of

the active nodes in the selected parse tree. Most of the complexity of the MICP ap-

proach comes from handling nonconvexities in the tree log-probability that includes

nonconvex functions in node poses. However, we observe that if we assume we already

have a library of reasonable candidate node poses for every node type, we wouldn’t

have to directly optimize over node poses, and could instead build an integer program

(IP) that searches over all possible ways of connecting those nodes together into a

reasonable parse tree.3

This parsing approach relies on two components:

1. A proposal engine that produces reasonable guesses for intermediate node poses.

We provide top-down and bottom-down heuristics for this purpose in Section

3.5.1.

2. An optimization formulation that searches for an optimal way to connect to-

gether the set of observed nodes with intermediate nodes at those proposed
3This observation motivates the short-circuiting trick used to simplify the MICP in Section 3.4.3;

this approach applies that trick to non-observed cases as well.

84

poses to create a parse tree that’s valid under the grammar.

3.5.1 Proposal generation

Given a grammar with a set nodes types 𝒩 and an observed set of nodes 𝑜, we seek to

generate candidate intermediate (unobserved) node poses that are likely to appear in

scene trees that produce 𝑜. Specifically, we generate a mapping 𝒳 𝑝𝑟𝑜𝑝 = {𝑁 → {𝑥𝑁
𝑖 }}

from unobserved node type 𝑁 to a list of proposed poses for that node type 𝑥𝑁
𝑖 .

Here, we describe two independent mechanisms for generating these proposals.

The techniques we describe here are heuristic methods designed to work well for the

grammars we use as examples in this thesis; they demonstrate common concepts we

think are useful for heuristic proposal generation, but may not be well-suited to all

grammars.

Each method produces a list of proposed intermediate nodes: to generate a map-

ping from node types to candidate poses, we take the set of unique proposed poses

for each node type in the candidate sets generated.

Top-down sampling

A straightforward method for generating candidate intermediate nodes is to forward-

sample the grammar. Given a set of observed nodes, we know that each of those

observed nodes as well as the grammar root will be present in any scene tree. As

described in Algorithm 2, we can produce intermediate nodes by sampling children

from each rule under each of those guaranteed-to-be-present nodes. We continue to

produce candidate intermediate nodes in a recursive manner by forward-sampling

from the sampled children until we sample an observed node type (or nothing); these

can be thrown out, as there’s no value in proposing new observed nodes that we didn’t

observed in the current environment.

85

Algorithm 2: Algorithm for forward sampling candidate intermediate nodes
given a grammar and observed node set.
Input : the root node 𝑟𝑜𝑜𝑡
Input : an observed node set 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑠
Output: a dict with node type keys and pose set values

/* Forward sample from each node we know to be present in the
scene and collect resulting unobserved nodes. */

𝑜𝑢𝑡𝑝𝑢𝑡 = {}
for origin_node in (observeds + [root]) do

/* Forward-sample children from this node, and from any
produced children, etc. */

𝑒𝑥𝑝𝑎𝑛𝑑_𝑞𝑢𝑒𝑢𝑒 = [𝑜𝑟𝑖𝑔𝑖𝑛_𝑛𝑜𝑑𝑒]
while len(expand_queue) > 0 do

𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑛𝑜𝑑𝑒_𝑞𝑢𝑒𝑢𝑒.𝑝𝑜𝑝()
/* For *every* rule, sample a child. */
for rule in parent.rules do

/* Sample the pose of each child being produced. */
𝑐ℎ𝑖𝑙𝑑 = 𝑟𝑢𝑙𝑒.𝑠𝑎𝑚𝑝𝑙𝑒_𝑐ℎ𝑖𝑙𝑑()
/* If this child is an unobserved node type, then

collect its pose as a candidate, and try to keep
producing top-down proposals under it. */

if !child.has_geometry then
𝑛𝑜𝑑𝑒_𝑞𝑢𝑒𝑢𝑒.𝑝𝑢𝑠ℎ(𝑐ℎ𝑖𝑙𝑑)
𝑜𝑢𝑡𝑝𝑢𝑡[𝑡𝑦𝑝𝑒(𝑐ℎ𝑖𝑙𝑑)].𝑝𝑢𝑠ℎ(𝑐ℎ𝑖𝑙𝑑.𝑥)

return output

Bottom-up rule inversion

Depending on the grammar, it may be hard or impossible to randomly sample an in-

termediate node that reasonably explains an observation. For example, in a grammar

describing clustering behavior of objects, an intermediate unobserved node might be

used to represent the center of a cluster – but in high dimensional spaces, randomly

sampled cluster centers are unlikely to remotely align with the real cluster centers of

the data. Instead, we prefer to propose these cluster centers bottom-up to ensure they

align with observed objects.

We frame this bottom-up proposal generation as, given a child node 𝑛𝑐 and can-

didate parent node 𝑛𝑝 related by a rule with density 𝑃𝑅(𝑛𝑐.𝑥|𝑛𝑝.𝑥), finding the max-

imum likelihood 𝑛𝑝.𝑥. While we could conceivably draw samples from the posterior

86

𝑃𝑅(𝑛𝑝.𝑥, 𝑛𝑐.𝑥) to get even greater coverage, we believe that because this sampling

would necessarily draw from a high dimensional space, it would be unlikely to sample

configurations that provide any more information that these MAP estimates.

Fortunately, for the rules used in this thesis (listed in Table 2.1), this maximum-

likelihood problem is easy to perform in closed-form:

∙ Fixed offset rules have a single valid parent translation or rotation at which the

parent and child pose are related by that fixed offset.

∙ Normal- or Bingham-distributed offset rules have a maximum-likelihood solu-

tion at which the child is placed according to the mode of the Normal (or

Bingham) distribution. We choose the parent rotation first, and then use it to

choose the optimal parent translation.

∙ For Uniform rotation rules, we pick an arbitrary parent rotation (i.e. 𝑅 = ℐ3×3)

as the maximum-likelihood solution, since all parent rotations are equally likely.

In the case where additional non-trivially-invertible rules are included (e.g. the

arbitrary probabilistic-programming-based rules used in [4]), performing this inversion

is not so easy. Learned inverse functions would be a good fit for solving the inverse

proposal problem in that general case, as arbitrarily many samples of the forward

rule can be acquired at very low cost.

As in top-down proposal sampling, we apply this procedure in a recursive bottom-

up manner: each observed node produces candidate parents, which in turn produce

additional candidate parents until an observed or root node type is proposed. To

prevent cycles, we limit the recursion depth of this procedure.

3.5.2 Formulation

Assume a grammar with supertree 𝑆𝑇 and node types 𝒩 ; an observed node set

𝑜; and a set of mappings from unobserved node types 𝑁 to possible node poses

𝒳 = {𝑁 → {𝑥𝑁
𝑖 }}, generated by the heuristic intermediate node proposal algorithms

in Section 3.5.1.

87

As in the MICP approach, we use the supertree and its component equivalent

sets of nodes as a mechanism for selecting the active parse tree. For each node in

the supertree, we allocate a binary activation variables 𝑛.𝑎 that decides whether that

node will participate in the parse tree. We then build a finite set of possible node

poses for each equivalent set of nodes in the supertree, and choose among them with

binary variables. For each equivalent set 𝑆 from 𝑆𝑇 , we build a set of poses 𝑆.𝒳

representing the complete list of sampled poses that any node in that equivalent set

could take. If the equivalent set contains observed node types, then this list of poses is

collected from all observed nodes of like type. Otherwise, this list of poses is collected

from the intermediate node pose proposals 𝒳 of all constituent nodes in the equivalent

set. Each equivalent set is allocated a set of binary variables 𝑆.𝐵 = {0, 1}|𝑆.𝒳| that

decides which of its possible poses this node will use.

Figure 3-4 illustrates how we can use relationships between these binary variables

to choose the structure of a parse tree. For every parent and child node pair ⟨𝑛𝑝, 𝑛𝑐⟩

in 𝑆𝑇 whose connection crosses a boundary between equivalent sets (i.e. 𝑛𝑝 ∈ 𝑆𝑝,

𝑛𝑐 ∈ 𝑆𝑐), we’ll consider every possible pair of poses ⟨𝑛𝑝.𝑥, 𝑛𝑐.𝑥⟩ ∈ 𝑆𝑝.𝒳 × 𝑆𝑐.𝒳 as

a weighted edge, where the weight is a constant calculated from 𝑃𝑅
𝜃 (𝑛𝑐.𝑥|𝑛𝑝.𝑥).4 By

inspecting node activation variables 𝑛.𝑎 and equivalent set pose selection variables

𝑆.𝐶 across the tree, we can determine which edges are active and hence the tree log-

probability. By applying appropriate constraints on these variables, we can ensure

only legal scene trees are selected.

3.5.3 Implementing 𝑃𝜃(𝑇)

We need a number of constraints to enforce that we only allow legal parse trees, and

a number of costs to implement 𝑃𝜃(𝑇). To create legal parse trees, we constrain:

∙ For every pair of nodes 𝑛𝑝, 𝑛𝑐 in 𝑆𝑇 , 𝑛𝑝.𝑎 ≥ 𝑛𝑐.𝑎; i.e., a child is only active if

the parent is active.

4We don’t need to worry about pose relationships within equivalent sets since all nodes in the
equivalent set have deterministically related pose.

88

Figure 3-4: Depiction of the most important decision variables in the IP parsing
formulation, as they relate to parsing a two-observation scene from the singles-pairs
grammar. Binary activation variables 𝑛.𝑎 select whether each node in the supertree
participates in the parse. Within each equivalent set (indicated with shaded boxes,
i.e. 𝑆1, 𝑆2, etc), a candidate node poses is selected from a set of proposals (shown in
a rounded box) using binary selection variables 𝑆𝑖.𝐵. For each parent/child pair in
the supertree, each combination of choices of parent and child pose from respective
their proposal sets induces a different cost based on the relative pose relationship
of those nodes. Appropriate constraints and costs on these binary variables ensures
that only legal parse trees that explain the observed nodes are selected by the parsing
procedure.

89

∙ For every equivalent set 𝑆 and its constituent nodes 𝑛𝑗, constrain

∑︁
𝑖

𝑆.𝐵[𝑖] ≤
∑︁
𝑗

𝑛𝑗

∑︁
𝑖

𝑆.𝐵[𝑖] ≤ 1

∑︁
𝑖

𝑛𝑗.𝑎 ≤
∑︁
𝑖

𝑆.𝐵[𝑖]∀𝑗

which enforces that the equivalent set has exactly one selected pose if and only

if any of its constituent nodes are active (and chooses no pose and has no active

constituent nodes otherwise).

We additionally constraint 𝑛𝑟𝑜𝑜𝑡.𝑎 = 1 to force the root to always be present,

and enforce that the root’s equivalent set selects the pose 𝑥𝑟𝑜𝑜𝑡 as is required by the

grammar.

For the part of 𝑃 (𝑇) corresponding to the log probabilities of the active rule set

under each node, we use the same cost terms from Section 3.4.3. These terms calculate

the log-density of each discrete production rule 𝑃𝑁𝑝

𝜃 (ℛ𝑎𝑐𝑡𝑖𝑣𝑒|𝑛𝑝) for each parent node

𝑛𝑝 with active child rules ℛ𝑎𝑐𝑡𝑖𝑣𝑒, which is a linear function of the activation variables

of 𝑛𝑝 and the activation variables of 𝑛𝑝’s direct children in 𝑆𝑇 .

For the part of 𝑃𝜃(𝑇) corresponding to the continuous pose relationship log-

probabilities, we build cost terms by calculating edge selection variables by pre-

calculated edge scores. First, observe that only parent-child node pairs that are

in different equivalent sets will have pose relationships that contribute to log𝑃𝜃(𝑇);

parent-child pairs within an equivalent set have deterministically related poses that

occur with log-probability 0 (i.e. probability 1). For each parent-child node pair

⟨𝑛𝑝, 𝑛𝑐⟩ in 𝑆𝑇 whose connection crosses a boundary between equivalent sets (i.e.

𝑛𝑝 ∈ 𝑆𝑝, 𝑛𝑐 ∈ 𝑆𝑐), create indices 𝑖 and 𝑗 that index the proposed poses in 𝑆𝑝.𝒳

and 𝑆𝑐.𝒳 . We consider every possible pair of poses ⟨𝑛𝑝.𝑥, 𝑛𝑐.𝑥⟩ ∈ 𝑆𝑝.𝒳 × 𝑆𝑐.𝒳

as set of weighted edges 𝐸𝑛𝑝→𝑛𝑐 ; these weights are calculated from 𝑃𝑅
𝜃 (𝑛𝑐.𝑥|𝑛𝑝.𝑥)

for each constant value of the parent and child pose. We allocate binary variables

𝑏𝑛
𝑝→𝑛𝑐 ∈ {0, 1}|𝑆𝑝.𝒳|×|𝑆𝑐.𝒳 such that 𝑏𝑛

𝑝→𝑛𝑐
[𝑖, 𝑗] activates the edge between selected

90

pose 𝑖 and selected pose 𝑗. We apply these constraints:

∙
∑︀

𝑘 𝑏
𝑛𝑝→𝑛𝑐

𝑘 ≤ 1, which enforces that at most one edge is active.

∙
∑︀𝑘 𝑏𝑛

𝑝→𝑛𝑐

𝑘 = 𝑛𝑐.𝑎, which enforces that the child has to have an active incoming

edge in order to be active.

∙ 𝑏𝑛
𝑝→𝑛𝑐

[𝑖, 𝑗] ≤ 𝑆𝑝.𝐵[𝑖] + 𝑆𝑝.𝐵[𝑗]

2
, which only allows edge activation when the

appropriate parent and child poses have been selected.

Given all of this setup, we can now add an objective terms

𝑃𝑅
𝜃

(︂
𝑆𝑝.𝒳 [𝑖]

⃒⃒⃒⃒
𝑆𝑐.𝒳 [𝑗]

)︂
* 𝑏[𝑖, 𝑗]

representing the cost contribution of the pose relationship represented by edge when

that edge is present.

3.5.4 Enforcing 𝑃 (𝑜|𝑇) = 1

For each observed node 𝑛̂ ∈ 𝑜 of type 𝑁 , we scan over all equivalent sets containing a

node of type 𝑁 and collect those binary variables representing the selection of 𝑛̂’s pose

as the pose for that equivalent set; we refer to this set of correspondence variables as

𝑛̂.𝑏𝑐𝑜𝑟𝑟. We enforce
∑︀

𝑛̂.𝑏𝑐𝑜𝑟𝑟 = 1, which, in combination with previous constraints,

enforces that each observed node is explained by the parse tree exactly once.

3.6 Additional Features Common to Both Methods

3.6.1 Nonlinear optimization post-processing

In some cases, the formulation of either of these parsing techniques requires some

level of approximation. In the MICP parsing case, the constraints to keep the rotation

matrix decision variables ∈ 𝑆𝑂(3) and the McCormick Envelope approximations used

to encode parent-frame translation and rotation rule probabilities are approximate.

As a result, the solution to the MICP may not be precisely feasible or optimal under

91

the true rotation constraints5 and objective. In the proposal-based parsing case, the

proposed poses of intermediate nodes may themselves not be optimal, so the optimal

solution to the optimization may not be an optimal parse.

For that reason, in both cases, we take the MICP solution and use it to seed

a nonlinear program (NLP) of the same objective. The NLP fixes the parse tree

structure and optimizes the poses of any intermediate nodes with respect to the full

nonlinear form of 𝑃 (𝑇). This NLP is handed to a commercial solver and seeded with

the MICP optimal solution; solutions are typically found in tens of milliseconds.

3.6.2 Multiple solutions

Because both of these parses are framed as a mixed-integer convex optimization,

both forms can be solved to certified global optimality by a number of off-the-shelf

solvers by an efficient (though still exponential in the worst-case) branch-and-bound

algorithm [79]. As a bonus, the same procedure can be used to extract the global

top 𝑁 best integer solutions (paired with their associated optimal continuous variable

setting) as ranked by the objective. When the only binary variables in the program

correspond to distinct parse tree structures, these multiple solutions each describe a

different parse tree structure for the scene. Practically speaking, this means that we

can get diverse explanations of the scene from the MIP solver at the cost of more

runtime. We explore some of these top N solutions (including when they are and are

not informative solutions) in Section 3.7.1.

3.7 Experiments

We analyze the performance of these parsing methods on grammars describing two

classes of scenes:

∙ The singles-pairs grammar describes sets of oriented objects that can appear

5 [77] provides a general analysis of the tightness of the 𝑆𝑂(3) constraints. In our case, using
2 binary variables per half-axis and linear interval binning, we see mean errors from orthogonality
𝑚𝑒𝑎𝑛(𝑅𝑇𝑅− 𝐼) on the order of 0.05− 0.1 for unobserved nodes during example parses.

92

on their own or in covarying pairs, and is described in detail in Chapter 2.6.2.

We distinguish between two variations of this grammar: a constituency variation

that specifies that a pair of objects are both positioned relative to a latent

"Center" location, and a dependency grammar that specifies that one object in

the pair is instead offset relative to the other object.

∙ The significantly more complex sink grammar describes the contents of a

cluttered sink in which plates, bowls, and cups appear; objects can appear

either independently, on top of plates and inside of bowls. This grammar is

described in detail in Chapter 2.6.3.

3.7.1 Case studies on singles-pairs grammar variations

In order to demonstrate that our parsing procedure recovers qualitatively reasonable

parse trees, we draw random samples of scenes from the singles-pairs grammar and

attempt to recover the ground truth scene tree with both parsing methods. We

illustrate the ground truth scene tree along with the raw parse output and NLP-

postprocessed parse tree from both methods and grammar variations in Figure 3-5.

The MAP parse tree is ultimately recovered by both techniques under both gram-

mar variations: in both cases, both techniques recover a ground truth parse tree

structure that groups two nearby objects into one pair. Note, however, that in pars-

ing the constituency grammar in particular, both techniques recover suboptimal parse

trees before NLP postprocessing. The MICP parse tree has the correct structure, but

a suboptimal pair location. This suboptimality is due to looseness in the piece-

wise outer approximation of the bilinear relationship required to express the cost

relationship between the pair location and its constituent object locations. This sub-

optimality could be tightened by decreasing the size of each McCormick envelope,

which could be achieved by partitioning the space of translations more finely (i.e.

with additional binary variables, which will come with an increase in runtime). Also

note that this particular grammar is a worst case for the MICP parsing technique: it

involves parent-frame Normal translation offset and parent-frame Bingham rotation

93

Figure 3-5: Example scenes drawn from the singles-pairs constituency and depen-
dency grammar variations, as parsed by both the MICP (top row in each subfigure)
and IP (bottom row in each subfigure) techniques. Parses before and after the NLP-
based post-processing step are illustrated. The ground truth scene tree for this scene
is illustrated next to the input scene for comparison.

94

offset rules, both of which involve bilinear relationships involving the parent and child

poses in their log-likelihood evaluation. Similar grammars written using world-frame

Normal translational offset rules (which can describe similar translational offsets, but

without the ability for those offsets to vary with the parent rotation) do not face this

issue. As illustrated in Figure 3-6, even in this difficult case, the MICP technique re-

covers the right parse tree structure in 95% of cases, allowing the NLP post-processing

to easily recover the optimal solution and resolve the suboptimality.

The IP parsing also recovers a suboptimal pair location: it uses the pose of one

of the two objects in the pair as its proposal for the pose of the latent pair (a result

of a bottom-up pose proposal rule as described in Section 3.5.1). Since the recovered

tree structure is correct, NLP post-processing is able to quickly and easily improve

on these suboptimal solutions to find MAP-optimal parse trees.

Impact on parsing accuracy and runtime scaling

In order to probe both the accuracy and typical runtime of each parsing method, we

can sample large numbers of scenes (along with their ground truth scene trees) from

each of the singles-pairs grammar variations and parse each one with each method,

and examine relevant statistics across that population of parsing trials. We measure

the parsing accuracy by comparing the total log-probability of the recovered parse

tree against the total log-probability of the ground truth tree; we consider a success

to be when the parse tree meets or exceeds the ground truth tree probability. We

can additionally vary the grammar complexity, which we measure in terms of the

maximum number of objects the grammar can produce, by changing the maximum

number of pairs and single objects the Singles and Pairs nodes are allowed to sample.

Figure 3-6 illustrates both a measurement of parsing accuracy of each method on each

grammar variation, and the distributions over runtime we observe from each parsing

method on randomly sampled scenes as we vary the grammar complexity.

We see that both parsing methods succeed 100% of the time on the dependency

grammar, but occasionally fail on the constituency grammar.6 When parsing the

6Note the stringent definition of failure here; a perfectly reasonable parse tree that’s slightly

95

Accuracy (relative to ground truth) of parsing methods
Method

MICP IP

Grammar Variation Constituency 15%/95% 56%/100%
Dependency 100%/100% 100%/100%

Figure 3-6: (Top) Assessment of parsing accuracy of both methods on the singles-
pairs grammar. Across 𝑁 random samples from the corresponding grammar (𝑁 = 60
for the constituency grammar under the MICP method; 𝑁 = 120 otherwise), we
indicate the percent of parses that match or beat the log-likelihood score of the
ground truth tree for the sampled scene before (upper number) and after (lower,
bolded number) performing NLP-based post-processing. (Bottom) Comparison of
runtime of both parsing methods on randomly sampled (𝑁 = 20 per column) scenes
from the singles-pairs grammar, as the complexity of the grammar is increased by
increasing the maximum number of objects that the grammar can produce. Note the
log scale on the y axis.

96

constituency singles-pairs grammar, the IP parser finds suboptimal trees 56% of the

time, but after the NLP post-processing step, all of those results are improved to

match or beat the ground truth parse trees. This indicates that the IP parser is

selecting reasonable parse tree structures, but not finding the optimal latent poses

for any Pair nodes. This makes sense, as the IP parser must choose the latent Pair

poses from a set of proposals, none of which may be optimal. The MICP parser

shows similar behavior: it rarely returns a perfect parse tree directly from the MICP

optimization, but after NLP post-processing its performance rising to near perfect.

As noted previously, this is a worst-case grammar for the MICP parser, as parsing it

requires approximation of bilinear terms between the latent Pair translation variables

and its own rotation. The MICP-optimized Pair translation is thus an approximation

of the optimal Pair translation, which these results indicate is sufficiently good to

lead the MICP to recover the optimal parse tree structure in 95% of cases, and leads

the MICP astray in the other 5%.

Unfortunately, all methods show roughly exponential worst-case empirical time

complexity as grammar size, which corresponds to underlying optimization size, is

increased. The worst of this scaling behavior is seen during MICP parsing of the

constituency grammar, which requires solving by far the hardest parsing problem (i.e.

inferring unknown latent node poses); parsing such scenes can take tens to hundreds

of seconds each, for scenes with handfuls of objects. IP parsing of the same scenes

proves much faster and easier, and while still increasing in time roughly exponentially

with grammar complexity, the rate of increase is modest and allows rapid parsing of

much larger scenes.

For reference, for the MICP parser, the number of integer and continuous variables

scales approximately as

𝑂

(︂
(# of supertree nodes)

)︂
.

worse than ground truth is still counted as a failure for the purpose of this experiment.

97

For the IP parser, the number of integer variables scales approximately as

𝑂

(︂
(# of supertree nodes)× (# of pose proposals per node)2

)︂
.

For this example, the number of supertree nodes grows linearly with the number of

nodes that the grammar produces. (This relationship is not true in general for all

grammars.) In the IP parsing case, the number of pose proposals per node also grows

linearly in the number of observed nodes, as each observed node is used as a pose

proposal.

Impact on finding multiple solutions

While the MIP solver can be asked to find the top N solutions to both forms of

the parsing problem, the quality of those top N solutions can vary, as illustrated in

Figure 3-7. The solver considers solutions to be different if their integer solutions are

different, but depending on the parsing formulation and grammar, different integer

solutions might correspond to the same functional parse tree. In the case of the

dependency grammar, the only integer variables in the optimization correspond to

choices that determine parse tree structure, so the top N solutions all correspond to

structurally different parse trees both before and after the NLP pass. As a caveat,

these parse trees are guaranteed to be different modulo any unbroken symmetries

in the grammar : e.g., an AND node that activates two identical rules can lead to

two "different" parses that activates either one of the rules to produce a functionally

identical, but technically different, parse tree. These symmetries can be broken by

enhancement to the parsing formulations.

Unfortunately, both formulations of the parsing problem for the constituency

grammar muddy this story. Because of the binary variables involved in the 𝑆𝑂(3)

constraints and piecewise McCormick approximations of bilinear cost terms, different

integer solutions to the MICP parsing formulation are no longer guaranteed to corre-

spond to unique parse trees: for the scene illustrated in Figure 3-7, the top 10 unique

98

Figure 3-7: The best 4 parses for example scenes drawn from the dependency (top)
and constituency (bottom) variations of the singles-pairs grammar. Each parsing
method produces 10 integer-unique solutions, from which the best 4 unique parse
trees are extracted. Integer solutions do not necessarily correspond to unique parse
trees, depending on the grammar and formulation details, so 4 unique solutions are
not always available. Each scene is annotated with its total tree log-probability ("ll").
The optimal parse tree from each technique matches or beats the ground-truth parse
tree that was used to generate the scene.

99

integer solutions all correspond to functionally identical parse trees.7

The situation is better, but not perfect, for the IP parsing formulation: each

intermediate unobserved node with unknown pose is associated with a list of binary

variables corresponding to the choice of which pose (from a finite set of proposals) that

node will take. Different assignments of these variables do not necessary correspond

to unique tree structures, but they should correspond to unique scene trees with

differently placed nodes as long as the set of proposed node poses are unique. For

the scene illustrated in Figure 3-7, each truly unique scene tree corresponds to 4

different integer solutions, so we get a total of 3 unique scene trees in the top 10

integer solutions (corresponding to solution #1, #5, and #9). 2 of those integer

solutions correspond to different pose proposals that converge to the same optimal

tree, and 2 of them correspond to an unbroken symmetry in the AND node logic used

to implement the Pairs node.

3.7.2 Case studies and comparison on sink grammar

In order to demonstrate that our parsing procedure can be applied to a slightly

more complex and realistic class of scenes, we show that these techniques can be

applied to parse the dataset of physically realistic cluttered sink scenes we assembled

to correspond with a sink grammar (both are detailed in Section 2.6.3). This sink

grammar captures some of the typical structure present in cluttered sinks full of

objects: that bowls, plates, and cups can appear independently at random poses

within the sink, but that objects also tend to be placed inside of bowls and on top

of plates. Capturing these patterns and allowing for the production of 9 unique dish

models (3 bowls, 3 cups, and 3 plates) leads to a grammar with 19 node types and
7We suspect the reason why so many of the top solutions are redundant is an unfortunate

combination of the objective and piecewise convex 𝑆𝑂(3) constraint approximation. Rotation matrix
decision variables enter the objective linearly as part of the Bingham distribution log-density, so at
an optimal solution they’ll always be driven to constraint boundaries and corners. These corners
are the transition points between the convex regions of the piecewise-convex constraints used to
construct 𝑆𝑂(3) constraints and piecewise McCormick envelopes; at these points, multiple different
binary variable settings corresponding to the activation of one of the intersecting regions are feasible.
The different elements within the rotation matrix are each subject to this problem, meaning there
could be an exponential number of equally-valid integer solutions all corresponding to a globally
optimal cost and corresponding parse tree.

100

Figure 3-8: Left Example MAP parses from 6 scenes from the sink dataset. Both
parsing methods return the same MAP parse tree for all scenes in the dataset. Right
Plots visualizing parsing process runtime across the 68 scenes in the dataset. Each
point is a run of the corresponding parsing process asked to produce the top 10
scenes. The parsing methods returned the same MAP parse tree for all scenes; timing
differences can be primarily attributed to differing setup times and minor formulation
differences.

produces a supertree with 517 nodes.

Figure 3-8 illustrates that our parsing techniques recover qualitatively reasonable

parse trees with reasonable runtime. Because the sink grammar is structured as a

dependency grammar, both techniques agree on the set of top N MAP parse trees

and solve in similar time.8 Figure 3-9 further illustrates that our parsing techniques

recover diverse and meaningful parse tree structures for these scenes, each of which

hypothesizes a different underlying hierarchy for the scene.

8The variation in runtime observed in Figure 3-8 is likely partially due to differences in setup
time. These optimizations are set up using the Python bindings for Drake [59] before being passed to
Gurobi. The size of the supertree for this grammar leads to a large number of decision variables and
constraints to be allocated and manipulated, which can be particularly slow in Python. The MICP,
with its extra continuous pose variables, is more complex to set up for this grammar. However, the
handful of outliers over 10 seconds under the MICP method appear to be due to the solver.

101

Figure 3-9: The best 4 parses for an example scene from the sink dataset. Because the
sink grammar is constructed as a dependency grammar with no unobserved equivalent
sets, both MICP and IP parsing techniques produce the same solution set in similar
time.

3.8 Discussion

In this chapter, we have demonstrated that we can use a supertree of a scene grammar

as a scaffold for performing a mixed-integer optimization over the space of all scene

trees in the grammar; and that two variations on a mixed-integer convex parsing

approach can be successfully applied to multiple example scenes and grammars. Our

results broadly indicate the success of both parsing methods, but also illustrate some

important weaknesses to keep in mind when deploying these methods in practice.

Here, we remark on some of the principle scaling concerns facing these methods,

along with ideas on how to address them; as well as other ideas on extensions to more

complex parsing problems.

3.8.1 Scaling concerns and alternative optimization approaches

Constituency vs dependency grammars

Like any mixed-integer convex optimization, our parsing procedure faces worst-case

exponential time complexity, which is unfortunately corroborated by Figure 3-6. The

worst-case grammar – the singles-pairs constituency grammar, which has many un-

102

observed intermediate nodes whose poses are involved in nonconvex relationships –

scales particularly poorly beyond scenes with a handful of objects. As noted previous,

the most direct resolution for this problem is often to reformulate the grammar itself:

many scenes can be equivalently stated with a dependency grammar that avoids the

introduction of unnecessary intermediate nodes. As is clear in Figure 3-6, simply

making this switch can improve parsing runtime by orders of magnitude. The core

difference between the dependency and constituency variation of, for example, the

singles-pair grammar is that parsing a scene with the dependency variation does not

require inferring the pose of the unobserved "Pair" nodes. (To see this, note that in

Figure 2-2, each equivalent set (drawn as a shaded box) contains an observed node.)

Moving from a constituency to a dependency formulation has significant impacts on

the parsing process:

∙ The MICP parsing formulation becomes significantly easier to solve: because

all equivalent sets are observed by definition of a dependency grammar, all pose

decision variables will be exactly equal to the pose of one of the observed nodes,

and no costly 𝑆𝑂(3) approximation constraints need to be applied. Indeed,

for dependency grammars, the MICP and IP parsing procedures are practically

identical if the observation short-circuiting trick is applied (Section 3.4.3).

∙ The IP parsing formulation requires no proposals (as, by definition of a depen-

dency grammar, there are no intermediate node poses that require proposing),

and so the IP parsing formulation will always be able to find the optimal parse

(as long as the supertree recursion depth limit has not cut off vital tree structure

to explain the scene).

∙ NLP post-processing is unnecessary for both techniques, as there are no contin-

uously varying uncertain pose variables that may have been poorly proposed or

loosely approximated.

Note, however, that if the grammar does not contain rules that produce bilinear

relationships – if, for example, only world-frame translation offset and rotation dis-

103

tribution rules are used – then the MICP formulation becomes vastly easier to solve,

as most of the difficult nonconvexities will not be present.

Supertree complexity scaling

The supertree will eventually, itself, become a barrier to scaling, as it will grow expo-

nentially with the complexity of the grammar. Reformulations of this problem might

focus on removing or limiting the exponential growth of the supertree by counting

how often each node type can possibly occur in a draw from the grammar. In the same

vein, the supertree interpretation of the parsing problem may itself lead to parsing

techniques that do not require explicitly constructing the entire tree at once, but in-

stead rely on lazy evaluation of supertree structure during a branch-and-bound-style

solution exploration.

Alternative optimization approach: bilinear alternation

While we focused on formulating the parsing problem, including its nonconvexities,

as a single optimization problem, it’s possible that we could instead approach [some

of] the nonconvexities through an alternation strategy. The worst of the nonconvex-

ities occur in bilinear relationships from the Parent-frame Normal offset and Parent-

frame Bingham offset rules from Table 2.1. The former involves bilinear relationships

𝑛𝑝.𝑟𝑇𝑛𝑝.𝑡 and 𝑛𝑝.𝑟𝑇𝑛𝑐.𝑡, and the latter involves the bilinear relationship 𝑛𝑝.𝑟𝑇𝑛𝑐.𝑟.

One could form a binary partition of these pose decision variables and alternate be-

tween optimizing one set of poses and node activations while keeping the other set

fixed in a bilinear alternation approach. Using this approach would remove the loose

McCormick envelope approximations to these bilinear terms – at the possible expense

of convergence and optimality guarantees.

Alternative optimization approach: SDP relaxations of 𝑆𝑂(3)

An increasingly popular approach to optimization over 𝑆𝑂(3) is to construct convex

semi-definite programs (SDPs) that, in practice, form tight relaxations of underlying

optimization problems of interest. Given a rotation parameterized by the 9 elements

104

of its rotation matrix, [80] provides a spectrahedral (i.e. semi-definite) constraint that

constraints those elements to lie within the convex hull of 𝑆𝑂(3). The formulation

of this constraint is functionally very similar to our construction of the quaternion

outer product in Section 3.4.3. In many contexts, this constraint is tight – for ex-

ample, when the optimization objective over those rotation matrix elements is linear,

we know the optimal solution will (modulo some corner cases) lie on the constraint

surface which corresponds to 𝑆𝑂(3). TEASER [81] takes advantage of this property

by utilizing a similarly-structured tight SDP relaxation as part of a point cloud reg-

istration algorithm. In our context, we may be able to utilize this SDP relaxation in

place of the mixed-integer 𝑆𝑂(3) approximation we currently use, with hope that we

see the same tightness results as [81].

A major barrier to applying this technique is that node rotation matrices still enter

into two kinds of bilinear relationships, as described in Section 3.8.1. Many approaches

to solving the point cloud alignment problem (including ICP and TEASER) rely on

separately solving for the translation and rotation – but, to the best of our knowledge,

these tricks can’t be applied in this case due to tight coupling of the rotation and

translation variables in the objective. There is a chance that, upon careful inspection

of the way the translation and rotation decision variables enter the objective (and

interact, in particular, with the Normal and Bingham distribution concentration and

covariance matrices), one may uncover useful symmetries that might enable semi-

definite approximations of these remaining relationships.

3.8.2 Future directions

The role of physical feasibility in scene parsing

As we have discussed in Section 2.4, physical constraints have a strong influence on

the layout of objects in a scene, but can be difficult to cleanly integrate into an

inference framework. Our framing of the scene parsing problem carefully sidesteps

this issue by assuming we’ve already been handed a scene that satisfies all of the

physical constraints that we expect. As a result, we don’t need to reason about these

105

constraints at all during parsing, as we fix the location of all geometry that might

participate in those constraints.

However, if one were to introduce a more complex observation model – even just

the introduction of noise in the object pose observation process – these constraints

become relevant to parsing and need to be satisfied. Consider, for example, incorpo-

rating non-penetration as a canonical and critical physical constraint. If the parsing

process requires inferring the true locations of objects in addition to the existence,

poses, and relationships between any latent nodes, then the set of inferred object

poses must be constrained to be non-penetrating. One way this constraint could be

addressed is at the NLP-postprocessing layer, as the non-penetration constraint is

easily expressed as a nonlinear function of all object poses and geometries.

Possible applications to hybrid control and verification

Finally, we hope that the details of these parsing techniques have value to the reader

beyond methods for recovering MAP parse trees. Control synthesis and verification

has turned its eye towards practical robot manipulation systems, but currently has

limited tools for reasoning about the behavior of a robot facing wildly varying numbers

of objects. These parsing formulations demonstrate that it’s possible to perform

principled optimization over the space of varying-size scenes, which could be turned

towards, for example, mixed-integer adversarial example search as formal verification

strategy.

106

Chapter 4

Parameter Estimation

4.1 Introduction

A scene grammar provides a probabilistic procedural model over environments 𝑝𝜃(𝑜, 𝑇),

with a set of parameters 𝜃 that control the shape of the output distribution. These

parameters control how often each node produces each possible set of children, and

the shape of the relative pose distribution for each child conditioned on its parent.

Despite these parameters having intuitive meanings – like the relative occurrence of

one object types versus another, or the typical relative position of a child object in

the frame of reference of its parent – finding appropriate settings of these param-

eters can still be arduous and difficult in sufficiently complex grammars. Further,

one might desire to optimize or do inference over these parameters to find the best

possible parameter setting to capture the distribution one has observed in a dataset

of observed environments. To perform that inference, we need to tackle the problem

of parameter estimation for scene grammars.

4.2 Related Work

A subset of the scene grammar (and broader procedural scene modeling) literature is

concerned with this parameter estimation problem. A significant amount of previous

work that utilizes scene grammars performs some amount of parameter estimation

107

(or even grammar inference) in order to generate the grammars that they then use

for parsing. However, many of those works assume access to labels of the structure

captured by the grammar: for example, [17] assumes access to consistently labeled

scene hierarchies, and [51] directly collects statistics about object occurrences and

geometry from readily-available data. [82] optimizes grammar parameters with a gra-

dient update (similar in spirit to the variational inference strategy we use in [4]), but

likewise does not need to solve as complicated a parsing problem to perform that

update. Unlike these approaches, we aim to optimize grammar parameters without

any parse tree labels. This is a tricky process, as the parse tree provides the link

between the observed scene and the grammar parameters; the missing parse trees

are instead latent variables that must be inferred. We utilize our scene parsing pro-

cedure to recover the most likely parse trees, which we leverage in an approximate

expectation-maximization (EM) framework to perform parameter estimation.

A fundamentally different tactic from our own is to instead align the parameters

by producing many samples from the model, and tweaking the parameters to make

that output distribution "align" with a target distribution according to a metric. This

frequentist alignment method is used in MetaSim [18] to control the output distribu-

tion of a neural distribution transformer, and by the follow-up work in MetaSim2 [20]

to directly adjust parameters of a recurrent neural variation of a scene grammar.

This approach is appealing in that it bypasses the difficult parsing and inverse mod-

eling requirement, but requires engineering a distribution comparison metric to drive

the alignment: [18] and [20] use two-sample tests in a deep embedding space com-

puted from rendered images for this purpose. BayesSim [34] uses another distinct

tactic to recover (posteriors over) dynamics parameters in simulator models: they

use simulated data train an inverse function that predicts latent parameters from

observed rollouts, and apply that inverse function to real rollouts to estimate the

distribution of latent parameters in reality. This approach bypasses any computation

of the simulator likelihood function (which is typically impossible to get from a black-

box simulator), but requires formulation of a proposal engine that can predict latent

model parameters from observed outputs – a problem that is particularly difficult in

108

our case, where latent model parameters consist of entire scene tree structures.

4.3 An Approximate EM Approach

Assume that we are handed a grammar model of observed scenes 𝑃𝜃(𝑜) with param-

eters 𝜃, an initial guess for the parameters 𝜃0, and that we’re supplied with a set of

fully observed environments 𝒪 = {𝑜}. Each observed environment is a collection of

rigid bodies with known poses and geometries matching those produced by the gram-

mar, assumed to be in the language of the grammar. We wish to find the grammar

parameters that maximize the [log]-evidence of the data

𝜃* = argmax
𝜃

𝑝𝜃(𝒪) = argmax
𝜃

log 𝑝𝜃(𝒪).

We can tackle this by applying the standard expectation maximization (EM)

algorithm [83]. Evaluating the expected value of the log-likelihood of an observed

scene 𝑜 under the distribution of parse trees induced by our current parameter values

𝜃𝑘 as

𝑄(𝜃|𝜃𝑘) = E𝑇∼𝑝
𝜃𝑘

(𝑇 |𝑜) [log 𝑝𝜃𝑘+1(𝑜, 𝑇)] ,

we choose 𝜃𝑘+1 to maximize these expectations independently across each datapoint

𝜃𝑘+1 = argmax
𝜃

∑︁
𝑜∈𝒪

𝑄(𝜃|𝜃𝑘).

While we cannot analytically write down the expectation as in classic EM, we can

instead approximate it by enumerating over the set of 𝑀 most probably parse trees

𝑇 recovered by our parsing procedure from Chapter 3. This allows us to form an

alternating procedure:

1. For each observation and current parameter guess 𝜃𝑘, collect the 𝑀 most likely

trees 𝑇𝑖 ∼ 𝑝𝜃𝑘(𝑇 |𝑜) as the top 𝑀 best solutions from our MICP parsing proce-

dure, for a user-specified 𝑀 .

109

2. Determine the relative weights of each tree by

𝑝𝜃𝑘(𝑇 |𝑜) ≈
𝑝𝜃𝑘(𝑇𝑖, 𝑜)∑︀
𝑇𝑖
𝑝𝜃𝑘(𝑇𝑖, 𝑜)

.

3. Update

𝜃𝑘+1 = argmax
𝜃

∑︁
𝑜∈𝒪

[︃
𝑀∑︁
𝑖

log 𝑝𝜃(𝑇𝑖, 𝑜)𝑝𝜃𝑘(𝑇𝑖|𝑜)

]︃

(1) and (2) calculate the expectation term E𝑇∼𝑝𝜃(𝑇 |𝑜) by approximate enumera-

tion: we use the MAP parsing procedure to gather the set of trees that have the

(approximately) highest posterior likelihood, and assume that this set is the set of all

trees that can explain the scene with nonzero probability, so that we can calculate

their relative posterior likelihoods for use as weights in (3).

(3) calculates an update for each parameter based on the population of parse trees

for each observation. For our grammar formulation, this can be done in closed form

separately for each parameter. For each node type, the relative rule occurrence rates

can be determined by counting how often each rule occurs under that node type in

the set of all parse trees for all observations. For each rule type, the parameters of

the rule’s underlying distribution (i.e. Normal or Bingham) can be fit to the set of all

parent/child pairs using that rule type in the set of all parse trees for all observations.1

However, if additional rule types are added for which this fitting cannot be done in

closed form, it can instead be done by gradient descent, forming a variational-EM

approach (see [4]).

4.3.1 Measuring distances between sets of scenes

In order to measure the success of the parameter fitting process, we require a metric

with which to compare two populations of scenes. As scenes can contain varying

types and numbers of objects, there is no unfortunately no standard or obvious way

1We use the Bingham distribution implementation from [84], which fits Bingham distribution
parameters to an observed set of samples by the method of moments.

110

to perform this comparison – even writing a distance metric between two individual

scenes is nontrivial. We propose two metrics here, which we use to evaluate our

experiments.

1. Dataset log-evidence under the model: We can estimate the total evidence

under the model of the set of scenes in the target dataset. We could estimate

this value by marginalization:

𝑝𝜃(𝒪) =
∑︁
𝑜∈𝒪

∫︁
𝑇

𝑝𝜃(𝑜, 𝑇)

in which we sum over scenes 𝑜 from the dataset 𝒪; for each scene, we enumerate

over parse trees 𝑇 that might explain the scene. In practice, we approximate

this sum by instead summing over the top 𝑀 parse trees as gathered by the

parsing procedure, which should be the primary contributors to the sum over

all possible parse trees.

2. Two-sample testing at an object level with MMD: We can produce a

population of samples 𝒪* = {𝑜* ∼ 𝑝𝜃(𝑜, 𝑇)} by randomly drawing scenes from

the grammar, and compute a distribution distance measurement 𝐷(𝒪,𝒪*). In

order to make it easier to apply statistical tools, we first break these populations

up by object: we take 𝐷(𝒪,𝒪*) = 1

𝐾

∑︀𝐾
𝑁 𝐷𝑁(𝒪𝑁 ,𝒪*𝑁) for each observed node

type 𝑁 and corresponding set of individual observations of node type 𝑁 𝑂𝑁 and

𝑂*𝑁 . Note that this throws away information about which objects co-occurred:

we are now only inspecting the distribution of poses of each class of object

across each dataset.

To evaluate 𝐷𝑁 , we utilize the Maximum Mean Discrepancy (MMD) statis-

tic [85] which measures the distance between two distributions 𝑝(𝒪𝑁) and 𝑝(𝒪*𝑁)

by comparing the average discrepancy of the moments of embeddings of samples

from both distributions. If this embedding is to a reproducing kernel Hilbert

space (RKHS) with kernel 𝒦, then it can be shown that this metric goes to

zero if and only if all moments are matched (i.e. the distributions are iden-

111

tical). In this case, the MMD can be estimated through the kernel trick by

evaluating the the provides a pairwise distance between samples 𝒦(𝑥1, 𝑥2) for

all sample pairs ⟨𝑥1, 𝑥2⟩. Standard implementations of MMD utilize a stan-

dard RBF kernel; however, since our samples are objects in 𝑆𝐸(3), we need

to handle them carefully. For a pair of objects 𝑜1 ∈ 𝑂𝑁 , 𝑜2 ∈ 𝑂*𝑁 with poses

⟨𝑜1 = (𝑡1, 𝑅1) , 𝑜2 = (𝑡2, 𝑅2)⟩, we use

𝑘(𝑜1, 𝑜2) = exp

(︂
− 𝛼

(︀
||𝑡1 − 𝑡2||22 + 𝛽 × angle(𝑅𝑇

1𝑅2)
)︀)︂

with 𝛼 determining the scale of the kernel, 𝛽 allowing different weightings of

the translation and rotation components, and angle converting the differential

rotation matrix to the angular distance (in radians) between the two rotations.

This kernel reaches its maximum when the poses are identical, and falls off as a

Gaussian otherwise. This function is symmetric and positive definite, and thus

corresponds to a RKHS by the Moore-Aronszajn theorem [86], thereby fulfilling

the property in the MMD that we seek.

4.4 Experiments

4.4.1 Comparison with EM for GMMs

Grammars of the type described in this work could be viewed as a vastly more com-

plex form of mixture modeling in which the mixtures can be stacked hierarchically.

The EM parameter fitting algorithm used is commonly applied to standard mix-

ture models: in a [e.g. Gaussian] mixture model with 𝑁𝑚𝑜𝑑𝑒𝑠 = 3 components, the

Expectation step corresponds to computing correspondence probabilities of each dat-

apoint to each of the 𝑁𝑚𝑜𝑑𝑒𝑠 components, and the Maximization step is performed

by enumerating over those correspondences to find new parameter estimates. For

comparison, consider a grammar that implements the same logic: in the GMM gram-

mar (Figure 2-1), each observation is a single point that can be explained by one of

three production rules corresponding to each of the 3 mixture components. If we run

112

our approximate EM algorithm and ensure that the parsing procedure always returns

the top 𝑁𝑚𝑜𝑑𝑒𝑠 parse trees, then the parsing procedure will enumerate all possible

assignments of an observed point to mixture modes. Our parameter maximization

step will, in turn, consider over all possible assignments of each observed point, and

thus precisely reproduce that exact EM procedure for GMMs. Stated differently, in

this case of GMM fitting, our approximate EM procedure reduces to exact EM, as we

know the procedure enumerates over all possible parse trees for each observation.

Figure 4-1: Correlation between fitting er-
rors of a baseline GMM EM implemen-
tation [1] and our approximate EM algo-
rithm on 30 randomly-initialized GMM pa-
rameter estimation trials. Each dot is a
trial. Each score is computed as the Earth
mover’s distance between the ground truth
and corresponding estimated model. The
close correlation in fitting error empiri-
cally supports that our method reduces to
vanilla EM in this case.

To illustrate that this reduction oc-

curs, we perform an experiment in which

we ran our EM algorithm alongside a

baseline vanilla EM algorithm [1]. In

each trial, we randomly sample an 𝑀 =

3 component ground truth GMM and

sample 100 observed points ∈ 𝑅3, which

are passed to each EM algorithm in order

to recover the GMM parameters. Each

EM algorithm is seeded from the same

random initial condition and run for 5

iterations (which was typically enough

for convergence). We use the element-

wise Earth mover’s distance between the

ground truth model and estimated model

as the score. The correlation between

the scores of each method are illustrated

in Figure 4-1; the methods performed

nearly identically, modulo noise due to

minor numerical differences in the handling of small mixture weights.

In the case of GMM parameter estimation, our technique is certainly overkill, and

we take a massive performance hit due to the significant overhead of setting up and

solving many mixed-integer optimization. (Running the baseline GMM fit on this toy

113

example is nearly instantaneous, while running our parameter fitting for a dataset of

100 points routinely takes 3 minutes, or an average throughput of 100ms per MICP

solve.) Our method pays off in larger-scale examples where trivial EM algorithms are

not possible to write.

4.4.2 Case study on the dimsum table grammar

Our table grammar (Section 2.6.4) is an example of a grammar whose parameters have

clear physical meaning, but whose precise values are may not be immediately obvious

a priori. Exactly how many plates, bowls, and shared serving trays appear on a typical

table? Does that number vary by restaurant, or by time? How tightly clustered do

those objects tend to be on the table surface? These parameter estimation tools

provide an avenue for tackling these questions.

Parameter estimation

To create a target dataset of tables, we set our grammar parameters to known reason-

able values that produce a qualitatively-reasonable dataset, and sample 100 scenes.

To ensure that our scenes are physically reasonable, after randomly sampling a tree

structure and initial set of poses, we use the HMC conditioned sampling approach

from 2.4 to generate a chain of samples that satisfy the Items-on-table and Items-

non-penetrating constraints (detailed in 2.6.4) that ensure all items are within the

bounds of the tabletop and are a sufficient distance from each other. We inspect the

trees produced by the chain and accept the latest tree in the chain that satisfies the

constraints as our reasonable sample. Finally, we simulate the objects in the tree

forwards in time to a statically stable configuration to place them on the tabletop.2

Exemplar trees from this dataset are illustrated in Figure 4-2. These scenes contain

between 7 and 19 objects each, and the supertree for this grammar contains 186

2While this static-stability constraint could, in principle, be framed as a constraint, it is both
very stiff and highly dependent on potentially complex object geometry, and so is difficult to address
in practice. In this scene, objects that follow the grammar and satisfy the non-penetration and on-
table constraints are very close to static stability already: forward simulation typically only moves
objects a few centimeters downwards to be precisely in contact with a support surface.

114

Figure 4-2: Top: Samples from before and after approximate-EM fitting of the table
grammar to the target dataset. The scenes before and after fitting are sampled
under the same set of pose constraints that require object origins to be above the
table surface with adequate horizontal clearance to not interpenetrate other objects.
Additional regularity in object placement is due to tightly fit grammar parameters.
Bottom left: Samples from the target dataset. Bottom right: Samples from the
baseline grammar after fitting to the target dataset. These scenes are sampled under
similar pose constraints to the full grammar. Note that these scenes fail to accurately
capture the arrangements of individual place settings or steamer stacks.

115

Figure 4-3: Evolution of the estimated log-evidence of the dataset under the model
(left) and the two-sample MMD distribution distance metric between the model and
dataset (right) while fitting the table grammar and its baseline version to the target
dataset. MMD traces across training are separated out for each object (dashed lines)
alongside the mean across objects (solid line). MMD estimates at the last iteration
of both methods are included for reference.

116

Figure 4-4: Scatterplots of sampled x-y locations of a handful of object types from
the Table grammar generated by sampling 30 scenes from each model (under the
same constraints used to generate the target dataset) and plotting the x-y location of
all object of the corresponding type from those scenes on the table surface. Samples
from the baseline (orange) and full (blue) grammar models after fitting are overlaid
with samples from the target dataset (blue). The bounds of each plot correspond
exactly to the size of the table.

Figure 4-5: Plots of some selected parameters of the table grammar during the fitting
process (solid lines) compared to the ground truth values used to generate the target
dataset (dashed lines).

117

nodes.

We initialize a grammar with naive parameters that are far from capturing the

distribution of interest3, and apply our approximate EM procedure using the top

10 parse trees per scene. Figure 4-3 illustrates that our parsing procedure is able

to recover the target distribution and the parameters of interest. Figure 4-4 visually

illustrates this distribution match. The pose-specific kernel used to estimate the MMD

was used with 𝛽 = 0.1, as we expected translation errors to be an order of magnitude

smaller than angular errors. The full grammar outperforms the baseline grammar

on both metrics: it is able to both assign more density to the target scenes (owing

to its more specific rules), and better captures the distributions of each object type.

The primary object type for which the full grammar performs significantly better

(in terms of MMD) is on the Plate object: in the target dataset, plates are tightly

clustered around the seating locations of the table, which only the full grammar has

the expressive power to accurately to capture. Figure 4-5 illustrates parameter traces

across training for a handful of parameters in the grammar; these parameters converge

to close to the ground truth values used to generate the target dataset.

Additionally, we compare against a simpler scene modeling approach, as imple-

mented in a baseline grammar. This baseline grammar (detailed in Section 2.6.4 and

illustrated in Figure 2-8) models the table as having a random number of objects of

each type, where each object’s pose is drawn from a Table-frame pose distribution

specific to the object type. Note that this grammar is less expressive than our full

Table grammar: it cannot capture the covariance of Steamers in a stack, or cups

appearing next to plates. We apply our approximate EM procedure to this grammar

as well and include its performance for comparison in Figures 4-2, 4-4, and 4-3.

3In particular, we set Gaussian pose offset means to zero and variances to 0.05, reflecting a naive
but not enormous distribution of all object types. All other parameters are randomly initialized
from broad domains. Setting the pose offsets to zero-mean ameliorates convergence to suboptimal
solutions in which e.g. cups are associated with plates that happen to co-occur across the table.

118

Figure 4-6: Evolution of the estimated log-evidence of the dataset under the model
(left) and the two-sample MMD distribution distance metric between the model and
dataset (right) while fitting the sink grammar and its baseline version to a dataset
of example sinks. MMD traces across training are separated out for each object
class (dashed lines) alongside the mean across all object classes (solid line). MMD
estimates at the last iteration of both methods are included for reference.

4.4.3 Case study on the sink grammar

Like the table grammar, our sink grammar (Section 2.6.3) has physically intuitive

parameters whose precise values would benefit from fine-tuning to data. In particular,

the sink grammar has rules for capturing the distribution of objects within a sink,

including specific rules capturing the stacking of plates on top of each other, and the

grouping of objects inside of bowls. We can use our parameter estimation techniques

to analyze how often these different scene structures occur, and what the precise pose

distribution of a "objects in a bowl" looks like in the first place.

119

Figure 4-7: Plots of some selected parameters of the sink grammar during the fitting
process.

120

Parameter estimation

As detailed in Section 2.6.3, we collected a modest dataset of 68 cluttered sink scenes,

each containing between 1 and 10 objects. After initializing the grammar parameters

to qualitatively reasonable values4, we apply our approximate EM algorithm using

by finding the top 10 parses for each scene via the IP parsing strategy from Chapter

3; updating parameters to best match those parses; and repeating for 10 iterations.

Quantitative analysis and select parameter histories from this process are illustrated

in Figures 4-6 and 4-7. These results indicate that our parameter estimation process

is able to significantly improve the specificity of our grammar under both of our

metrics. The full grammar beats the baseline grammar in terms of model specificity

as captured by the estimated log-evidence over the dataset; however, the baseline

slightly beats out the full grammar in terms of a two-sample population comparison

using our MMD metric. This may be a factor of lack of sensitivity in the MMD metric

given our relatively small target dataset; or could be an indication of overfitting of

our model. Given the complex, cluttered, and likely very non-Gaussian distribution

of objects within the rectangular bounds of the sink, perhaps neither approach has

the expressive power to fully capture the spatial arrangements of these objects.

Outlier detection

While this grammar describes a class of scenes that are beyond our ability to mean-

ingfully produce samples (due to its highly cluttered nature and complex object ge-

ometries – see discussion in Section 2.6.3), it still provides value as a tool for scene

understanding. A benefit of the parameter estimation process is that once a gram-

mar is tuned to a given dataset, it becomes more sensitive and capable of detecting

outlier scenes that do not match that data distribution. Figure 4-8 illustrates this

point: we show that parsing a handful of intentionally-crafted "outlier" scenes with

the fit grammar reveals that they tend to be less likely under the model than the

rest of the scenes. These outlier scenes were created to intentionally violate the rules

4We have found that initializing with at least approximately accurate parameters is important,
as the EM process is a local optimization that is at the mercy of local minima.

121

Figure 4-8: Histograms of the best parse tree score of each scene in the dataset
before and after fitting. The fitting process increases the likelihood assigned to trees
in the target dataset, at the expense of likelihood of trees not following the same
distribution. Example parse trees, with nodes and edges colored by their calculated
likelihood (red-low to green-high), are shown for a few of the outlier scenes.

122

used to assemble the original scenes: the original sink scenes all have objects placed

within the sink in small or orderly stacks, while the outlier scenes consist of objects

outside of the sink or stacked unusually high. Because we can inspect scene parses at

a node and rule level, this tool provides a part-level explanation of which parts of the

scene are unusual: the orange and red edges in Figure 4-8 indicate low probabilities

on the corresponding production rule in the parse tree, indicating that the specific

object they connect is in an unusual configuration. This is particularly relevant in the

highest-scoring outlier scene (i.e. the rightmost illustrated scene in the figure): this

scene has two bowls which are clearly outside of the sink, but the rest of the objects

within the bowls follow the rules of the grammar.

As an important caveat, it’s important to see that comparisons of tree scores

𝑃 (𝑇) between scene trees with different structure are only partially informative, since

these densities are not truly comparable. In practice, we have seen that trees with

more objects tend to have inflated scores compared to smaller trees that should be

considered to be equally likely, since we sum up the score of individual rules that

tend to have positive individual scores. In this case, this is reflected in "outlier"

trees that still achieve good scores by having the one or two low-scoring rules that

explain the outlier objects counterbalanced by many adequately-scoring rules for other

reasonably-placed objects.

4.5 Discussion

In this Chapter, we have demonstrated that we can perform parameter estimation

of our spatial scene grammar model using an approximate EM procedure that itera-

tively recovers parse trees from a dataset of observed scenes, and updates grammar

parameters to increase the likelihood of those parse trees. We have demonstrated that

our method recovers ground truth parameters from random initializations; and we’ve

used this method to show that we can use our spatial scene grammars to construct

models that are more specific and accurate than typically-deployed baseline models.

123

4.5.1 Extension to variational EM

The use of closed-form parameter updates in the M step is a boon to our technique:

as indicated by the plots in Figures 4-2 and 4-6, the parameter estimation procedure

converges to locally optimal parameter settings in a handful of iterations. These

closed-form updates are possible because all of the node and rule types allowed in

the grammar use simple primitive distributions whose parameters can be easily esti-

mated from observed draws. However, we note that the same general EM procedure

can be applied to general rule types that do not admit closed-form parameter updates

by replacing the closed-form M step with a gradient-based update, as in the varia-

tional inference procedure presented in [4]. This variational-EM extension could, for

example, be useful for constructing richer grammars that use highly-parameterized

and expressive distribution models (e.g. autoregressive flows [87]) to capture complex

relative pose distributions between object types.

4.5.2 Comparison to sampling-based parameter estimation

Our parameter estimation approach fundamentally relies on scene parsing in its inner

loop: in order to understand the relationship between the model parameters and ob-

served objects, it uses parsing to reconstruct latent scene trees. Unfortunately, this

parsing process can be expensive and difficult for complex grammars. Sampling-based

distribution alignment methods (as used in e.g. MetaSim [18]) are appealing in that

they completely bypass the parsing process. These techniques draw a population of

samples from their model; compute a two-sample distribution alignment metric be-

tween the sampled population and a target population; and update model parameters

accordingly (using e.g. a gradient update or REINFORCE).

A major barrier to applying these methods to updating scene grammar parameters

is that it is fundamentally difficult to construct a two-sample test statistic that accu-

rately measures the distribution distance between sampled scenes. [18] sidesteps this

issue by performing comparison in an embedding space of images; but an equivalent

comparison for comparing populations of sets of objects is not obvious. One possible

124

solution could be to use our object-level MMD comparison statistic as the alignment

metric; however, pilot experiments indicate that this strategy may be too unstable

and data-hungry for our small datasets. (A possible issue is that the object-level

MMD metric is insufficiently sensitive, and does not capture the difference in distri-

bution of object count in particular.) We have experimented with using a recurrent

neural network to encode object sets into a fixed-size vector using a Seq2Seq archi-

tecture [88]; it seems plausible that a meaningful and sensitive two-sample statistic

could be constructed in the latent space of such an autoencoder.

125

126

Chapter 5

Discussion and Future Work

In the previous chapters, we’ve detailed a specialized probabilistic procedural model

– spatial scene grammars – that captures distributions over scenes of rigid objects of

varying number and class. While we have contributed algorithms for doing various

forms of inference in this model class, we’ve merely scratched the surface of interesting

and exciting questions and applications related to this scene modeling problem. In

this chapter, we discuss a handful of future research directions we’ve considered during

the preparation of this thesis.

5.1 Closing the Vision Gap

A clear practical limitation of our scene grammar tool is that it describes a distribution

over sets of fully-observed objects, while robots typically directly observe the world

as an image. From a procedural modeling point of view, one often closes this gap by

adding another stage to the model: after sampling a set of objects from the grammar,

we pass that set of objects through a standard computer-graphics renderer to produce

an image.

Including a renderer directly in the procedural model introduces an often com-

plex and non-differentiable model stage that complicates inference – but despite this

difficulty, this tactic is broadly popular. The vision-as-inverse-graphics approach is

built on the idea of using a renderer to understand an image by finding an input

127

to the renderer (i.e. a scene graph with objects, lights, camera information, etc.)

that reproduces it. These techniques typically use amortized proposal engines to pro-

duce suggestions of likely objects and other scene graph components, which are scored

(and can be refined) by rendering the resulting scene graph to produce an image. This

broad theme is reflected in a wide variety of approaches. The render-and-compare

loss can be used to train reliable one-shot object pose estimators [89]; custom differ-

entiable renderers can be used directly for iterative refinement of scene graph compo-

nents [90, 91]; and one can even simultaneously learn a neural renderer [92]. Closely

related to our work, MetaSim [18, 20] even accomplishes model parameter estima-

tion on a grammar-like model from an image dataset by rendering draws from their

object-production model and minimizing a two-sample distribution distance metric;

they resort to numerical differentiation of the rendering process to make parameter

updates.

A major difficulty with closing this gap for our scene grammar model is that

the rendering process introduces multiple kinds of noise and uncertainty that our

model must be augmented to capture. In any given image, objects may be occluded

(i.e. present, for the purpose of the scene tree, but not observed), and their poses

may be mis-estimated; this discrete and continuous uncertainty in the observation of

each object’s geometry is functionally an additional random choice that needs to be

baked into the grammar model. Additionally, variations in object shape, texture, and

lighting all impact the resulting image; a complete model for images might also need

to capture these traits. In the rest of this section, we discuss possible ways of scoping

solutions to some of these problems.

5.1.1 Consuming pose proposals

Perhaps the most direct and obvious approach to apply our grammar model parsing

and parameter estimation strategies to images would be to first recover proposed

object sets from each observed image using one of a variety of perception systems.

A method to propose objects from images could either be used once, up-front, to

transform a dataset of images into a dataset of object sets – which would allow direct

128

Figure 5-1: Left: Synthetic RGB[D] images with full segmentation and pose labels
from a synthetic dataset of cardboard boxes in cluttered piles. Right: Using that
dataset, we train a custom 3D-RCNN implementation to detect and segment these
objects and regress their poses and shapes; the proposed box poses and shapes are
illustrated in the bottom-right. (The color for each box instance in each subfigure are
randomly chosen and do not correspond between images.) While detection and seg-
mentation performance is excellent, rotation and shape estimation prove unreliable.

application of the tools in this thesis – or could be used as a proposal generator

in a more involved iterative inference scheme to simultaneously search over object

proposals and scene trees that are reasonable under the grammar and explain the

observed scenes under a render-and-compare loss.

To begin probing what sorts of perception systems could suit this task, we ex-

perimented with applying 3D-RCNN pose and shape regression heads [89] (which we

replicated by writing the appropriate regression heads on top of a Mask-RCNN back-

bone [3]) to detect the poses and shapes of cardboard shipping boxes from images

of cluttered piles. We trained this detection network using fully-supervised images

generated using our Blender-rendering pipeline (Section 2.5.3); we relied on direct

supervision of the pose and shape regression from labels to train the network rather

than using a render-and-compare loss. Unfortunately, while we were able to recover

very accurate detection and segmentation masks, rotations and shape estimates were

unstable and proved hard to train. (See Figure 5-1 for an example.) While there

129

Figure 5-2: An illustration of a pipeline for merging independently segmented point
clouds from multiple views into a combined, segmented point cloud. Each segment is
indicated by points of a different color. Point clouds from multiple RGB[D] images
are segmented using Mask-RCNN (left) and overlaid in world frame (middle). A
graph is constructed over all segments across all independent views, with edge weights
increasing with segment overlap (as defined by the total number of nearby points).
Graph clusters correspond roughly to objects (right), providing multi-view, segmented
point clouds that are typically detailed enough for deformable ICP to succeed.

are a number of things that could have gone wrong (including incorrect image nor-

malization, insufficient data, bad hyperparameters, etc.), we suspect that the use of

rotationally symmetric boxes as a target made regressing rotation (and thus shape)

particularly difficult. We did not thoroughly explore alternative costs that were ro-

bust to rotation invariances; it’s possible that the intermediate result we achieved

here would be good enough to initialize the render-and-compare-based fine-tuning

used in [89], which would itself be rotation-invariant.

As an alternative approach, we also experimented with using a variant of the

iterative-closest-point object-in-point-cloud pose estimation algorithm [93] adapted

to handle anisotropic scaling of objects in their body frame [94]. For each scene, we

converted depth images from multiple perspectives1 into a combined point cloud and

performed rough segmentation based on the object detections from our trained Mask-

RCNN backbone using a graph-clustering approach (see Figure 5-2). With these

1Using multiple perspectives is critical here: a single view will only observe one of the two sides of
each box in each of its axis, making its size unobservable without considering scene context (which
ICP does not use).

130

Figure 5-3: Given a single segmented point
cloud from Fig 5-2 corresponding to a sin-
gle box, we can randomly initialize many
runs of deformable ICP to estimate possi-
ble poses and sizes of the box. The dis-
tribution over the resulting estimated side
lengths for a box with actual side lengths
[0.2, 0.2, 0.5] (marked with dashed red
lines) is illustrated here. A perfect result
would be sharp peaks at the location of the
red lines. Due to occlusion, partial obser-
vation, and noise, our approach frequently
underestimates sizes in each axis.

multiple views, we found that deformable ICP succeeded at recovering reasonable

object poses and shapes – but unfortunately, it did not recover the shapes with

sufficient accuracy or consistency to extract sensitive shape distributions (see Figure

5-3). We found that the the core difficulties are observability and sensitivity : since

ICP ignores object context, it needs positive point returns on all sides of an object to

be sure of its shape. Because all objects are on a tabletop, this will never occur. In

combination with noisy estimation of the other shape dimensions of each object (due

to ICP getting trapped in local minima induced by poor segmentations in these very

cluttered scenes), the distribution of detected shapes was noisy. While this technique

would likely be sufficient for detecting objects and their coarse poses, it did not show

enough precision to also accurately recover distributions over the shapes of those

objects.

These two pilot experiments (and their mixed results!) are reminders of the fun-

damental difficulty of perception – it is not surprising that solving these problems is

the focus of an entire field! With time and effort, each of these approaches – deep per-

ception networks and classical geometric perception strategies – could likely be made

to work for this problem. In particular, that both of these strategies might be noisy

and inaccurate in difficult scenes may indicate that they’re a good fit to be combined

with an analysis-by-synthesis refinement stage, as in many vision-as-inverse-graphics

approaches. In practice, this would mean that we might use these techniques to gen-

131

erate a large population of object proposals of varying quality; each proposal can

be parsed and tweaked to be more likely under the grammar (to reject categorically

unlikely object configurations), and simultaneously rendered and tweaked to be more

likely under the renderer (to better align with the final observed images).

5.1.2 Alternate perceptual spaces

Real-world RGB images are fantastically difficult to reproduce owing to the com-

plex interplay of light and color constituting the visual world. Rather than trying

to directly reproduce realistic RGB images with a rendering stage in a procedural

model, it’s often beneficial to instead seek to capture a realistic distribution in some

other simpler-to-describe (but still sufficiently rich) perceptual space. [26] asserts, for

example, that using segmentation masks, binary contour images, or deep neural fea-

tures as the model’s output space is likely to be much more tractable for inference.

These "alternative" renderings are likely to be much easier to mathematically de-

scribe, differentiate, and invert; have smaller sim-to-real gap; and can be designed

to be trivially and deterministically recoverable from raw RGB images. Two such

alternative perceptual spaces that have been illustrated to be particularly effective

for accomplishing robotics tasks are dense descriptors [2] and keypoints [95].

Fully-supervised dense descriptors

The dense descriptor approach entails "recoloring" an input ⟨𝑊 ×𝐻×3⟩ RGB image

to a ⟨𝑊 ×𝐻 ×𝐷⟩ 𝐷-dimensional descriptor space that has a set of desired semantic

and invariance properties. (See Figure 5-4.) As originally shown in [96], a neural

network can be trained to produce such dense descriptor images from RGB images in

a self-supervised manner by training it to produce descriptor images that consistently

"color" different parts of objects even when they are viewed from different perspec-

tives. Given a dataset with multiple views of a set of objects within a restricted

class (e.g. various mugs), training on this relatively simple loss allows the recovery

of a descriptor space in which objects are colored with an arbitrary class-consistent

132

Figure 5-4: Left: We train a convolutional neural network (CNN) to predict dense
descriptor images from RGB images by rendering paired RGB example inputs with
hand-designed target dense descriptor images. Top right: After supervised training
the CNN is able to consistently regress these dense descriptor images from unlabeled
inputs. Bottom right: In contrast, applying the self-supervised descriptor learning
technique of [2] leads to noisy and indistinct features for these highly-symmetric
objects.

pattern that is lighting, geometry, texture, and view invariant [2, 96].

It’s tempting, then, to use these learned descriptor spaces as our model’s output

space: in the case of a scene grammar, we might sample a set of objects; and then for

each object, look up its desired or learned descriptor map and project that texture

onto a camera image to create a rendering. Because this process sidesteps all lighting

and texture details, this rendering operation becomes a simple project-with-occlusion

operation; and it’s likely that we can nearly perfectly reconstruct observed dense

descriptor images with just this information. Beyond that, we can potentially use

our model to generate training data for the dense descriptor prediction network. We

illustrate results of a pilot experiment in this direction in Figure 5-4: we employ

our rendering tools to product realistic RGB inputs alongside target dense descriptor

images and train a convolutional neural network (CNN) following the architecture

of [2] to regress those descriptor images.

In this case, we chose to rendering a target descriptor image directly, rather than

rely on a self-supervised process to determine the optimal features as in [2, 96]. We

133

Figure 5-5: Results from a pilot experiment in which we add a custom keypoint
heatmap-prediction head to a MaskRCNN [3] backbone. We find that MaskRCNN
provides reasonable object detections and segmentations (left) and corner keypoint
predictions (right) when trained on fully-supervised data. Each row is a different
scene; target keypoint heatmaps are illustrated in the middle column for comparison.

attempted to find self-supervised features for these scenes with no success: we suspect

that the multiple rotation and reflection symmetries of these objects made it difficult

for the self-supervised process to find good descriptors, as the self-supervised process

uses a contrastive loss enforcing that any given point on the object has the same

feature from different perspectives, but is a different feature from any other point on

the object. Because these objects are symmetric, the network would have to learn to

break these symmetries to satisfy that loss. In the case of boxes (and, we suspect,

many other objects), hand-designing task-relevant and symmetry-respecting dense

descriptor spaces is easy, so we instead render pairs of RGB and target descriptor

images and train the CNN in a fully-supervised fashion.2

2In our case, we use a simple fragment shader to render descriptor images where the color of
a pixel corresponds to the distance the nearest corner of the box. See [97] for a recent and more
principled approach to generating supervised descriptor images.

134

Grammars over 3D keypoints

While the rendering model for dense descriptors is vastly simpler than for full RGB

images, dense descriptor images are still subject to occlusion and the nuanced shape

variation of each object. An even more compact perceptual representation is to

extract a small set of task-relevant 3D keypoints from each object [95]. Each object is

assigned a known constellation of keypoints that capture the task-relevant parts of its

geometry – a mug, for example, might have keypoints at its bottom center, top center,

and the center of its handle. All mugs have these keypoints, but for any given mug,

the precise body-frame pose of those keypoints might vary in ways reflecting shape

variation between mugs. [95] argues that keypoints are easy to design to be minimal

and sufficient for any given task; that they generalize naturally across classes of

objects with significant shape variation; and that they simple to work because they

are geometric in nature.

As in Section 5.1.2, we can use our data generation to provide training data for

a keypoint detection system. Results from a pilot experiment demonstrating this

pipeline are illustrated in Figure 5-5. In this experiment, we intend to detect key-

points for boxes with significant symmetry, which is beyond the scope of the keypoint

detection system used in [95].3 Instead, we add a convolutional keypoint-heatmap pre-

diction head on top of a Mask-RCNN backbone that produces a multimodal heatmap

image of possible keypoint locations in pixel coordinates. For further investigation

and details building on this approach, see [98]. This work not only improves on this

keypoint detection pipeline, but also uses the output to predict object poses, and puts

the entire system under stringent test by performing end-to-end adversarial example

search for input object configurations that produce bad final pose estimates.

Spatial scene grammars are particularly well-suited to describing the spatial ar-

3The "standard" keypoint formulation (which is largely motivated by human pose estimation)
is to give each object a list of semantically unique keypoints – the mug bottom, the mug top, the
handle center – and predict a separate heatmap over pixel locations and possible depths for each of
those unique keypoints. This is very convenient, as it allows the keypoint location to be computed
by taking an integral over these heatmaps, which in turn produces a dense and empirically stable
training loss. This approach doesn’t extend to objects with keypoints that are interchangeable –
like the corners of a rotationally symmetric box.

135

rangement of 3D keypoints. One might imagine adding production rules to each

object representing the production of each expected keypoint, where that rule cap-

tures the typical pose distribution of that keypoint in body frame. (For a mug, this

variation can capture things like typical height variation or handle placement across

mugs.) These keypoints are then directly observed in an image through a simple

camera projection, and supervised training data for estimating keypoints from raw

RGB images is readily available from our data generation pipeline. Among practical

future directions, we find this one particularly natural and exciting.

5.2 Downstream Robotics Applications

Our ultimate motivation for developing these procedural modeling tools is to make

our robots better. The notion of a distribution over worlds seems to appear in every

corner of robotics; here, we remark on a few choice downstream applications for tools

like ours.

5.2.1 Rich priors for perception

A common way to frame the problem of robot perception is that, given a model over

worlds 𝑝(𝑥) and an observation 𝑜, we wish to find a parsimonious explanation for that

observation

𝑥̂ = argmax
𝑥

𝑝(𝑥|𝑜).

Very often, this objective is rearranged using Bayes’ rule into

𝑥̂ = argmax
𝑥

𝑝(𝑜|𝑥)𝑝(𝑥),

which intuitively says that the best explanation for the observation is one that bal-

ances matching the observation with the model 𝑝(𝑜|𝑥) and finding a reasonable ex-

planation in the first place by using a prior over worlds 𝑝(𝑥).

Many common perception methods gloss over this prior over worlds. The classic

ICP objective [93], for example, purely seeks out object locations to match a point

136

cloud without considering of whether those object locations are reasonable. As a

result, it’s easy for ICP to produce solutions that are physically or semantically im-

plausible – objects standing on-end, floating in the air, or embedded inside of other

objects. In the same vein, these priors can, if sufficiently specific, vastly reduce the

search space that must be considered: if a robot is looking for a plate in a point cloud

scan of an entire kitchen, it should probably concentrate its search on the countertops

and not bother evaluating object proposals on the floor (or high in the air).

Scene grammars offer a means of expressing this prior over worlds in a way that

we’ve shown can capture fine details in the distributions of presence and poses of

objects. As discussed in Section 5.1, there are plenty of scene grammar, scene graph,

and other procedural modeling analysis-by-synthesis approaches in which the scene-

explanation process can be viewed as solving this perception problem. [19], for ex-

ample, performs object detection and pose estimation directly from images by doing

inference over a (physical support) grammar-like model and appearance model. In-

deed, some scene grammar work is explicitly motivated as trying to better capture

and take advantage of this rich prior structure: [23], for example, demonstrates im-

proved pedestrian detection performance by using a handful of grammars as priors

over the spatial arrangement and attributes of each detected segment of a person.

Using these tools – even just as sanity-checks run post-hoc after applying standard

perception techniques – is not yet standard practice in robotics, but we believe they

could have an important part to play in improving both the efficiency and reliability

of perception systems.

5.2.2 Design and verification considering all possible worlds

Using tools from robust control, one can make powerful statements about the evo-

lution and performance of complex robotic systems – including guaranteeing robust

flight trajectories of UAVs [99] and finding control sequences through contact for ma-

nipulation [100]. However, the majority of these powerful techniques for planning,

control synthesis, and verification have been developed for systems with fixed state

dimension; it’s not immediately obvious how to extend them to domains where the

137

number of states may itself vary.

These grammar models may be a good fit for reasoning about the various "modes"

– in terms of state dimension – that a system of interest is in. For example, one might

wish to investigate the robustness of a manipulation controller under all expected ar-

rangements of objects on a tabletop. Our scene grammar structure (and, in particular,

our exhaustive mixed-integer parsing strategy) offers a scaffolding for performing a

search over all possible sets of objects and their arrangements. This mixed-integer

(or, for simple grammars, purely enumerative) search seems ripe for combination

with, in particular, convex and mixed-integer-convex optimization strategies from ro-

bust control and verification. For example, one could conceivably frame a problem of

finding an optimal control strategy that can be shared across all possible worlds by

computing Lyapunov certificates (a la [99]) for a policy shared across all scene trees,

where our supertree structure provides a scaffolding for performing that exhaustive

enumeration.

Additionally, these models might be used as both a structure and a regular-

izer for failure case mining and adversarial example search. It has been thoroughly

demonstrated that many effective-looking systems can be alarmingly easily broken by

reasonable-seeming inputs found through an adversarial optimization process4, but

depending on the search method and objective, these failure cases might be arbi-

trarily unusual environment configurations that are not actually informative to the

system’s designer. Extreme pixel-perturbation-based attacks, for example, may pro-

duce adversarial input images that could not be generated by any physically plausible

scene. Performing counterexample search directly in the space of simulator state (e.g.

object poses, as in [98]) can help prevent these departures from reality, and pro-

cedural models like scene grammars provide a parameterization of that open-world

simulator state conducive to optimization. Probabilistic procedure models can also

provide useful regularization by distinguishing between realistic and unrealistic scene

arrangements – which could be used to formulate a search for the most likely (and

4See [101] for a review of adversarial attacks as relevant to ML; but these ideas extend to almost
any system one might want to deploy (even motion planners! [102]).

138

hence most important) failure cases.

5.2.3 Performance estimation with tuned world models

In a similar vein, scene grammars (and the broader class of data-tunable procedural

or generative models in which they reside) have a critical role to play in simulation-

based Monte Carlo analysis of robot systems. The increasing availability of large-scale

compute makes it particularly tempting to test the performance of systems through

[massively] parallel simulation of randomly sampled realistic scenarios. This strategy

can be adapted to perform fine-grained performance assessment, even in systems with

tiny failure rates (by e.g. adaptive bridge sampling [39]). Critically, these analyses are

meaningless if one can not measure how likely any given scenario is in the real world

– a measurement these models are poised to provide. In many cases, these models

could potentially be slotted directly into Monte Carlo test engines as environment

generators or world models.

A critical related question is how important an accurate world model is in any

particular case. While it’s convincing that getting accurate dynamic models is criti-

cal for sim-to-real transfer of dynamic behaviors [34], when is it important to capture

realistic distributions over the precise occurrence rates and placements of objects in

the world – and when can one get away with naive, simpler models? MetaSim [18]

includes some preliminary experimental results indicating that deep neural vision

systems for self-driving cars are more accurate on real data when trained on more

realistically distributed simulated worlds, indicating that these highly-parameterized,

data-hungry vision models may indeed be able to take advantage of more specific

and realistic data distributions. Likewise, in situations involving robust control de-

sign, more specific world models make the design problem vastly easier.5 However,

naive background replacement – which functions on the hope that training on a data

distribution that is intentionally wider than reality will lead to good performance in

5Consider designing a car controller to be robust to adversarial behavior of other drivers. If the
behavior of other drivers is unconstrained, they may always choose to ram into the controlled vehicle,
making the control design task impossible. It’s necessary, in this case, to restrict the behavior of
other drivers to follow a more specific and realistic world model.

139

reality – remains a popular and effective domain randomization strategy in computer

vision. Indeed, experiments on DOPE [32] indicate that it performs best when it is

trained on a combination of realistically-distribution and naively-domain-randomized

training data, and that removing either decreases performance. We suspect that

there is a need for principled and careful experiments that probe this question on

robotics-relevant tasks. Can we use accurate world models, like our grammar model,

to improve our ability to predict real-world performance from simulation, or improve

sim-to-real transfer of learned behaviors?

5.3 Grammars vs General Procedural Models

The spatial scene grammars that we have formulated in this thesis are the tip of an

iceberg of possible procedural models over worlds. While we have expanded on a

number of appealing properties of scene grammars, there are plenty of environments

for which scene grammars in particular are not a good fit. However, we hope that

some of the core lessons and beliefs in this thesis can generalize to more flexible

procedural models appropriate for these more complex cases.

Consider the problem of modeling the arrangement of densely packed boxes on a

pallet. While one might imagine a grammar to describe this scene (perhaps focusing

on capturing stacks and support structure as in [19], and then using constraints to

implement non-penetration between boxes), it’s apparent that each box on a pallet has

critical and tight spatial relationships with all of its vertical and horizontal neighbors.

These relationships form a locally-dense graph over all of the boxes in the scene – a

far cry from the tree relational structure grammars are best suited to capture.

A tempting alternative procedural model for this scene would instead be to model

the placement of each box in sequence conditioned on the placement of all previous

boxes. Such a model would describe how the scene would be built up object-by-

object.6 For physical scenes like cluttered arrangements of objects, this approach has

6This "autoregressive" factorization – in which each generation is conditioned on all of the ones
before it – offers an appealing completeness, in the sense that it can represent any distribution over
objects. It is commonly applied to describing furniture arrangement in rooms that add one piece of

140

the additional appealing property that generated scenes can be made to automatically

follow physical feasibility and stability constraints by enforcing that that each object

placement is performed in a physically plausible way (by e.g. using a simulator).

We note that the core concepts of constrained sampling, parsing, and parameter

estimation map to this model like they do to ours. In particular, the parsing problem

now entails guessing in what order objects were placed to generate the scene; and given

a solution to that parsing problem, one might imagine tackling parameter estimation

of this more complex model with a similar EM approach to Chapter 4. This strategy is

functionally similar to systems like Attend-Infer-Repeat [28] that tune autoregressive

models to data using techniques like amortized variational inference.

Any procedural model over these sorts of open-world environments will have to

contend with the mixed-discrete-and-continuous randomness that is fundamental to

class of distributions. We believe that it is beneficial to attack that problem head-on

by carefully designing procedural models that separate out the discrete and continuous

decisions and enable principled scene generation and understanding by performing

principled inference over possible worlds. Whether the underlying procedural model

is grammar or graph structured (or something else entirely), we hope the algorithms

and ideas in this thesis inspire new approaches to make our robots better prepared

for the worlds they face.

furniture after the other until the room is complete [29, 103]; the same idea can be generalized all
the way up to sequential generation of images by drawing patch after patch [28,104].

141

142

Bibliography

[1] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine learning in Python. Journal of Machine Learning Research, 12:2825–2830,
2011.

[2] Peter R Florence, Lucas Manuelli, and Russ Tedrake. Dense object nets: Learn-
ing dense visual object descriptors by and for robotic manipulation. arXiv
preprint arXiv:1806.08756, 2018.

[3] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn.
In Proceedings of the IEEE international conference on computer vision, pages
2961–2969, 2017.

[4] Gregory Izatt and Russ Tedrake. Generative Modeling of Environments with
Scene Grammars and Variational Inference. In 2020 IEEE International Con-
ference on Robotics and Automation (ICRA), pages 6891–6897, Paris, France,
May 2020. IEEE.

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
arXiv:1810.04805 [cs], May 2019. arXiv: 1810.04805.

[6] Tero Karras, Samuli Laine, and Timo Aila. A Style-Based Generator Architec-
ture for Generative Adversarial Networks. arXiv:1812.04948 [cs, stat], March
2019. arXiv: 1812.04948.

[7] Andrew Brock, Theodore Lim, J. M. Ritchie, and Nick Weston. Genera-
tive and Discriminative Voxel Modeling with Convolutional Neural Networks.
arXiv:1608.04236 [cs, stat], August 2016. arXiv: 1608.04236.

[8] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas Guibas.
Learning Representations and Generative Models for 3D Point Clouds.
arXiv:1707.02392 [cs], June 2018. arXiv: 1707.02392.

[9] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron,
Ravi Ramamoorthi, and Ren Ng. NeRF: Representing Scenes as Neural Ra-
diance Fields for View Synthesis. arXiv:2003.08934 [cs], August 2020. arXiv:
2003.08934.

143

[10] Adam R. Kosiorek, Heiko Strathmann, Daniel Zoran, Pol Moreno, Rosalia
Schneider, Soňa Mokrá, and Danilo J. Rezende. NeRF-VAE: A Geometry Aware
3D Scene Generative Model. arXiv:2104.00587 [cs, stat], April 2021. arXiv:
2104.00587.

[11] Wei Gao. Representing Unstructured Environments for Robotic Manipulation:
Toward Generalization, Dexterity and Robustness. PhD thesis, MIT, August
2021.

[12] Przemyslaw Prusinkiewicz, Mark Hammel, Jim Hanan, and Radomir Mech. L-
systems: from the theory to visual models of plants. In Proceedings of the 2nd
CSIRO Symposium on Computational Challenges in Life Sciences, volume 3,
pages 1–32. Citeseer, 1996.

[13] George Stiny. Introduction to shape and shape grammars. Environment and
planning B: planning and design, 7(3):343–351, 1980.

[14] Feng Han and Song-Chun Zhu. Bottom-Up/Top-Down Image Parsing with
Attribute Grammar. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 31(1):59–73, January 2009.

[15] Yibiao Zhao and Song-chun Zhu. Image Parsing with Stochastic Scene Gram-
mar. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems 24,
pages 73–81. Curran Associates, Inc., 2011.

[16] Jeroen Chua. Probabilistic Scene Grammars: A General-Purpose Framework
For Scene Understanding. PhD thesis, Brown University, May 2018.

[17] Tianqiang Liu, Siddhartha Chaudhuri, Vladimir G. Kim, Qixing Huang,
Niloy J. Mitra, and Thomas Funkhouser. Creating consistent scene graphs
using a probabilistic grammar. ACM Transactions on Graphics, 33(6):1–12,
November 2014.

[18] Amlan Kar, Aayush Prakash, Ming-Yu Liu, Eric Cameracci, Justin Yuan, Matt
Rusiniak, David Acuna, Antonio Torralba, and Sanja Fidler. Meta-Sim: Learn-
ing to Generate Synthetic Datasets. In 2019 IEEE/CVF International Con-
ference on Computer Vision (ICCV), pages 4550–4559, Seoul, Korea (South),
October 2019. IEEE.

[19] Ben Zinberg, Marco Cusumano-Towner, and K Mansinghka Vikash. Structured
differentiable models of 3d scenes via generative scene graphs. In Workshop on
Perception as Generative Reasoning, NeurIPS, Submitted September, 2019.

[20] Jeevan Devaranjan, Amlan Kar, and Sanja Fidler. Meta-sim2: Unsupervised
learning of scene structure for synthetic data generation. In European Confer-
ence on Computer Vision, pages 715–733. Springer, 2020.

144

[21] Yi-Ting Yeh, Lingfeng Yang, Matthew Watson, Noah D Goodman, and Pat
Hanrahan. Synthesizing open worlds with constraints using locally annealed
reversible jump mcmc. ACM Transactions on Graphics (TOG), 31(4):1–11,
2012.

[22] Matthew Fisher, Daniel Ritchie, Manolis Savva, Thomas Funkhouser, and Pat
Hanrahan. Example-based synthesis of 3D object arrangements. ACM Trans-
actions on Graphics, 31(6):1–11, November 2012.

[23] Seyoung Park, Bruce Xiaohan Nie, and Song-Chun Zhu. Attribute And-Or
Grammar for Joint Parsing of Human Pose, Parts and Attributes. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 40(7):1555–1569, July
2018.

[24] Antoni Rosinol, Andrew Violette, Marcus Abate, Nathan Hughes, Yun Chang,
Jingnan Shi, Arjun Gupta, and Luca Carlone. Kimera: from slam to spatial
perception with 3d dynamic scene graphs. arXiv preprint arXiv:2101.06894,
2021.

[25] Daniel Ritchie. Probabilistic programming for procedural modeling and design.
PhD thesis, Stanford University, 2016.

[26] Tejas D Kulkarni, Pushmeet Kohli, Joshua B Tenenbaum, and Vikash Mans-
inghka. Picture: A probabilistic programming language for scene perception. In
2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 4390–4399, Boston, MA, USA, June 2015. IEEE.

[27] Vikash K Mansinghka, Tejas D Kulkarni, Yura N Perov, and Josh Tenen-
baum. Approximate bayesian image interpretation using generative probabilis-
tic graphics programs. Advances in Neural Information Processing Systems,
26:1520–1528, 2013.

[28] SM Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa, David Szepesvari,
Geoffrey E Hinton, et al. Attend, infer, repeat: Fast scene understanding
with generative models. Advances in Neural Information Processing Systems,
29:3225–3233, 2016.

[29] Daniel Ritchie, Kai Wang, and Yu-An Lin. Fast and Flexible Indoor Scene Syn-
thesis via Deep Convolutional Generative Models. In 2019 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pages 6175–6183,
Long Beach, CA, USA, June 2019. IEEE.

[30] Kai Wang, Manolis Savva, Angel X. Chang, and Daniel Ritchie. Deep con-
volutional priors for indoor scene synthesis. ACM Transactions on Graphics,
37(4):1–14, August 2018.

145

[31] Matthew Johnson-Roberson, Charles Barto, Rounak Mehta, Sharath Nittur
Sridhar, Karl Rosaen, and Ram Vasudevan. Driving in the Matrix: Can Vir-
tual Worlds Replace Human-Generated Annotations for Real World Tasks?
arXiv:1610.01983 [cs], February 2017. arXiv: 1610.01983.

[32] Jonathan Tremblay, Thang To, Balakumar Sundaralingam, Yu Xiang, Dieter
Fox, and Stan Birchfield. Deep Object Pose Estimation for Semantic Robotic
Grasping of Household Objects. arXiv:1809.10790 [cs], September 2018. arXiv:
1809.10790.

[33] Bhairav Mehta, Ankur Handa, Dieter Fox, and Fabio Ramos. A User’s Guide
to Calibrating Robotics Simulators. arXiv:2011.08985 [cs], November 2020.
arXiv: 2011.08985.

[34] Fabio Ramos, Rafael Carvalhaes Possas, and Dieter Fox. BayesSim: adap-
tive domain randomization via probabilistic inference for robotics simulators.
arXiv:1906.01728 [cs], June 2019. arXiv: 1906.01728.

[35] Daniel J. Fremont, Tommaso Dreossi, Shromona Ghosh, Xiangyu Yue, Al-
berto L. Sangiovanni-Vincentelli, and Sanjit A. Seshia. Scenic: A Language
for Scenario Specification and Scene Generation. Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language Design and Implementation,
pages 63–78, June 2019. arXiv: 1809.09310.

[36] Chengshu Li, Fei Xia, Roberto Martín-Martín, Michael Lingelbach, Sanjana
Srivastava, Bokui Shen, Kent Vainio, Cem Gokmen, Gokul Dharan, Tanish
Jain, Andrey Kurenkov, C. Karen Liu, Hyowon Gweon, Jiajun Wu, Li Fei-Fei,
and Silvio Savarese. iGibson 2.0: Object-Centric Simulation for Robot Learning
of Everyday Household Tasks. arXiv:2108.03272 [cs], November 2021. arXiv:
2108.03272.

[37] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias Niess-
ner, Manolis Savva, Shuran Song, Andy Zeng, and Yinda Zhang. Matterport3d:
Learning from rgb-d data in indoor environments. International Conference on
3D Vision (3DV), 2017.

[38] Yizhou Zhao, Kaixiang Lin, Zhiwei Jia, Qiaozi Gao, Govind Thattai, Jesse
Thomason, and Gaurav S Sukhatme. Luminous: Indoor scene generation for
embodied ai challenges. arXiv preprint arXiv:2111.05527, 2021.

[39] Aman Sinha, Matthew O’Kelly, Russ Tedrake, and John Duchi. Neu-
ral Bridge Sampling for Evaluating Safety-Critical Autonomous Systems.
arXiv:2008.10581 [cs, stat], August 2021. arXiv: 2008.10581.

[40] Charles Richter and Nicholas Roy. Safe Visual Navigation via Deep Learn-
ing and Novelty Detection. In Robotics: Science and Systems XIII. Robotics:
Science and Systems Foundation, July 2017.

146

[41] Chris Paxton, Chris Xie, Tucker Hermans, and Dieter Fox. Predicting Stable
Configurations for Semantic Placement of Novel Objects. arXiv:2108.12062
[cs], August 2021. arXiv: 2108.12062.

[42] George Stiny and James Gips. Shape grammars and the generative specification
of painting and sculpture. In IFIP congress (2), volume 2(3), pages 125–135,
1971.

[43] Carlos A. Vanegas, Daniel G. Aliaga, and Bedrich Benes. Building reconstruc-
tion using manhattan-world grammars. In 2010 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition, pages 358–365, San Fran-
cisco, CA, USA, June 2010. IEEE.

[44] Peter Wonka, Michael Wimmer, François Sillion, and William Ribarsky. Instant
architecture. ACM Transactions on Graphics (TOG), 22(3):669–677, 2003.

[45] Jerry O Talton, Yu Lou, Steve Lesser, Jared Duke, Radomír Měch, and Vladlen
Koltun. Metropolis procedural modeling. ACM Transactions on Graphics
(TOG), 30(2):1–14, 2011.

[46] Pedro F. Felzenszwalb. A Stochastic Grammar for Natural Shapes. In Sven J.
Dickinson and Zygmunt Pizlo, editors, Shape Perception in Human and Com-
puter Vision, pages 299–310. Springer London, London, 2013.

[47] Joseph Schlecht, Kobus Barnard, Ekaterina Spriggs, and Barry Pryor. Infer-
ring Grammar-based Structure Models from 3D Microscopy Data. In 2007
IEEE Conference on Computer Vision and Pattern Recognition, pages 1–8,
Minneapolis, MN, USA, June 2007. IEEE.

[48] Ondrej Št’ava, Bedrich Beneš, Radomir Měch, Daniel G Aliaga, and Peter
Krištof. Inverse procedural modeling by automatic generation of l-systems.
In Computer Graphics Forum, volume 29 (2), pages 665–674. Wiley Online
Library, 2010.

[49] Jerry Talton, Lingfeng Yang, Ranjitha Kumar, Maxine Lim, Noah Goodman,
and Radomír Měch. Learning design patterns with bayesian grammar induction.
In Proceedings of the 25th annual ACM symposium on User interface software
and technology - UIST ’12, page 63, Cambridge, Massachusetts, USA, 2012.
ACM Press.

[50] Song-Chun Zhu and David Mumford. A Stochastic Grammar of Images. Foun-
dations and Trends R○ in Computer Graphics and Vision, 2(4):259–362, 2006.

[51] Yibiao Zhao and Song-Chun Zhu. Scene Parsing by Integrating Function, Ge-
ometry and Appearance Models. In 2013 IEEE Conference on Computer Vi-
sion and Pattern Recognition, pages 3119–3126, Portland, OR, USA, June 2013.
IEEE.

147

[52] Jared Marshall Glover. The Quaternion Bingham Distribution, 3D Object De-
tection, and Dynamic Manipulation. PhD thesis, Massachusetts Institute of
Technology, 2014.

[53] Christopher Bingham. An Antipodally Symmetric Distribution on the Sphere.
The Annals of Statistics, 2(6):1201–1225, November 1974. Publisher: Institute
of Mathematical Statistics.

[54] Jared Glover and Leslie Pack Kaelbling. Tracking 3-d rotations with the quater-
nion bingham filter. Technical report, MIT, 2013.

[55] Daniel Ritchie, Sharon Lin, Noah D. Goodman, and Pat Hanrahan. Generating
Design Suggestions under Tight Constraints with Gradient-based Probabilistic
Programming. Computer Graphics Forum, 34(2):515–526, May 2015.

[56] Simon Duane, Anthony D Kennedy, Brian J Pendleton, and Duncan Roweth.
Hybrid monte carlo. Physics letters B, 195(2):216–222, 1987.

[57] Matthew D Hoffman, Andrew Gelman, et al. The no-u-turn sampler: Adap-
tively setting path lengths in hamiltonian monte carlo. J. Mach. Learn. Res.,
15(1):1593–1623, 2014.

[58] Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj
Pradhan, Theofanis Karaletsos, Rohit Singh, Paul A. Szerlip, Paul Horsfall,
and Noah D. Goodman. Pyro: Deep universal probabilistic programming. J.
Mach. Learn. Res., 20:28:1–28:6, 2019.

[59] Russ Tedrake and the Drake Development Team. Drake: Model-based design
and verification for robotics, 2019. Available at drake.mit.edu.

[60] Philip E. Gill, Walter Murray, Michael A. Saunders, and Elizabeth Wong. User’s
guide for SNOPT 7.7: Software for large-scale nonlinear programming. Center
for Computational Mathematics Report CCoM 18-1, Department of Mathemat-
ics, University of California, San Diego, La Jolla, CA, 2018.

[61] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie
Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information Processing Systems
32, pages 8024–8035. Curran Associates, Inc., 2019.

[62] Robin Deits. Meshcat, 2022. Available at https://github.com/rdeits/
meshcat-python.

[63] Open Robotics and Contributors. Ignition. Models from contributors at app.
ignitionrobotics.org/fuel/models.

148

drake.mit.edu
https://github.com/rdeits/meshcat-python
https://github.com/rdeits/meshcat-python
app.ignitionrobotics.org/fuel/models
app.ignitionrobotics.org/fuel/models

[64] Turbosquid 3d models. Models with royalty-free licenses collected from www.
turbosquid.com.

[65] Dawson-Haggerty et al. Trimesh. Available at www.trimsh.org.

[66] Khaled Mammou. V-hacd. https://github.com/kmammou/v-hacd, 2020.

[67] Open Source Robotics Foundation. Simulation description format. Details at
sdformat.org.

[68] Michael Gschwandtner, Roland Kwitt, Andreas Uhl, and Wolfgang Pree.
Blensor: Blender sensor simulation toolbox. In International Symposium on
Visual Computing, pages 199–208. Springer, 2011.

[69] Blender Online Community. Blender - a 3D modelling and rendering pack-
age. Blender Foundation, Blender Institute, Amsterdam, 2022. http://www.
blender.org.

[70] Russ Tedrake. TRI Taking on the Hard Problems in Manipula-
tion Research Toward Making Human-Assist Robots Reliable and Ro-
bust. Press release, published 2019-06-27 at www.tri.global/news/
tri-taking-on-the-hard-problems-in-manipulation-re-2019-6-27/.

[71] Razer hydra. Information at http://support.razer.com/console/
razer-hydra/.

[72] Daniel Ritchie, Ben Mildenhall, Noah D. Goodman, and Pat Hanrahan. Con-
trolling procedural modeling programs with stochastically-ordered sequential
Monte Carlo. ACM Transactions on Graphics, 34(4):1–11, July 2015.

[73] Jake Porway, Qiongchen Wang, and Song Chun Zhu. A hierarchical and contex-
tual model for aerial image parsing. International journal of computer vision,
88(2):254–283, 2010.

[74] George Matheos, Alexander K Lew, Matin Ghavamizadeh, Stuart Russell,
Marco Cusumano-Towner, and Vikash Mansinghka. Transforming worlds: Au-
tomated involutive mcmc for open-universe probabilistic models. In Third Sym-
posium on Advances in Approximate Bayesian Inference, 2020.

[75] Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama, and Josh Tenenbaum.
Learning to Infer Graphics Programs from Hand-Drawn Images. In S. Ben-
gio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,
editors, Advances in Neural Information Processing Systems 31, pages 6059–
6068. Curran Associates, Inc., 2018.

[76] Tao Du, Jeevana Priya Inala, Yewen Pu, Andrew Spielberg, Adriana Schulz,
Daniela Rus, Armando Solar-Lezama, and Wojciech Matusik. InverseCSG: au-
tomatic conversion of 3D models to CSG trees. ACM Transactions on Graphics,
37(6):1–16, January 2019.

149

www.turbosquid.com
www.turbosquid.com
www.trimsh.org
https://github.com/kmammou/v-hacd
sdformat.org
http://www.blender.org
http://www.blender.org
www.tri.global/news/tri-taking-on-the-hard-problems-in-manipulation-re-2019-6-27/
www.tri.global/news/tri-taking-on-the-hard-problems-in-manipulation-re-2019-6-27/
http://support.razer.com/console/razer-hydra/
http://support.razer.com/console/razer-hydra/

[77] Hongkai Dai, Gregory Izatt, and Russ Tedrake. Global inverse kinematics via
mixed-integer convex optimization. The International Journal of Robotics Re-
search, 38(12-13):1420–1441, 2019.

[78] Garth P McCormick. Computability of global solutions to factorable nonconvex
programs: Part i—convex underestimating problems. Mathematical program-
ming, 10(1):147–175, 1976.

[79] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2021.

[80] James Saunderson, Pablo A Parrilo, and Alan S Willsky. Semidefinite descrip-
tions of the convex hull of rotation matrices. SIAM Journal on Optimization,
25(3):1314–1343, 2015.

[81] Heng Yang, Jingnan Shi, and Luca Carlone. Teaser: Fast and certifiable point
cloud registration. IEEE Transactions on Robotics, 37(2):314–333, 2020.

[82] Chenfanfu Jiang, Siyuan Qi, Yixin Zhu, Siyuan Huang, Jenny Lin, Lap-Fai Yu,
Demetri Terzopoulos, and Song-Chun Zhu. Configurable 3D Scene Synthesis
and 2D Image Rendering with Per-pixel Ground Truth Using Stochastic Gram-
mars. International Journal of Computer Vision, 126(9):920–941, September
2018.

[83] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum Likelihood from In-
complete Data Via the EM Algorithm. Journal of the Royal Statistical Society:
Series B (Methodological), 39(1):1–22, September 1977.

[84] Igor Gilitschenski, Roshni Sahoo, Wilko Schwarting, Alexander Amini, Sertac
Karaman, and Daniela Rus. Deep orientation uncertainty learning based on a
bingham loss. In International Conference on Learning Representations, 2020.

[85] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf,
and Alexander Smola. A kernel two-sample test. The Journal of Machine
Learning Research, 13(1):723–773, 2012.

[86] Nachman Aronszajn. Theory of reproducing kernels. Transactions of the Amer-
ican mathematical society, 68(3):337–404, 1950.

[87] George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive
flow for density estimation. Advances in neural information processing systems,
30, 2017.

[88] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning
with neural networks. Advances in neural information processing systems, 27,
2014.

[89] Abhijit Kundu, Yin Li, and James M Rehg. 3d-rcnn: Instance-level 3d object
reconstruction via render-and-compare. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 3559–3568, 2018.

150

[90] Lukasz Romaszko, Christopher KI Williams, Pol Moreno, and Pushmeet Kohli.
Vision-as-inverse-graphics: Obtaining a rich 3d explanation of a scene from a
single image. In Proceedings of the IEEE International Conference on Computer
Vision Workshops, pages 851–859, 2017.

[91] Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen. Differentiable
monte carlo ray tracing through edge sampling. ACM Transactions on Graphics
(TOG), 37(6):1–11, 2018.

[92] Tejas D Kulkarni, William F Whitney, Pushmeet Kohli, and Josh Tenenbaum.
Deep convolutional inverse graphics network. Advances in neural information
processing systems, 28, 2015.

[93] Paul J Besl and Neil D McKay. Method for registration of 3-d shapes. In Sensor
fusion IV: control paradigms and data structures, volume 1611, pages 586–606.
Spie, 1992.

[94] Richard Everson. Orthogonal, but not orthonormal, procrustes problems. Ad-
vances in computational Mathematics, 3(4), 1998.

[95] Lucas Manuelli, Wei Gao, Peter Florence, and Russ Tedrake. kpam: Key-
point affordances for category-level robotic manipulation. arXiv preprint
arXiv:1903.06684, 2019.

[96] Tanner Schmidt, Richard Newcombe, and Dieter Fox. Self-supervised visual
descriptor learning for dense correspondence. IEEE Robotics and Automation
Letters, 2(2):420–427, 2016.

[97] Andras Kupcsik, Markus Spies, Alexander Klein, Marco Todescato, Nicolai
Waniek, Philipp Schillinger, and Mathias Bürger. Supervised training of dense
object nets using optimal descriptors for industrial robotic applications. arXiv
preprint arXiv:2102.08096, 2021.

[98] Maggie Wang. Robust pose estimation from 3d keypoints, May 2021. Available
at https://maggiewang.org/assets/pdfs/robust_pose_estimation_from_
3d_keypoints.pdf.

[99] Anirudha Majumdar and Russ Tedrake. Funnel libraries for real-time robust
feedback motion planning. The International Journal of Robotics Research,
36(8):947–982, 2017.

[100] Albert Wu, Sadra Sadraddini, and Russ Tedrake. R3t: Rapidly-exploring ran-
dom reachable set tree for optimal kinodynamic planning of nonlinear hybrid
systems. In 2020 IEEE International Conference on Robotics and Automation
(ICRA), pages 4245–4251. IEEE, 2020.

[101] Shilin Qiu, Qihe Liu, Shijie Zhou, and Chunjiang Wu. Review of artificial intel-
ligence adversarial attack and defense technologies. Applied Sciences, 9(5):909,
2019.

151

https://maggiewang.org/assets/pdfs/robust_pose_estimation_from_3d_keypoints.pdf
https://maggiewang.org/assets/pdfs/robust_pose_estimation_from_3d_keypoints.pdf

[102] Sai Vemprala and Ashish Kapoor. Adversarial attacks on optimization based
planners. In 2021 IEEE International Conference on Robotics and Automation
(ICRA), pages 9943–9949. IEEE, 2021.

[103] Despoina Paschalidou, Amlan Kar, Maria Shugrina, Karsten Kreis, Andreas
Geiger, and Sanja Fidler. ATISS: Autoregressive transformers for indoor scene
synthesis. Advances in Neural Information Processing Systems, 34, 2021.

[104] Martin Engelcke, Adam R Kosiorek, Oiwi Parker Jones, and Ingmar Posner.
Genesis: Generative scene inference and sampling with object-centric latent
representations. arXiv preprint arXiv:1907.13052, 2019.

152

	Introduction
	Scene Grammars, Trees, and Parsing
	Organization of this Thesis
	Related Work
	Choice of representation
	Choice of model type
	Robotics applications

	Formulation of Spatial Scene Grammars
	Introduction
	Related Work
	Formulation
	Node types to capture common discrete relationships
	Rule types to capture common continuous relationships

	Specifying and Enforcing Constraints
	HMC for sampling from pose constraints
	Projection-based constraint resolution

	Scene Generation Tools
	Spatial scene grammar codebase
	Automatic mesh generation tool
	Blender rendering over IPC

	Example Grammars
	Gaussian mixture model grammar
	Singles-pairs grammar
	Cluttered sink grammar
	Dimsum table grammar

	Discussion
	Expressiveness-invertibility trade-off
	Constituency vs dependency grammars
	Sampling under constraints

	Scene Parsing
	Introduction
	The MAP parsing problem

	Related Work
	Common Setup
	MAP parse tree selection on the supertree
	Supertree simplification via "equivalent sets"

	Pose-optimizing MICP MAP Parsing
	Problem setup
	Implementation of P(o | T)
	Implementation of P(T)

	Proposal-based IP Parsing
	Proposal generation
	Formulation
	Implementing P(T)
	Enforcing P(o | T) = 1

	Additional Features Common to Both Methods
	Nonlinear optimization post-processing
	Multiple solutions

	Experiments
	Case studies on singles-pairs grammar variations
	Case studies and comparison on sink grammar

	Discussion
	Scaling concerns and alternative optimization approaches
	Future directions

	Parameter Estimation
	Introduction
	Related Work
	An Approximate EM Approach
	Measuring distances between sets of scenes

	Experiments
	Comparison with EM for GMMs
	Case study on the dimsum table grammar
	Case study on the sink grammar

	Discussion
	Extension to variational EM
	Comparison to sampling-based parameter estimation

	Discussion and Future Work
	Closing the Vision Gap
	Consuming pose proposals
	Alternate perceptual spaces

	Downstream Robotics Applications
	Rich priors for perception
	Design and verification considering all possible worlds
	Performance estimation with tuned world models

	Grammars vs General Procedural Models

