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ABSTRACT
We present a probabilistic procedural modeling strategy for captur-
ing the distribution of scenes of varying numbers of rigid objects,
motivated by the need for such models to enable verification of ro-
bot behavior in the complex open world. Our model takes the form
of a parameterized scene grammar over spatial objects, which we
show admits maximum a posterior scene parsing via mixed-integer
convex optimization. This parsing strategy can be used to explain
and annotate unlabeled scenes with the structures specified by the
model, and can be used to detect and explain outliers at a part
level. We demonstrate our model’s expressiveness on a cluttered 3D
kitchen scene, and explore how different grammar design choices
can impact the performance of this technique.

1 INTRODUCTION
How does one describe the set of all kitchen sinks that a dishwash-
ing robot will ever face? Having a model of that set of environments
is critical to verifying that a robot will succeed at its duties when
deployed into the open world, but actually capturing that distribu-
tion over diverse worlds is a difficult problem. Even if one assumes
the world is composed of rigid objects with known shapes, differ-
ent worlds will contain different numbers and classes of objects in
different configurations, where the presence, types, and pose of
those objects may covary.

In this work, we present one approach for capturing this discrete
and continuous variability: we describe the generation of these en-
vironments with a scene grammar. A scene grammar can represent
the ideas of breaking a room down into parts (like a formal con-
stituency grammar), or that objects might be placed relative to some
"parent" object (like a formal dependency grammar). For any given
class of scenes, one can try to describe its structure with a grammar
by defining the scene’s object types and their relationships in the
form of grammar rules. Random draws from a grammar are scene
trees, which capture that hierarchical structure in the scene (see
Figure 1).

Scene grammars have a history in computer vision and graphics,
but vary significantly in design. In this work, we put forward a
particular flavor of scene grammar which focuses on capturing
spatial structure of objects in the scene; we present a grammar
structure that offers significant expressiveness while maintaining
a simple and explicit functional form. We focus in particular on
the problem of “parsing" an unlabeled scene with the grammar –
that is, recovering reasonable scene trees that explain observed
scenes while following the grammar rules. We design our grammar
such that the maximum a-posteriori (MAP) parsing problem can
be framed as a mixed-integer convex optimization, and show that
parsing can be used as a powerful scene understanding tool that

(a)

(b)

Figure 1: (a) A sketch of a scene grammar that describes the
occurrence and placement of dishware in a cluttered sink.
Any random draw a scene grammar will activate the avail-
able rules stochastically, generating a scene with a random
number of objects in random poses. (b) An example sink an-
notated with a scene tree representing the hierarchy of re-
lationships between objects corresponding to rules in the
grammar.

infers scene structure, detects out-of-distribution environments,
and enables model-parameter estimation.

In a set of experiments, we probe the limits of these tools. We
observe that small changes in grammar design can have signifi-
cant impacts on the tractability of parsing. Our parsing procedure
includes algorithms for ameliorating those barriers to scaling in
many cases. Leveraging those algorithms and design lessons, we
show that we can apply these tools to model a realistically complex
3D kitchen sink scene.

2 RELATEDWORK
Having a rich open world model that can simultaneously capture
discrete and continuous variation in the world seems essential to
making systems and robots robust in the diverse real world. In the
case that only continuous parameters (e.g. friction parameters) of
the world are unknown, this system identification problem is sim-
pler, though still difficult: [Mehta et al. 2020] surveys one school of
recent approaches that perform posterior Bayesian optimization of
continuous dynamics parameters from observed rollouts. However,



in the open-world modeling case, it’s not even clear how to parame-
terize this distribution over worlds, and what kinds of relationships
in the world the model should strive to capture.

Fortunately, there is a large body of work on probabilistic mod-
eling of scenes from which we can draw inspiration. L-systems
[Prusinkiewicz et al. 1996] and shape grammars [Stiny 1980] liter-
ally describe the shape of objects by using rules to describe how to
"grow" the object out of primitive geometry. Scene grammars in-
stead describe the scene at the level of objects, though the amount of
detail they aim to capture can vary: [Feng Han and Song-Chun Zhu
2009], [Zhao and Zhu 2011], and [Chua 2018] all describe scenes
from objects all the way down to the polygon, line segment, or pixel
level, while [Liu et al. 2014], [Kar et al. 2019], [Zinberg et al. 2019],
and [Devaranjan et al. 2020] use objects as their terminal level of
detail. One step above a scene grammar would be to instead de-
scribe a distribution over scene graphs, in which an object can have
relationships to more than one other object. These models are more
complex to do sample from and do inference over, although it’s
shown to be possible with MCMC methods [Yeh et al. 2012]). Scene
graph models are well suited to producing variations on existing
content [Fisher et al. 2012] and providing rich priors and structures
for both object-level, pixel-level, and point cloud perception [Park
et al. 2018] [Rosinol et al. 2021]. Even richer models – whether
based on probabilistic programming [Ritchie 2016] [Kulkarni et al.
2015] [Mansinghka et al. 2013] or autoregressive neural models
[Eslami et al. 2016] [Ritchie et al. 2019] – can in principle capture
any distribution over any scenes, at the cost of significant model
complexity, extremely difficult inference problems, and for deep
neural models, data inefficiency.

In this work, we focus on using scene grammars as a modeling
tool. Scene grammars have easily understandable and transparent
structure and make strong independence assumptions, but as our re-
sults demonstrate, they can still describe complex robotics-relevant
scenes. Scene grammars are easy to design (unlike many shape
grammars) and sample from (unlike some scene graph models that
only provide a joint density over scenes).

A significant amount of work has gone into exploring methods
for inverting scene grammar models by way of "parsing." Unfortu-
nately, common dynamic programming, chart-based, and traversal-
based parsing techniques from formal grammars are hard to apply
to scene grammars, as scene grammars typically have continu-
ous attributes and produce unordered outputs. Heuristic parsing
methods using a combination of top-down proposals and greedy
bottom-up parse tree construction can get pretty far [Feng Han and
Song-Chun Zhu 2009] [Izatt and Tedrake 2020], but can be incon-
sistent for grammars where intermediate structure is hard to guess.
Reversible-jump MCMC provides an appealing framework with
which to search the space of varying-size parse trees ([Talton et al.
2011], [Zhao and Zhu 2013], [Yeh et al. 2012], [Matheos et al. 2020]),
but only works when one can engineer a good jump proposal. In
this work, we observe that this parsing problem can be framed as
a mixed-integer optimization as long as the scene grammar has a
particular form.

Symbol Meaning

𝑜
An observed environment as a list of nodes,
each of which has associated geometry.

𝑇 A scene tree.
N Set of node types.
𝑁 Single node type.
𝑛 Single node instance; e.g. 𝑛𝑝 , a parent node.
R A set of all rules.
𝑅 A particular rule.

𝑛.𝑥 The pose 𝑥 attribute belonging to node 𝑛.
𝑁 .R The set of rules that a node of type 𝑁 can enact.

Table 1: Reference guide for some of the commonly-used no-
tation used in this paper.

3 SYSTEM OVERVIEW
We present a stochastic grammar model that aims to capture the
distribution of scenes of varying numbers and types of rigid objects.
In this work, an observed scene 𝑜 is a list of objects and their poses.
We detail a probabilistic generative model 𝑝𝜃 (𝑜,𝑇 ) that supposes
that one can generate new scenes 𝑜 by drawing a scene tree 𝑇
from a parameterized scene grammar; 𝑜 is then extracted from 𝑇

by collecting the parts of the tree that produce scene geometry, and
throwing out the rest of the tree structure.

While drawing new worlds unconditionally from this generative
model is easy, inverting the model – that is, explaining how the
model would have generated a given scene – is hard. Scene parsing
refers to this process of consuming an observed scene (as a list of
objects with poses) 𝑜 and producing a parse tree annotation 𝑇 –
which requires optimizing over both the discrete structure (edges)
and continuous poses (nodes) of 𝑇 . In Section 3.1, we present a
scene grammar formulation tailored to make this inverse problem
tractable while still maintaining enough flexibility to describe di-
verse scenes. In Section 4, we show how and when we can frame
that scene parsing problem for our grammar as a mixed-integer
convex program. In Section 5, we investigate the effectiveness and
runtime scaling behavior of this parsing technique on two example
grammars.

3.1 Spatial Scene Grammar Definition
A spatial scene grammar is a stochastic, attributed, parameterized
context-free grammar {N ,R, 𝑃N

𝜃
, 𝑃R

𝜃
, 𝑁𝑟𝑜𝑜𝑡 , 𝑥𝑟𝑜𝑜𝑡 }. This grammar

is defined over node types N (i.e. symbols) that represent spa-
tial entities. Each node type 𝑁 ∈ N has a continuous pose at-
tribute 𝑁 .𝑥 ∈ 𝑆𝐸 (3)1, and a boolean flag 𝑁 .ℎ𝑎𝑠_𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦 indicat-
ing whether that node type will produce geometry in the final scene.
The set of production rules R represent how a node (i.e. an instanti-
ated symbol) can produce a child node. The rules are organized by
their parent node: each node type 𝑁 ∈ N has an associated list of
production rules 𝑁 .R = [𝑅0, ..., 𝑅𝑀 ], each of which describes the
possible production of a single additional child object.

In this definition, a node can simultaneously activate multiple
rules to generate multiple children. Specifically, a parent node 𝑛𝑝

1Throughout this paper, we use notation 𝐴.𝐵 to indicate entity 𝐵 is a property of
entity𝐴.



Algorithm 1: Forward sampling a scene from a grammar.
Input :a root node 𝑟𝑜𝑜𝑡
Output :a sampled scene tree

/* Build scene-tree top-down, starting from the

supplied root node. */

𝑛𝑜𝑑𝑒_𝑞𝑢𝑒𝑢𝑒 = [𝑟𝑜𝑜𝑡]
𝑡𝑟𝑒𝑒 = 𝑇𝑟𝑒𝑒 ( [𝑟𝑜𝑜𝑡])
while 𝑙𝑒𝑛(𝑛𝑜𝑑𝑒_𝑞𝑢𝑒𝑢𝑒) ≥ 0 do

𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑛𝑜𝑑𝑒_𝑞𝑢𝑒𝑢𝑒.𝑝𝑜𝑝 ()
/* Sample what this parent is going to

produce. */

𝑟𝑢𝑙𝑒𝑠 = 𝑝𝑎𝑟𝑒𝑛𝑡 .𝑠𝑎𝑚𝑝𝑙𝑒_𝑟𝑢𝑙𝑒𝑠 ()
for rule in rules do

/* Sample the pose of each child being

produced. */

𝑐ℎ𝑖𝑙𝑑 = 𝑟𝑢𝑙𝑒.𝑠𝑎𝑚𝑝𝑙𝑒_𝑐ℎ𝑖𝑙𝑑 ()
𝑛𝑜𝑑𝑒_𝑞𝑢𝑒𝑢𝑒.𝑝𝑢𝑠ℎ(𝑐ℎ𝑖𝑙𝑑)
𝑡𝑟𝑒𝑒.𝑎𝑑𝑑_𝑛𝑜𝑑𝑒 (𝑐ℎ𝑖𝑙𝑑)
𝑡𝑟𝑒𝑒.𝑎𝑑𝑑_𝑒𝑑𝑔𝑒 (𝑝𝑎𝑟𝑒𝑛𝑡, 𝑐ℎ𝑖𝑙𝑑)

/* Return only those nodes that produce scene

geometry. */
return [node for node in tree if node.has_geometry]

of type 𝑁 activates a subset of its rules R𝑎𝑐𝑡𝑖𝑣𝑒 ⊂ 𝑁 .R following a
(possibly parameterized) discrete distribution over 𝑛𝑝 ’s rules:

𝑃𝑁
𝜃
(R𝑎𝑐𝑡𝑖𝑣𝑒 ) .

When active, a given rule 𝑅 produces a child node 𝑛𝑐 of fixed
type 𝑅.𝑁 with its pose drawn from a parameterized continuous
distribution that is conditioned on the parent’s pose

𝑃𝑅
𝜃
(𝑛𝑐 .𝑥 |𝑛𝑝 .𝑥).

This is expressive enough to describe, for example, a child whose
pose is a distribution in the parent’s frame of reference.

A draw from the grammar is a tree𝑇 of nodes, each having a con-
crete spatial pose. The tree is stored as a set of parent-ruleset pairs
𝑇 = {𝑛𝑝 ,R𝑎𝑐𝑡𝑖𝑣𝑒 }; for a given node 𝑛𝑝 , R𝑎𝑐𝑡𝑖𝑣𝑒 is 𝑛𝑝 ’s set of active
rules, which serves as the list of outgoing edges to child nodes 𝑅.𝑛𝑐
for each rule 𝑅 ∈ R𝑎𝑐𝑡𝑖𝑣𝑒 . A tree is drawn from the grammar by
initializing a tree with a root node of type 𝑁𝑟𝑜𝑜𝑡 at predetermined
pose 𝑥𝑟𝑜𝑜𝑡 and recursively sampling children from unexpanded
nodes until no unexpanded nodes remain (see Algorithm 1). An ob-
served scene 𝑜 is constructed by collecting the geometry-producing
nodes from 𝑇 . The observed scene 𝑜 does not always reveal the
full structure of the tree, because only those nodes that produce
geometry are observable, and there may be multiple trees that pro-
duce the same observations. (For example, the centers of clusters of
objects may be represented with nodes, but only the actual objects
in the cluster show up in the observed scene.) A node whose type
produces geometry always produces the same fixed geometry – if
a node is in the tree, then its associated geometry will appear in
the scene at the pose determined by the node’s random continuous
variables.

The joint probability of a sampled tree 𝑇 is then

𝑃 (𝑇 ) =
∏

𝑛𝑝 ,R𝑎𝑐𝑡𝑖𝑣𝑒 ∈𝑇
𝑃𝑁

𝑝

𝜃
(R𝑎𝑐𝑡𝑖𝑣𝑒 |𝑛𝑝 )∏

𝑅∈R𝑎𝑐𝑡𝑖𝑣𝑒
𝑃𝑅
𝜃
(𝑅.𝑛𝑐 .𝑥 |𝑛𝑝 .𝑥), (1)

where the outer product iterates over parent nodes 𝑛𝑝 and their
actives rule sets R𝑎𝑐𝑡𝑖𝑣𝑒 implied by their successors in the tree,
where 𝑁𝑝 indicates the node type of corresponding parent node 𝑛𝑝 .
The inner product iterates over the individual active rules 𝑅 and
their produced child nodes 𝑛𝑐 associated with that parent.

The relationship between a parent node and its children is fac-
tored into the discrete choice (corresponding to 𝑃𝑁

𝜃
) made by the

parent to produce that child set, and the continuous choice (corre-
sponding to 𝑃𝑅

𝜃
) made to place each child at its pose relative to the

parent. In the following sections, we enumerate additional struc-
ture and restrictions we impose on these distributions to keep our
ultimate goal of posterior scene tree parsing tractable.

3.2 Node types to capture common discrete
relationships

The kinds of children a parent creates are chosen by sampling a set
of production rules from parent node. In general, this is a draw from
a joint distribution over𝑀 = |𝑁 .R| binary variables representing
the activation of each possible rule, requiring 2𝑀 parameters to
describe. In practice, we define a small set of parent node types that
represent more structured patterns of rule activation that can be
described with vastly fewer parameters:

(1) AND node type: The parent node provides a list of produc-
tion rules, all of which are activated every time. This requires
0 parameters.

(2) OR node type: The parent node provides a list of production
rules, one of which is chosen at random to be activated. This
requires𝑀 − 1 parameters.

(3) INDEPENDENT SET node type: The parent node provides
a list of production rules, each of which is activated randomly,
independent of the other rules. This requires𝑀 parameters.

(4) REPEATING SET node type: The parent node pro-
vides a single production rule, which is activated 𝑘 ∼
𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 (1...𝑀𝑟𝑒𝑝 ) times. This requires𝑀𝑟𝑒𝑝 parameters.

This breakdown is strongly inspired by the AND-OR-SET node
types popular in the scene grammar literature [Zhao and Zhu
2011][Park et al. 2018].

3.3 Rule types to capture common continuous
relationships

Each production rule 𝑅 under parent 𝑛𝑝 that is activated produces
a new child node 𝑛𝑐 with random pose 𝑥 drawn from a rule-specific
conditional distribution 𝑝𝑅

𝜃
(𝑛𝑐 .𝑥 |𝑛𝑝 .𝑥). We separate this spatial

relationship into conditional distributions over the translational
and rotational components, which we constrain to be independent
from one another. The separate translation and rotation parts of
the pose are referred to as 𝑛.𝑡 and 𝑛.𝑟 respectively.



XYZ Rules
Name Child translation expression Log-density expression Parameters
Fixed offset 𝑛𝑐 .𝑡 = 𝑛𝑝 .𝑡 + 𝑡𝑜 0. 𝑡𝑜 ∈ 𝑅3

World frame Normal 𝑛𝑐 .𝑡 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙 (𝜇, Σ) −0.5𝛿𝑇 Σ𝛿 − 𝐹 (Σ)
𝛿 = 𝑛𝑐 .𝑡 − 𝜇 𝜇 ∈ R3, Σ ∈ R3 > 0

World frame Normal offset 𝑛𝑐 .𝑡 ∼ 𝑛𝑝 .𝑡 + 𝑁𝑜𝑟𝑚𝑎𝑙 (𝜇, Σ) −0.5𝛿𝑇 Σ𝛿 − 𝐹 (Σ)
𝛿 = 𝑛𝑐 .𝑡 − 𝑛𝑝 .𝑡 − 𝜇 𝜇 ∈ R3, Σ ∈ R3 > 0

Parent frame Normal offset 𝑛𝑐 .𝑡 ∼ 𝑛𝑝 .𝑡+𝑛𝑝 .𝑟×𝑁𝑜𝑟𝑚𝑎𝑙 (𝜇, Σ) −0.5𝛿𝑇 Σ𝛿 − 𝐹 (Σ)
𝛿 = 𝑛𝑝 .𝑟𝑇 (𝑛𝑐 .𝑡 − 𝑛𝑝 .𝑡 − 𝜇) 𝜇 ∈ R3, Σ ∈ R3 > 0

Rotation Rules
Name Child rotation expression Log-density expression Parameters
Uniform rotation 𝑛𝑐 .𝑟 ∼ 𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚(𝑆𝑂 (3)) 0. None.
Fixed offset 𝑛𝑐 .𝑟 = 𝑛𝑝 .𝑟 × 𝑅𝑜 − log(𝜋2) 𝑅𝑜 ∈ 𝑆𝑂 (3)

World frame Bingham distribution 𝑛𝑐 .𝑟 ∼ 𝐵𝑖𝑛𝑔ℎ𝑎𝑚(𝑀,𝑍 ) 𝑍𝑀𝑇𝑞𝑞𝑇𝑀 − 𝐹 (𝑍 )
𝑞𝑞𝑡 ← 𝑛𝑐 .𝑟 , see Section 4.3.4. 𝑀 ∈ R4×4, 𝑍 ∈ R4

Parent frame Bingham distribution 𝑛𝑐 .𝑟 ∼ 𝑛𝑝 .𝑟 × 𝐵𝑖𝑛𝑔ℎ𝑎𝑚(𝑀,𝑍 ) 𝑍𝑀𝑇𝑞𝑞𝑇𝑀 − 𝐹 (𝑍 )
𝑞𝑞𝑇 ← (𝑛𝑝 .𝑟 )𝑇 (𝑛𝑐 .𝑟 ), see Section 4.3.4. 𝑀 ∈ R4×4, 𝑍 ∈ R4

Table 2: The set of rule types supported by our grammar, along with their expression for forward sampling and log-density
evaluation. Each rule type describes a parameterized, stochastic distribution on the translation and rotation of a child node 𝑛𝑐

conditioned on the pose of its parent node 𝑛𝑝 , in terms of each of node’s translation 𝑡 and rotation 𝑟 components. Distinction
is made between the different frames in which translational and rotational offsets are expressed, as offsets expressed in the
parent’s frame are bilinear in the participating pose variables and require special handling during scene parsing in Section 4.
Terms 𝐹 (Σ) and 𝐹 (𝑍 ) represent normalizers that are a function of the indicated distribution parameters.

Translation distributions are captured using Normal distribu-
tions. Rotational distributions are captured using Bingham distribu-
tions, which are an analogue of Normal distributions over the unit
sphere appropriate for describing distributions over unit quater-
nions [Bingham 1974]. Bingham distributions are parameterized
by an orthogonal orientation matrix 𝑀 ∈ R4×4 and a concentra-
tion vector 𝑍 ∈ R4. A helpful overview of this distribution type is
provided in [Glover and Kaelbling 2013].

The complete list of rule types we support during parsing is
listed in Table 2. This particular set of rule types has arisen from ef-
forts to apply this grammar formulation to a wide variety of scenes;
empirically, each of these rule types is useful in different circum-
stances, and trades off expressiveness with complexity. In particular,
expressing either translational or rotational pose distributions in
the parent node frame (i.e. the "Parent frame" rules) introduces
bilinear relationships between the pose variables, which must be
handled as special cases in the MIP convex parsing procedure in
Section 4.

3.4 Expressiveness
Despite these limitations on continuous distribution specification,
this framework can be used to capture a wide variety of scenes. This
grammar framework can be viewed as a generalized, multi-level
Gaussian mixture model – that is, one where the number of modes
and their hierarchy is itself stochastic – with special handling dedi-
cated to describing distributions of 3D poses ∈ 𝑆𝐸 (3). As a result,
we inherit similar expressiveness: we can combine our primitive dis-
tributions together to build arbitrarily complex distributions over

poses. We demonstrate its use for describing realistically cluttered
arrangements of objects in household environments in Section 5.

4 PARSING
Given a grammar with parameters 𝜃 and an observed set of objects
𝑜 , finding the maximum a posterior (MAP) tree argmax𝑇 𝑝𝜃 (𝑇 |𝑜)
is a general approach for "parsing" the scene – such a MAP tree
would be the best possible explanation for the scene using this
model. Being able to find this optimal scene tree would be broadly
useful, but this posterior inference problem can be extremely hard.
The best scene tree 𝑇 for a given scene may be ambiguous; may
require proposing new hidden structure; and generally requires
searching over diverse paths for explaining the scene.

Because the set of observed objects is unordered and attributed,
common approaches to parsing from formal grammars are not
helpful. We instead approach this parsing problem by enumerating
the space of all parse trees for our grammar with a set of binary
and continuous variables, and writing a cost and constraint set to
extract the MAP parse as a mixed-integer program (MIP).

The success of this optimization strongly depends on the nature
of the grammar. As we will detail, certain continuous relationships
between nodes lead to to nonconvex costs and constraints. In some
cases, these nonconvexities can either be efficiency approximated
or reparameterized away. In cases where the grammar contains
significant continuous hidden structure (i.e. intermediate nodes
with uncertain poses that produce no observable geometry), the
nonconvexities cannot always be avoided, so we provide some
studies of piecewise convex approximation strategies.



(a)

(b)

Figure 2: (a) The input to the parsing procedure is a grammar
spec, along with a list of observed objects. Nodes shown in
gold produce geometry (or have a-priori-fixed pose, in the
case of the root). The complete grammar spec also includes
additional information about how each node’s pose is dis-
tributed relative to the parent, which is omitted for clarity.
(b) For a given grammar,we generate a "supertree", forwhich
any scene tree sampled from the grammar is a subtree. In
this figure, edges leaving nodes are labeled with the parent
node type, and edges arriving at nodes are labeled with the
rule type dictating that node’s pose relationship to its parent.
The nodes of the supertree are partitioned into equivalent
sets of nodes (gray boxes), such that one set of pose variables
is sufficient to parameterize the pose of any node in the set.
Given an observed set of nodes, we formulate parsing as a
mixed-integer optimization that simultaneously chooses ac-
tivations of each node in the supertree, poses for each equiv-
alent set, and correspondences between observed nodes and
their possible counterparts in the supertree.

4.1 Problem Setup
We motivate our formulation by rewriting the objective

argmax
𝑇

𝑃𝜃 (𝑇 |𝑜) = argmax
𝑇

log(𝑃 (𝑜 |𝑇 )𝑃𝜃 (𝑇 ))

by taking a log and applying Bayes’ rule. In this optimization, we
might search over all trees𝑇 , where 𝑝 (𝑜 |𝑇 ) is an indicator function
that the observed nodes in 𝑇 precisely match observed objects 𝑜
and those trees that match the observed nodes are ranked by their
tree score 𝑃𝜃 (𝑇 ).

To search over the space of all trees, we form a "supertree" 𝑆𝑇
from the grammar, which is constructed in such a way that any tree
𝑇 is a subgraph of 𝑆𝑇 2. The supertree is constructed by initialization
a tree at 𝑁𝑟𝑜𝑜𝑡 , and for a node of type 𝑁 in the supertree, attach-
ing one child for every rule 𝑅 in 𝑁 .R of type 𝑅.𝑁 that would be
produced by that rule. (See Figure 2b.) If the grammar is recursive,
then we bound the depth of the supertree to keep it finite.

This supertree 𝑆𝑇 is a convenient data structure for parameteriz-
ing the space of all scene trees in the grammar. For each node 𝑛 in
𝑆𝑇 , we add a binary variable 𝑛.𝑎 indicating whether is active, and
a continuous pose variable 𝑛.𝑥 ∈ 𝑆𝐸 (3) = (𝑛.𝑡 ∈ R3, 𝑛.𝑟 ∈ R3×3)
representing the pose of that node if it is active. Any tree in the
grammar (modulo recursion bounds) corresponds to a pattern of
these node activation variables, and a particular choice of node
poses; and given these variables, we can compute 𝑃 (𝑇 ) and 𝑃 (𝑜 |𝑇 ).

4.1.1 Supertree simplification via "equivalent sets". Because of the
restrictions on node types in Section 3.2, representing complex log-
ical relationships (e.g. a sink will contain a set of plates and a set of
cups) requires chaining the primitive AND-OR-SET types together.
This leads to supertree structures with sets of intermediate nodes
whose poses are constant offsets from one another. (For example,
the illustrative grammar in Figure 2 introduces intermediate "Pairs"
and "Singles", which are purely logical nodes to handle production
of varying numbers of their respective child types. The sink gram-
mar in Figure 5 has many such intermediate nodes.) For each such
"equivalence set" of nodes in the supertree, we can allocate one
set of pose decision variables to describe the pose of all nodes in
the group, and use [linear expressions of] those decision variables
wherever each of the individual node’s poses are needed. (Example
equivalent sets are illustrated in Figures 2b and 5.) We detect these
equivalent sets as partitions of the supertree by collecting the nodes
in the supertree, connecting those parent and child pairs whose
corresponding production rules are fixed offset rules, and taking
the resulting set of connected subgraphs to be the set of equivalent
sets. In practice, we maintain separate equivalent sets for rotation
and translation.

4.2 Implementation of 𝑃 (𝑜 |𝑇 )
To constrain that we only consider trees that match our observed
set, for each node �̂� ∈ 𝑜 , we add binary variables 𝑏𝑛,�̂� for each
𝑛 ∈ 𝑆𝑇 of matching node type. A given 𝑏𝑛,�̂� being active indicates
that we’re explaining the existence of observed node �̂� with node 𝑛
in the our parse tree. We impose constraints

∀�̂� ∈ 𝑜
∑

same-type 𝑛∈𝑆𝑇
𝑏𝑛,�̂� = 1

∀𝑛 ∈ 𝑆𝑇
∑

same-type �̂�∈𝑜
𝑏𝑛,�̂� ≤ 𝑛.𝑎

which enforce that all observed nodes are explained exactly once,
no latent node is used to explain more than one observation, and
a latent node that can produce geometry is active if and only if it
explains an observation.

2This approach is similar in spirit to [Chua 2018], which forms an enormous factor
graph over every possible (discretized) placement of every possible node type. In our
case, we instead capture node poses with continuous attributes, leading to a much
smaller tree over all generations.



When a correspondence 𝑏𝑛,�̂� is active, we require that the latent
node pose precisely matches the observed node pose.We implement
this with a Big-M formulation:

∀{𝑛, �̂�} of matching type :
|�̂�.𝑡 − 𝑛.𝑡 | ≤ 𝑀𝑡 ∗ (1. − 𝑏𝑛,�̂�)
|�̂�.𝑟 − 𝑛.𝑟 | ≤ 𝑀𝑅 ∗ (1. − 𝑏𝑛,�̂�)

which constrains a node translation and rotation to be elementwise
equal to its corresponding observed node, but free to vary if not
corresponded.𝑀𝑅 = 2 (since elements of the rotation are bounded
in [−1, 1]) and 𝑀𝑡 is larger than the largest reasonable distance
between nodes of this type in the grammar.

4.3 Implementation of 𝑃𝜃 (𝑇 )
Implementing 𝑃𝜃 (𝑇 ) requires constraining these variables to only
encode legal trees, and encoding the objective term 𝑃𝜃 (𝑇 ) of those
trees.

4.3.1 𝑥 ∈ 𝑆𝐸 (3). We are optimizing over the poses of nodes in
the scene tree. We parameterize poses with translation vector and
rotation matrix components 𝑛.𝑥 = (𝑛.𝑡 ∈ R3, 𝑛.𝑟 ∈ R3×3). We
impose the constraint

𝑛.𝑟 ∈ 𝑆𝑂 (3) : 𝑛.𝑟𝑇𝑛.𝑟 = 1, 𝑑𝑒𝑡 (𝑛.𝑟 ) = +1

with the mixed-integer convex outer approximation employed by
[Dai et al. 2019]. These constraints allocate binary variables to par-
tition the range of each element of 𝑛.𝑟 , and impose piecewise con-
vex outer approximations (i.e. McCormick envelopes, [McCormick
1976]) on their bilinear products as they appear in the 𝑆𝑂 (3) or-
thogonality constraints. As this is an expensive constraint, we are
careful to only apply it where necessary: any node that produces
geometry does not need this constraint applied, as that node’s ro-
tation will either be constrained to be equal to a matching-type
observed node’s rotation, or will not enter into the objective. (As dis-
cussed in Sections 4.1.1 and 4.3.5, in practice, we can actually avoid
expressing this constraint in an even wider set of circumstances.)

4.3.2 Tree structure constraints. For any parent-child pair of nodes
𝑛𝑝 , 𝑛𝑐 in 𝑆𝑇 , we enforce

𝑛𝑐 .𝑎 ≥ 𝑛𝑝 .𝑎

𝑛𝑟𝑜𝑜𝑡 .𝑎 = 1

which constrains that the child can only be active if the parent is
active, and that the root of the supertree is always active.

Depending on the type of𝑛𝑝 ,𝑛𝑝 being active may imply different
constraints on the activation of the children, which we translate
into constraints:

(1) AND Node: 𝑛𝑐 .𝑎 = 𝑛𝑝 .𝑎: if the parent is active, all children
are active.

(2) OR Node:
∑
𝑛𝑐 𝑛

𝑐 .𝑎 = 𝑛𝑝 .𝑎: if the parent is active, exactly
one child is active.

(3) INDEPENDENT SET: No constraints.
(4) REPEATING SET:
(a)

∑
𝑛𝑐 𝑛

𝑐 .𝑎 ≥ 𝑛𝑝 .𝑎: if the parent is active, at least one child
is active.

(b) 𝑛𝑐
𝑖
.𝑎 ≥ 𝑛𝑐

𝑖+1 .𝑎: assign a consistent ordering 𝑛𝑐
𝑖
for the

children in the child set; the children must activate in
this order.

(c) 𝑛𝑐
𝑖
.𝑡 [0] ≥ 𝑛𝑐

𝑖+1 .𝑡 [0]: Under the consistent ordering of chil-
dren, the x-component of the children translations must
increase. This constraint is not necessary, but breaks a
symmetry resulting from children of this rule being ex-
changeable, decreasing the number of equivalent solutions
the MIP solver must sort through.

4.3.3 𝑃𝑁
𝜃

terms. Starting from Equation 1, log 𝑃𝜃 (𝑇 ) expands to a
sum of densities:

log 𝑃𝜃 (𝑇 ) =∑
{𝑛𝑝 ,R𝑎𝑐𝑡𝑖𝑣𝑒 }∈𝑇

𝑛𝑝 .𝑎 × log 𝑃𝑁
𝜃
(R𝑎𝑐𝑡𝑖𝑣𝑒 |𝑛𝑝 )∑

𝑅,𝑛𝑐 ∈R𝑎𝑐𝑡𝑖𝑣𝑒
𝑛𝑐 .𝑎 × log 𝑃𝑅

𝜃
(𝑛𝑐 .𝑥 |𝑛𝑝 .𝑥)

where multiplication by 𝑛.𝑎 indicates that we only include densities
for those nodes and rules active in the tree under consideration. To
implement this in an MI context, we use convex reformulations of
these terms.

For the discrete density terms 𝑛𝑝 .𝑎 × log 𝑃𝑁
𝜃
(R𝑎𝑐𝑡𝑖𝑣𝑒 |𝑛𝑝 ), the

implementation depends on the node type:
(1) AND Node: log(𝑃𝑁

𝜃
) is always 0.

(2) ORNode: log(𝑃𝑁
𝜃
) = ∑ |𝑁 .R |

𝑖
log(𝜃𝑁 [𝑖])∗𝑛𝑐

𝑖
.𝑎, where 𝜃𝑁 is

the set of parameters controlling the Categorical probability
of each rule activation for this node type.

(3) INDEPENDENT SET:

log(𝑃𝑁
𝜃
) =
|𝑁 .R |∑

𝑖

log(𝜃𝑁 [𝑖]) ∗ 𝑛𝑐𝑖 .𝑎,

where 𝜃𝑁 is the set of parameters controlling Bernoulli prob-
ability of each rule activation for this node type.

(4) REPEATING SET:

log(𝑃𝑁
𝜃
) =
|𝑁 .R |∑

𝑖

(log(𝜃𝑁 [𝑖]) − log(𝜃𝑁 [𝑖 − 1])) × 𝑛𝑐𝑖 .𝑎,

where 𝜃𝑁 [𝑖] is the parameter controlling the Categorical
probability of exactly 𝑖 children being active, with log(𝜃𝑁 [0]) =
0. Since 𝑛𝑐

𝑖
.𝑎 =⇒ 𝑛𝑐

𝑖−1, this objective term will equal 𝜃𝑁 [𝑖]
if 𝑖 children are active, or 0 if none are active (which indicates
that the parent and all of its children are inactive and should
not enter the objective).

4.3.4 𝑃𝑅
𝜃
terms. For the continuous density terms

𝑛𝑐 .𝑎 × (log 𝑃𝑅
𝜃
(𝑛𝑐 .𝑥 |𝑛𝑝 .𝑥),

we need a way to deactivate the objective term log 𝑃𝑅
𝜃
when 𝑛𝑐

is inactive. To avoid bilinear relationships between the activation
variable and the node pose, we implement this deactivation with a
slack formulation that adds variable 𝑛𝑐 .𝑥𝑠𝑙𝑎𝑐𝑘 for each node:

|𝑛𝑐 .𝑥𝑠𝑙𝑎𝑐𝑘 − 𝑛𝑐 .𝑥 | ≤ 𝑀 (1. − 𝑛𝑐 .𝑎)



We can now express this cost term as

(1. − 𝑛𝑐 .𝑎) ×𝐶 + log 𝑃𝑅
𝜃
(𝑛𝑐 .𝑥𝑠𝑙𝑎𝑐𝑘 |𝑛𝑝 .𝑥).

This term is designed such that when 𝑛𝑐 .𝑎 is deactivated, the ob-
jective takes 0 value. 𝐶 is chosen to be the maximum value that
can achieved by the rule probability log 𝑃𝑅

𝜃
(𝑛𝑐 .𝑥𝑠𝑙𝑎𝑐𝑘 |𝑛𝑝 .𝑥) when

𝑛𝑐 .𝑥𝑠𝑙𝑎𝑐𝑘 is unconstrained; for our rule types, this is the same for
any setting of 𝑛𝑝 .𝑥 and is easily computable from the log-density
equations in Table 2. 𝑀 is chosen to be sufficiently large to not
restrict the pose when the child node is inactive. If the child is
active, then the constant term falls away, the slack pose is con-
strained equal to the node pose, and the objective is the appropriate
rule log probability. If the child is inactive, then the child pose is
unconstrained, and so will be chosen to maximize log 𝑃𝑅

𝜃
, which

cancels with the constant term to result in zero overall density.
This functionally removes this rule from 𝑃𝜃 (𝑇 ) when the child is
inactive, even if other constraints have been placed on 𝑛𝑐 .𝑥 .

The exact functional form of log 𝑃𝑅
𝜃
(𝑛𝑐 .𝑥𝑠𝑙𝑎𝑐𝑘 |𝑛𝑝 .𝑥) depends on

the rule type, as listed in Table 2. For most rule types, the rule
log-density can be directly implemented as a quadratic objective,
but there are two special cases:

(1) Bingham distribution log-densities are linear in the quater-
nion outer product 𝑞𝑞𝑇 ; we represent the 10 unique terms in
this outer product with intermediate variables. These outer
product terms have linear relationships to elements of the
rotation matrix according to the standard quaternion-to-
rotation-matrix conversion formula, which we impose as
linear constraints. See Appendix A for more details.

(2) Parent-frame Normal- and Bingham-distributed offsets in-
volve a bilinear relationship with the parent node rotation
𝑛𝑝 .𝑅. When required, these bilinear relationships are approx-
imated with piecewise McCormick Envelopes [McCormick
1976] that reuse the binary variables involved in constraining
the relevant rotations ∈ 𝑆𝑂 (3).

4.3.5 Short-circuiting in observed cases. The piecewise convex ap-
proximations to the 𝑆𝑂 (3) constraints and bilinear relationships in
the parent-frame rule cases are extremely undesireable: as shown
in Section 5.1, having even a handful of these constraints in the
parsing MIP can increase problem size and runtime by an order of
magnitude.We can avoid these approximations by taking advantage
of the fact that many nodes in the supertree are expected to pro-
duce geometry, and thus those nodes will either be corresponded
to observed nodes or be inactive. This means that their pose can
be described as taking the value of one of the observed nodes of
matching type, rather than being directly optimized with a deci-
sion variable. In certain cases, this lets us rewrite non-convex cost
terms in convex ways by taking advantage of our correspondence
variables.

For each equivalent set of nodes in the supertree, we define
that that equivalent set is observable if and only if any node in the
equivalent set being active implies at least one observable node in
the equivalent set is active. If an equivalent set is observable under
this definition, then the pose of each node 𝑛 in the equivalent set
will take the value of one of a finite list of observed poses 𝑛.𝑋𝑜 . This
list of poses is generated by, for every node 𝑛𝑜 in the equivalent

set that has geometry, accumulating �̂�𝑜 .𝑥 from all matching-type
observed nodes �̂�𝑜 ∈ 𝑜 .

As an immediate consequence, any node in an observable equiva-
lent set does not need its rotation constrained to be in 𝑆𝑂 (3), as we
know that if the node is active, its rotation will be constrained to be
exactly equal to an observed rotation. But further, in the cases of the
the bilinear relationships in parent-frame translation and rotation
rules, we can rewrite the costs to avoid those bilinear relationships.
Examining the Parent-frame Normal offset case, there is a bilinear
relationship between node pose variables in the parent-frame offset
term 𝛿 = 𝑛𝑝 .𝑟𝑇 (𝑛𝑐 .𝑡 − 𝑛𝑝 .𝑡 − 𝜇). If the parent node is in an observ-
able equivalent set, then we can replace 𝛿 with a new intermediate
variable 𝛿𝑠𝑙𝑎𝑐𝑘 , which is constrained such that

∀(𝑟𝑜 , 𝑡𝑜 ) ∈ 𝑛𝑝 .𝑋𝑜 :

|𝛿𝑠𝑙𝑎𝑐𝑘−(𝑟𝑜 )𝑇 (𝑛𝑐 .𝑡 − 𝑡𝑜 − 𝜇) | ≤ 𝑀 ∗ (1. − 𝑏𝑛,�̂�) .

Here, we use the binary correspondence variable for observed node
�̂� to force 𝛿𝑠𝑙𝑎𝑐𝑘 to be equal to a (linear expression of) that observed
node’s pose (𝑟𝑜 , 𝑡𝑜 ). This removes the bilinear relationship (and
its corresponding loose piecewise outer convex approximation),
in exchange for a list of linear constraints with Big-M activations.
A very similar trick can be applied to handle the bilinear term
(𝑛𝑝 .𝑟 )𝑇 (𝑛𝑐 .𝑟 ) in the Parent-frame Bingham distribution case.

The combination of constraint short-circuiting and equivalent
set formation is critical to scaling this system. Without either, the
kitchen-sink grammar in Figure 5 would require hundreds of inter-
mediate node poses, each requiring 𝑆𝑂 (3) constraints; this leads to
MIPs with excessive solve times even using powerful commercial
solvers. By applying these simplifications to the MIP, the same
scenes can be parsed in seconds because we have removed many
or all of the nonconvex constraints.

4.4 Nonlinear optimization post-processing
Due to the approximations made to enforce rotation decision vari-
ables ∈ 𝑆𝑂 (3) constraints, as well as McCormick Envelope approx-
imations used to encode parent-frame translation and rotation rule
probabilities, the solution to the MIP may not be precisely feasible
or optimal under the true rotation constraints and objective. For
that reason, we take the MIP solution and use it to seed a nonlin-
ear program (NLP) of the same objective. The NLP is constructed
identically to the MIP, minus the mixed-integer-convex-specific
handling of the rotation constraints and bilinear cost terms, and
with fixed parse tree structure equal to the structure uncovered by
the MIP. This NLP is handed to a commercial solver and seeded
with the MIP optimal solution; solutions are typically found in tens
of milliseconds.

4.5 Multiple solutions
Because this optimization is a mixed-integer convex optimization,
it can be solved to certified global optimality by a number of off-
the-shelf solvers by an efficient (though still exponential in the
worst-case) branch-and-bound algorithm. As a bonus, the same
procedure can be used to extract the global top 𝑁 best integer
solutions (paired with their associated optimal continuous variable
setting) as ranked by the objective. In our case, when there are
no nonconvex constraints to approximate, different settings of the



Figure 3: These two grammar variations, as represented by
their supertrees, describe very similar distributions over ob-
jects that can appear either on their own or in spatially cor-
related pairs. The difference is in the spatial meaning of a
Pair node: in the constituency variation, the objects in the
pair are both randomly offset from the Pair node, making
the Pair node’s pose uncertain during parsing. In the depen-
dency variation, the first object in the pair shares its pose
with the Pair node, while only the second node is randomly
offset. In this case, a Pair node’s pose is not uncertain, as it
is in an equivalent set with an Object since objects produce
scene geometry. This second grammar variation proves sig-
nificantly easier to parse in practice.

binary variables correspond to different parse tree structures –
meaning that we can get diverse explanations of the scene from the
MIP solver at the cost of more runtime. We explore some of these
top N solutions in Section 5.1.

5 RESULTS
To demonstrate the expressiveness of this grammar setup and probe
its performance, we focus on two examples.

(1) We demonstrate and benchmark our grammar’s performance
on the singles/pairs grammar used as an illustrative example
in Section 4. In particular, we examine variations on this
grammar to examine the effect including significant hidden
continuous structure has on parsing performance.

(2) We demonstrate that our method scales to a complex 3D
scene by designing a grammar to capture the arrangement of
dishes in a cluttered kitchen sink, and show that our parsing
technique can scale to this more realistic scenario.

For all experiments, we request the top 10 parses from the MIP
solver, unless otherwise noted. We use Gurobi 9.0.2 [Gurobi Opti-
mization, LLC 2021] as the MI convex optimizer and SNOPT 7.4
[Gill et al. 2018] as the nonlinear optimizer. We use Drake [Tedrake
and the Drake Development Team 2019] for interfacing with these
solvers, as well as kinematic calculations, simulation, and visualiza-
tion.

5.1 Singles-pairs grammar
This grammar describes a set of oriented objects that appear either
independently ("singles") or in pairs with related pose ("pairs"). As
physical analogue, we consider modeling that aircraft might appear
in the air either on their own, or in a formation as a pair, where

the two aircraft in the formation tend to be close in position and
orientation.

We provide two grammar variations to describe this scenario,
inspired loosely by constituency and dependency parsing strategies
from language. Single aircraft are produced with unit Normal trans-
lations and uniform random rotations. In the constituency grammar
variation, pairs of aircraft are produced by sampling their cluster
center from a unit Normal translation and uniform random rotation,
and then sampling the offset of each aircraft from the cluster center
in the cluster center’s frame from a tightly-peaked Normal and
Bingham distribution. In the dependency grammar variation, pairs
of aircraft are produced by sampling the first object’s location, and
then sampling the other object offset from the first using the same
tightly peaked distributions. These grammars are illustrated in Fig-
ure 3. Critically, the only difference is in the relationships between
the aircraft in a pair and their cluster center: the minor change from
the constituency variation to the dependency variation removes
an unobserved equivalent set, which we will see has a significant
impact on parsing performance.

5.1.1 Parsing a single example. Parsing the constituency variation
of the grammar requires inferring the pose of the latent cluster
centers, which produce no geometry and so must use piecewise
approximations to the 𝑆𝑂 (3) constraints and bilinear relationships
between the cluster center pose and its constituent object poses. As
seen in Figure 4 (top-left), theMIP-optimal parse tree has reasonable
tree structure but only approximately correct node poses due to
looseness in the approximations of the nonconvex constraints. The
nonlinear refinement corrects the approximate poses to the true
MAP parse tree configuration. Unfortunately, the top 10 solutions
reported by the MIP solver are all variations on the same parse
tree: the variations between the solutions are different settings of
binary variables involved in the piecewise approximations that lead
to very similar solutions, instead of actual variations in parse tree
structure.

The dependency variation of the grammar captures the same
set of scenes with the same relationships, but because the latent
cluster center is in an observable equivalent set, we can use the
observation-based short-circuiting trick from Section 4.3.5 to re-
move those expensive piecewise approximations. Both of the above
shortcomings are improved in this situation: the MIP-optimal parse
tree is already optimal in terms of node poses, and as illustrated in
Figure 4 (bottom left), the top N solutions represent a diverse range
of parse trees.

In the parsing example in Figure 4, both grammar variations
could produce a maximum of 8 objects and generated supertrees
with 15 nodes. Compared to the constituency parsing MIP, the
dependency parsing MIP had vastly fewer continuous variables
(417 vs 4680), binary variables (26 vs 214), and constraints (1496 vs
14063).

5.1.2 Parsing performance. Within each each grammar variation,
we can examine the scaling behavior by increasing the maximum
number of objects that can appear in the scene. Figure 4 (right) plots
the distribution of runtimes of the parsing procedure across ran-
domly generated scenes for both grammar variations, and compares
how the runtime scales as grammar complexity increases.



Figure 4: (Upper Left) The optimal parse of a representative singles-doubles scene using the constituency grammar variation.
Post-processing with a nonlinear optimization pass resolves approximation errors in the MIP solution while keeping the op-
timal discrete configuration discovered in the MIP solve. (Lower Left) The top three parses of a representative singles-doubles
scene using the dependency grammar variation. Nonlinear refinement is unnecessary in this case, as there are no nonconvex
constraints with approximation gaps. (Right) A comparison of runtimes for random samples of scenes from both grammar
variations as the grammar complexity increases.

5.1.3 Discussion. By comparing the results from the two equiva-
lent grammars for this scene, it is evident that a grammar in which
every equivalent set corresponds to some observable geometry is
preferable in terms of parsing runtime, accuracy, and posterior sam-
pling diversity. This result is not surprising: while we have demon-
strated that the approximations to the nonconvex constraints lead
to satisfactory MAP solutions, they are still expensive and complex
for a MIP solver to resolve.

5.2 Cluttered sinks
To illustrate that our tool scales to meaningfully complex scenes,
we demonstrate a grammar that captures some of the structure
present in cluttered arrangements of objects in a sink. For moti-
vation, consider the problem of verifying the performance of a
robot meant to transfer objects from a sink into a dishwasher. Such
a robot may be particularly sensitive to certain arrangements of
objects, like objects packed into bowls or dishes tightly stacked
on one another. We design a grammar that captures some of that
structure, so that we might begin to quantify how often and with
what spatial distributions those cases occur, and to detect those
cases at runtime via scene parsing.

The grammar setup we employ is illustrated in Figure 5. To
take advantage of the efficiency gains granted by the constraint
short-circuiting described in Section 4.3.5 and the lessons learned
from the singles-doubles grammar (Section 5.1), we architect our
grammar so that each equivalent set of nodes contains observable
geometry.

To test our parsing procedure, we hand-constructed a test dataset
of 30 example scenes using a custom virtual reality scene construc-
tion tool. Our sink grammar structure and parameters were chosen
to capture structure observed in these scenes.

5.2.1 Scene understanding and outlier detection. We show that we
can use this grammar to parse out structure from observed scenes.
In Figure 6, we illustrate parses of a handful of example scenes. We
use edge colors to illustrate which relationships in the scene are

Figure 5: An abbreviated form of the grammar used to de-
scribe sinks. The sink produces a random random num-
ber of objects at random poses within it, using Normal and
Bingham rules to dictate Object poses. Each object special-
izes into a Bowl, Plate, or TerminalCup. TerminalCups di-
rectly produce geometry, while Bowls and Plates have the
option of additionally producing more objects relative to
themselves using parent frame Normal and Bingham pose
rules. (The "Null" object produces no geometry, and only ex-
ists to make sure it’s possible to create a Bowl or Plate with
no contents.) The full supertree has 625 nodes, but only 43
equivalent sets.

understood by the model to have high or low probability. One of
these examples is an intentionally crafted "outlier" scene which was
designed to violate the placement style used in the "inlier" scenes. It
is apparent from the edge coloring of the parse of that "outlier" scene
that parsing finds this scene unlikely under the grammar model.
The parsing process indicates which edge is unlikely, offering a part-
level explanation that this scene is an outlier because it it places a
bowl too far outside of the sink.



Figure 6: (Left) Human-generated example environments of varying dish models in a sink, along with their optimal parses
from the MIP parsing procedure. In these plots, the edges of are colored according to the parsed rule probabilities: blue edges
aremore likely, green aremoderately likely, and red edges are unlikely. The color range in all images are the same. An "outlier
scene" handcrafted to intentionally violate model assumptions about the environment is also parsed for comparison. (Center
bottom) A plot of parsing runtime for scenes in this dataset, organized by the number of objects in each scene. (Right) Example
draws from the grammar before and after post-processing to make the samples physically feasible.

5.2.2 Sampling physically feasible scenes. Objects in physical envi-
ronments like a sink are always nonpenetrating and usually in a
static equilibrium. Unfortunately, these constraints are well beyond
the scope of a context-free grammar like ours to express. This short-
coming does not affect the ability to parse scenes, but in order to
produce samples from our grammar for visualization or simulation,
we would like our samples to be physically reasonable. To achieve
this, when we draw a list of objects from our model 𝑜 ∼ 𝑝 (𝑜), we
then attempt to move those objects to the closest configuration
that satisfies these constraints. We use SNOPT [Gill et al. 2018] and
Drake [Tedrake and the Drake Development Team 2019] to find the
closest non-penetrating arrangement, and then forward-simulate
the resulting non-penetrating scene until it is stable. This opera-
tion biases samples away from the true distribution induced by the
grammar, but produces satisfactory samples for visualization and
simulation.

6 DISCUSSION
We have presented a scene grammar model that is rich enough
to describe distributions over interesting scenes, but whose dis-
crete and continuous rules are sufficiently simple to enable scene
parsing by mixed-integer convex optimization. Our results indi-
cate that this technique works especially well on scenes in which
most parts of the scene grammar correspond to observed geometry,
but we ensure that our tools are powerful enough to infer modest
amounts of ambiguous continuous structure when needed. Unfor-
tunately, scenes that have latent nodes for which rotations must be
optimized rotations – e.g., latent oriented cluster centers – are fun-
damentally hard to parse due to the nonconvexity of 𝑆𝑂 (3) and the
nonconvex relationships those nodes can form with their children.
While careful grammar design can avoid this issue, it deserves to be

tackled head-on. One may consider mixed-integer nonlinear opti-
mization, especially in combination with neural proposal schemes
(e.g. [Ritchie et al. 2016]) for warm-starting, or other relaxations of
the SE(3) constraints.

A major limitation of scene grammar models in general is that
capturing scene-wide constraints – like all objects being in a physi-
cally feasible arrangement – is practically impossible to design into
a context-free grammar. In this work, we rely on post-hoc modifi-
cation of samples to prepare them for simulation or visualization,
but an HMC-based method like [Ritchie et al. 2015] is relevant as a
more principled alternative when unbiased conditioned samples are
needed. Fortunately, this constraint issue does not interfere with
the sort of density estimation, outlier detection, and scene parsing
we’ve discussed in this work.

One pain point in deploying these grammars is determining their
parameters. [Izatt and Tedrake 2020] demonstrates a variational EM
strategy that, given access to a reasonable accurate and performant
scene parsing procedure, can infer reasonable parameter estimates
from unlabeled scenes using a variational EM strategy. We have
performed pilot experiments that indicate that our parsing method
plays very well with that EM approach, which lends hope to making
design of these sorts of grammars more automatic, user-friendly,
and data-driven. With that in mind, we hope that the tools we
present in this work can move us closer to closing the system
identification loop on these difficult open world environments.
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A BINGHAM DISTRIBUTION
REPARAMETERIZATION

Given a 3 × 3 matrix of decision variables 𝑟 ∈ 𝑆𝑂 (3), we wish to
penalize with cost corresponding to the Bingham log-density

𝑍𝑀𝑇𝑞𝑞𝑇𝑀.

Here, 𝑞 is a quaternion corresponding to rotation 𝑟 , and 𝑍,𝑀 are
Bingham distribution parameters matrices. Naively encoding this
cost by adding decision variables for 𝑞 leads to a nonconvex param-
eterization, since the conversion from 𝑟 to 𝑞 is not linear.

Instead, we introduce 10 decision variables for the 10 unique
bilinear terms in the outer product 𝑞𝑞𝑇 :

𝑞𝑞𝑇 =

©«
𝑞20 𝑞0𝑞1 𝑞0𝑞2 𝑞0𝑞3
𝑞0𝑞1 𝑞21 𝑞1𝑞2 𝑞1𝑞3
𝑞0𝑞2 𝑞1𝑞2 𝑞22 𝑞2𝑞3
𝑞0𝑞3 𝑞1𝑞3 𝑞2𝑞3 𝑞3𝑞3

ª®®®¬
And enforce each of these constraints:

𝑞20 + 𝑞
2
1 + 𝑞

2
2 + 𝑞

2
3 = 1

𝑟 =
©«

1 − (𝑞22𝑞
2
3) 2(𝑞1𝑞2 − 𝑞0𝑞3) 2(𝑞1𝑞3 + 𝑞0𝑞2)

2(𝑞1𝑞2 + 𝑞0𝑞3) 1 − 2(𝑞21 + 𝑞
2
3) 2(𝑞2𝑞3 − 𝑞0𝑞1)

2(𝑞1𝑞3 − 𝑞0𝑞2) 2(𝑞2𝑞3 + 𝑞0𝑞1) 1 − 2(𝑞21 + 𝑞
2
2)

ª®¬
to ensure the (implied) quaternion is a unit quaternion that corre-
sponds with the desired rotation. The matrix 𝑞𝑞𝑇 assembled out of
these decision variables now enters linearly into the expression for
the Bingham log-density.
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