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Abstract—Motivated by the limitations of local object trackers,
we present a formulation of the underlying point-cloud object
pose estimation problem as a mixed-integer convex program,
which we efficiently solve to optimality with an off-the-shelf
branch and bound solver. We show that reasoning about object
pose estimation in this way allows natural extension to point-
to-mesh correspondence, multiple object pose estimation, and
outlier rejection without losing the ability to obtain a globally
optimal solution. We probe the extent to which rich problem-
specific formulations typically tackled with unreliable nonlinear
optimization can be rigorously treated in a global optimization
framework to provide reliable initializations for powerful-but-
local object trackers.

I. INTRODUCTION

The robotic perception community has placed significant
emphasis on designing and improving perception modules for
estimating the poses of objects in a scene. These modules
have enormous value for autonomous systems, in that they
reduce extremely high-dimensional sensor inputs to compact
and semantically loaded object state that can be consumed by
a broad range of motion planners and robot controllers.

Here, we are concerned with systems for estimating object
poses from point cloud information, e.g. from increasingly
ubiquitous RGB-D cameras. Myriad techniques perform pose
estimation without an initial guess, e.g. via sampling [11, 23,
26], feature extraction [7] [17] [31] [32] [35], template match-
ing [14], shape descriptors [1], and direct machine learning
[33]. However, because of the scale of the sensory data and
the difficulty of the global optimization, few of these tech-
niques run in real time, and those that do can’t make claims
concerning reliability and convergence to global optimality.
Given a reasonable initial guess, another broad class of pose
tracking techniques perform real-time object tracking. These
techniques have grown extremely mature, boasting support for
multiple articulated objects [28], deformable objects [29], and
support for tactile sensing [27] [20] [16] [18].

In this work, we present a study of the core optimization
problem that underlies many of these techniques. We show that
the pose estimation problem for point clouds can be viewed
through the lens of mixed-integer programming, and that doing
so leads to a problem formulation permitting optimization to
certifiable approximate global optimality. This formulation is
written in a general form that is extensible to handle explicit
outlier rejection and multiple models, and can consume the
output of other local and global pose estimation algorithms as

seeds to accelerate the global search – and in doing so, verify
the optimality of the output of those other algorithms.

II. PROBLEM FORMULATION

We will focus on an instance of the point-cloud object pose
estimation problem which involves finding the best parameters
of a rigid body model to explain the data available from a
sensed point cloud. In this problem, model parameters are
rotations R ∈ SO(3) and translations T ∈ R3. The point
cloud sensor samples a set of Ns points z = {si} from
the geometry of the world. Many techniques represent the
model as a collection of Nm point features, which leads to
an optimization penalizing a norm (shown here in the single-
object case):

min
R,T,C

∑
i∈[1,Ns]

∥∥Rsi + T −mC(i)

∥∥ , (1)

C(i) = argmin
j∈[1,Nm]

‖Rsi + T −mj‖ ,

where C(i) corresponds each scene point to the closest model
feature according to the desired norm.

Objectives like this one are reflected in many of the
pose estimation techniques in the literature. Key differences
between these techniques lie in the model representation
and distance function used; the method of optimization; and
further additions to the objective beyond optimization of just
a distance function.

A critical feature of this problem is that the correspondences
C and transformation {R, T} are each independently sufficient
to specify a solution to this problem. Given the correspon-
dences, the optimal transformation can be computed in closed
form [9]. Given the transformation, correspondences can be
backed out if desired via, e.g., closest point lookups on the
model. The famous Iterative Closest Point (ICP) algorithm,
from which many object trackers are inspired, performs Ex-
pectation Maximization by alternating between solving these
two problems [3] [5].

III. RELATED WORK

At a high level, two broad classes of approaches have
been used to attempt global optimization of this point cloud
pose estimation objective directly on the raw point cloud:



semidefinite programming (SDP) relaxation, and branch and
bound search.

SDP relaxation of the rotation and correspondence con-
straints constrain R to be within a convex hull of SO(3), and
allow a continuous relaxation of C [2]. This relaxation trans-
forms the difficult nonlinear problem to a much easier convex
one. This technique has proven very powerful for solving the
Procrustes Matching (PM) problem, [21], and similar SDP
relaxation can be applied to the pose estimation problem with
fixed correspondences (i.e. an alignment problem) [4]. Their
method boasts tightness up to a quantified noise threshold,
and is demonstrated aligning 800 points across 30 overlapping
point clouds.

Other methods perform branch and bound over the space of
rotations [13, 19, 25], or rotations and translations [34]. The
latter – GO-ICP – accomplishes our broad goal of providing
globally optimal pose estimates, but it does not explicitly rea-
son about correspondences. This manifests itself most clearly
in the handling of outliers: a user of GO-ICP must specify
the expected fraction of outliers ahead of time, and setting
the parameter incorrectly frequently results in invalid results.
Other techniques take direct advantage of the property that it is
easy to detect inconsistencies in small sets of correspondences
in order to prune branches in the search tree [10, 12].

The transform and correspondence information are tightly
coupled in the pose estimation problem. Thus, a formulation
that reasons about point correspondences and model transfor-
mations simulataneously stands to benefit from this interplay.
We present such a formulation based on mixed-integer pro-
gramming [24]. While even restricted class of mixed-integer
linear programs is itself NP-hard, MIPs that are convex in their
continuous and integer variables are amenable to branch and
bound search that can be very efficient, given the right problem
structure (e.g. mixed-integer linear programs (MILP)). These
algorithms are implemented by powerful off-the-shelf solvers
capable of solving problems with millions of variables and
constraints [15].

IV. MIXED-INTEGER PROBLEM FORMULATION

Our formulation of this problem uses a generalized mesh
model to represent the objects, for the reason that the mesh
model is significantly more compact than a traditional sampled
point model. Given a model defined by Nm vertices and Nf

faces, where each face is defined as an affine combination of
a subset of coplanar vertices, as well as

• scene points S = {si}, i ∈ [1, Ns],
• model vertices M = {mj}, j ∈ [1, Nm],
• a binary face membership map F ∈ {0, 1}Nf×Nm ,

the generic pose estimation problem is equivalent to finding
a rotation matrix R, a translation matrix T , a combination
matrix C ∈ RNs×Nm , and a face correspondence matrix f ∈
{0, 1}Ns×Nf that satisfy the following.

Fig. 1: Pose estimate produced by our MILP mesh model
formulation for a cube model of 12 triangular faces, given
15 scene points with 5 outliers. The solution shown here has
optimal cost that matches the optimal cost of the ground truth
solution. Optimality of this solution was certified to a MIP
gap of 5%. Top left: Ground truth pose. Top right: Pose
estimate using our MILP mesh-model formulation. Bottom:
Convergence time of upper and lower bounds across time for
the MILP solution.

minimize
R,T,C,f

1

Ns

∑
i∈[1,Ns]

∥∥Rsi + T −MCT
i,:

∥∥2
2

subject to R ∈ SO(3),∑
j∈[1,Nm]

Ci,j = 1, ∀i,

∑
k∈[1,Nf ]

fi,k = 1, ∀k,

0 ≤ Ci,j ≤ Ffi, ∀i, j,
fi,j ∈ [0, 1], ∀i, j.

The affine combination coefficient for the ith scene point and
jth model point Ci,j is constrained to be inactive unless one
the faces for model point j is active. Scene points can only
correspond to a single model face.

To relax this approximation to a mixed-integer linear pro-
gram, we approximate the R ∈ SO(3) constraint with a
piecewise convex outer approximation in the spirit of the
McCormick Envelope [22]. For each member of the rotation
matrix Ri,j , we introduce new binary variables to assign Ri,j

to one of Nk partitions of [−1, 1]. These binary variables
are used to activate region-specific constraints approximating
R ∈ SO(3), as presented in [6].



V. EXTENSIONS

A. Handling Outliers

Correct outlier handling is critical for object pose estimation
algorithms, as point clouds in the wild invariably include
unmodeled points from nearby objects and support surfaces
in the scene. We extend this formulation to allow scene points
to be explicitely classified as outliers.

We first switch from the L-2 to the L-1 norm in our error
metric, so that we can include the distance to each point in the
set of linear constraints. We introduce an intermediate variable
φi for each scene point si storing the L-1 distance from si to
the matched point on the model. Additional slack variables
αi,l are introduced to implement the l ∈ 1...3 absolute values
within the L-1 norm for each scene index i. We bound φi with
a constant maximum allowed L-1 distance φmax as a threshold
(and penalty) for classifying points as outliers. Finally, we add
a new binary variable oi for each scene point indicating that
that scene point is being considered an outlier.

In the mesh-model case, we now solve (for large M):

minimize
R,C

min
1

Ns

∑
i∈[1,Ns]

φi

subject to Relaxed R ∈ SO(3),

φi ≥ 1Tαi,l,

φi ≥ φmax oi,

αi ≥ +
(
Rsi + T −MCT

i,:

)
−Moi, (2)

αi ≥ −
(
Rsi + T −MCT

i,:

)
−Moi, (3)∑

j∈Nm

Ci,j + oi = 1,∑
k∈Nf

fi,k + oi = 1,

0 ≤ Ci,j ≤ F fi,
φi, αi ≥ 0,

fi,j , oi ∈ {0, 1}.

B. Handling Multiple Objects

Using similar machinery to that employed to correspond
to outliers, we can extend our formulation further to support
multiple objects. We can extend the formulation to simul-
taneously optimize over multiple rotations and translations
{R1, T1}, ..., {RNb

, TNb
} for Nb separate bodies. Given a map

B ∈ {0, 1}Nb×Nf , where the (i, j)th entry indicates if face j
is a member of body i, we can replace constraints (2) and (3)
with the disjunction

∀i ∈ Nm, k ∈ Nb :

αi ≥ +
(
Rksi + T −MCT

i,:

)
−M(1−Bk,:f

T
i,:),

αi ≥ −
(
Rksi + T −MCT

i,:

)
−M(1−Bk,:f

T
i,:).

where the expression M(1−Bk,:f
T
i,:) deactivates the constraint

if the current assignment f does not assign scene point i to a

face on body k.

C. Using Other Pose Estimation Methods as a Heuristic

A benefit of optimizing directly over the fundamental prob-
lem addressed by a wide class of pose estimation methods
is that we can take advantage of solutions generated by
those other methods by consuming them as candidate feasible
solutions. The branch and bound algorithm (and solvers that
implement it) is able to asynchronously consume feasible
solution guesses as nodes in the search tree. These new feasible
solutions provide upper bounds on the global optimal cost,
which are used to prune bad nodes. Because a significant
amount of search time is spent finding better feasible solutions
(as can be seen in the results in e.g. Figure 1), getting
better feasible solutions from faster but less-consistent pose
estimation methods can improve the runtime of the global
optimization. This ability also means that this formulation can
be used to post-process the output of notoriously unpredictable
methods, like neural networks, in order to guarantee stable
results without completely discarding the efficiency of the
original method.

Given the mesh model MILP formulation described above
and a candidate pose {R0, T0} generated by any method, one
can extract C, f , φ, and α via closest-point queries against the
mesh models. The means to extract the variables in the rotation
approximation vary, but in this case of the piecewise-linear
convex approximations, the value of R directly determines
which binary variables should be active.

VI. RESULTS

We executed several experiments to verify our formulation
on synthetic data. To perform these experiments, we imple-
mented both formulations in both C++ and Julia, relying on
the Drake [30] and JuMP [8] symbolic optimization libraries
respectively. We used Gurobi 7.0.2 [15] as a backend to solve
the resulting mixed-integer programs.

A. General Performance

We generated a synthetic point cloud from a cube model
with a side length of 1 unit. We generated 15 scene points,
with 10 sampled randomly from the surface of the cube at
its ground truth pose, and 5 more generated randomly in the
area around the cube. We included outliers in this test case to
illuminate how the solver performs in terms of progress of the
upper and lower bounds – without outliers, the optimal error
would be close to the trivial lower bound of 0. An optimal
fit in this configuration has an optimal average saturated L-1
error of 0.033: the 2

3 of points that are inliers have L-1 error
of 0, and the 1

3 of points that are outliers have L-1 error of
≥ φmax = 0.1 by construction.

The MILP mesh model formulation converged to the op-
timal solution and certified its global optimality to within
a MIP gap of 5% (Figure 1). This desired MIP gap is
tunable, and trades off with runtime. This gap of 5% was
chosen arbitrarily, and corresponds to an optimality gap of
0.033 × 0.05 = 0.00165 average L-1 error over the scene



Fig. 2: Pose estimates produced by our MILP mesh model
formulation for a cube model of 12 triangular faces, given 100
scene points, with a varying number of them being outliers:
Left: 50% outliers, converged in 50s. Middle: 80% outliers,
converged in 400s. Right: 90% outliers, converged in 2000s.
Rotations were frozen to the ground truth rotation in order
to produce these solutions in reasonable time. All solutions
shown here have optimal cost that matches the optimal cost
of the ground truth solution and align with the ground truth
pose. Optimality of these solutions were certified to a MIP
gap of 5%.

Fig. 3: Pose estimates produced by our MILP mesh model
formulation simultaneously fitting two box models to 100
scene points with no outliers. Rotations were frozen to the
ground truth rotations in order to produce these solutions in
reasonable time. Convergence took 1100s.

points. We used 4 binary variables per element of R. The
largest elementwise infeasibility of RTR = I being 0.020, and
det(R) was 1.002. These values reflect that the approximation
of R ∈ SO(3) is reasonably tight.

B. Outlier Rejection and Multiple Models

To highlight the extensions of our formulation, we generated
similar synthetic point clouds to test the outlier rejection and
multiple model cases, with results shown in Figures 2 and
3. To avoid unreasonably long runtimes, we had to constrain
rotations and limit the search to be over translations and
correspondences. R was thus constrained to take the value
of the ground truth rotation.

C. Upper Bounds from ICP

To demonstrate that solutions generated from other efficient
but non-global methods can be leveraged to make our global
optimization faster, we implemented an ICP-based heuristic for
generating candidate feasible solutions online during the opti-
mization. This procedure is directly inspired by GO-ICP [34].
Our solver maintains a queue of feasible solutions found by
the branch and bound algorithm, and runs point-to-plane ICP

Fig. 4: Comparison of the upper bound convergence behavior
of the MILP mesh model formulation with 50 scene points
and 0 outliers fitting a box model, with and without an ICP
algorithm generating novel feasible solutions in parallel. The
lower bound is omitted, as it is trivially 0 for the 0 outlier
case.

with proportional outlier rejection on each feasible solution
in a parallel thread alongside the global optimization solver.
If the ICP produces a solution better than the best currently
held by the solver, the ICP solution is handed to the solver
as a heuristically-derived feasible solution. This procedure
significantly improves runtime, as is shown in Figure 4.

VII. CONCLUSION

The formulations we present can be used to find certifiably
globally optimal solutions for small numbers of scene points
and outliers, even in the face of combinatorial complexity. The
solver is capable of finding and certifying the right solution,
even in very high outlier ratios, and can optimize with multiple
objects seamlessly. However, this technique requires further
work to scale to practical point clouds from experimental data.
Careful analysis of the time scaling of the algorithm with
respect to scene and model complexity is merited; preliminary
results support that this scaling is polynomial but potentially
high order. Another critical future direction is to compare the
outlier handling capability of this technique to other global
pose estimation algorithms via experiments on real data.

That this technique can so easily incorporate hypotheses
from other methods makes it a candidate for being an offline
verification technique for the results from other efficient but
inconsistent pose estimation methods. This functionality is
critical when considering the kinds of highly ambiguous point
clouds that result from highly cluttered scenes, and from tactile
sensing. Further, the formulation and its branch and bound
solution has the significant advantage that, by examining
partial relaxations of the problem, it either verifies that a
solution is globally optimal, or provides a search region that
may contain a better solution. Our formulation provides a
direction to extend that powerful search strategy to a more
general and extensible formulation of the point cloud pose
estimation problem.
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