
Tracking Objects with Point Clouds
from Vision and Touch

Gregory Izatt, Geronimo Mirano, Edward Adelson, and Russ Tedrake
CSAIL, Massachusetts Institute of Technology, Cambridge, MA

Email: {gizatt, geronm, adelson, russt}@mit.edu

Abstract—We present an object-tracking framework that fuses
point cloud information from an RGB-D camera with tactile
information from a GelSight contact sensor. GelSight can be
treated as a source of dense local geometric information, which
we incorporate directly into a conventional point-cloud-based
articulated object tracker based on signed-distance functions.
Our implementation runs at 12 Hz using an online depth
reconstruction algorithm for GelSight and a modified second-
order update for the tracking algorithm. We present data
from hardware experiments demonstrating that the addition
of contact-based geometric information significantly improves
the pose accuracy during contact, and provides robustness to
occlusions of small objects by the robot’s end effector.

I. INTRODUCTION

The ability to perceive and control objects as they experi-
ence contact is a fundamental skill for any robot interacting
with the world. Established approaches to manipulation tasks
rely primarily on cameras and optical depth sensors to track
object state. However, it is precisely when a robot’s manip-
ulator approaches an object that vision sensors are likely to
be limited by occlusion. Incorporating tactile sensing into the
pose tracker seems natural, but requires continued progress in
both the tactile sensors and the algorithms that take advantage
of their properties.

Many tactile sensors measure force at a single point or patch
of contact, providing potentially rich dynamic information but
limited geometric information. In this paper, we investigate
the application of a tactile sensor—GelSight—which provides
dense geometric information of objects that come in contact
with its surface and can thus provide the localization data that
is otherwise lost due to occlusion of distant optical depth sen-
sors. Because of the smaller view area, GelSight can provide
exceptionally fine geometric information, capturing surface
features as fine as 2 microns [8], and it can simultaneously
measure shear and slip [24]. We focus on utilizing this precise
contact geometry to enable precise object localization for small
manipulands.

This material is based upon work supported by NSF Contract IIS-1427050,
a National Science Foundation Graduate Research Fellowship under Grant
No. 1122374, as well as support from ABB, Draper Laboratory, MIT Lincoln
Labs, Shell, and the Toyota Research Institute.

Stereographic, structured light, and LIDAR sensors have
spurred fundamentally geometric point-cloud based ap-
proaches to robotic perception. Many variants of the Iterative
Closest Point (ICP) algorithm have been developed to locate
and track objects in point clouds [17]. In conjunction with
ICP, signed distance functions (SDF) have proven a valuable
tool for reasoning in a continuous and smooth way about the
geometries of objects and scenes, and have proven invaluable
in object tracking, and simultaneous localization and mapping
(SLAM) [2] [20] [15] [23].

In this paper, we show that the contact geometry infor-
mation from the GelSight contact sensor is compatible with
traditional ICP-based tracking techniques. By constructing an
object tracker that utilizes both precise, local contact geometry
from GelSight, and large-scale point-cloud data, we achieve
contact-aware object tracking that utilizes tactile data to output
greatly refined pose estimates. We provide experimental results
showing quantitative improvement to estimator performance
when contact geometry information is added, and demonstrate
the use of our system to track the grasping and manipulation
of a small tool.

II. RELATED WORK

ICP informs many modern visual tracking methods. These
methods have been extended to support articulated object
collections with internal joints. Klingensmith, et al. demon-
strate closed-loop servoing using articulated ICP for online
pose estimation [9], and Hebert, et al. utilize articulated ICP
for simultaneous manipulator and manipuland tracking [5].
Following a similar path, the Dense Articulated Real-Time
Tracking (DART) framework [20] performs articulated object
tracking from dense depth data in real time by leveraging
the signed distance function (SDF) to efficiently align an
articulated object model to an incoming stream of point cloud
data, while balancing a free space term. These online tracking
techniques show excellent performance when fed sufficiently
rich data. However, they are vulnerable to occlusion during
manipulation, when the robot’s hand is likely to cover the
object being manipulated, and are likely to lose tracking
without an additional sensing modality or physically-derived
constraint.

Fig. 1. The setup used in our experiments consists of an Asus Xtion RGB-D camera (A) observing a 6-DOF ABB IRB-140 arm (B). The end effector is a
Schunk WSG-50 parallel gripper with a GelSight-enabled custom set of fingers (C). A cube with attached optical markers (D), and a small screwdriver and
rectangular holster (E) are used as manipulands.

To address this issue, DART was extended to include
nonpenetration and binary contact constraints, which are made
continuous and efficiently enforceable via further application
of the SDF [19]. A parallel body of work employs particle
filters (PFs) to tackle exactly the ambiguity and nonlinearity
often inherent in contact state estimation. Koval, et al. take
advantage of the manifold structure of the state space of
contact to greatly reduce the critical particle starvation issue
facing PFs during contact events by resampling directly from
the contact manifold [11]. Zhang and Trinkle tackle the same
problem by using a constraint-based physical model to enforce
that particle updates stay physically feasible with respect
to nonpenetration and contact forces [25]. Li, et al. instead
use a PF to track discrete contact modes in the contact
graph, while performing continuous state estimation at each
particle with a Kalman filter using a process update derived
from the particle’s contact mode [14]. While particle filters
have better theoretical ability to represent the nonlinear and
potentially multimodal state distributions that arise through
contact events, they face difficult scaling issues even under
these optimizations. Klingensmith, et al. make progress on
this scaling by leveraging SDFs to avoid expensive explicit
parameterization of the contact manifold [10].

Tactile sensors take a wide variety of forms, but few
allow for recovery of dense local geometry. Modular sensors
designed to be used as fingertips include the SynTouch BioTac
[21], which discriminates contact over the entire sensor sur-
face, and the RightHandRobotics Takktile sensor [18]. Both
of these sensors output a single pressure signal, though the
Takktile sensor can be purchased in an 8mm tiled layout to

sense rough contact location. Sensors with greater ability to
resolve geometry are under active development. Jamali, et
al. discusses the design of sensing skin for the iCub robot’s
fingertips, which utilize tiled force sensors at approximately
1mm spacing on a flexible PCB [6]. Patel and Correll present
an alternate sensor design that combines distance and force
elements [16].

We observe that there is a bias towards contact discrim-
ination rather than recovery of dense contact geometry in
the majority of these sensors, though cutting-edge sensing
skins blur this distinction. The tracking algorithms surveyed
above were tailored to these discriminatory sensors. Schmidt,
et al. support a binary contact detection signal as an input,
and estimates contact locations that explain the binary contact
detections [19]. The contact manifold [11] [10] and contact-
mode switching [14] approaches are natural when used with a
discriminative sensor, but do not extend as naturally to dense
geometric contact information.

A key component of our solution to these localization
challenges is the GelSight touch sensor. This sensor is capable
of producing a rich contact depth map in the vicinity of a
contact, which is ideal for small-scale geometric localization
of objects [7] [12] [16]. Li, et al. demonstrate a GelSight
texture recognition pipeline for localizing objects in-hand,
which they use to accomplish a precise peg-in-hole task [13].
By incorporating the dense geometric information from a
GelSight sensor with an ICP-based articulated object tracker,
we build upon this work by offering a more general estimation
pipeline which supports arbitrarily articulated models and non-
planar contact surfaces.

Fig. 2. Top: Raw GelSight image of threads on a bolt. Middle: Gradient image generated by lookup table after calibration. Bottom: Final depth map.

Fig. 3. A GelSight sensor mounted as a finger on a gripper. The elastomer
surface (A) deforms when pushed against other objects. Deformations of the
surface are illuminated from multiple sides and captured with a webcam inside
of the sensor housing (B).

III. SENSOR OVERVIEW

Our tracker takes input from two primary sensors: a
structured-light dense RGB-D camera, and a GelSight contact
geometry sensor.

The GelSight sensor (Figure 3) consists of a thin elas-
tomer observed by a conventional color camera. The camera
captures deformations of the elastomer when the elastomer
is pressed against an object. The GelSight sensor produces
an RGB image which gives geometric information within a
11.5 × 15 × 2 mm volume. The sensor surface is backlit by
a different color of light from three sides, such that different
slopes of the sensor surface correspond to different colors on
the RGB image. By collecting the raw RGB images formed
by contacting the sensor with known calibration surfaces, we
learn a mapping from RGB points ∈ <3 to depth map gradients
∈ <2.

Following the technique of Li, et. al for producing a depth
map from the GelSight images, we use a 16× 16× 16 binned
lookup table which maps the color of background-subtracted
pixels to their corresponding gradient values [13]. For training
data, we roll a 2.5mm-diameter ball bearing around the sensor
and use machine vision to detect its location automatically
in each image. This technique allows us to easily generate
enough ground truth data to learn the mapping. At runtime,

we use this lookup table to determine the gradients in the full-
resolution image, then use a modified Poisson integration on
a downscaled gradient image to obtain the depth map.

Poisson integration of the gradient image gh×w×2 into the
final depth map ph×w×1 is performed via a large but sparse
unconstrained least squares optimization over the h×w pixels
p of the final depth map. For every horizontally neighboring
pair of points px,y and px+1,y , we add a horizontal gradient vi-
olation penalty ||(px+1,y−px,y)−gx,y,1||2. Similarly, for every
vertically neighboring pair of points px,y and px,y+1, we add a
vertical gradient violation penalty ||(px,y+1−px,y)−gx,y,2||2.
An additional set of terms enforces boundary conditions by
penalizing ke × ||px,y||2 for all x, y on the image boundary,
using a gain ke to weight this penalty against the integration
penalties.

We perform this conversion in real time using OpenCV [1]
and Eigen [4]. We have empirically found ke = 1.0 to yield
good results. Our pipeline can attain a resolution of 256-by-
186 tactels a rate of 12 Hz.

IV. TRACKING ALGORITHM

Our tracking algorithm takes as input a continuous stream of
RGB-D images from an off-the-shelf dense depth sensor, and
depth images from the GelSight sensor. We take inspiration
from the DART tracking system of Schmidt, et al. [20] [19]
and construct a single-hypothesis tracker based on an EKF. We
use the same formulation, but offer novel optimization strategy.
The formulation that follows in this section is repeated from
the original presentation of DART in order to motivate the
subsequent description of our optimization strategy.

A. Modified EKF Formulation

At a time step k, we estimate the state xk and its variance
Σk. For us, xk collects positions and velocities, including
floating base translations and rotations and joint angles.

Following a standard EKF formulation, we can use a
dynamic model of the scene to generate a predicted state and
variance x̄k, Σ̄k, using the previous estimated state xk−1 and
any relevant control inputs uk−1:

x̄k = f(xk−1, uk−1)

Σ̄k = J(xk−1, uk−1)Σk−1J(xk−1, uk−1)> +W

Here, f(xk−1, uk−1) is the process update, J its Jacobian,
and W additive process error. The simplest model would be

to assume the state never changes and the variance slowly
increases; this corresponds to using f(xk−1, uk−1) = xk−1
and W nonzero.

A standard EKF would call for the measurement update to
be performed by computing a predicted measurement h(x̄k)
and the measurement residual ỹk = zk−h(x̄k) using forward
measurement models. However, the forward measurement
model h(x̄k) is discontinuous in the case of a camera, and
would yield poor gradients and an ineffective approximate
Kalman gain. Thus, instead of the standard form, we write
the measurement update as a direct optimization of system
state over measurement probabilities derived from our sensors.
Using θ our decision variable, we write:

xk = argmin
θ

[− log(p(zk|θ)) + (θ − x̄k)>Σ̄−1k (θ − x̄k)]

Σk = H(xk)−1

Here, generalized sensor readings for time step k are written
zk. Since xk is a maximum likelihood estimate given the
negative log-likelihood function above, the variance update
takes the form of the inverse of the Hessian H(xk)−1 of that
negative log-likelihood function.

The specific optimization problem we will solve depends on
the construction of p(zk|θ) for our particular set of sensors.

B. Measurement model for point clouds: positive returns

A depth sensor produces a list of pixels immeas =
{pixelmeasi ∈ <}, and from each we can calculate a point
in space ptmeasi ∈ <3 using the camera calibration.

Following DART, we will suppose that the likelihood of a
point is normally distributed with respect to the signed distance
to the closest surface (signed distance function, SDF), which
depends on the system state θ. We assign a variance of σ
reflecting the depth sensor noise characteristics:

p(ptmeasi |θ) = Ke−SDF (ptmeas
i ;θ)2/σ2

K =
1√

2πσ2

The likelihood of the complete image combining all pixels
(indexed by i) is

p(image|θ) =
∏
i

p(pti|θ)

After taking the negative log likelihood, the expression sim-
plifies:

− log(
∏
i

p(ptmeasi |θ)) =
∑
i

− log(p(ptmeasi |θ)) =∑
i

− log(Ke−SDF (ptmeas
i ;θ)2/σ2

) =

1

σ2

∑
i

SDF (ptmeasi ; θ)2 + log(K)

We drop the constant term log(K), as it has no dependence
on our optimization variable θ.

C. Measurement model for point clouds: free space

As pointed out by Ganapathi, et al. [3], for each point pti in
the point cloud, we know that there must be clear line-of-sight
between the camera origin and that point. Thus, we know that
no surface on the proposed model can lie between that point
and the camera. If, for a given proposed model, we produce
a simulated depth image as a collection of depths imsim =
{pixelsimi }, then we want to constrain pixelsimi ≥ pixelmeasi .
Directly constraining this value yields poor performance, as
the simulated depth returns have sharp discontinuities around
object edges which hinder optimization. As such, Ganapathi,
et al. and Schmidt, et al. instead partition <3 into space known
to be free, and space out of sight of the camera, and constrain
all points on the surface of the proposed model to lie in the
second partition [3] [20]. The partitioning surface, Sobs, is
defined by the points in the measured point cloud; free space
lies in front of Sobs, and out-of-sight space lies behind it.

We suppose that the probability of simulated depth point
pixelmeasi is constant in out-of-sight space, and decreases
with distance to the out-of-sight space. To calculate this, we
will create another distance function, DFobs, which yields the
distance a given point has to move for it to leave free space.

Given DFobs, we specify the probability density to be

p(ptsimi |immeas) ∝ Ke−DFobs(pt
sim
i)2/σ2

Following similar steps as for the positive return case,
computing probability over all points in the simulated depth
image, taking the negative log likelihood, and dropping the
constant term gives

− log(
∏
i

p(ptsimi |immeas)) =
1

σ2

∑
j

DFobs(pt
sim
j ; θ)2

D. Likelihood model for nonpenetration

During manipulation experiments, we observed a need to
further constrain estimates to be physically feasible with
respect to penetration. Inspired by DART, we implement this
using a very similar distance-function-based penalty to that
used in the free space constraint. For each point ptsurfi

sampled from the surface of an object, we suppose that
the probability density falls off with the penetration distance
DFpen into the surfaces of the rest of the robot in configuration
θ.

p(ptsurfi |θ) ∝ Ke−DFpen(pt
surf
i ;θ)2/σ2

As before, computing probability over all points sampled
from the surfaces of objects of interest, taking the negative
log likelihood, and dropping the constant term gives

− log(
∏
i

p(ptsurfi |θ)) =
1

σ2

∑
j

DFpen(ptsurfj ; θ)2

V. OPTIMIZATION

At each step, we compute a measurement update given the
latest depth image from the RGB-D sensor, a depth image from
the GelSight sensor, and the last estimated state θ. Written out
in full, this update is:

xk = argmin
θ

1

σ2
kinect

∑
kinect pts

SDF (ptmeasi ; θ)2

+
1

σ2
kinect

∑
kinect pts

DF (ptsimi ; θ)2

+
1

σ2
gelsight

∑
gelsight pts

SDF (ptmeasi ; θ)2

+
1

σ2
gelsight

∑
gelsight pts

DF (ptsimi ; θ)2

+
1

σ2
nonpen

∑
surface pts

DFpen(ptsurfi ; θ)2

+(θ − x̄k)>Σ̄−1k (θ − x̄k)

As written, this optimization is nonlinear. It is particu-
larly tough because changing θ changes SDF (ptmeasi ; θ),
ptsimj , DFobs(ptsimi), and DFpen(ptsurfi) in complex ways
depending on the shape of the object surface. We solve this
problem by iteratively constructing and solving approximating
unconstrained quadratic programs (QPs).

A. Approximate minimization of SDF (ptmeasi ; θ)2

In every iteration, we calculate the closest point p̂ti and
corresponding body bodyi to ptmeasi in our model in config-
uration xk−1. These closest point calculations are performed
directly via the Bullet collision library, working on convex
decompositions of the robot’s collision geometry. We observe
that locally, SDF (ptmeasi ; θ)2 ≈ ||ptmeasi − p̂ii||2. Using the
Jacobians Jcam at the camera and Jbodyi at bodyi computed
via forward kinematics, we can minimize that term by finding

argmin
θ
||(ptmeasi − p̂ti) + (Jcam − Jbodyi)(θ − xk−1)||2

The minimizer for this expression corresponds to θ that moves
both the camera and bodyi to place the measured point ptmeasi

on the body’s surface.

B. Approximate minimization of DFobs(ptsimi ; θ)2

For ptsimi on the surface of bodyi, we calculate the closest
point p̂ti to ptsimi that is on or behind Sobs. Taking inspiration
from Ganapathi et al. [3], we compute DFobs and find this
closest point efficiently by decomposing DFobs into com-
ponents perpendicular and parallel to the camera view ray.
This decomposition allows us to avoid computing the full
3D distance function to Sobs. We calculate a 2D distance
function finding the nearest pixel of the image for which
pixelsimj ≥ pixelmeasj , which indicates how far we would
have to move bodyi laterally for it to leave free space; and a
1D distance function, which is simply pixelmeasj − pixelsimi ,

Fig. 4. Top: We use a GelSight sensor mounted on the end of a 6-DOF arm
to manipulate a simple object. The benchtop is observed by an RGB-D sensor,
and ground truth manipulator and object positions are provided by an external
motion capture system. Middle: The object pose estimate (solid gray) from
RGB-D data, alongside the ground truth object pose (transparent orange). A
1-cm vertical bias is injected into the RGB-D data for demonstrative purposes,
causing the object pose estimate to be approximately 1cm low. Bottom: When
the GelSight sensor is brought in contact with the object, the dense contact
geometry information is used to improve the object pose estimate, correcting
the 1cm bias in the vicinity of the contact.

which indicates how far back we would have to push bodyi
for it to leave free space. We set p̂ti to the shorter of these two

Fig. 5. Tracking error relative to the hand pose, in the vertical axis, as judged
against ground truth, of the simple object during manipulation by the GelSight
manipulator. Red: relative tracking error with no GelSight data used. Blue:
relative tracking error to the object’s centroid when GelSight data is used.
Green: relative tracking error to the near edge of the object when GelSight
data is used. A 1cm vertical bias was injected into the RGB-D point cloud data,
causing the object tracking to exhibit a consistent, approximately 1cm bias in
the absence of additional information. When the GelSight is brought in contact
with the object (at t = 0), the contact geometry information counteracts
this bias and improves tracking performance significantly. The tracking error
returns when the contact is removed (at t = 13). The improvement is strongest
in the vicinity of the contact sensor.

correspondences. We observe that locally, DFobs(ptsimi ; θ)2 ≈
||ptsimi − p̂ti||. Again using the Jacobians Jcam and Jbodyi at
the camera and bodyi, we can minimize that term by finding

argmin
θ
||(ptsimi − p̂ti)− (Jcam − Jbodyi)(θ − xk−1)||2

The minimizer for this expression corresponds to θ that moves
both the camera and bodyi to place the simulated depth point
ptsimi out of the measured free space.

C. Approximate minimization of DFpen(ptsurfi ; θ)2

For ptsurfi on the surface of bodyi, we calculate the closest
point p̂ti to ptsurfi outside of all other bodies. Locally,
DFpen(ptsurfi ; θ)2 ≈ ||ptsurfi − p̂ti||. Again using the Ja-
cobians Jcam and Jbodyi at the camera and bodyi, we can
minimize that term by finding

argmin
θ
||(ptsurfi − p̂ti)− (Jcam − Jbodyi)(θ − xk−1)||2

The minimizer for this expression corresponds to θ that moves
bodyi to move the point ptsurfi to the surface of the object it
is penetrating.

D. Solution

All of these approximate minimizers are unconstrained QPs
in θ. We solve this QP online by solving the necessary and
sufficient conditions for optimality as a linear system using
QR Factorization with column pivoting in Eigen [4].

VI. EXPERIMENTAL RESULTS

We have implemented this tracking framework, and present
experimental results of the tracker running on the testbed
documented in Figure 1. We employ a 6-DOF manipulator
with the GelSight sensor mounted as finger on a parallel

gripper. We observe the scene with an Asus Xtion PRO LIVE
RGB-D camera, and use an additional optical motion capture
system to recover ground truth for one experiment. The tracker
runs as a single thread on a high-end desktop computer, and
updates between 10 and 30 Hz depending on the complexity of
the scene. To increase the tracking performance, we calibrate
the RGB-D sensor position with an AprilTag of known global
position, and do not estimate the RGB-D sensor position
online. The collective state of the robot arm, attached GelSight
sensor, table surface, and manipulated objects are estimated
online by our tracker during teleoperation. This state includes
multiple pin joint articulations within the arm, and floating
base articulations for every object.

We present two experiments. The first demonstrates that
contact information from the GelSight sensor can be used
to quantitatively improve tracking performance for manipu-
lation. The second employs our tracking framework to track
manipulation of a small tool, and demonstrates qualitative
improvement of tool pose during the manipulation. Both exper-
iments run the same code, with the only difference being minor
parameter changes made between experiments to increase the
stability of the tracking of the small tool.

A. Demonstrating Quantitative Tracking Improvement

There are many sources of bias when fitting an object to a
point cloud, including the use of inaccurate object models and
poor camera calibration. However, as argued in Schmidt, et
al. [19] it is not global object tracking accuracy that matters,
but rather the accuracy of the estimated transform between
the robot’s hand and the object. A tactile sensor mounted
directly on the hand has the potential to dramatically reduce
this relative error. To demonstrate this, we use our tracker to
estimate the pose of a robot arm and simple object before and
after contacting the object with the GelSight sensor. To make
the effect of the GelSight data more clear, we induce a 1cm
vertical error in the hand-object relative pose by injecting a
1cm vertical bias in the estimated RGB-D camera position.
When the GelSight reports contact with the box, the tracker
updates the estimated object pose to better explain the detected
contact geometry (Figure 4). This correction dramatically
reduces the hand-object relative tracking error (Figure 5).

B. Demonstrating Small Tool Manipulation

Grasping and using small tools is a difficult task for many
robots due to the difficulty of pose estimation of the tool in
the robot’s hand. When the hand closes on an object, the
object is occluded from the external high-resolution vision
sensors that could otherwise have been used to estimate its
pose. This occlusion poses a serious limitation to the use of
tools like screwdrivers, whose precise in-hand pose is critical
for effective use. We demonstrate our tracker providing a pose
estimate for a small screwdriver while the robot is teleoperated
through extraction of the screwdriver from a holster. This
maneuver involves significant contact between the screwdriver
and holster, which causes the in-hand pose of the screwdriver
to shift continuously. Our tracker maintains an accurate pose

Fig. 6. A GelSight sensor on a parallel gripper on the end of a 6-DOF arm is used to manipulate a small screwdriver via teleoperation of the arm. Rendered
robot and object pose estimates are overlayed with the point cloud information from the RGB-D camera. The GelSight sensor surface is shown in red where
the depth is less than a threshold (indicating no contact), and green where depth is above the threshold (indicating contact). Our system successfully tracks
the position of the screwdriver throughout a sequence of manipulations to remove the screwdriver from a holster. This manipulation involved sigificant contact
between the screwdriver and holster, and caused the grasp of the screwdriver to shift significantly.

Fig. 7. The use of precise contact geometry information from the GelSight sensor enabled a significantly more precise pose estimation (Left) than was
achieved by the same tracker with GelSight disabled (Middle), or by the same tracker with GelSight data and nonpenetration constraints disabled (Right).
When the screwdriver was in the gripper, the grasped section was occluded from the RGB-D camera, preventing an RGB-D-only tracker from producing an
accurate fit. All three estimates pictured are the stable final pose produced by the tracker after the same manipulation sequence.

estimate of the tool throughout the procedure (Figure 6). This
experiment utilizes the same code as the qualitative tracking
experiment, with the only parameter tweaks being adjustment
of the weighting of the dynamics model and RGB-D camera
data. These parameters were reduced in this experiment to
improve robustness to transient outliers in the RGB-D data. We
provide, for comparison, tracking results acquired by running
the same tracker without GelSight data, and by running the
same tracker with neither GelSight data nor nonpenetration
constraints (Figure 7). Tracking fails in both cases due to a
combination of occlusion and the tight fit of the screwdriver
in the hand.

Side-by-side tracking performance from this experiment is
visualized in the accompanying video.

VII. DISCUSSION

Existing contact-aware object trackers work hard to incor-
porate sparse tactile data from discriminative contact sensors.
Koval, Klingensmith, and others calculate contact manifolds
on which poses must lie when a binary contact sensor is

active [11] [10], and Schmidt et. al were forced to estimate
the contact position as an additional state to incorporate
a binary contact detector into DART [19]. Object tracking
algorithms that operate on point clouds, in comparison, have
proven more scalable and mature. The accurate, dense, and
fundamentally geometric output of the GelSight sensor affords
an opportunity to apply these point cloud algorithms directly
to a tactile sensor, thus circumventing issues associated with
sparse contact sensing.

Our quantitative tracking experiment demonstrates that the
inclusion of GelSight data into an articulated object tracker
can significantly improve relative hand-object pose estimates.
Because the tactile sensor sits directly at the interface between
end effector and the object being manipulated, it is expected
to greatly decrease pose-tracking error during contact. Our
experimental data meets this expectation: the GelSight-enabled
tracker is able to recover from significantly inaccurate point
cloud data once contact is made, with the relative pose error
at the contacted edge falling from greater than 1 centimeter
to below 1 millimeter. The relative pose error at the object’s

centroid is also reduced, but unlike the edge being contacted,
the error does not fall to zero, because the contact geometry
information is local to the contact location and provides too
little additional information about the pose of the rest of the
object to overpower the biased RGB-D data. The small tool
manipulation example demonstrates a practical use of this
tracking technique, and highlights the importance of dense
geometric tactile sensing as a tool for fighting occlusion.
The control cases which ignored the GelSight data were
consistently unable to accurately localize the tool in the hand,
because the gripper occluded the part of the tool inside of the
grasp.

While our system benefits from the simplicity of treating
dense geometric tactile data as a point cloud, our approach
has limitations that will require further work to resolve.
Principal among these limitations is that the contact geometry
information available is typically small in volume. During a
grasp on an arbitrary object, the contact volume is likely to
encompass only a small fraction of the object’s total surface.
As many small regions on the object’s surface are likely to
look similar to one another, it is easy for the tracker to fall
into local minima. Thus, in the experiments in this paper,
we rely on the RGB-D data to provide a strong enough
prior to provide adequate initial guesses for our tracker to
converge when contact is made. There are many potential
solutions to this problem, including the extension to external
initialization by a single-shot pose estimator, multi-hypothesis
tracking, increasing sensor depth and size, and the introduction
of texture as an additional element in the measurement model
[13].

VIII. CONCLUSION

We extend the state-of-the-art object tracker DART to fuse
point cloud information from an RGB-D camera with accurate
and dense geometric contact data from a GelSight sensor. By
focusing on a contact sensor as a source of geometric data, we
can leverage dense tactile information identically to conven-
tional point cloud data within the articulated object tracker.
The application of our tracking system to fine manipulation
tasks shows that the inclusion of dense and accurate tactile
information is effective at solving occlusion problems. We
believe that geometric sensors like GelSight used in combi-
nation with point cloud object tracking techniques will enable
the execution of previously unachievable tasks spanning small
parts assembly, tactile exploration and search, and grasping of
soft and novel objects.

REFERENCES

[1] Bradski, G. The OpenCV Library, in Dr. Dobb’s Journal of Software
Tools, 2000.

[2] Bylow, E., Sturm, J., Kerl, C., Kahl, F., & Cremers, D. (2013). Real-time
camera tracking and 3d reconstruction using signed distance functions. In
Robotics: Science and Systems (RSS) Conference 2013 (Vol. 9). Robotics:
Science and Systems.

[3] Ganapathi, V., Plagemann, C., Koller, D., & Thrun, S. (2012, October).
Real-time human pose tracking from range data. In European conference
on computer vision (pp. 738-751). Springer Berlin Heidelberg.

[4] Guennebaul, G., et al. the Eigen Library, http://eigen.tuxfamily.org.

[5] Hebert, P., Hudson, N., Ma, J., Howard, T., Fuchs, T., Bajracharya, M., &
Burdick, J. (2012, May). Combined shape, appearance and silhouette for
simultaneous manipulator and object tracking. In Robotics and Automa-
tion (ICRA), 2012 IEEE International Conference on (pp. 2405-2412).
IEEE.

[6] Jamali, N., et al. A New Design of a Fingertip for the iCub Hand, in 2015
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2015.

[7] Johnson, M. K., & Adelson, E. H. (2009, June). Retrographic sensing for
the measurement of surface texture and shape. In 2009 IEEE Conference
on Computer Vision and Pattern Recognition, 2009.

[8] Johnson, M. K., Cole, F., Raj, A., & Adelson, E. H. (2011, August).
Microgeometry capture using an elastomeric sensor. In ACM Transactions
on Graphics (TOG) (Vol. 30, No. 4, p. 46). ACM.

[9] Klingensmith, M., Galluzzo, T., Dellin, C. M., Kazemi, M., Bagnell, J. A.,
& Pollard, N. (2013). Closed-loop servoing using real-time markerless
arm tracking. In Proceedings of the ICRA Humanoids Workshop.

[10] Klingensmith, M., Koval, M. C., Srinivasa, S. S., Pollard, N. S., &
Kaess, M. (2016). The Manifold Particle Filter for State Estimation on
High-dimensional Implicit Manifolds. arXiv preprint arXiv:1604.07224.

[11] Koval, M. C., Pollard, N. S., & Srinivasa, S. S. (2015). Pose estima-
tion for planar contact manipulation with manifold particle filters. The
International Journal of Robotics Research, 34(7), 922-945.

[12] Li, R. (2015). Touching is believing: sensing and analyzing touch
information with GelSight (Doctoral dissertation, Massachusetts Institute
of Technology).

[13] Li, R., Platt, R., Yuan, W., ten Pas, A., Roscup, N., Srinivasan, M. A.,
& Adelson, E. (2014, September). Localization and manipulation of
small parts using gelsight tactile sensing. In 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems (pp. 3988-3993). IEEE.

[14] Li, S., Lyu, S., & Trinkle, J. (2015, May). State estimation for dynamic
systems with intermittent contact. In 2015 IEEE International Conference
on Robotics and Automation (ICRA) (pp. 3709-3715). IEEE.

[15] Newcombe, R. A., Fox, D., & Seitz, S. M. (2015). Dynamicfusion: Re-
construction and tracking of non-rigid scenes in real-time. In Proceedings
of the IEEE conference on computer vision and pattern recognition (pp.
343-352).

[16] Patel, R. and Correll, N. Integrated force and distance sensing using
elastomer-embedded commodity proximity sensors, in 2016 Robotics:
Science and Systems, 2016.

[17] Pomerleau, F., Colas, F., & Siegwart, R. (2015). A review of point cloud
registration algorithms for mobile robotics. Foundations and Trends in
Robotics (FnTROB), 4(1), 1-104.

[18] Right Hand Robotics, TakkTile Products,
http://www.takktile.com/product:all

[19] Schmidt, T., Hertkorn, K., Newcombe, R., Marton, Z., Suppa, M., &
Fox, D. (2015, May). Depth-based tracking with physical constraints for
robot manipulation. In 2015 IEEE International Conference on Robotics
and Automation (ICRA) (pp. 119-126). IEEE.

[20] Schmidt, T., Newcombe, R., & Fox, D. (2014). Dart: Dense articulated
real-time tracking. Proceedings of Robotics: Science and Systems, Berke-
ley, USA, 2.

[21] SynTouch, BioTac, http://www.syntouchllc.com/Products/BioTac/
[22] Tagliasacchi, A., Schrder, M., Tkach, A., Bouaziz, S., Botsch, M., &

Pauly, M. (2015, August). Robust ArticulatedICP for RealTime Hand
Tracking. In Computer Graphics Forum (Vol. 34, No. 5, pp. 101-114).

[23] Whelan, T., Kaess, M., Johannsson, H., Fallon, M., Leonard, J. J., &
McDonald, J. (2015). Real-time large-scale dense RGB-D SLAM with
volumetric fusion. The International Journal of Robotics Research, 34(4-
5), 598-626.

[24] Yuan, W., Li, R., Srinivasan, M. A., & Adelson, E. H. (2015, May).
Measurement of shear and slip with a GelSight tactile sensor. In 2015
IEEE International Conference on Robotics and Automation (ICRA) (pp.
304-311). IEEE.

[25] Zhang, L., & Trinkle, J. C. (2012, May). The application of particle
filtering to grasping acquisition with visual occlusion and tactile sensing.
In Robotics and Automation (ICRA), 2012 IEEE International Conference
on (pp. 3805-3812). IEEE.

