Feedback Design for Multi-contact Push Recovery via LMI
Approximation of the Piecewise-Affine Quadratic Regulator

Weiqgiao Han and Russ Tedrake

Abstract—To recover from large perturbations, a legged
robot must make and break contact with its environment
at various locations. These contact switches make it natural
to model the robot as a hybrid system. If we apply Model
Predictive Control to the feedback design of this hybrid system,
the on/off behavior of contacts can be directly encoded using
binary variables in a Mixed Integer Programming problem,
which scales badly with the number of time steps and is too
slow for online computation. We propose novel techniques for
the design of stabilizing controllers for such hybrid systems.
We approximate the dynamics of the system as a discrete-time
Piecewise Affine (PWA) system, and compute the state feedback
controllers across the hybrid modes offline via Lyapunov theory.
The Lyapunov stability conditions are translated into Linear
Matrix Inequalities. A Piecewise Quadratic Lyapunov function
together with a Piecewise Linear (PL) feedback controller can
be obtained by Semidefinite Programming (SDP). We show that
we can embed a quadratic objective in the SDP, designing a
controller approximating the Piecewise-Affine Quadratic Reg-
ulator. Moreover, we observe that our formulation restricted
to the linear system case appears to always produce exactly
the unique stabilizing solution to the Discrete Algebraic Riccati
Equation. In addition, we extend the search from the PL con-
troller to the PWA controller via Bilinear Matrix Inequalities.
Finally, we demonstrate and evaluate our methods on a few
PWA systems, including a simplified humanoid robot model.

I. INTRODUCTION

Local stabilization of a fixed point or a trajectory of a
nonlinear system, such as a humanoid robot, can normally be
achieved by means of linearizing the dynamics and designing
a Linear Quadratic Regulator (LQR) controller [1]. However,
many critical tasks, such as recovery from a large external
push, require a humanoid robot to make and break contact
with its environment at multiple locations. For the purpose of
such tasks, the humanoid robot is best modeled as a hybrid
dynamic system. Unfortunately, there is a surprising lack of
principled design techniques for such systems.

Despite this lack of generally applicable techniques, hu-
manoid push recovery has been studied extensively in recent
years. Strategies based on the zero moment point (ZMP)
are often used to balance the biped robot [2], [3]. In [4],
three strategies were proposed for large disturbance recovery,
including center of pressure (CoP) balancing, centroidal mo-
ment point (CMP) balancing, and stepping. N-step captura-
bility, the ability of a legged system to come to a stop without
falling by taking N or fewer steps, was studied recently
[5]. While previous work on humanoid push recovery has
only looked at foot contacts, we are considering recovery
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Fig. 1. Left: The Valkyrie bipedal robot. Right: The simplified model for
Valkyrie. The hands may push against the walls.

strategies where the robot can also reach out with its hand
and push on the surrounding environment.

To address these issues, we propose to globally ap-
proximate the nonlinear hybrid system by a time-stepping
Piecewise Affine (PWA) system. Such a system can be
obtained by performing a first order Taylor expansion of the
nonlinear dynamics at many different points. PWA systems
for short are defined by partitioning the state-input space
into polyhedral regions and associating with each region
a different affine state update equation [6]. We adopt the
terminology in the hybrid system literature and call each
region a “mode”. Approximating a nonlinear system by a
PWA system is actually ubiquitous, and in theory any general
nonlinear system can be globally approximated by a PWA
system with arbitrary accuracy [7]. We are interested in
stabilizing the resulting PWA system.

A state-of-the-art planning technique that can be used to
tackle the problem of stabilizing PWA systems is based
on explicit Model Predictive Control (MPC) and Mixed
Integer Quadratic Programming (MIQP) [8]. This approach
enumerates all possible mode switch sequences over a certain
number of time steps. For example, {mode 2 at time 1, mode
2 at time 2, mode 1 at time 3, ..., mode 1 at time T} is one
such mode switch sequence. For each mode switch sequence
the approach solves a multi-parametric QP, and by comparing
the cost of all such solutions it finds the optimal solution. The
optimal controller is known to be piecewise affine and the
cost-to-go function piecewise quadratic [9]. This approach
performs only a few time steps of look-ahead and scales
badly with the number of time steps. Different from the
previous approach, we mainly seek a natural analogue of the



LQR control design procedure for the PWA system, which
shall be more scalable.

The study of the stability and stabilization of PWA systems
goes back decades. Hassibi et al. studied the stabilization and
control of PWA systems via a Linear Matrix Inequality (LMI)
approach [10]. Solving an LMI amounts to solving a feasi-
bility Semidefinite Program (SDP). A Piecewise Quadratic
(PWQ) Lyapunov function was used for the stability proof.
An ellipsoidal approximation to the state cells was used
to reduce the conservativeness of the LMI. However, they
considered continuous-time systems instead of discrete-time
systems. Rodrigues studied the state feedback and output
feedback controller synthesis of continuous-time PWA sys-
tems, in which the Lyapunov stability conditions were formu-
lated as Bilinear Matrix Inequalities (BMI), and methods for
solving this particular type of BMIs were developed [11].
Ozkan et al. studied MPC for discrete-time PWA systems
[12]. To reduce the complexity, they assume the mode switch
sequence is known. For controller synthesis, both Hassibi
et al. and Ozkan et al. use a common quadratic Lyapunov
function, which is conservative.

In this paper, we study the Piecewise Affine Quadratic
Regulator (PWAQR) problem, the design of the optimal
controller for PWA systems with quadratic cost. We adopt
an LMI approach, similar to [10], [12]. We solve an SDP
to get a PWQ Lyapunov function, a Piecewise Linear (PL)
feedback controller, and an upper bound on the cost of
any trajectory. However, the SDP depends on the initial
state of the system. In order to be general, we consider
a few variants of the SDP. We observe that one of the
variants is more natural than the others in that when it is
applied to the linear system, it appears to always produce the
unique stabilizing solution to the Discrete Algebraic Riccati
Equation (DARE), hence making it a true generalization of
LQR. Since our controller synthesis rule does not produce the
optimal controller that generates the minimum cost trajectory
for all initial states, we call it an approximation of the
PWAQR controller. Furthermore, we extend our search from
the PL controller to the PWA controller by means of a PWQ
Lyapunov function with linear and constant terms. In contrast
to the case of searching for a PL controller, searching for a
PWA controller requires a formulation involving BMIs, a
much harder problem. Finally, we demonstrate and evaluate
our methods on a few PWA systems, including a simplified
humanoid model (Figure [I)).

We choose the discrete-time instead of continuous-time
system modeling so that we do not have to deal with measure
differential inclusions as in [13], while discrete-time systems
still provide good approximations to real systems [14].
In addition, for discrete-time systems, the PWQ Lyapunov
function does not have to be continuous on the boundaries
of the polyhedron regions, and we do not have to consider
sliding modes as in the case of continuous-time systems [11].

We introduce the Lyapunov-based controller synthesis
for discrete-time PWA systems in Section II. Our main
contributions are designing the approximation of the PWAQR
controller (Section III), extending it from designing PL

controllers to designing PWA controllers (Section 1V), and
applying the rule to humanoid push recovery where the robot
makes and breaks multiple contacts with the environment
(Section V). Compared with [4], [5], our approach applied
to humanoid push recovery has the following advantages:
(1) works on non-flat terrain; (2) does not assume that
the CoM moves on a plane; (3) can incorporate richer
swing leg dynamics; (4) can handle a multi-contact scenario.
Compared with the approach based on explicit MPC and
MIQP, our method does not require enumeration of mode
switch sequences and hence scales better.

II. STABILIZATION OF THE PWA SYSTEM

In this section, we introduce the PWA system and the
Lyapunov-based controller synthesis for the PWA system.

A. The Piecewise Affine System

Discrete-time Piecewise Affine (PWA) systems are de-
scribed by the state-space equations:

Tr1 = Az + Biug + a;, for zp € X; CX (D)

where the state set X C R™ is a polyhedron containing the
origin, {X;};_, is a polyhedron partition of X, and uj;, € R™
is the control input. Z = {1,...,s} is the set of indices of
the state space cells. Zy C 7 is the set of indices of the state
space cells that contain the origin (There can be cases where
the origin is on the boundaries of several cells.). Let Z7; =
I\.I() Let S = {(Z,]) €I xTZ:Jux € Xiakarl S Xj}
be the set of all ordered pairs (7, j) of indices denoting the
possible switches from cell ¢ to cell j.

Assume X; = {x | E;x; > e;}. For later use, it is
convenient to outer approximate each cell X; with a union
of ellipsoids &, = {z | ||Fipz + fipl| <1}, p=1,...,m;:

AX; C G gip-
p=1

We assume x = 0 is an equilibrium of the system (1), and
a; = 0 for all 7 € Zg.

B. State Feedback Synthesis

We consider the synthesis of a PL state feedback controller

up = Kz, Vo, € &, 2

for the PWA system (I)) that stabilizes the origin, certified
by a PWQ Lyapunov function

V(z) =2 Pz, P > 0,Vz € X;. (3)

By Lyapunov theory, a sufficient condition for stability is
that

AV(I’k_._l,(ﬂk) = V(CEk_H) — V(.Tk) <0 4)

for any x; € X.
In the following, to simplify the notations, we denote A;+
B; K;, the closed-loop state matrix, by A ;. Since

AV (zpy1,25) = (Aqizr+a;) | Pj(Aairp+a;)— ) Pivg,



for z € A;, the condition (@) is equivalent to looking for
the matrices P; > 0 and K;, Vi € Z such that

Lk ' A;rl,inAcl,i - B A;E inai Tp 0
1 a;erAcl,i a; Pja; 1 ’
Vay € X, V(i,7) € S. (5)

A sufficient condition for (@) to hold is

A;rlinAcli_Pi A;inai o
{ a] PjA. o Pq; | <OV €S ©
By Schur complement, @) is equivalent to
P; * *
0 0 = [>0V(ij)es. D
A+ BiK; a; P!

J
From now on, for symmetric matrices, we sometimes omit
the symmetric halves and simply use stars * to represent
their entries. Introducing variables W; = Pi_l, Y, = K;W;,

and multiplying with [ng 9] from both sides, is
equivalent to

Wi * *
0 0 =
AW+ BY; a; W;

which is an LMI in (W Y').

However, since the inequality in (8) is strict but the matrix
on the left-hand side has a principal minor equal to 0, (8] has
no solution. We will see later that the PWAQR approximation
design procedure resolves this issue automatically. Now we
look for a better sufficient condition for (3)) that can be turned
into a feasible LMI.

The sufficient condition (6) is conservative, because it
requires the inequality in (3)) to hold for all z;, € R", while
we only need it hold for all z;, € A&;. Unfortunately, this
latter condition cannot be translated directly into semidefinite
constraints. However, we can still reduce conservativeness
while retaining an SDP formulation by outer-approximating
each of the state cells with a union of ellipsoids, X; C |J Eip.
We want the inequality in to hold for all =, € |J&;) ie.,
for all x, satisfying

TroT
< 0, 1 S S n;.
h][ﬁ% ffw—1) |1 p

K3

>0,V(i,j) €S, (8

By S-procedure, a sufficient condition for (5) becomes

Ag,inAcl,i — R A;rl inai
af PjAc, a; Pja;
FlF, *
Ai |: Z‘F b :| < Oa
b fipFip 1—|z;flp -1

By some algebraic manipulations, including Schur comple-
ment, similar matrix transformations, and the identities:

(I-E"E)y'=I1+E"I-EE")'E

EI-E"EY'=I—-EE")'E

where E can be a matrix of any size, (9) is equivalent to
W, * *
AW, + BY: Wj+ Bipa;a] *
Fi, Wi Bipfipai Bip(fipfip — 1)
Bip > 0,1 <p<mny,(i,j) €S,
(10)

>0,

which is an LMI in (W,Y, 8), where §;, = )\i_pl.
Notice that requires f;, fi—; — I > 0, which does not
hold for ¢ € Zy. For i € Iy, we simply require

AT PjAcl,i — P, <0,

cl,i
which is equivalent to

e

In summary, a PL state feedback controller that stabilizes
the origin can be obtained by solving the feasibility SDP:

find W)Y, 3
subject to W; > 0,7 € Z,
(11)) if ¢ € Zy,
if i € 7y,

and computing the state feedback matrices K; = Yinl,i €
7.

III. PL APPROXIMATION OF PWAQR CONTROLLER

In this section, we shift from merely stabilizing the
PWA system to additionally trying to minimize a quadratic
cost function, i.e., finding an approximate solution to the
Piecewise-Affine Quadratic Regular (PWAQR) problem. The
controller in consideration is still PL as in (Z) and the PWQ
Lyapunov function is still of the form (3).

A. Quadratic Objective and Its Upper Bound

We consider a quadratic objective (cost function) for the
controller synthesis of the PWA system. Define the cost
matrices Q; > 0, R; > 0 for the cell &;,i € Z. The quadratic
cost function is

oo

Z zp Qi Th + g Rigr) U, (12)
k=0

where i(k) € T is the index such that [z ,u,]T € Xjq).

Lemma 1. If there are matrices F; > 0 and K;,i € Z,

satisfying

AV (@pr1, ) + 24 (Qir) + Ki—l(—k)Ri(k)Ki(k))xk <0,Vay,
(13)

then the PL controller (2) stabilizes the origin asymptotically,

and the PWQ Lyapunov function V (z) = T P,z proves the

bound

oo

Z 2 Qi + up, Rigyur < xg Poyzo.  (14)
k=0

O



Proof: Since AV (zp11,x) < 0 for all 2y # 0, the
controller asymptotically stabilizes the origin.
Since CL';(QZ(,Q)+K;(rk)Rz(k)K1(k))ZEk < _Av(karl, ack).
Summing over the trajectory {z;}7 ),

Z zp Qi Tk + up Rigeyun
k=0

(oo}
= > 2 (Qigky + Ky Ry Ky
k=0

(oo}
Z —AV(zg11, 1)

k=0
e

= 3 V(@) - V()
k=0

IN

In the last step, the series Y .o o—(V(zgs1) —
V(xg)) converges to V(xzp), because the partial sum
o —(V(@rs1) = Viax) = V(0) — V(K + 1) and
V(K +1) — 0 as K — oo by asymptotic stability. O

Since AV (g1, x) = (Aclﬂ-xk+ai)TPj(AClyixk+ai)f
z} Py, for oy € X, is equivalent to

. T (Ajl,inAceri) N "
|: lk:| +Q_ir+KiTRiKi + |: lk:| <0,
a; PjAcl,i a; Pjai

Vo, € X;,Y(i,j) € S.
A sufficient condition for (T9) is

A;rlinAcl,i—Pi-i-Qi-l-K;rRiKi * <
7 T T = Oa
a; PjAc,i a; Pja;
V(i,j) € S. (16)

15)

By Schur complement, (T6) is equivalent to

W; * *

0 0 =
AW+ BY; a; W;
Q*w, 0 0
RV, 0 0

> 07W’L > O,V(l,]) € 87

O N ¥ % %
~NOX % % ¥

a7

Here we have non-strict inequality. The previous issue

raised by the strict inequality is automatically resolved.

Moreover, even if i € 7y and a; = 0, we can still use (I17).

We want to minimize the upper bound (I4) on the cost
function. This leads to the following lemma.

Lemma 2. Let V(2) = 2" Pz, Vo € Xj. A stable PL state
feedback that asymptotically stabilizes the origin with initial
state o can be found by solving the SDP (I8) for ~, W;
and Y;. K is then given by K; = Y;-W[l. The cost of any
trajectory {z}72, is bounded by ~.

i 18
%IVI[%I,IYi 7 (18)
subject to [7 zq ] >0,W; >0, and (17) O
! ro Wi/ =7 "7 7 '

Notice that the SDP (I8) depends on the initial state z.
This is not in the spirit of LQR for linear systems, and would
necessitate solving SDPs online, which is impractical. We
want an SDP that is independent of the initial state. This
will be discussed in detail later.

B. Ellipsoid Approximation

As before, using outer ellipsoid approximation, a sufficient
condition for (T3 is

W; * k%
AW+ BY; W; o+« S 0ieT (ii)es
Q;/QWZ 0 I x| = NAS 0)(%.7)6 )
R}y, 0 0 I
(19)
W; * * * %
A;W; + B;Y; W; + ﬁipaia;— * * %
FipWi ﬁipfipaz—'r ﬁzp(fzpf;; - I) X
Q\*w, 0 0 I«
R!?Y, 0 0 01
>0,8ip >0,Vp,i €1q,(i,j) € S.
(20)
So a counterpart for SDP (18) is the following SDP:
Wy @D
.
subject to T To s 0,w; >0,
zo Wi

and (19). 20

C. Variants of the Objective

As mentioned earlier, the SDP depends on the initial
state zg. Now we discuss some possible variants of the
objective that are independent of the initial state z.

Since we want to minimize the quantity x] Pioyxo for
generic xg, it is natural to minimize trace(H(o)), or more
generally, minimize trace(}, P;). Since P = W1, it is
natural to maximize trace()_, W;). If we do not care about
the upper bound on the cost and only want to find a
feasible controller, we can simply solve a feasibility problem.
Another possible objective arises if we let P; = 'yW{l,Vi,
and minimize xg Pjoyzo as in [12]. The inequality v >
x4 Pi(0)zo becomes the LMI

T
{1 Ty } >0

22
zo Wioy] — @2

This still depends on the initial state. We summarize the
variants of the objective below.
1) SDPI

SDP (T3).
2) SDP2

maximize trace(z Wi)
i=1
subject to W; > 0, and .

(23)



3) SDP3

minimize 0 (24)
subject to W; > 0, and .
4) SDP4

minimize ~y (25)

W; * * * %

0 0 x ok %
subject to |AiWi+ BiY; ~ya; W; x| >,

Qll /2W¢ 0 0 ~I =

R!?Y, 0 0 0 ~I

v >0,Y(i,7) €S,
and .

In practice, we use SDP2. It is experimentally verified with
a large number of test cases that when SDP2 is applied to the
linear system (s = 1), a special case of the PWA system, we
always get back exactly the normal LQR controller for the
linear system. This suggests that our choice of the objective
is more natural. However, we have not yet been able to prove
it, so we leave it as a conjecture.

Conjecture 1. Let xp11 = Axy + Buy, be a linear system.
Let @ > 0,R > 0 be cost matrices. Assume that (A, B)
is a stabilizable pair, and that (A, C) is a detectable pair,
where C' is a full-rank factorization of Q (i.e., CTC = Q
and rank(C) = rank(Q)).

Suppose W and Y is a pair of solutions to the SDP (23).
Let =W land K; =YWL

Suppose P, is the unique stabilizing solution to the
Discrete Algebraic Riccati Equation

X=A"TXA-(ATXB)(R+B'XB)"'(B"XA) +Q,
and the optimal gain matrix is
Ky =—(R+B"P,B)"'BTPA.
Then
P, =P, K, = K.
O

There are also ellipsoid approximation counterparts for
these SDP’s, which we do not explicitly write down here. We
denote the ellipsoid approximation counterparts of the SDP’s
by SDP1*, SDP2*, SDP3*, and SDP4*, correspondingly.

IV. PWA APPROXIMATION OF PWAQR CONTROLLER

So far, we have considered PL controllers in the ap-
proximation of the PWAQR controller. In this section, we
generalize the previous results to the synthesis of a PWA
controller

up = K;xp + b;, Vo, € X, (26)

for the PWA system (1) that stabilizes the origin by means
of a PWQ Lyapunov function of the full form

Viz) = ' P+ Qq;r:r + 7y, Vo € X;. 27)

The analogue of is

AV (Thy1, Tk) + T4 Qi) Tk
+ (K @r + bigry) " Riey (Kigryzn + biry) < 0, V.
(28)
Denote a;; = B;b; + a;. Then xp1 = Az, + Biug +
a; = AcliTk + el i
We obtain BMIs in the variables (W, ¢,r,Y,b) for con-
troller synthesis

W; * * k%
—quAcl,iWi +q; Wi —QQJTGCM +ri—r; ok k%
Acll,iWi Qeli W; x %
QW 0 0 I =

RzY; Rzb; 0 0 I

>0,(i,7) € S, (notice that A ;W; = A;W; + B;Y;)
W,>0,i=1,...,s,

(E:W,q; + ei)n > 0,1 € Iy, for some h depending on ¢,

¢ =0,7,=0,i €I (29)

The first inequality in ensures that V' decreases along
all state trajectories. In the third inequality, (-); represents
the h-th component of a vector. The local minima of the
PWQ Lyapunov function candidate V' are in the set

Q = {*qulv RS 7W9q(€}-

In order to stabilize the system to the origin, we require
—W,qi,© € I to be outside the region X;, i.e., —W;q; is
not in the set X; = {z | E;x; > ¢;}. So for each i € 7, at
least one of the inequalities in E;W;q; + e; < 0, viewed as
component-wise inequalities for a vector, should be violated,
and that is exactly the third inequality in (29). The fourth
inequality in guarantees —W,;q;, 1 € Zy to be the origin.
Together with the second inequality, they ensure that V' is
positive.

This is a system of BMIs, and we need to enumerate the
indices h(¢) for each i € Z; until a solution is found. Solving
the BMIs is NP-hard [15]. Nevertheless, there exist fast
heuristic methods for solving them, for example, based on
SDP [16]. However, the approach in [16] does not guarantee
to find the global minimum.

V. EXPERIMENT
A. Cart-Pole Balance Control

We consider the problem of balancing the cart-pole system
as shown in Figure [2] We want to show that SDP2 produces
the LQR controller for the linearized system around the fixed
point. Let ¢ = [2,0]", x = [¢",4"]" and u = f. We
are interested in balancing the simple pendulum around its
unstable fixed point x* = [0,7,0,0]" using only horizontal
force on the cart [17]. We assume there is no friction or air
resistance.



Fig. 2. The cart-pole system.

The manipulator equation is

H(q)i+ C(q,4)§ + G(q) = Bu

where

me + My
myl cos 6

lcosf 0
) - | 6w =, ng]

. |0 —mplésinﬁ b

TABLE 1
PHYSICAL PARAMETERS OF THE CART-POLE SYSTEM

Explanation Value
Me cart mass 10
mp pole mass 1
l pole length 0.5
g gravitational acceleration 9.81
At | discretization time interval | 0.05

Linearizing around the fixed point (x*,u*) =
([0,7,0,0]T,0) using Taylor expansion, and choosing
the physical parameters of the cart-pole system as described
in the Table . we get the discrete-time system dynamics
Xt41 = Axy + Buy, where

1 0 0.06 0 0

0 1 0 0.05 0
A= 0 0.0491 1 0 B = 0.005

0 10791 O 1 0.01

Choose the cost matrices Q = I, R = I;. Our SDP2
produces exactly the LQR optimal state feedback gain

K =[0.8027 —214.6740 4.2763 —46.4030] .

This again strengthens our belief that the Conjecture 1 is
true.

B. A 4-cell PWA system

We next consider the 4-cell PWA system as described in
[18]. We use this example to evaluate the controllers returned

e - SDP1
b - SDP2
IOPTE bt + SDP3
SRR SDP4

cooon«
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.

~
~
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~
~
~
~
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~
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*********************
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The minimum cost controller
varies with the initial states. SDP1 and
SDP4 are solved separately for every
initial state.

Fig. 3.  x-plane: x; 1 — Axy Fig. 4.
normalized vector field.

by SDP1, ..., SDP4. The dynamics of the system is

—0.04 —0.461 1
>
—0.139  0.341 ) T <0> ug, Eizy >0
0.936  0.323 1
Bz >0
0788 —0.049 | Tk T | o | e B2k 2
e 0.857 0.815 1
0. ' Eszy, >
0491 062 | T ) ue Eszi 20
—0.022 0.644 1
Eaxr >
0.758 0271 ) BT | o) e Baze 20

where the partitioning corresponds to the four quadrants of
the two dimensional x plane, i.e.,

B = [(1) ?}’EQZ [(1) —01 By = [01 —01}’E4: [01 (1) :
The vector field of the system in the two-dimensional x plane
is plotted in Figure 3] (Note that the vector field plot in [18]
is incorrect.)

We choose the cost matrices to be Q = Iy, R = 101;.
We simply let S = Z x Z and compute controllers using
SDP1, ..., SDP4. Since all cells contain the origin, ellipsoid
approximation is not useful here. We then compute the costs
of the trajectories generated by these controllers starting from
various different initial states, and mark the minimum cost

SDP1 SDP2

X2
S
X2

& & b o N & o

X2

& A b o N & o
X2

& & b o N & o

Fig. 5. Trajectories_generated by four controllers starting at the initial
states zo = [+4, £5] .
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Fig. 6. Stabilizing box Valkyrie. From left to right, the time stamps are 0, 5, 10, 15, 20, 25.

controller for the various initial states in Figure ] The initial-
state-dependent controllers (obtained from SDP1 and SDP4)
are solved separately for every initial state.

For example, starting from the initial state xzg =
[—4,—5] ", the costs of the four trajectories generated by
the four controllers are 145.3563,143.5464, 144.4355, and
145.3563, respectively. So the controller returned by SDP2
is the minimum cost controller for the initial state xg =
[~4,—5]" (minimum among the four controllers at hand).
The upper bound v computed in SDP1 and SDP4 is in
both cases 151.7155. The trajectories are shown in Figure [3]
Notice that although the trajectories corresponding to SDP1
and SDP4 are similar, the PL controllers are not exactly the
same.

Figure [ indicates that there is no “best controller” among
the four controllers. Every controller has the chance to
be the minimum cost controller starting from some initial
state. It is amazing that even the feasibility SDP, SDP3, can
produce the minimum cost controller at many initial states.
We cannot conclude that SDP3 is the best simply based on
the observation that it covers the most number of initial states
in Figure 4] it really depends on the dynamics of the system
and the choice of the cost matrices.

C. Simplified Humanoid Model

Finally, we consider the “box Valkyrie model” (Figure (7)),
a simplified 2-dimensional model for the Valkyrie bipedal
robot. It has four massless, velocity-controlled limbs, de-
picted by the four black dots inside the blue rectangles, and
a center of mass, depicted by the black dot inside the red
rectangle. The rectangles surrounding the limb dots and the
center of mass are just for better visual effects. It was called
”box Valkyrie” because it was situated in a box, not because
the limbs needed to be visualized as boxes. Two feet are on
the floor. The arrows pointing upwards are the normal forces
exerted by the floor. There are two walls at x = —0.5 and
x = 0.5, respectively.

The goal is to keep the center of mass at the origin. The
center of mass is controlled by the contact forces, which
are exerted upon those limbs that are in contact with the
environment. Different from previous work on humanoid
push recovery, we consider the recovery strategies where the
robot can reach out with its hand and push on the surrounding
environment.

We use the following contact model. When a limb p is in
contact with the wall or the floor, we model it using two
points: a non-penetrating point p; staying on the contact
surface, and a penetrating point p» penetrating the contact
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Fig. 7. The “box Valkyrie model”, a simplified 2-dimensional model for
the Valkyrie bipedal robot

surface, as shown in Figure [8] Both p; and p, are velocity-
controlled. The normal force Fy is proportional to the verti-
cal displacement between p; and ps, and the frictional force
Fy is proportional to the horizontal displacement between
p1 and py, ie., Fiyv = —kAz and Fy = —kAx. The blue
dashed lines in the Figure [§] are the boundary lines of the
friction cone. We keep p- inside the “reflected friction cone”
so that the frictional force lies in the friction cone. Once p;
or po goes outside the contact surface, we recombine them
into one point, p. In Figure [7} the two feet are in contact
with the floor, so there are two black dots at each foot. The
two hands are not in contact with the wall or the floor, so
there is only one dot at each hand.

The box Valkyrie model has 20 states and 8 control inputs.

P v F,=-kAz
o \ \ /

\ /
\ /
\ | fFFkAx
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/ Az
/ \
P,
/ /O \ \
]
Ax

Fig. 8. Contact model. Left: Without contact, a limb is modelled as a point
p. Right: In contact, p splits into two points, the non-penetrating point py
and the penetrating point pa.



Since the controller is linear in any specific mode, we cannot
expect the controller to lift a foot and put it down somewhere
else. So we simply put the feet at their equilibrium points in
the initial state. The left hand may touch the left wall, and
the right hand may touch the right wall. So the model is a
piecewise affine system with four modes: no hands in contact
with the walls, the left hand in contact with the left wall, the
right hand in contact with the right wall, or two hands both
in contact with the corresponding walls. The state-of-the-art
MIQP approach would have two binary variables for each
time step, one indicating if the right hand is touching the
wall, and the other indicating if the left hand is touching the
wall. It would have 4 possible modes at every time step, and
the number of mode switch sequences grows exponentially
with the number of time steps. Using our approach, we only
need to think about the set S, which is polynomial (quadratic)
in the number of modes. We use SDP2 or SDP2* to solve
for the controller with & = Z x Z. The sequence of poses in
Figure [6] shows that when the robot body is pushed to the
right and one hand is in contact with the wall, the controller
stabilizes the center of mass in approximately 30 time steps.

VI. CONCLUSION AND FUTURE WORK

We have derived a procedure for synthesizing controllers
that approximately solve the PWAQR problem. We applied
this method to a PWA approximation of a nonlinear hybrid
system representing a humanoid robot’s centroidal dynam-
ics in the plane. As opposed to the MPC and the MIQP
approaches, our method does not require enumerating the
mode switch sequences, and hence scales better.

There are some limitations. (i) For the humanoid model,
we do not take the centroidal angular momentum into
account. (ii) We cannot incorporate the PWQ Lyapunov
function of the full form into the LMIs for the controller
synthesis. So we have to express the Lyapunov stability
conditions as BMIs, solving which is NP-hard. Also, the
domain information, either the polyhedron or the ellipsoid
approximation, cannot be incorporated into the BMIs.

Since the PWAQR naturally does not have any constraints
on the control input, we impose the constraints on the control
inputs by limiting the state of the system. For example,
in the box Valkyrie model, we keep the position of the
penetrating point po inside the “reflected friction cone” so
that the frictional force always lies inside the friction cone.
In the future, another possible way to try is to incorporate
the force constraints into the system dynamics as in [13].

Another limitation of the current approach is that the
control law does not switch inside a polyhedron region X;,
while in practice it is common for the control to switch in the
same polyhedron region. The search for the control switching
surface might be done together with the search for the control
law in an alternative fashion. This will be a subject of further
investigations.

ACKNOWLEDGMENT

This work was supported by NASA Award
NNX16AC49A. The views, opinions and positions expressed

by the authors are theirs alone, and do not necessarily reflect
the views, opinions or positions of NASA. The authors also
thank Twan Koolen for many helpful comments.

REFERENCES

[1] S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai, F.
Permenter, T. Koolen, P. Marion, and R. Tedrake. Optimization-based
locomotion planning, estimation, and control design for the Atlas
humanoid robot. Autonomous Robots, 40(3):429-455, 2016.

[2] M. Vukobratovic, and D. Juricic, Contribution to the synthesis of biped

gait, Biomedical Engineering, IEEE Transactions on, (1):16, 1969.

M. Vukobratovic, A. A. Frank, and D. Juricic, On the stability of biped

locomotion, IEEE Transactions on Biomedical Engineering, pp. 2536,

January 1970.

[4] B. Stephens, Humanoid push recovery, Humanoid Robots, 2007 7th
1IEEE-RAS International Conference on, 2007.

[5] T. Koolen, T. de Boer, J. Rebula, A. Goswami, and J. Pratt

Capturability-based analysis and control of legged locomotion. Part

1: theory and application to three simple gait models. International

Journal of Robotics Research 31(9): 10941113, 2012.

Piecewise Affine Systems. In: Optimal Control of Constrained Piece-

wise Affine Systems. Lecture Notes in Control and Information Sci-

ences, vol 359. Springer, Berlin, Heidelberg, 2007.

E. Sontag, Nonlinear regulation: The piecewise linear approach, IEEE

Transactions on Automatic Control, vol. 26, no. 2, pp. 346-358, 1981.

[8] A. K. Valenzuela. Mixed-Integer Convex Optimization for Planning
Aggressive Motions of Legged Robots Over Rough Terrain. PhD thesis,
Massachusetts Institute of Technology, Feb 2016.

[9] A. Alessio and A. Bemporad, A Survey on Explicit Model Predictive
Control, Nonlinear Model Predictive Control, LNCIS 384, pp. 345369.

[10] A. Hassibi, S. Boyd, Quadratic Stabilization and Control of Piecewise-
Linear Systems, in the Proceedings of the American Control Confer-
ence, Philadelphia, Pennsylvania, June 1998.

[11] L. Rodrigues, Dynamic output feedback controller synthesis for
piecewise-affine systems, Ph.D. dissertation, Stanford University, CA,
2002.

[12] L. Ozkan, M. V. Kothare, C. Georgakis, Model predictive control
of nonlinear systems using piecewise linear models, Computers and
Chemical Engineering, Volume 24, Issues 27, 15 July 2000, Pages
793-799.

[13] M. Posa, M. Tobenkin, and R. Tedrake. Lyapunov analysis of rigid
body systems with impacts and friction via sums-of-squares. In
Proceedings of the 16th International Conference on Hybrid Systems:
Computation and Control (HSCC), Philadelphia, PA, 2013.

[14] D. Stewart and J. Trinkle, An implicit time-stepping scheme for
rigid body dynamics with Coulomb friction, in the Proceedings of
International Conference on Robotics and Automation, San Francisco,
CA, May 2000, pp. 162-169.

[15] J. G. VanAntwerp, R. D. Braatz, A tutorial on linear and bilinear
matrix inequalities, Journal of Process Control 10 (2000) 363-385.

[16] S. Ibaraki, M. Tomizuka, Rank Minimization Approach for Solving
BMI Problems with Random Search, Proceedings of the American
Control Conference, Arlington, VA, June 25-27, 2001.

[17] R. Tedrake. Underactuated Robotics: Algorithms for Walking,
Running, Swimming, Flying, and Manipulation (Course Notes
for MIT 6.832). Downloaded on July 11th, 2017 from
http://underactuated.mit.edu/

[18] D. Mignone, G. Ferrari-Trecate, M. Morari, Stability and Stabilization
of Piecewise Affine and Hybrid Systems: An LMI Approach, in
Proceedings of the 39th IEEE Conference on Decision and Control,
Sydney, Australia, December 2000.

[3

[t}

[6

=

[7

—



	Introduction
	Stabilization of the PWA System
	The Piecewise Affine System
	State Feedback Synthesis

	PL Approximation of PWAQR Controller
	Quadratic Objective and Its Upper Bound
	Ellipsoid Approximation
	Variants of the Objective

	PWA Approximation of PWAQR Controller
	EXPERIMENT
	Cart-Pole Balance Control
	A 4-cell PWA system
	Simplified Humanoid Model

	CONCLUSION AND FUTURE WORK
	References

