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Abstract— Optimization based motion planning provides a
useful modeling framework through various costs and con-
straints. Using Graph of Convex Sets (GCS) for trajectory
optimization gives guarantees of feasibility and optimality by
representing configuration space as the finite union of convex
sets. Nonlinear parametrizations can be used to extend this
technique to handle cases such as kinematic loops, but this
distorts distances, such that solving with convex objectives will
yield paths that are suboptimal in the original space. We present
a method to extend GCS to nonconvex objectives, allowing us
to “undistort” the optimization landscape while maintaining
feasibility guarantees. We demonstrate our method’s efficacy
on three different robotic planning domains: a bimanual robot
moving an object with both arms, the set of 3D rotations using
Euler angles, and a rational parametrization of kinematics that
enables certifying regions as collision free. Across the board,
our method significantly improves path length and trajectory
duration with only a minimal increase in runtime.

I. INTRODUCTION

Reliable motion planning is essential to developing and
deploying robotic manipulation systems. Such systems need
to produce efficient paths while obeying various constraints.
Optimization-based motion planning, which tries to mini-
mize an objective function while satisfying constraints, offers
a powerful paradigm to solve this problem. The decision
variables describe the robot’s trajectory, the objective allows
for choosing desired qualities in the solution, and constraints
on these decision variables define obstacle avoidance, dy-
namic limits, and other interesting task-specific constraints
such as coordinating arms in a bimanual system. However,
the power of these techniques is tempered by the need to
carefully formulate the optimization problems for reliability.

A manipulator’s configuration space is often inherently
nonconvex, and nonconvex trajectory optimization usually
cannot guarantee optimality (due to local minima), or even
feasibility. These guarantees are key to efficient and robust
systems that can be used for repetitive motions in safety
critical settings. Graphs of Convex Sets (GCS) [1], [2]
encapsulates the nonconvexities from obstacle avoidance
as discrete decisions, casting it as a convex optimization
problem. More concretely, it takes the inner approximation
of planning or configuration space represented as a series
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Fig. 1: Experiments include constrained bimanual motion
planning between shelves (top) and certifiable 7DoF KUKA
iiwa trjaectories between bins (below). The red path is the
original result, and the blue path is our improved result.

of intersecting collision free convex subsets. Then, it can
optimize over a graph (where vertices are a convex c-space
set and edges represent intersections between these sets) for
discrete paths through these sets and simultaneously optimize
for the shortest or fastest continuous path within each set.
Many relevant properties of the trajectory and its derivatives
can be transcribed into convex costs and constraints [2].

When the configuration space does not admit finite Eu-
clidean inner approximations, recent work has reformulated
the problem through parametrization to use GCS. For ex-
ample, Cohn et al. [3] tackle planning with an equality
constraint between end effectors of two manipulators us-
ing inverse kinematics (IK). This parametrization satisfies
the aforementioned equality constraint by construction [3].
Another useful application of parametrizations is the Euler
angles representation of 3D rotations, which enables plan-
ning over this space with GCS [4, §2.7.5]. Certified C-
IRIS [5] uses a rational parametrization of robot kinematics



to formulate an optimization problem to provide collision
free certificates in presence of task space obstacles.

Unfortunately, these parametrizations are non-isometric;
they distort space, so the shortest path in the parametrized
space may not be the shortest path in the original configura-
tion space. This leads to suboptimal results when the convex
objective used (path length costs) in the parametrized space is
a weak approximation for the true objective. Allowing GCS
to handle nonconvex objectives, such as the true objective
in the parametrized space, gives more modeling freedom,
widening the breadth of problems we can tackle while
maintaining guarantees.

This work considers GCS problems with nonconvex objec-
tives, while maintaining convex constraints. Specifically, we
use Projected Gradient Descent (PGD) to optimize such non-
convex objectives in a GCS approach. Using a gradient based
solver guarantees local optimality around the initial guess if
the objective is Lipschitz-continuous. Since we keep con-
straints convex, a small convex program can always project
infeasible solutions back to feasibility. Thus by exploiting
structured nonconvexity, our solver improves optimality of
solutions while maintaining feasibility guarantees.

For each of the three parametrizations mentioned ear-
lier (bimanual IK, Euler angles, rational kinematics), we
formulate and test a nonconvex objective against a con-
vex surrogate in the GCS optimization formulation. This
nonconvex optimization is treated as a postprocessing step,
improving upon the best solution from GCS. Our method
offers significant quantitative and qualitative improvements
to motion plans across multiple experiments: path lengths
and trajectory times shorten and visual artifacts of planning
in the distorted parametrized space are undone. Expanding
beyond the regime of undoing distortions, we also optimize
over a general nonconvex cost, spatial curvature, to further
improve the results from the bimanual experiment.

In the rest of this paper, we first review related work
on nonconvex trajectory optimization and give necessary
background on GCS and existing efforts to add nonconvexity.
Then, we describe our methodology, relevant implementation
details, and experimental set-ups. Finally, we present our
experimental results, and conclude with a brief discussion
of the limitations of our work and potential directions for
future research.

II. BACKGROUND AND RELATED WORK

Sampling-based planners such as Probabilistic Roadmaps
[6] and Rapidly Exploring Random-Trees [7] work very well
in practice for kinematic planning problems. By growing
finer approximations of the configuration space through sam-
pling, they will eventually find a solution if one exists. Some
methods, such as RRT∗[8], can even achieve asymptotic
optimality. However, these planners on their own struggle
to handle more complex objectives.

Using optimization to solve for the entire trajectory en-
ables more modeling freedom. Objectives can be used to
prioritize choice qualities (such as distance or speed) and
general constraints are essential for handling dynamics.

Roboticists implement optimization based motion planning
through a variety of different formulations, including direct
collocation [9], Augmented Lagrangian [10], and pseudo-
spectral methods [11]. These transcriptions can then be
solved using general purpose solvers such as SNOPT [12] or
gradient-based methods. For example, KOMO uses gradient
descent on an Augmented Lagrangian transcription [13], and
CHOMP uses covariant gradient descent [14]. Nonconvexity
will often be handled with clever initialization or stochas-
ticity, such as in STOMP [15]. cuRobo [16] moves all
constraints into the objective and leverages parallelization
to simultaneously consider many initial guesses. Across all
of these approaches, the formulation remains nonconvex,
lacking feasibility or optimality guarantees.

A. Graphs of Convex Sets

Graph of Convex Sets (GCS) presents a new strategy for
solving shortest path problems with continuous and discrete
decisions. Formally, a GCS is a graph, where each vertex
v has an associated continuous variable xv within a convex
set Xv , and each edge (u, v) is a convex function of xu and
xv . Finding the shortest path P through this graph can then
be formulated as a Mixed Integer Convex Problem (MICP)
with P and xv as decision variables [1, §5].

In motion planning, the intuitive application of GCS is
to plan through overlapping convex sets and then optimize
trajectories within the sets. These sets constitute the vertices
of P , and their union is an inner approximation of our
planning space. xv or the continuous variable within each
set then is the continuous trajectory through it. Like the
paper introducing GCS for Trajectory Optimization paper
(GCSTrajOpt) [2] we define xv as the control points of a
Bézier curve to parametrize the continuous trajectory. This
choice admits convex path continuity and differentiability
constraints, and collision-avoidance of the whole trajectory
is guaranteed [2, p.9]. To optimize for the shortest path,
GcsTrajOpt minimizes the distance between adjacent control
points as a proxy for minimizing the length of the curve [1].
We use the same objective for the convex relaxation and any
convex optimization we do.

The above discussion focuses only on the path, but
in GcsTrajOpt, xv has an additional parameter: a time-
scaling variable, h. We do not use this additional parameter
to avoid nonconvex acceleration constraints that use this
time parametrization variable to ensure our trajectories obey
physical limits. Instead we use TOPP (Time Optimal Path
Parametrization) [17] to generate timed trajectories from our
planned spatial paths. As any differentiable path can be
navigated under acceleration constraints by slowing down,
using TOPP helps maintain feasibility guarantees by keeping
nonconvexity out of our constraints. So, for a collision free
convex set Qi, our vertices are of dimension Qd+1

i given
Bézier curves of degree d with d+ 1 control points.

B. Parametrizing Configuration Space

In some cases the configuration space benefits from being
parametrized to enable building convex sets for GCS or



generating collision free certificates. In this sub-section we
review three such parametrizations and associated related
works that apply GCS to manipulation motion planning
problems. These parametrizations form the three main cases
we will tackle with our method in the rest of the paper.

1) IK and Constrained Bimanual Planning: Constrained
bimanual manipulation refers to two robot arms that move
with a fixed transform between their end effectors. This
nonlinear equality constraint in task space prevents using
GCS to plan in the full R14 configuration space. Cohn et
al. [3] use inverse kinematics to determine the joint angles
of a subordinate robot given the end effector position of the
leading arm. This parametrization collapses the R14 full joint
space over both arms into an R8 space formed by the leading
arm’s joints and a redundancy factor (required to generate
consistent joint angles for the subordinate arm). Thus, no
nonlinear equality constraints are required. However, trying
to minimize path length in the R8 effectively minimizes
the path length for the leading arm while ignoring the
subordinate arm. As a result, paths are visibly imbalanced
and favor the leading arm.

2) Euler Angles and GCS on SO(3): Planning over
SO(3), the set of 3D rotations, is an important motion
planning domain in robotics. As any roboticist knows, there
are many different ways to represent rotations. Rotation
matrices perfectly represent SO(3), but require bilinear con-
straints when included in optimization problems (constraints
to ensure the validity of the Rotation matrix). Cohn et al. [4]
explores different parametrizations to plan over rotations
with GCS: Euler angles, axis-angle, and quaternions. The
axis-angle and quaternion representations require piecewise-
linear approximations, and also require solving two planning
problems due to double cover of SO(3). Though Euler angles
are quicker to plan over, the original work observes planning
with Euler angles gives longer paths than the quaternion and
axis-angle approximations. This discrepancy is due to the
distortion of the underlying geometry of SO(3): distances
get arbitrarily large when approaching gimbal lock.

3) Rational Kinematics to Certify Collision Free:
The forward kinematic mapping (needed for checking if

a configuration is collision-free) is a trigonometric polyno-
mial. Amice et al. [5] transform this nonconvex relationship
into a multi-linear polynomial, using the tangent half-angle
substitution s = tan θ

2 , further implying

sin(θ) = (1− s2)/(1 + s2), cos(θ) = (2s2)/(1 + s2),

for θ ∈ (−π, π). They then use this change of coordinates
to formulate Semi-Definite Programs (SDPs) that can certify
non-collision with task space obstacles for regions in the
robot’s rational configuration space. This certification can
be done for individual convex sets [5], or even an entire
trajectory [18].

The rational parametrization of kinematics, similar to
the Stereographic Projection, is non-isometric. This is most
obvious when θ approaches ±π, as tan θ

2 asymptotically
approaches to ±∞. This means that in the parametrized
space, as joint values approach limits at ±π, distances grow

Fig. 2: A stereographic projection about N will project the
bottom of the black rectangle as being smaller than the top. A
planner operating in the post-projection (parametrized) space
and optimizing for short distances would favor the bottom
even though both the sides are equal in the original setting.
Image generated using code from [19].

arbitrarily. More generally, near zero, equidistant points in
the original space will be closer together in parametrized
space than the same points further away from zero. There-
fore, when running GCS in this space, a convex formulation
of distance in the parametrized variables will be inaccurate.
Specifically, we expect that if any joint is moving near ±π
away from the point of stereographic projection, any paths
planned will be sub-optimal due to the distorted objective.

For all of these cases, convex objectives being minimized
in GCS are in the parametrized spaces and therefore subject
to the discussed pathologies. The planner clearly would
benefit from the use of nonconvex objectives that represent
the true objectives in the original space. This work bridges
the gap between using nonconvex objectives and maintaining
guarantees of GCS due to convexity.

C. Nonconvexity and GCS

There is precedent for working with nonconvexity in GCS
or similar optimization frameworks. The original GcsTrajOpt
preprint [20] suggested using convex approximations to in-
corporate nonconvex objectives and constraints. In line with
this suggestion, existing GCS works using the parametriza-
tions from Subsection II-B use a convex surrogate objective
to approximate the optimal solution. While this approach pre-
serves convexity, the approximations are inherently heuristic
and must be hand-designed. Moreover, optimizing for an
approximation means that the optimality of the solution is
bounded by the quality of the approximation. The nuances of
the approximations can also lead to systematic pathologies,
such as the imbalance between arms in the bimanual planning
domain.

Another approach is to work with local convex approx-
imations of the nonconvexity. Clark and Xie [21] suggest
approximating the nonconvex costs using piecewise-linear
approximations and creating smaller sets within which the
objective is convex. This approach maintains convexity, but
may scale poorly when dealing with complex objectives and
finer approximations. Using a mix of biconvex alternation
and local convex approximation, Fast Path Planning [22]



handles a bilinear in a similar set-up as GCS. The noncon-
vexity in this problem is contained to the constraints and is
handled using alternation. The nonconvexity being a bilinear
nonconvexity is key to enabling this method. Our work aims
to enable a broader class of nonconvexity in the objective
functions.

Enabling GCS to handle nonconvexity without approx-
imation expands the method’s applicability and improves
solution quality. We restrict ourselves to nonconvexity in
only the objective to improve motion planning results while
maintaining guarantees. This restriction does prevent us from
handling acceleration constraints, due to their nonconvexity
in the GcsTrajOpt formulation. Von Wrangel [23] presents
specific strategies for handling certain common nonconvex-
ities in GCS, including acceleration constraints. But the
empirical success comes without strong guarantees.

III. METHODOLOGY

A. Nonlinear Changes of Coordinates

Each of the parametrizations discussed in Subsection II-
B distort the robot’s configuration space by introducing a
nonlinear change of coordinates. More formally, each domain
has a smooth (nonlinear) transformation α : Q → C that
maps x from the more useful parametrized space Q to a
point α(x) in the original configuration space C. Each of the
works used GCS to solve for a trajectory in Q, which then
is remapped to C using α to get an actual robot trajectory.
However, since α is a nonlinear transformation, the path with
minimum length in Q is not guaranteed to be the path of
minimum length in C.

The key limitation is that the convex path length cost in
Q can be arbitrarily far from the true objective: minimizing
distance in C. Using α enables changing coordinates back to
the original space C and defining this true (now nonconvex)
objective, but the sets and constraints stay convex in the
parametrized space Q.

For the constrained bimanual case, α : R8 → R14

is defined as the nonlinear analytic IK function with an
original configuration space of both arms’ joints (R14) and
a parametrized space of one arm’s joints and the self-motion
of the other arm (R8). For planning over SO(3) with Euler
angles, α : R3 → R4 is the standard conversion from
Euler angles to quaternions. For planning in the rational
parametrization of kinematics, α is defined as θ = 2 tan−1 s.

B. Formulating the Optimization

The nonconvex objective using α still needs to be ex-
pressed in terms of our decision variables xv , the control
points of the Bézier curve in Q. We cannot directly apply
α on xv to define a distance objective as the remapped
control points from Q do not define a same Bézier curve
in C. However, any points along the Bézier curve in Q will
still be along the same path in C, and any point along the
Bézier curve is a convex combination of its control points.
Therefore, a piecewise-linear approximation of the curve in
Q can be mapped to a piecewise-linear approximation in C
using α.

The representative cost can then be the length of this
piecewise-linear approximation of the curve. For the biman-
ual and rational configuration space, this length is the sum of
the Euclidean distance between each adjacent pair of points
in the full configuration space. For SO(3), we use the length
of the SLERP (Spherical Linear Interpolation) path since the
underlying geometry is a sphere. For better results, we square
the length of each segment. While this is not the same as
the distance between adjacent points, the squared objective is
much better numerically for the optimizer and in the limit of
an infinitely-fine discretization, these will both produce the
same answer [24, p.189]. A higher-resolution approximation
of the cost will yield a more accurate approximation of the
arc length cost, but require more computational effort. For
our experiments, we find that using 10 samples strikes a good
balance of accuracy and speed.

The GcsTrajOpt [2] transcription with the original convex
objective in the changed coordinates can be written as:

min
xv

v∑
i=0

d∑
j=0

||xij − xij−1||

s.t. xi ∈ Qi,

Qi ∈ P

where xij is the jth control point of the Bézier curve in set
Qi. Our proposed optimization is:

min
xv

v∑
i=0

10∑
k=0

f(α(xik), α(xik−1))
2

s.t. xi ∈ Qi,

Qi ∈ P

where xik is the kth sampled point in set Qi and f(a, b)
gives the distance between two points a and b in C. Note
that both optimizations live in Q with collision free sets
Qi ⊆ Q but have different objectives. This demonstrates
how our optimization problem is specifically structured to
isolate the nonconvexity in the objective function via the
parametrization α.

C. Projected Gradient Descent

To exploit the aforementioned structure, we use Projected
Gradient Descent (PGD) to maintain guarantees of feasibility
and optimality. PGD is an iterative first-order or gradient-
based solver with two parts: the gradient step and the
projection back into feasibility. PGD steps in the direction
of steepest decrease of the objective until a minimum is
achieved. If any step yields an infeasible configuration, the
solver projects the updated point back into feasible space.
Because the constraints remain convex, the projection, a
quadratic program finding the closest point in the set, solved
with Mosek [25], always returns a solution. Moreover, the
convergence of PGD is well-understood if the multiplication
factor of the negative gradient is less than or equal to
the Lipschitz constant of our objective function [26]. Our
objective landscapes do not admit Lipschitz constants, but
those that do can leverage this useful guarantee.



D. Solver Performance
Beyond theoretical guarantees, certain implementation de-

tails further improve the performance of our solver.
1) Initialization: As PGD finds local minimizers, the

solution highly depends on the initialization. Within the
GCS workflow, this initialization can come from two distinct
candidates: after or during the rounding procedure (the step
which projects the convex relaxation result to the near
optimal discrete solution). Post processing the solution after
rounding is a great way to quickly improve a solution to
a fixed discrete path in the parametrized space. We focus
on this method, but one could also use this nonconvex
optimization for each sampled path as an integral component
of the rounding stage.

2) Optimal Step Sizes: Our objectives are too complex
to easily identify the Lipschitz constant and theoretically
determine a good step size. To avoid experimental testing
and manual tuning of step size in classical PGD, we use a
variant that searches for and uses an optimal step size. In
particular, we use backtracking line search PGD [27], which
starts with an upper bound on the step size, and repeatedly
halves it until the Armijo condition of sufficient decrease is
met. This keeps the solver from overshooting minima while
maintaining speed in convergence.

3) Gradient Precompilation: Initially, gradient computa-
tions were the majority of the runtime. Precompiling gradi-
ents with JAX [28] moves this time cost offline, speeding
up the PGD iterations quick. By precompiling gradients for
each vertex individually, we ensure we can use the same
computations for any start and goal.

4) Affine Projections: With the gradients pre-compiled
and checking for feasibility being fast because our feasible
space can be expressed as a halfspace intersection, the
majority of the time cost comes from the QP projection
step. To reduce the number of QP solves and optimize
for speed, we initially project onto the affine hull of the
feasibility polyhedron. This projection satisfies any equality
constraints such as path continuity and differentiability. This
projection is much cheaper than the QP projection, since
we can efficiently compute the affine hull. (All equality
constraints are known explicitly, and the convex sets making
up the GCS are positive volume, since they are produced by
the IRIS-NP algorithm [29].) In some cases (especially with
smaller step sizes), this projection will suffice to push the
solution back into feasibility, saving time for the solver. If
the point is still infeasible, the solver runs the full QP.

5) Convergence Criteria: The solver tracks the moving
average of the cost over the last 5 iterations, and terminates
when the average changes by less than 0.5%. The moving
average prevents us from terminating early; the cost occa-
sionally jumps for a single iteration before continuing on a
significant downward trend. For cases that do not converge,
the solver terminates after a maximum of 70 iterations. We
hypothesize this occurs when the projection step increases
the cost too much, indicating a high Lipschitz constant. In
practice for these experiments, optimizations that converged,
typically converged well before 70 iterations.

E. More general nonconvex objectives: Curvature

So far the methodology has focused primarily on the
special case of eliminating the distortion caused by non-
isometric parametrizations. However, we can also optimize
for any smooth nonconvex objective, expanding our model-
ing power. Some examples of useful nonconvex objectives
would be minimizing curvature (or other higher-order path
derivatives) or penalizing proximity to obstacles.

Penalizing the curvature of the path

κ =
Ä
||x′||−3

ä»
||x′||2 ||x′′||2 − (x′ · x′′)

2

should help TOPP produce better trajectories, as high curva-
ture paths contain tight turns, that require a slower traversal
to stay within acceleration limits. Although such paths might
be longer than those produced by a pure shortest-path tra-
jectory, they can be traversed more quickly.

Similar to the cases focusing on undistorting paths, we
define this objective over sampled points along the path de-
fined by xv . Given sampled points, we calculate the curvature
of each point and then apply the RealSoftMax (a smooth
maximum function) to approximate the maximum curvature
of our paths. We expect paths under this optimization will
have higher path length but lower duratrion when time-
parametrized by TOPP.

IV. EXPERIMENTS

In this section, we detail the results collected on the three
motion planning domains of interest: constrained bimanual,
SO(3) with Euler angles, and rational kinematics. For all of
our experiments, we solve the GCS problem with the original
convex objective first and then run the projected gradient
descent to improve the solution. Interactive recordings of
all trajectories and other results are available online at
https://shrutigarg914.github.io/pgd-gcs-results/

A. Constrained Bimanual Motion Planning

In this experiment two iiwas navigate a shelf while keeping
the transform between end effectors constant, as if they were
jointly carrying an object. This setup, shown in Figure 1,
matches the setup in [3]. We evaluate the PGD solver on
the key start and goal pairs from [3]. The comparison of
these benchmark paths before and after optimizing for the
nonconvex objective is presented in Table I. The “GCS” col-
umn indicates using the convex R8 objective, the “Distance”
column indicates using the nonconvex R14 objective, and
the “Curvature + Distance” column indicates a linear com-
bination of the nonconvex R14 objective and the nonconvex
curvature cost with a ratio of 8 to 0.01 respectively. While
the R14 objective results in the shortest paths, regularizing
for lower curvature lengthens paths, but shortens traversal
times after TOPP’s re-timing. Visually, minimizing this joint
objective leads to more rounded paths, as shown in Figure 4.

To quantify the difference in distance traveled between
the arms, we define the imbalance of a trajectory as (ds −
dc)/(ds + dc), where dc is the distance traveled by the
controlled arm and ds is the distance traveled by the subor-
dinate arm. When both arms travel comparable distances, the

https://shrutigarg914.github.io/pgd-gcs-results/


imbalance distribution centers around 0. When one arm trav-
els much longer distributions than the other, the imbalance
metric approaches ±1 in magnitude. As indicated by Table
I this imbalance metric approaches 0 after post-processing
under the R14 objective. This shift is also apparent in
Figure 3 as the path becomes more centered. The imbalance
for the joint curvature and distance optimization is higher
than the R14 distance optimization indicating that smoother
paths are more imbalanced. This asymmetry likely comes
from the same-handedness of the iiwas.

TABLE I: Optimizing over the nonconvex cost improves
metrics for the three genchmark trajectories.

Top to Middle
GCS Distance Distance + Curvature

Trajectory Time 4.889 3.469 3.243
R14 Path Length 4.241 3.766 3.884
Imbalance 1.046 0.317 0.448

Middle to Bottom
GCS Distance Distance + Curvature

Trajectory Time 5.326 3.08 2.99
R14 Path Length 3.325 3.175 3.247
Imbalance 0.386 0.219 0.248

Top to Bottom
GCS Distance Distance + Curvature

Trajectory Time 7.48 4.263 3.99
R14 Path Length 5.622 5.048 5.13
Imbalance 0.493 0.199 0.217

Fig. 3: Paths become more centered because the nonconvex
objective used by the PGD considers the distance traveled by
both arms, rather than just the controlled arm in the original
convex GCS objective.

For a more comprehensive analysis, we randomly sample
100 start and end points from the valid and reachable
configuration space. Paths generated are on average 20.60%
shorter in the R14 configuration space after applying our
postprocessing step. The total time taken to navigate these
paths is on average 31.02% shorter. The imbalance shifts
towards 0, indicating that the paths for the subordinate arm
are more comparable to the leading arm after the nonconvex
optimization. These improvements took an average of 0.0554
seconds of compute (approximately 13.7 iterations that took
varying time based on length and complexity of the path)
in addition to the 2.133 seconds that the surrogate convex
optimization takes.

80% of the runtime is solving QP projections. The affine
projection is only useful when step size is fixed. When using
backtracking to determine step size, the projection onto the
affine hull is almost never sufficient. This observation indi-
cates to us that at our boundary the gradients are consistently
pointing outward. This is not unexpected, since the collision-
avoidance constraints are active at the boundary, and moving
closer to obstacles generally allows a shorter path length.

Fig. 4: Paths optimized jointly for curvature and distance
result in quicker trajectories, even though they are longer (as
seen near the top). Note that the curvature-regularized path
does not pass as close to the edge of the shelf.

B. Planning over SO(3)

To plan shortest paths over SO(3), we set up the same
charts and convex regions as in [4] for the Euler angles,
quaternions, and axis-angle parametrizations. The latter two
leverage piecewise-linear approximations of the original
SO(3) space and are there for reference. We run PGD on the
Euler angles setting only. For Euler angles, the GCS graph is
fully connected and is optimizing Euclidean distance within
each set, so the shortest path between any two points will be
a linear path, regardless of the order of our Bézier curves.
For time-efficiency, we generate order one GCS solutions
and initialize the PGD solver with the control points evenly
spaced along each line segment.

Given there are no obstacles, SLERP gives the shortest
path between any two orientations in this setting. We use it
for a closed-form ground truth distance for each start and
goal pair. Figure 5 shows the distribution of relative error in
the path length when using the three representations of SO(3)
to plan across 125 random start and goal pairs, along with
the PGD post-processing on the Euler angles paths. The dis-
tribution of error for Euler angles shifts significantly closer
to 0 after running PGD on it. The relative error decreases
by 42.5% on average. This improvement has a bimodal
distribution: for some paths the PGD greatly improves the
solution, whereas for others, there is little improvement to
be made. The latter might be local minima, where a different
discrete path admits a better trajectory.

These improvements require on average an additional
4.08 seconds on top of the 17.28 seconds to generate the
original solutions for the Euler angles. Of this time, the



solver only was running for 0.62 seconds. The remaining
3.46 seconds were set-up time to re-use the vertices and
Bézier curves from the original solution; this time could be
further optimized. Comparatively, the time to generate GCS
paths when planning with axis-angles is 41.10 seconds. At
a lower resolution quaternions take 16.73 seconds, but for
higher resolutions, their solve time is on the order of minutes.
Our method offers a good payoff between finding shorter
paths with Euler angles while still being faster than the more
accurate axis-angle and quaternion representations. Euler
angles are also currently the only parametrization compatible
with the IRIS-NP algorithm [29] for growing collision-free
regions in the presence of obstacles.

Fig. 5: Comparing the distributions of relative error of paths
with respect to the SLERP distance between start and goal
orientations. The PGD significantly improves the results of
the Euler angles parametrization.

C. Rational Parametrizations of Robot Kinematics

We have two experimental settings that use the rational
kinematics parametrization. One is a 3 degree-of-freedom
iiwa (four of the joints are locked) that moves within a
vertical 2D plane. The other is a 7 degree-of-freedom iiwa
mounted on a table, as shown in Figure 1. The nominal
position (i.e. point of projection) for both iiwas is when
the arms stand straight up with all joint angles at 0. All
the regions in the 3DoF case are certified to be completely
collision-free using the Certified IRIS algorithm [5]. All the
trajectories in the 7DoF setting can be certified using [18].

For the 3DoF planar iiwa, visually the paths become
less biased towards the point of projection. For example, in
Figure 6, the original paths in red spike towards the nominal
position, but after the PGD refinement, the end effector
has less extraneous motion. Quantitatively, when measured
across 100 randomly chosen start and goal points navigating
the shelves, most paths do not have a lot of improvement to
be made. On average, the paths get about 0.2% shorter and
most terminate within 7 iterations and 0.22 seconds. For the
specific path in Figure 6, the numerical improvement is a
1.2% shorter path length. Weaker numerical results for this
case is expected as the distortion of configuration space is
most intense near the boundaries of the configuration space

(i.e. near the joint limits), so the average path does not have
a lot of room for improvement.

For the 7dof iiwa, the projected gradient descent on ran-
dom paths in configuration space between the bins results in
3.89% shorter in path lengths and a 4.74% shorter trajectory
times. When one or more joints travel near their limits, these
improvements are higher. For example, Figure 6 shows a
trajectory that gets 10.8% shorter and 17.6% faster.

Fig. 6: The 3DoF iiwa (right) shows a decrease in skew
towards the nominal position as compared to the original
GCS solution (in red). The 7DoF iiwa (left) shows an im-
provement in path length before and after the post processing
for a random selection of start and goal points.

V. DISCUSSION

We have presented a method to solve GCS problems with
nonconvex objectives, granting greater modeling freedom
and yielding better motion plans. By keeping the constraints
convex, we maintain the feasibility guarantees of GCS and
avoid the inconsistency typical of nonconvex optimizations.

Our method is particularly effective when accounting for
the distortion from nonlinear parametrizations of planning
spaces. In constrained bimanual motion planning, our post-
processing step produces paths that are more balanced be-
tween the arms, 20% shorter on average, and 31.02% faster
after being time-parametrized. For Euler angles, the paths are
40% shorter on average. In addition to undistorting paths
from parametrized spaces, the approach enables the opti-
mization of a path based on general nonconvex objectives.
Optimizing over curvature, we find paths with greater radii
of curvature, facilitating quicker traversal.

For rational kinematic parametrizations, the lack of signifi-
cant improvement in path length in the average case suggests
that the distortion from the stereographic projection is not
usually a major problem. Thus, the benefits of planning in
this parametrization of configuration space (enabling rigor-
ous certification) plausibly outweigh the minor costs. In the
worst case, our method can produce strong improvements,
and when there is not much space for improvement, the
solver terminates quickly



An obvious limitation of the proposed methods is the
added computation time. We find the time taken by the solver
quite satisfactory given that we used a Python based custom
PGD. The use of commercial solvers, code improvements,
and a compiled language could make a mature implementa-
tion much faster. In cases where a solution requires strong
guarantees and high quality trajectories (such as in path
planning and control of surgery robots), a post-processing
step will certainly be worth the additional runtime.

Future work can include larger scale parallelization, espe-
cially during the rounding stage. Just as cuRobo has shown
incredible results by solving many nonconvex trajectory
optimization problems in parallel, our post-processing stage
could be integrated with a parallel rounding scheme to get
better solutions more quickly. This step could also be used
in an Anytime Motion Planning framework [30], where the
later parts of a trajectory are refined as the earlier parts are
traversed. Another possibility is using the nonconvex objec-
tives with incremental search methods such as GCS* [31].

Another line of work might focus on designing better
convex surrogates. These convex surrogates still play an
important role during the convex relaxation and initialization
stages for the nonconvex optimization. When there are clear
deficiencies in the convex surrogate (such as in the original
constrained bimanual case), one can try to hand-design a
better surrogate. When it is unclear how to make a better
surrogate, one could potentially generate them automatically
using learning-based approaches.
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