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ABSTRACT

Accurately simulating object dynamics based on real-world perception inputs has wide

applications in digital twins and robotic manipulation. Yet, doing so requires practitioners

to carefully measure and reconstruct the dynamic and geometric properties of the objects,

which is time-consuming and requires domain expertise. This project proposes an automatic

pipeline to construct 3D representations from a collection of real objects, which can further

be used to generate assets with accurate visual texture and collision geometry to be used

in simulation. This pipeline will be designed to have minimal hardware requirements and

aim to be efficient in time for physical actuation to maximize data collection on minimal

hardware.

Thesis supervisor: Russ Tedrake

Title: Toyota Professor of EECS, Aero/Astro, MechE

3



4



Acknowledgments

This thesis is part of a larger collaborative effort that was recently released [1]. I am proud

to have contributed to this broader project, and I gratefully acknowledge the collective work

of the team involved. Please refer to the full project for additional context and results:

https://scalable-real2sim.github.io/.

∗ ∗ ∗

I would like to express my deepest gratitude to my thesis supervisor, Professor Russ

Tedrake, for his invaluable insight, guidance, and expertise throughout this project. His

mentorship and thoughtful input into this project were instrumental in shaping the direction

and depth of this work.

I am especially grateful to Nicholas Pfaff, my mentor and collaborator, whose unwavering

support, encouragement, and technical insight were critical at every stage of this research.

Working alongside him has been a formative and enriching experience, and he has taught

me so much as both a researcher and an engineer.

Additionally, I want to recognize my other collaborators on this project, Jeremy Binagia

and Professor Phillip Isola for their insightful discussions and input throughout the project.

I would also like to thank the entire Robot Locomotion Group for creating an intellectually

stimulating and supportive research environment. I’m so grateful to have had the chance

to work alongside so many creative and kind people, who made all the late night working

sessions a fun and memorable experience.

I am thankful to the staff of 6.3800 for both funding my first semester and for providing me

the opportunity to explore foundational ideas and skills that contributed to my development

as a researcher.

Finally, I gratefully acknowledge the support of the Office of Naval Research (ONR)

under Grant No. N000142412603, which funded my second semester and made this research

possible.

5

https://scalable-real2sim.github.io/


6



Contents

List of Figures 9

1 Introduction 13

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Literature Review 15

2.1 Prior Approaches For Addressing The Sim2Real Gap . . . . . . . . . . . . . 15

2.1.1 Parameter Tuning with Existing Models . . . . . . . . . . . . . . . . 15

2.1.2 Real2Sim in Robotics . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 3D Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 NeRFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Gaussian Splatting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Next Best View Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Next Best View Manipulation Planning . . . . . . . . . . . . . . . . . 18

2.4 3D Scanners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Research Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 System Overview 19

3.1 Full Pipeline Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Physical Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Autonomous Pick and Display 23

4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.1 Grasp Candidate Selection . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.2 Antipodal Grasping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Display Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Display Grasp Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3.1 Method 1 - Sequential Grasp Selection . . . . . . . . . . . . . . . . . 26

4.3.2 Method 2 - Pair Grasp Selection . . . . . . . . . . . . . . . . . . . . . 30

4.3.3 Method 2.5 - Additional Uncertainty Based Regrasps . . . . . . . . . 33

7



4.4 Other Strategies Considered . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.5 Pick and Place Pipeline Construction . . . . . . . . . . . . . . . . . . . . . . 38

4.5.1 Grasp Selection For Other Pipeline Stages . . . . . . . . . . . . . . . 38

4.5.2 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 3D Reconstruction of Assets 43

5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1.1 Mathematical Background on SOTA Implicit 3D Reconstruction Meth-

ods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1.2 6D Pose Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1.3 Object Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2 Geometric Reconstruction for Visual Geometry . . . . . . . . . . . . . . . . 44

5.2.1 Collision Geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2.2 Gripper Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6 Results and Evaluation 51

6.1 Grasp Selection and Confidence . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.2 Reconstruction Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.3 Simulation Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7 Conclusion 61

7.1 Key Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

References 63

8



List of Figures

3.1 An overview of the full automatic asset reconstruction pipeline . . 20

3.2 A detailed diagram of our visual and geometric reconstruction pipeline 21

3.3 Our pick-and-place setup. . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Our object scanning method. We use re-grasps to display the object

along two perpendicular axes, providing the camera with a complete view of

the object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Principal components of the point cloud of a mustard bottle visualized in a

Drake simulation. The blue, green, and red axes here correspond to the first,

second, and third principal axis, respectively. . . . . . . . . . . . . . . . . . . 27

4.3 A visualization of a case where all grasps which align to a principal

axis are out of the robot’s joint limits. In this example, the red, green,

and blue axes are the first, second and third principal axes, respectively. In

order to grasp along the second axis, the robot must come either directly from

the front or back, which goes out of its joint limits since it must fold up too

tight in at least one joint, denoted by the red exclaimation marks. But, it

would be possible to grasp this object from other axes. Therefore, we do not

want to restrict our search. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4 A visualization of issues with aligning grasps with the longest axis of the

object. The image (a) shows how a close grasp occludes much of the object, as

opposed to a close grasp along a shorter axis. Image (b) shows how a farther

grasp becomes less stable and more vulnerable to slippage as the assumed

center of mass moves out of the gripper’s contact points. The red highlighted

areas represent the surfaces occluded by the gripper. . . . . . . . . . . . . . 30

9



5.1 Our object-centric visual reconstruction recipe. From the collected

RGB images (a), we obtain the object masks (b) and gripper masks (c). Using

only the object masks to ignore background pixels during training (d) results

in density bleeding into unoccupied regions (g). Applying alpha-transparent

training (e) mitigates density bleeding but incorrectly drives occluded object

regions toward transparency (h). Ignoring pixels inside of the gripper mask

during training, along with employing alpha transparent training (f), success-

fully reconstructs an unoccluded object view with no density bleeding (i). . . 47

5.2 Gripper object detection using a a fine tuned GroundingDINO model.

The pipeline can now automatically detect the gripper by using the text

prompt "gripper" and use this bounding box as an input for segmentation.

Previously, using the text prompt "gripper" would often not detect the gripper

in the image, producing 0 bounding boxes. . . . . . . . . . . . . . . . . . . . 48

5.3 Gripper segmentation mask on the same video frame using the

default SAM2 and GroundingDINO models vs using custom fine

tuned versions. These masks are produced from the same frame of the

same video. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.1 Grasps selected jointly using the method from Section 4.3.2 . . . . . . . . . . 51

6.2 Evolution of the object’s uncertainty map as we collect views. The

uncertainty maps of the object are visualized as red for higher confidence

and gray for lower confidence voxels. Due to slippage during the first (red in

subfigure (a)) grasp, we do not get a good view of the bottom of the object

initially. An additional grasp is computed in order to target collecting data

of the unobserved bottom surface. . . . . . . . . . . . . . . . . . . . . . . . . 53

6.3 Reconstructions using data collected before and after additional uncertainty

based grasp from the scenario in Figure 6.2. These reconstructions were made

from data gathered in simulation as a proof of concept. . . . . . . . . . . . . 54

6.4 Real-world objects (left) and their reconstructed counterparts (right).

Each object on the left was individually reconstructed using our pipeline.

These assets were then manually arranged in simulation to approximately

match their real-world poses and rendered to produce the image on the right.

The strong visual similarity is notable, especially given that the reconstruc-

tions are rendered triangle meshes rather than neural renders. . . . . . . . . 55

10



6.5 A selection of geometric reconstructions. The first two columns show

multiple views of the same object (a power inflator in the first column and

a Lego block in the second), demonstrating the completeness of our recon-

structions. The last two columns highlight close-up views of other objects,

illustrating the accuracy of both geometric and visual reconstruction, even

for parts that were occluded during scanning. We provide interactive 3D

visualizations on our project page. . . . . . . . . . . . . . . . . . . . . . . . . 56

6.6 Comparison of BundleSDF [27] and Neuralangelo [55] reconstruc-

tions of a mustard bottle. Blue circles denote Blender [62] renders, while

green diamonds represent Meshlab [63] renders. The BundleSDF mesh ap-

pears best in Blender but worst in Meshlab due to poor topology (e.g., scat-

tered boundary faces), which requires a powerful renderer to compensate.

In contrast, the Neuralangelo mesh maintains consistent quality across both

renderers due to its well-structured topology. The effects of poor topology in

the BundleSDF mesh appear as black lines, which originate from the mesh

itself rather than the texture map. These artifacts are particularly noticeable

at the top of the bottle’s body. . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.7 Our simulation experiments. The left column represents simulations, and

the right column represents their real-world counterparts. The first row is

pick-and-place, the second is knocking over, and the third is falling down a

ramp. Different frames are overlaid transparently to show motion, and videos

are available on the project page. . . . . . . . . . . . . . . . . . . . . . . . . 58

11

https://scalable-real2sim.github.io/
https://scalable-real2sim.github.io/


12



Chapter 1

Introduction

1.1 Motivation

Simulation is widely used in robotics research and development to speed up the setup, testing,

and iteration of new algorithms and provide easily resettable training environments, among

many other purposes [2–5]. For example, physics simulation has fueled many recent advances

in robotics by enabling learning skills in simulation and executing them in the real world [6–8].

This approach, termed Sim2Real, is desirable as many machine learning-based approaches

require large quantities of interaction data that are much easier to obtain in simulation than

in the real world. An example of such a learning-based approach is reinforcement learning

as seen in works such [6, 7]. Additionally, this approach is becoming increasingly valuable

as robotics shifts toward foundation models, which require even larger training datasets [9].

The Sim-to-Real approach requires the simulated environment to be dynamically accurate

to the real-world scene for algorithms developed in simulation to translate well into the real

world. If the physical and visual properties of the simulated environment lack sufficient

fidelity, policies trained in simulation may fail when transferred into the real world [8, 10,

11].

Currently, researchers must construct a replica of the real-world scene in which the robots

will be trained. Building such a replica involves manually curating object geometries, which

could involve the tedious approximation of object collisions using geometric primitives or

creating more complex meshes using 3D art software, and tuning their dynamic parameters.

This manual process requires domain expertise and is time-consuming. As scenes become

more complicated with more types of objects, the burden to create simulations of all objects

of interest increases. Consequently, it is difficult to scale this process to a large variety of

real-world scenes, creating a Sim2Real gap. Therefore, we aim to develop a fast, reliable

method for replicating real-life objects in simulation.
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1.2 Contributions

This project applies aims to rapidly and autonomously construct a complete simulation

asset description, such as a Unified Robot Description Format (URDF), for an object of

interest that exists in the real world. These assets specify the object’s appearance/visual

geometry, the collision geometry used for collision checking during simulation, and the

physical properties such as mass and moment of inertia. In particular, this project focuses on

gathering visual and 3D geometric data of real-world objects, which includes visual texture

maps to define the appearance of the surface of the object and mesh geometries to define

the shape of the object in 3D, to obtain detailed collision geometries.

This data is gathered through autonomous interaction with the objects of interest, priori-

tizing collecting a complete observation of the object surface while maintaining efficiency and

minimizing the complexity of the setup. In particular, we develop our method on a simple

pick and place setup with a 7-DOF robotic arm, which can be easily modified to different

hardware and is a common setup used by researchers and practitioners. This way, our

method remains accessible and does not require specific hardware or unrealistic constraints.

Additionally, pick and place is a standard factory task, so our automated pipeline that

integrates into this task is a step towards obtaining data at scale from these factory setups.

There are two main components to this project.

1. A trajectory planner that commands a robot to manipulate a set of objects from a bin

in front of an RGBD camera such that data of all surfaces is collected for each object

2. A data processing pipeline that ingests the collected RGBD images and learns a 3D

representation of the object from arbitrary photometric reconstruction methods, so

that our method can be applied to new photometric reconstruction methods as more

powerful methods are developed in the future. From this representation, the pipeline

further extracts a mesh geometry and texture map of the object, completing the visual

and geometric reconstruction.
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Chapter 2

Literature Review

2.1 Prior Approaches For Addressing The Sim2Real Gap

As Sim2Real gap is a widespread issue in reinforcement learning, various approaches to ad-

dress the problem have been studied [12–20]. Given the diversity of simulation environments

and the complex nature of real environments in which these policies act, these approaches

vary in generality, assumptions, and intended applications.

2.1.1 Parameter Tuning with Existing Models

Many works have approached the problem of poor Sim2Real transfer by adjusting the

parameters that dictate dynamics in the simulated environment.

One such established approach to training policies that are robust to the Sim2Real gap

is domain randomization [12]. Domain randomization addresses this issue by randomizing

environment parameters in the simulation over a distribution of visuals and/or dynamics.

In this way, the trained policy can transfer into the real world as long as the real dynamics

are within the distribution on which the policy was trained. This technique performs best

with a good initial distribution approximation and is not very efficient otherwise.

Other works have aimed to estimate the correct parameters of the real world rather

than train a policy generalized to a distribution of parameters [13, 14]. Like domain

randomization, the need for a known model of the environment to estimate its parameters

means although these approaches address the issue of poor Sim2Real transfer, for each

training setting and object within the scene, a human still must manually construct a

parameterizable representation in simulation.
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2.1.2 Real2Sim in Robotics

Real2Sim [15] is the problem of automatically generating a digital replica of a real-world

scene to reduce the simulation’s Sim2Real gap. Works such as [16][17] focus on reconstructing

the visual geometry of an entire static scene. Dynamic objects in the simulation of these

scenes are assumed to be previously known. Le Cleac’h et al. [18] propose a Real2Sim

system for reconstructing an object’s geometry from observations and identifying its dynamic

parameters, such as mass and moment of inertia. They first obtained an implicit model of

the object’s geometry from RGB images and then proposed a novel simulation approach

for directly simulating their implicit model. Their method achieves dynamically accurate

object-level Real2Sim from only RGB observations. However, most current simulations [21–

23] and model-based approaches still use explicit representations of geometry. Wang et al.

[19] proposed a Real2Sim system for constructing explicit object mesh representations from

depth images. Torne et al. [20] presented a Real2Sim system that reconstructs a 3D scene

from video stream and provided a GUI to add joints to create articulated environments

for RL training. Most importantly, all of these pipelines do not include any method of

automatically obtaining the RGB images to get a full view of the object. We additionally

construct an automatic pipeline that interacts with objects to get data of the entire surface.

2.2 3D Reconstruction

3D reconstruction methods focus on reconstructing geometry from real-world observations

such as RGB and depth images. These methods produce either implicit [24–28] or explicit

[29–31] representations. Explicit methods represent geometry directly, such as with a triangle

mesh. Implicit methods indirectly represent geometry using a continuous function and

consequently can represent geometry in greater detail. Neural Radiance Fields (NeRF) [25,

32] and Gaussian Splatting [28] are implicit methods we apply our object-centric, occlusion

robust 3D reconstruction formula to due to their popularity and the numerous investigations

into variations of these methods, some of which may be better suited for future users of this

method. These methods and their variations fall under the category of neural rendering,

which is a class of techniques where rendering of the represented scene is differentiable,

enabling end-to-end training with gradient descent. From these implicit representations,

mesh extraction algorithms such as Marching Cubes [33] and Poisson reconstruction [34] can

be used to produce a mesh geometry.

2.2.1 NeRFs

NeRFs were introduced by Mildenhall et al. [25] and represent a 3D scene with a learned

continuous function Fθ : (x,d) → (c, σ) that maps a spatial location x = (x, y, z) and

16



viewing direction d = (θ, φ) to a view-dependent RGB color c = (r, g, b) and volume density

σ.

NeRFs are trained from images of a static scene where the camera pose within the scene

is known for each image. Given the camera pose, a synthetic image of the scene from the

viewpoint of the camera pose can be rendered from the NeRF by marching along the rays

from the camera’s origin for each pixel, compiling the learned colors at the spatial locations

along the ray using the accumulated learned densities.

2.2.2 Gaussian Splatting

Gaussian Splatting is a neural rendering method introduced by Kerbl et al. [35] with the

key advantage of much faster training and rendering times than the previous state of the art,

NeRFs, while preserving quality and high-resolution renderings. Gaussian Splatting takes the

same input as NeRFs but instead represents the scene using a set of 3D Gaussians, defined by

a position (mean) µ, covariance matrix Σ, opacity α, and spectral harmonics which represent

color. Similar to NeRFs, the optimization process compares images rendered from the set of

Gaussians to the ground truth images from the captured dataset.

2.3 Next Best View Selection

The quality of 3D reconstructions produced by the above-mentioned methods is highly

dependent on the quality and completeness of the training data. Active 3D reconstruction

dynamically acquires 3D data by intelligently choosing new viewpoints to observe areas

of lower confidence, based on previously collected data. The process of choosing future

observations based on the completeness of information collected from previous observations

has generally been referred to as Next Best View Selection (or Next Best Configuration)

[36–38]. This approach is particularly beneficial for scenarios with occlusions, textureless

surfaces, or ambiguous geometry as it ensures the dataset of collected observations is fully

informative of the scene.

Multiple approaches have been explored regarding active reconstruction and next best

view (NBV) selection. ActiveNeRF [39] and ActiveGS [40] implicitly model uncertainty

at spatial locations with the learned color and density representations. These approaches

construct an information gain metric based on the mapped uncertainty to evaluate and select

future views to gather data from. Alternatively, Jin et al. [41] proposed a mapless planning

framework for NBV selection where a neural network is trained to predict uncertainty at new

view candidates given previously collected images from nearby views. This method does not

require an uncertainty map of the scene or an implicit neural reconstruction with uncertainty

to be updated online while taking more samples.
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2.3.1 Next Best View Manipulation Planning

Previous investigations have also investigated manipulation planning to build a complete 3D

reconstruction of the surface of the manipulated object. Krainin et al. [36] developed a mo-

bile robot system that grasps and manipulates objects in front of a depth camera to create a

full 3D surface reconstruction, optimizing to display less-seen surfaces in trajectory planning

and considering occlusions from previous grasps when planning new grasps. Kobayashi et

al. [37] developed a similar system, but with a dual-arm setup instead.

2.4 3D Scanners

Custom hardware setups have also been used to reconstruct real-world objects with high

fidelity, rather than relying on planning methods. In 2022, Google Research released a

dataset of 1030 high-quality simulatable reconstructions of everyday objects, collected with

a custom scanning rig where images are taken in a highly calibrated setting [42]. This dataset

has proved to be immensely helpful for training Sim2Real policies on objects that are seen

in the real world [43–45].

2.5 Research Gap

The Google Scanned Objects dataset method of collection provides a direct, mostly au-

tonomous method of reconstructing real-life objects into high-fidelity simulatable assets,

but their custom, highly-calibrated scanning rig is inaccessible to most practitioners and

researchers. When users want to train a policy on unique or specialized objects that fall

outside the distribution of everyday objects in the Google Scanned Objects dataset or similar

datasets, they still must manually recreate those objects in simulation. Additionally, the

Google Scanned Objects dataset scanner setup requires a human-in-the-loop to manually

insert objects. Therefore, it cannot be run at all times and requires non-negligible human

effort to scale way beyond the 1,000 objects in the current dataset.

[36] and [37] developed methods to create 3D reconstructions of objects through manipu-

lation for data collection using more common robot setups, but do not complete the pipeline

of creating a fully simulatable asset with collision geometry and physical properties. Addi-

tionally, the hardware setups in these works require multiple robots, and can be simplified

to be made even more accessible to users.

Our project tackles the goal of autonomously manipulating objects for 3D reconstruction

with only a fixed 7-DOF arm. Without a mobile base or second arm, this setup has

additional constraints on feasible grasps and display trajectories, but requires less hardware,

making it more accessible to future users. Furthermore, we create a full pipeline from object

manipulation to a ready to be used simulatable asset file.

18



Chapter 3

System Overview

3.1 Full Pipeline Outline

The investigation presented in this work is part of a larger project to construct a fully

automatic pipeline to extract a physics simulatable asset from a standard pick and place

setup [1]. For each object, the pipeline produces a visual geometry V (a textured visual

mesh), collision geometry C (a union of convex meshes), and physical properties P (mass,

center of mass, rotational inertia).

Objects are placed in the first bin, where the robot picks them up and reconstructs their

visual and collision geometries by moving them in front of a static camera while re-grasping

to reduce occlusions (Section 4.2 & 5.2 & 5.2.1). Next, the robot identifies the object’s

physical parameters by following a trajectory designed to be informative for the inertial

parameters. Finally, it places the object into the second bin and repeats the process with

the next object until the bin is empty. The extracted geometric and physical parameters are

combined to generate a complete, simulatable object description. Figure 3.1 illustrates the

asset generation workflow.
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Figure 3.1: An overview of the full automatic asset reconstruction pipeline

This work focuses on the implementation of the pick and place setup and the extraction

of visual textures and 3D collision geometries for generating simulatable assets; the first,

second, and fourth stage of the pipeline in Figure 3.1.

Zooming into the second stage of the full pipeline diagram, which describes the data

collection and 3D reconstruction for extracting visual and geometric properties of the object,

a more detailed diagram of this step is shown in the figure below 3.2.
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Figure 3.2: A detailed diagram of our visual and geometric reconstruction pipeline

For extracting the texture maps and collision geometries, our system collects RGBD

images while the robot manipulates the object in front of the camera. Once the RGBD images

of an object are collected, they are sent to be asynchronously processed for reconstruction. At

this step, the pose of the object in the camera frame is determined using 6D object tracking

(Section 5.1.2). Then, segmentation is used to produce masks of both the object of interest

and the robot gripper. The combined masks and relative poses of the object to camera are

both used as input into photometric reconstruction methods to train a 3D representation

of the object. The texture map and collision geometry, represented as a triangle mesh, are

then extracted out of the trained representation using existing methods.
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3.2 Physical Setup

Figure 3.3: Our pick-and-place setup.

The physical pick and place setup we used for the implementation and testing of our system

features a Kuka LBR iiwa 7 arm with a Schunk WSG-50 gripper and Toyota Research

Institute Finray fingers. Workspace observations rely on three static RealSense D415 cameras

(orange circles), while bin picking uses a RealSense D435 (green circle), and object scanning

is performed with another D415 (red circle). All cameras capture 640×480 resolution RGBD

images. Objects are picked from the right bin and placed into the left bin. A platform is

used in the scanning workspace to enhance the iiwa’s kinematic range during re-grasping.

It is important to note that the pipeline introduced in this project is extendable to any

other pick and place setup. This method can be applied to different robot hardware, such

as different arms, grippers, and motion planners for such, different positioning of pick and

place bins, or different perception systems. One target application of this project would be to

integrate it into an existing pick and place setup, such as sorting the contents of a starting

bin into multiple ending bins, so that simulatable assets of the objects can be collected

simultaneously to completing another task.
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Chapter 4

Autonomous Pick and Display

In this section, we go over the physical autonomous pick and place pipeline, with focus on

the grasp and display planner, which manipulates the object in front of the data collection

camera with regrasps in order to observe the entire unoccluded surface of the object.

4.1 Background

4.1.1 Grasp Candidate Selection

We roughly follow the sampling method from ten Pas et al. [46] to generate grasp candidates,

with modifications. The sampling method (given in Algorithm 2 of [46]), is as summarized

below:

1. Sample N points from the point cloud

2. For each point, compute the orthogonal reference frame (Darboux frame, D(p)) at

that point. This is the frame such that the gripper’s palm is pointing in the opposite

direction of the outward-pointing unit surface normal at the point. Described in

relation to the gripper, the x-axis of D(p) is the axis pointing away from the gripper’s

palm, which is parallel to the fingers of the gripper. The y-axis is the axis connecting

the two parallel fingers, and the z-axis is the axis orthogonal to the two other axes.

3. For each sample reference frame, search a two-dimensional grid G = Y × Φ where Y

is a set of translations along the y-axis and a set Φ of additional rotations about the

z-axis

4. For each (y, φ) ∈ G, apply the corresponding translation and rotation to D(p) and

further translate the grasp along the −x direction until right before the gripper makes

contact with the object. Check that this final grasp frame satisfies the following

conditions:
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(a) The gripper is not in collision with the object

(b) The closing region of the gripper contains at least one point from the object’s

point cloud

5. All grasp frames that pass the conditions above are added to a list of grasp candidates,

which are considered for grasp selection.

In addition to this sampling algorithm, we make a few modifications in our implemen-

tation. In particular, we found that, in practice, searching along the remaining translations

and rotations from the original Darboux frame (along the z axis and about the x and y

axes) allowed us to find grasp candidates that were more stable or better aligned with our

desired grasp properties. This approach also took less sampling time than simply increasing

the number of points sampled from the point cloud.

4.1.2 Antipodal Grasping

We use antipodal grasping for determining stable grasps to pick up the object at each stage

of the pipeline. Antipodal grasping involves a two-finger, parallel jaw gripper, where the

fingers make contact at two points with collinear surface normals in the opposite direction.

We use the method provided in [47] to calculate the antipodal score of a grasp using the

alignment of the surface normals within the gripper closing range to the axis connecting the

fingers of the gripper:

Let:

• P = {p1,p2, . . . ,pN} be the full set of point cloud points,

• C ¦ P be the subset of points within the gripper’s closing region,

• ni ∈ R
3 be the surface normal at point pi ∈ C,

• ni
Gy

be the component of ni along the gripper’s horizontal (closing) axis.

Then the antipodal cost is defined as:

antipodal_cost = −
∑

pi∈C

(

ni
Gy

)2

(4.1)

We use this score along with other factors to grade sampled grasp candidates based on the

desired properties of the grasp. Depending on the stage of the pipeline, the components of the

scoring function change depending on the goal at that stage. This is described in more detail

in 4.2. Since other scores are factored in for grasp selection, we modify the antipodal cost to

control its weight among the different terms in the score. In particular, we exponentiate the

per point terms in the antipodal cost to bias towards grasps where the points of contact are
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more antipodal, rather than grasps with more enclosed points. Additionally, we normalize

by the total number of points and scale the cost by a weight, wantipodal, so the proportion

of the antipodal cost in relation to the full grasp score is not dependent on the total size of

the point cloud. Without normalization, it is natural that a larger object with more points

would have more points in the grasping range, and therefore likely have a more substantial

antipodal score.

antipodal_cost_weighted = −wantipodal ·
1

|P|

∑

pi∈C

exp

(

(

ni
Gy

)2
)

(4.2)

Grasps are ranked in ascending order of score, with lower costs indicating better grasp quality.

4.2 Display Strategy

We aim to employ a display strategy with the following goals:

• Collect observations of all locations on the surface of the desired object

• Minimize time spent on data collection

We propose the following method. We grasp the object along two perpendicular axes and

move the gripper in front of the viewing camera, then we rotate the object 360 deg along the

grasp axis by rotating along the final joint (wrist) of the robot arm. This method minimizes

the number of regrasps, which wastes data collection time since as the robot repositions itself

for a regrasp, the object stays still, resulting in no new observations being collected in that

time. Additionally, rotating the object along two perpendicular axes allows all surfaces of

an object to be observed from the rays of a camera. This result is visualized in Figure 4.1.

During the time that the robot is manipulating the object, we take RGBD images of the

object from a stationary camera for data collection.

It is also important that we select stable grasps, in which objects are unlikely to slip out

of the initial grasp position or fall out during the display trajectory. This is because we want

to ensure the object stays within the working space of the robot to prevent unrecoverable

failures, and that the object continues to be rotated along the planned axis for the method

above to collect the desired data.
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Figure 4.1: Our object scanning method. We use re-grasps to display the object along
two perpendicular axes, providing the camera with a complete view of the object.

One immediate pitfall that can be noticed about this method is if the gripper occludes

the same areas of the object between both the first and second rotation. If this happens,

then the surface in those areas cannot be seen during the display trajectory. We employ a

few methods to prevent this issue. The first is by selecting grasps that are farther apart and

less likely to occlude the same surfaces, which is described in Section 4.3.2. The second is by

keeping an uncertainty map of the surface voxels, and using additional regrasps if necessary

based on the uncertainty map, covered in Section 4.3.3. Finally, we place the object down

after executing the display trajectory facing the opposite direction from the camera as it had

started. This ensures that two faces of the object are viewed completely unoccluded while

the robot is not grasping the object and is reviewed in further detail in 4.5.2.

4.3 Display Grasp Selection

In this section, we go over the methods we investigated in order to implement the above

described display strategy, such as how we find two perpendicular axes to rotate between

and how we prevent occlusion of the same surfaces from multiple grasps. We first review

one method we attempted for finding two perpendicular, non-overlapping grasps, that was

not robust enough for our desired automated pipeline. Then, we review an updated method

that was effective and an additional method to cover any gaps in collected observations.

4.3.1 Method 1 - Sequential Grasp Selection

Our first method involves using principal component analysis (PCA) to identify three or-

thogonal axes of the object’s point cloud. PCA is a statistical method for identifying the

orthogonal directions (principal components) along which data varies the most. The ith

principal axis is the axis which best fits to the points in the set of data, while being orthogonal
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to the first i− 1 vectors, with the first principal axis being the axis which best aligns to the

data without further constraints.

Given the object’s point cloud, we use PCA to find the principal axes. We then align

grasps to the first two of these axes, such that the gripper’s fingers would close around the

smallest axis. In this method, the first grasp is solved for by optimizing for alignment with

the object’s principal axis and the second grasp is solved for independently of the first. The

first grasp is sampled from the point cloud of the object directly before the first grasp, and

the second grasp is sampled from the point cloud of the object after the first grasp, display,

and place has happened, directly before the second grasp.

Figure 4.2: Principal components of the point cloud of a mustard bottle visualized in a Drake
simulation. The blue, green, and red axes here correspond to the first, second, and third
principal axis, respectively.

Given an axis to align the grasp to, we compute the axis alignment cost of a candidate

grasp as follows, where Gy is the axis parallel to the gripper fingers and adesired is the desired

axis to align to

axis_alignment_cost = −walignment · |Gy · adesired| (4.3)

where the lower the cost, the better.

To ensure stability of the grasp, we additionally calculated the split ratios of the points

at which grasp candidates are sampled. The split ratio measures how close a point is to

the center of the bounding box, computed along the principal axes, and is a heuristic for

center of mass for grasp stability. Grasping closer to the center of mass keeps torque low,

which prevents the object from rotating out of the grasp, a common issue for parallel-yaw

force-closure grasps. The split ratio is individually computed for each axis of the bounding

box. A value of 1 means the point is exactly at the center along that axis, while a value of

0 means it is at one of the edges.
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The split ratio at a point p for the ith axis is computed as:

split_ratioi = 1−

∣

∣

∣

∣

∣

2(pi − ci)

max({p(1)i , ..., p
(n)
i })−min({p(1)i , ..., p

(n)
i })

∣

∣

∣

∣

∣

(4.4)

where:

• pi: The coordinate of the point along the ith axis.

• ci =
max({p

(1)
i ,...,p

(n)
i })+min({p

(1)
i ,...,p

(n)
i })

2
: The center of the ith axis.

• {p(1)i , ..., p
(n)
i }: The set of coordinates along the ith axis for all n points in the point

cloud

Then, we compute the split ratio cost as the negative sum of the split ratios along the

most principal axis apart from the desired alignment axis:

split_ratio_cost_axis_aligned = −wsplit ratio ·
∑

i ̸=a

split_ratioi (4.5)

where a is the index of the principal axis we want to align the grasp to.

Finally, we also include the antipodal cost from Equation 4.2 for stability. In total, the

axis-aligned grasps for this method are selected with the following cost function:

sequential_grasp_cost = axis_alignment_cost

+ split_ratio_cost_axis_aligned

+ antipodal_cost_weighted (4.6)

This cost function is used to rank and select grasp candidates for the first and second

grasps independently of and sequential to each other, therefore we refer to this method as

"Sequential Grasp Selection".

Limitations

Although this method provides a simple formula for determining orthogonal grasps, there

are shortcomings with this method in practice. Namely, if the first and second principal

axes are in a direction such that all grasps that align are outside of the robot’s joint limits,

this method automatically fails. In particular, if one of these axes faces in the direction of

the robot from the object and parallel to the table, we saw that there was often no joint

configuration that could be found for any aligning grasps, since the object would likely be

too close to the robot to grasp from the front, but too far to grasp from the back.
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Figure 4.3: A visualization of a case where all grasps which align to a principal
axis are out of the robot’s joint limits. In this example, the red, green, and blue axes
are the first, second and third principal axes, respectively. In order to grasp along the second
axis, the robot must come either directly from the front or back, which goes out of its joint
limits since it must fold up too tight in at least one joint, denoted by the red exclaimation
marks. But, it would be possible to grasp this object from other axes. Therefore, we do not
want to restrict our search.

One initial consideration for addressing the infeasibility of grasps aligning to one of the

first two principal axes is to align to the third principal axis if either of the first two fail.

Unfortunately, this method fails for objects that are particularly long across both the first

and second axes, but short along a third, such as a cereal box. In this case, all feasible grasps

must be such that the fingers are orthogonal to the third axis since the gripper cannot open

wide enough to surround the item along any other axis.

Additionally, aligning one of the grasps to the longest axis of the object results in the

gripper occluding much of the object in order to ensure a stable, centralized grasp along that

long axis. This large occlusion makes it much more likely that the second grasp will have

overlapping occluded regions, preventing complete observation of the object’s surface.
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(a) (b)

Figure 4.4: A visualization of issues with aligning grasps with the longest axis of the object.
The image (a) shows how a close grasp occludes much of the object, as opposed to a close
grasp along a shorter axis. Image (b) shows how a farther grasp becomes less stable and
more vulnerable to slippage as the assumed center of mass moves out of the gripper’s contact
points. The red highlighted areas represent the surfaces occluded by the gripper.

4.3.2 Method 2 - Pair Grasp Selection

To address the limitations with Method 1, we introduce a second, more robust method. Now,

we solve for both the first and second grasp jointly, such that they are optimized to be near

perpendicular and translationally different, while both being stable grasps individually and

kinematically feasible.

We first sample a set of stable grasp candidates and calculate their individual grasp scores,

and choose a pair of stable grasp candidates out of this set. For the individual grasps, we

want to ensure that all grasp candidates are sufficiently secure, since it is not guaranteed

that the grasps with the highest scores will be in the highest-scoring pair, depending on how

well they pair with other candidates. We review the components of the individual grasp

score below.

Costs

Similarly to the single grasp selection method, the costs involved for scoring an individual

grasp in this pair grasp selection method are the antipodal cost (Equation 4.2) and the split

ratio cost. Here, we no longer consider aligning grasps to known perpendicular axes, so the

axis alignment cost is not considered. Additionally, since we do not have a particular axis

to align to, there is also no particular axis we particularly care to have a high split ratio for.

Due to this, we modify the split ratio cost. Instead, we use the following formula
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split_ratio_cost = −wsplit ratio ·
(

split_ratios(1) + split_ratios(2)

)

(4.7)

where split_ratios(i) denotes the ith smallest value from the sorted set. We use the two

largest split ratios amongst the three axes since the origin point of a grasp will always be

at the surface of the object, which is likely to be at the far end of at least one axis for all

grasps, so the lowest split ratio would provide little useful information.

Additionally, an interesting observation made during the implementation of this grasp

scoring function was that using |P|, the total number of points in the point cloud, versus

|C|, the number of points in the gripper closing range, as the the normalizing value in the

weighted antipodal cost from Equation 4.2 affected the quality of the grasps. We found that

a linear weighted combination of the two produced the best results and ranked intuitively

stable grasp candidates higher. This is likely due to a tradeoff between making contact with

more surface area that is not fully normal versus making contact with less surface area that

is closer to normal to the contact point on the gripper fingers (higher quantity, decent quality

versus lower quantity, high quality). Therefore, our antipodal cost was given by

antipodal_cost_hybrid =

−wantipodal ·

(

wall ·
1

|P|

∑

pi∈C

exp

(

(

ni
Gy

)2
)

+ wclosing ·
1

|C|

∑

pi∈C

exp

(

(

ni
Gy

)2
))

(4.8)

In total, the individual grasp cost is given by

individual_grasp_cost = split_ratio_cost

+ antipodal_cost_hybrid (4.9)

Conditions

We additionally filter out any grasps that do not satisfy the following conditions to ensure

all grasps in plausible pairs are sufficiently secure:

Proportion Enclosed The proportion of all points in the gripper closing range is over

some threshold τenclosed. This ensures that enough volume of the object is supported by the

grasp, reducing the risk of slippage from an unbalanced center of mass.

|C|

|P|
g τenclosed (4.10)
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Proportion Enclosed Aligned We define the set of points within the closing range of

the gripper G ¦ C as the set of points at which the surface normals are greater than some

threshold τnormals along the gripper’s closing axis:

G = {pi ∈ C : n
i
Gy
g τnormals} (4.11)

Then, we check that the proportion of all points which are in G is over some threshold

τall_aligned and the proportion of points in the gripper closing range which are in G is over

some threshold τclosing_aligned

|G|

|P|
g τall_aligned (4.12)

|G|

|C|
g τclosing_aligned (4.13)

All grasps that pass these conditions are considered for grasp pair candidates.

Pair Scores

After we have our set of n stable grasp candidates, we compute the pair grasp scores of

the n(n − 1) pairs. The pair scores are a combination of the two individual scores, plus a

translational difference cost and a rotational difference cost.

The translational difference cost is proportional to the translational difference between

the origin points of the grasps, which are the points in the point cloud that the Darboux

frames from which the grasps were found were sampled from. Mathematically,

translation_costij = − exp

(

∥pi − pj∥

∥pmax − pmin∥

)

(4.14)

where pi and pj are the origin points for the two grasps we want to find the pair grasp score

for and pmax and pmin are the max and min coordinates in the point cloud. The denominator

acts as a scaling factor to keep the translational cost invariant to the size of the object. Since

we prefer a lower cost, this translation cost results in grasp pairs with farther origin points

ranking higher.

Then, the rotational difference cost is found through the cosine difference of the x axis of

the gripper, or the direction parallel to fingers (x¦
i xj = cos(θ) where θ is the angle between

the two x axes).

rotation_costij = wrotation ·
exp

(
∣

∣clip
(

x¦
i xj,−1, 1

)
∣

∣

)

− 1

exp(1)− 1
(4.15)
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This gives a scalar value in [0, 1] that measures how aligned the x axes of the two grasps are.

The rotation cost is close to 1 if they point in the same or opposite directions and close to

0 if they are orthogonal. Since we prefer a lower cost, this results in grasp pairs which are

orthogonal ranking higher.

In total, the cost for a pair of grasps is given by

pair_grasp_costij = individual_grasp_costi

+ individual_grasp_costj

+ translation_costij

+ rotation_costij (4.16)

The pair with the lowest cost and is kinematically feasible is chosen for pick and display.

Shifting Second Grasp

The location of the object may change between before and after the first grasp pick, display,

and place. Since we calculate both the first and second grasp at once from the point cloud of

the object before the first grasp, the second grasp may no longer align as desired to the object

if the object has moved. We use ICP [48] to determine the relative translation between the

point cloud of the object before and after the first grasp and apply this translation to the

second grasp in order to shift it to the new location of the object.

4.3.3 Method 2.5 - Additional Uncertainty Based Regrasps

In order to certify and ensure completeness of the collected data of the object’s surface, we

develop an addition to the previous method. During data collection, we keep a lightweight

map of our certainty of the object’s surface. This map represents the object surface as a

set of voxels each with an associated confidence value in [0, 1], where voxels that have been

completely unobserved have confidence 0 and voxels that have been fully observed have

confidence 1. This method is loosely based off of the method presented in [49], which was

also used in [36], and is simplified in our approach to reduce complexity given other priors

we have.

Uncertainty Map Initialization

The map is initialized using the point cloud of the object taken before the first grasp, which

is downsized into a set voxel size. This way, the points in the point cloud act as the voxels

for the uncertainty map. The bottom surface of the object is filled in with voxels by filling

in the shape traced by the bottommost points in the point cloud. Since the initial point
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cloud measured is in an unoccluded space, we make the assumption that it is an accurate

representation of the shape of the surface of the object. Then, for each voxel, we initialize

the confidence value to 0. We also save the initial object pose in the world frame at this

point, since the world frame is arbitrarily defined from the object tracking output, so this

must be known to update the map once the object moves.

Map Update

As we collect images of the object, we extract the object pose and gripper masks from the

images are use these and the data collection camera’s pose to update the map. The object

pose and gripper mask extraction is explained in further detail in Sections 5.1.2 and 5.2.2.

Given 1) the object pose XWOi
and 2) gripper mask MG which specifies pixels in the image

that belong to the robot gripper, and therefore may occlude the object, where the pose and

gripper mask correspond to the same data frame, 3) the camera’s stationary pose XWC , and

4) original object pose WWO0 , we make the following update to the uncertainty map.

34



Algorithm 1 Update Uncertainty Voxel Map with Observation

Require: New object pose XWOi
, original object pose XWO0 , camera pose XWC , occlusion

mask MG, camera intrinsics K, image width in pixels W , image height inpixels H, hit

radius threshold r

Ensure: Updated voxel confidences

1: XW ′W ← XWO0 ·X
−1
WOi

(Transform to new voxel map frame)

2: XW ′C ← XW ′W ·XWC (Camera pose in new voxel map frame)

3: R← CreateRays(K,XW ′C ,W,H)

4: thit ← RaycastOnVoxelMap(R)

5: mhit ← IsFinite(thit) ' (MG == 0) (Ray indices at which the object was hit and not

occluded)

6: o,d← ExtractOriginsAndDirections(R)

7: phit ← o[mhit] + thit[mhit] · d[mhit] (Hit points)

8: MaxConfidenceImprovement← empty map

9: for all (p, r) in (phit,d[mhit]) do

10: N ← FindNeighborsWithinRadius(p, r)

11: if N = ∅ then

12: continue

13: end if

14: n← SurfaceNormals[N ]

15: w← max(−n · r, 0)

16: for all (i, voxel) ∈ enumerate(N ) do

17: MaxConfidenceImprovement[voxel]← max(MaxConfidenceImprovement.get(voxel),w[i])

18: end for

19: end for

20: for all (voxel, w) ∈ MaxConfidenceImprovement do

21: Confidences[voxel] += w

22: end for

23: Confidences ← Clip(Confidences, 0, 1)

The algorithm above does the following. First, since the object has moved, the camera

is in a new location in relation to the voxel map. Therefore, we want to get the camera’s

pose in the voxel map’s frame. To do this, we get the transformation from the initial voxel

map frame to the current voxel map frame. Then, we get the pose of the camera in the

current voxel map frame from the camera pose in the world frame (same as the initial voxel

map frame, since it was initialized from points in the world frame) and the previously found

transformation. Then, we perform ray casting on the voxel grid using the camera’s pose in

the new voxel map frame and known intrinsics. We note all rays that hit the grid at a finite

distance. For rays extending from any pixels that are in the gripper mask, we treat the pixel
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as occluded and do not count it as hit. Then, for each ray that hits, we calculate the location

on the voxel map it hits using the origin, direction, and distance traveled of the ray. Then,

we calculate the potential confidence improvement from this ray’s view of all voxels that are

within a radius r of the hit point. We define the knowledge gain as the negative dot product

of the surface normal at the hit point and the ray’s direction, meaning that a more direct

view of the surface (surface normal and ray direction are pointing towards each other) adds

more confidence. We maximize with 0 to avoid decreasing confidence due to inaccuracies

or edge cases with object normals. Finally, the confidences for each voxel are updated by

adding the best potential confidence increase over all rays that hit the voxel, and we clip the

result between 0 and 1.

This algorithm builds a record of surfaces that have been observed and how directly they

have been observed. This map can be used as a certificate in determining if the object has

been fully observed, and can also be used to select additional regrasps to optimally display

unseen surfaces.

Regrasp Selection

After the object is displayed using grasps determined with Method 2, we can continue to

regrasp and display the object if we determine that the surface has not been sufficiently

observed, using the updated uncertainty map. We define a threshold for confidence τconfident

for a voxel to be considered sufficiently observed and a threshold for the fraction of all voxels

in the map that are sufficiently observed τfull for the whole object surface to be considered

sufficiently observed. We check if

percent_observed =

∑

(ci > τc)

|C|
g τo (4.17)

to determine if the object has been fully observed after the first two grasps, where C =

{c0, c1, ..., cN} is the set of all confidences of the voxels in the map.

Given the current state of the uncertainty map, we use the following method to determine

the next grasp. The object will be grasped from this position and then displayed in front

of the camera using a 360 degree wrist rotation as for the first two grasps. Then, from the

sampled grasp candidates, we can estimate the observations that would be made. Then, we

can compute the expected gain in confidence in the uncertainty map.

When computing a grasp candidate, we know the points of the point cloud that are within

the gripper’s closing range. We assume that these points will be occluded by the gripper

fingers during the display trajectory.

We first use the candidate grasp pose, the initial object pose, and the planned gripper

poses for the display trajectory to calculate 8 object poses spaced evenly through the 360

degree display rotation, given by Algorithm 2 where N = 8.
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Algorithm 2 Generate Camera Poses In Map Frame During Display Trajectory

Require: Grasp candidate pose XWG, observation camera pose XWC

Ensure: Sequence of camera poses in the voxel map frame: {Xi
W ′C}

N
i=1

1: {Xi
WG′}Ni=1 ← GetYawDisplayTrajectory() Sample N gripper poses from display traj

2: {Xi
WW ′}Ni=1 ←

{

Xi
WG ·X

−1
WG′

}

New uncertainty map frame in old

3: {Xi
W ′C}

N
i=1 ←

{

X−1
WW ′ ·Xi

WC

}

Camera poses in voxel map frame

4: return {Xi
W ′C}

N
i=1

Then, we use the same logic from 1 to calculate the confidence values in the map after

collecting observations from these views. Now, instead of masking certain rays with the

gripper mask, we use the set of points in the gripper closing region and do not update the

confidences of these presumably occluded points. We do not update the confidence values

in the map, but note the change in percent_observed from Equation 4.17. The confidence

improvement cost of this grasp is then

confidence_improvement_cost = −wconf_improve ·∆percent_observed (4.18)

The final grasp cost for the additional grasp is then a linear combination of the individual

grasp cost from Method 2:

additional_grasp_cost = individual_grasp_cost

+ confidence_improvement_cost (4.19)

The grasp with the lowest additional_grasp_cost that is kinematically feasible is selected

for the next pick and display. This process is repeated until the percent_observed of the

uncertainty map crosses the desired threshold.

We found that Method 2 is successful in collecting complete visual data of the object

surface in most instances, with the additions in Method 2.5 further increasing the robustness

of our strategy. Further elaboration is given in Chapter 6.

4.4 Other Strategies Considered

We investigated a few other strategies for data collection, which were not chosen for the final

pipeline. We will briefly cover these strategies here.

Turntable

First, we considered installing a turn table in the setup to place the object on. Then, either

a motor or the robot would turn the table to display the sides of the object before the robot
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picks up the object once horizontally in order to display the top and bottom of the object.

This method was not chosen since the extra hardware would go against our goal of having a

simple, accessible setup. But, this method was still implemented and tested in simulation as

a possible benchmark collection method, since this method would be guaranteed to produce

unoccluded views of all surfaces.

Wrist Camera + Front Camera

Another method that was investigated was attaching a separate data collection camera to

the wrist of the robot arm. Then, the robot moves its end effector around the object to

collect views of the sides and top. Finally, the robot picks up thee object once horizontally

in order to display the top and bottom of the object to the front camera. This method

was implemented and tested in simulation, but we found that it was difficult, although not

impossible, to reach the wrist camera around the object unless the object was precisely

placed in a feasible location. Additionally, when tracking the object between the video from

the two cameras, the same origin frame for the object would have to be chosen, resulting for

more calibration necessary and more room for error.

4.5 Pick and Place Pipeline Construction

In this section, we briefly go over some details about our autonomous pick and place pipeline,

including grasp selection at other stages in the pipeline. The complete codebase for the pick

and place setup is available at https://github.com/evelyn-fu/pickplace_data_collection.

4.5.1 Grasp Selection For Other Pipeline Stages

In this section, we review the implementation details for grasp selection at the bin picking,

physical parameter identification, and placing steps of the autonomous robotic pipeline. At

each stage, we generate grasp candidates following the method explained in 4.1.1, and score

them based on different cost functions based on the requirements at each stage.

Bin Picking Grasps

Due to the angle of our camera in our particular setup, the point cloud measurements of

individual objects are often incomplete. Specifically, we can mostly only see the top and one

side of the objects, and many object sides are occluded by the other objects in the highly

cluttered bin. Because of this, the antipodal score if often misled in our implementation.

Therefore, we do not use the antipodal cost for ranking bin picking grasps.

Instead, we use two alignment scores similar to that in Method 1: The first to align the

gripper x axis to the vertical world axis, and the second to align the gripper z axis to the
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first principal axis of the 2D flattened point cloud of the desired object. The first alignment

cost is self explanatory, since we are picking into a cluttered bin and can only guarantee a

good point cloud measurement of the tops of the object, so we want to grasp straight down.

The second alignment cost requires us to separate the point cloud between the separate

objects in the bin so we can find the principal axes individually between axes. We cluster

nearby points, and for each cluster, we translate all the points in the cluster up to the highest

z value of points in the cluster and downsize to the desired voxel size again to "flatten" it

to the xy plane. This way, we can find the clusters’ principal axes along the xy world plane.

Then, grasps are sampled from the flattened point cloud, and the second alignment cost

measures the alignment between the gripper z axis and the first principal axis, since we

want the fingers to close on the wider surface of the object.

Physical Parameter Identification Grasps

More information about the physical parameter identification step of the pipeline can be

found in our paper, [1], but it is not the focus of this thesis, which covers the identifying

the visual and geometric properties and the construction of the physical pipeline. Since the

physical parameter identification step is a part of the physical pipeline, it is worth mentioning

here. The physical parameter identification involves grasping the object and moving it

through an excitation trajectory, which may involve high accelerations and requires a very

secure grasp on the object.

We use the same hybrid antipodal cost as in 4.8 and the same filtering conditions as in

Method 2 to select stable grasps. Additionally, once a grasp is selected, we shift it along the

gripper’s y axis so that the two fingers are equally distant from the nearest surface on the

point cloud. This ensures that when the gripper closes, the fingers do not tilt the object in

one direction or another, resulting in a more secure grasp.

Bin Placing Grasps

We use the same stable grasp scoring method as for the physical parameter identification

grasps.

4.5.2 Miscellaneous

Motion Planning

We use [50] for motion planning. We found that this motion planner integrated well into our

pipeline due to its fast planning times and minimal planning failure rate, which allowed us

to keep the data collection time in our pipeline low.
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Place Flipped

At the end of the second grasp’s pick and display, we place the object down rotated 180

degrees along the vertical axis from its original orientation, but generally in the same

translational position. This way, the camera can get an unoccluded view of both the front

and back sides of the object with minimal extra movement. Given the original pick grasp

pose, XWG, we calculate the new place grasp pose
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Algorithm 3 Compute 180° Z-axis Flipped Gripper Pose

Require: Gripper pose XWG, gripper length lg
1: Compute gripper center in world frame:

tcenter = XWG ·









0

0

3
4
lg









2: Define 180° rotation around the z-axis:

R180
z =









−1 0 0

0 −1 0

0 0 1









3: Extract current rotation and translation:

Rcurr = XWG[0 : 3, 0 : 3], tcurr = XWG[0 : 3, 3]

4: Rotate translation around tcenter:

tfinal = R180
z · (tcurr − tcenter) + tcenter

5: Compute final rotation:

Rfinal = R180
z ·Rcurr

6: Construct flipped gripper pose:

Xplace
G =





Rfinal tfinal

0¦ 1





In the above algorithm, we estimate the center of the object to be grasped near 3/4 of

the distance from the end effector to the tips of the finger. This estimate was chosen for our

particular hardware setup. We get the position of this estimated center tcenter and rotate the

pick pose by 180 degrees about the z-axis, centered around tcenter, to calculate the gripper

pose for flipping the object to the other side. Note that this generally works better for more
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vertical grasps, since mirroring a horizontal grasp would likely be far in joint space, and

this extra motion could cause the object to slip in the grasp during the execution of the

trajectory. Therefore, we modify Method 2 to use the more vertical grasp of the pair as the

second
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Chapter 5

3D Reconstruction of Assets

In this section, we go over our method for reconstructing the 3D visual and collision ge-

ometries of the objects after we have collected data with the methods in Chapter 4. A full

implementation of this section can be found at https://github.com/nepfaff/scalable-real2sim.

5.1 Background

5.1.1 Mathematical Background on SOTA Implicit 3D Reconstruc-

tion Methods

We first briefly review the framework behind NeRF, a current state-of-the-art 3D recon-

struction methods which many other photometric reconstruction methods build off of. This

will set us up for presenting our recipe for modifying these methods and their numerous

adaptations to object-centric applications with dynamic occlusions, such as our pick and

place setup.

NeRFs

NeRFs are trained from images of a static scene where the camera pose within the scene is

known for each image. Given the camera pose, an image of the scene taken from the camera

pose can be rendered from the NeRF by marching along a ray r : r(t) = xo + td

Iθ(xo,d) =

∫ tf

tn

w(t)cθ(r(t),d)dt (5.1)

where

w(xo,d, t) = exp

[

−

∫ tf

tn

σθ(r(s))ds

]

σθ(r(t)) (5.2)

is the likelihood of the ray terminating at t.
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Then, loss is the total squared error between the rendered and true pixel colors in the

given batch of images and sampled rays.

L = E
I∈D,r∈R(I)

||I(xo,d)− Iθ(xo,d)||
2
2 (5.3)

5.1.2 6D Pose Estimation

6D pose estimation is an actively developing field of research pertaining to identifying the

6 dimensional pose, (x, y, z, φ, θ, ψ). More specifically, 6D pose tracking is the task of using

temporal cues to estimate the pose of an object throughout the frames of a video. Our

reconstruction method requires us to extract the object’s pose out of the video data we

collect, so we review some current SOTA methods for 6D pose estimation and tracking here.

Recent approaches for 6D object tracking include BundleSDF [27], which simultaneously

learns a Neural Object Field and leverages the online learned 3D representation to assist

in pose graph optimization. In our experiments, we found BundleSDF to be reliable for

estimating accurate object poses and producing 3D reconstructions. One limitation is that

BundleSDF only runs at near real-time rate. FoundationPose [51] provides a real-time

tracking method, but requires either a predefined 3D model of the object or a set of images

forming a complete view of the object. Finally, a recent work, Any6D [52] provides a

model-free 6D tracking method that works in real time, but the implementation has not

yet been released at the time of this writing. We use BundleSDF for object tracking in our

3D reconstruction recipe.

5.1.3 Object Segmentation

Object segmentation is the process of classifying each pixel in an image into a specific class

or object. For our method, it is important to identify which pixels belong to the object

and the robot gripper. We use Segment Anything 2 (SAM2) [53], a foundation model for

promptable object segmentation in both images in videos. SAM2 can be prompted for video

data by providing points within an object of image, a bounding box, or a mask on one frame

of a video. Then, it will produce a mask for the object of interest on the given frame and

continue to propagate through the video an mask the object of interest as it moves through

the video. Therefore, we use SAM2 in our implementation for segmenting both the object

we want to reconstruct and the robot gripper.

5.2 Geometric Reconstruction for Visual Geometry

We obtain the object’s visual mesh and texture map using SOTA implicit reconstruction

methods. These methods are typically designed to reconstruct an entire static scene rather
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than dynamic, object-centric scenarios [20]. In this section, we propose a general recipe for

adapting these reconstruction methods for object-centric reconstructions from our dynamic

scenes where the object of interest may be partially occluded. We demonstrate this recipe

on three reconstruction approaches, Nerfacto from Nerfstudio [32], Gaussian Frosting [54],

and Neuralangelo [55]. This recipe applies broadly to any method relying on photometric

losses.

Standard 3D reconstruction methods like NeRF [25] assume a static scene and moving

camera, and require the pose of the camera in the frame of the scene for each sample image in

the training data. In our application, the scene we want to reconstruct is the moving object.

Therefore, we redefine the world frame for reconstruction to a frame centered on the object.

Then, to get the pose of the camera in the object frame, we track the object’s pose in the

world, XWO through the video frames. Then, knowing the camera’s stationary pose in the

world, WXC , we can get the pose of the camera in the object frame, XOC = (XWO)
−1XWC .

Additionally, since we only want to reconstruct the object and not any of the background

(which is moving in the object frame and therefore not constant), we use object masks

{MO}N to only train on pixels that belong to the object. These object masks are retrieved

using video segmentation from SAM2 [53]. Either a bounding box of the object, generated

using GroundingDINO [56] given a text prompt, or an initial point or set of points within

the object on the first video frame, selected through our custom made GUI, is used as a

prompt to SAM2, which propagates throughout the video to get object masks in all frames.

However, excluding background pixels can lead to density bleeding (see Figure 5.1),

where the model assigns nonzero density to empty space due to a lack of supervision. To

address this, we employ alpha-transparent training [57], which enforces zero density in the

background without additional hyperparameters.

This method replaces background pixels in the training data with iteration-dependent

random colors and blends those same colors into the predicted image based on the model’s

density predictions. Since the model cannot predict these random colors, it minimizes the

loss by assigning zero density outside the object, allowing the colors to shine through.

For each training iteration, a random background color Cbg ∼ U(0, 1)
3 is sampled

uniformly and used to composite both the ground-truth and predicted images.

Let a sampled camera ray (as explained in Section 5.1.1) be defined as r = (xo,d), where

xo is the camera origin and d is the direction. Let:

• Irgb(xo,d) ∈ [0, 1]3 denote the ground-truth RGB colors along ray r,

• α(xo,d) ∈ [0, 1] be the ground-truth opacities along the ray,

• I
rgb
θ (xo,d) ∈ [0, 1]3 be the model-predicted RGB colors,

• αθ(xo,d) ∈ [0, 1] be the model-predicted opacities.
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Then, the composited ground-truth and predicted pixel colors used for training are:

I(xo,d) = α(xo,d) · Irgb(xo,d) + (1− α(xo,d)) ·Cbg (5.4)

Iθ(xo,d) = αθ(xo,d) · I
rgb
θ (xo,d) + (1− αθ(xo,d)) ·Cbg (5.5)

The loss is then defined as in Equation 5.3. Then, for locations along the rays where the

representation should be transparent, αθ(xo,d) is driven towards 0 so that the random color

matches between the blended predicted and blended ground truth images. We found that

this method of addressing density bleeding is reliable, and unlike directly putting a loss on the

transparency for pixels not in the object mask, we do not need to tune any hyperparameters

for this method.

Alpha-transparent training resolves background issues but cannot handle occlusions, such

as those caused by the gripper, as it would incorrectly make occluded regions transparent.

This could result in regions on the surface of the object to have holes in the reconstruction. To

address this, we use gripper masks {MG}N to exclude occluded pixels from the reconstruction

objective. More information about how we acquire these gripper masks automatically is given

in Section 5.2.2. Gripper masks take precedence over object masks.

For featureless objects like single-color surfaces, depth supervision, which constrains

reconstruction with depth data, improves accuracy by resolving ambiguities in photometric

losses. This additional geometric constraint is particularly effective for objects such as bowls,

where photometric methods often struggle.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Figure 5.1: Our object-centric visual reconstruction recipe. From the collected
RGB images (a), we obtain the object masks (b) and gripper masks (c). Using only the
object masks to ignore background pixels during training (d) results in density bleeding into
unoccupied regions (g). Applying alpha-transparent training (e) mitigates density bleeding
but incorrectly drives occluded object regions toward transparency (h). Ignoring pixels inside
of the gripper mask during training, along with employing alpha transparent training (f),
successfully reconstructs an unoccluded object view with no density bleeding (i).

5.2.1 Collision Geometries

The visual geometry V is simplified into a convex collision geometry C for physics simulation.

Following prior works [19, 20], we use approximate convex decomposition algorithms [58,

59], which split V into nearly convex components and simplify each using convex hulls. This

process yields a computationally efficient and simulatable geometry C.

We note that simulating a collection of convex pieces can be suboptimal, especially when

meshes overlap or contain gaps. In Drake’s hydroelastic contact model [60], gaps can distort

the pressure field, causing dynamic artifacts. In the point contact models used in most

robotics simulators, overlaps may generate interior contact points. Another option is to
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use primitive geometries to represent the collision geometry. For instance, sphere-based

approximations might enable rapid simulations on GPU-accelerated simulators. The optimal

representation depends on the simulator and the tradeoff between simulation speed and

accuracy. While we found convex decomposition effective in most cases, particularly with

point contact models, a more general approach remains an avenue for future work.

5.2.2 Gripper Segmentation

In this section, we explain extra steps we took to automatically retrieve gripper masks. Since

the robot gripper is not a common object, it is not in the distribution of the foundation

models we are using for object detection and segmentation. Therefore, we found that

manually prompting SAM2 [53] with points within the gripper on the initial video frame

was not sufficient in multiple instances. The mask was lost multiple times, requiring human

intervention to reprompt. This manual step is tedious, and strays us away from our goal of

having a fully autonomous pipeline. Additionally, prompting GroundingDINO [56] with a

text prompt to automatically generate a bounding box to input into SAM2 also fails since

it often cannot recognize the gripper either.

Therefore, we use all successfully segmented gripper masks using the default SAM2

model as training data to fine tune both SAM2 and GroundingDINO for recognizing the

gripper object. We use the training script provided in SAM2’s repo and mmdetection’s

implementation of GroundingDINO training for fine tuning SAM2 and GroundingDINO,

respectively [53][56][61].

The results can be seen in Figures 5.2 and 5.3.

(a) Successful object detec-
tion.

(b) Another successful object
detection.

(c) Successful object detec-
tion on the very first frame
of gripper entering the camera
view.

Figure 5.2: Gripper object detection using a a fine tuned GroundingDINO model.
The pipeline can now automatically detect the gripper by using the text prompt "gripper"
and use this bounding box as an input for segmentation. Previously, using the text prompt
"gripper" would often not detect the gripper in the image, producing 0 bounding boxes.
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(a) Failed segmentation using default
Grounding DINO + SAM2 models.

(b) Successful segmentation using fine
tuned Grounding DINO + SAM2 mod-
els

Figure 5.3: Gripper segmentation mask on the same video frame using the default
SAM2 and GroundingDINO models vs using custom fine tuned versions. These
masks are produced from the same frame of the same video.
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Chapter 6

Results and Evaluation

In this section, we go over the results of the methods previously presented, including examples

of selected grasp pairs and a visualization of the confidence map. We also provide some

examples of fully simulatable assets we reconstructed from real objects using our pipeline.

6.1 Grasp Selection and Confidence

We provide some examples of grasps generated from the method in Section 4.3.2 in Figure 6.1.

These grasps are generated for point clouds of 3 objects, a mustard bottle, bell pepper, and

a bowl. The result on the bell pepper is interesting because of how small the object is, but

the grasps selected in the pair are still very far apart both translationally and rotationally,

while being orthogonal to each other. The result on the bowl is also interesting because

Method 1 would tend away from grasping on the lip of the bowl, since it does not align to

any principal axis of the bowl, but intuitively, we know that it is the most stable location

to grasp. Here, using Method 2, our grasp selection process is able to easily find two stable

grasps on the bowl’s lip which are orthogonal to each other.

(a) Grasps selected for mus-
tard bottle

(b) Grasps selected for bell
pepper

(c) Grasps selected for bowl

Figure 6.1: Grasps selected jointly using the method from Section 4.3.2
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Figure 6.2, illustrates a scenario where the uncertainty-based regrasp method from Sec-

tion 4.3.3 is applied. This scenario was created and tested in simulation for easy access

to ground truth object masks and serves as a proof of concept. In this scenario, the two

pair grasps selected are along the diagonal of the mustard bottle and perpendicular to each

other, with the first grasp (in red) being slightly more horizontal. The bottom of the bottle

should be displayed during the first grasp, but due to slippage, the gripper ends up resting

more vertically along the bottle as it rotates. This can be seen in 6.2b, where the gray low

confidence region marks where the gripper had occluded the bottle, which is at a steeper

angle than originally planned. Therefore, after the two pair grasps, the bottom of the object

is still at low confidence 6.2c. We solve for another regrasp to maximize new information gain

from the display trajectory and select a very horizontal grasp 6.2d to collect data from the

bottom of the object which we missed before. After this regrasp and display, we have now

gained information about the bottom of the object 6.2e. The difference in the reconstruction

result before and after including the observations from the additional grasp is shown in

Figure 6.3.

52



(a) Pair grasps selected for mustard
bottle using method from Section 4.3.2

(b) The uncertainty
map after the
first grasp. Note
how the surfaces
occluded by the
grasp are less
confident. The
bottom of the
bottle also has low
confidence.

(c) The uncertainty
map after the sec-
ond grasp. Most
surfaces on the sides
are now observed,
but the bottom is
still uncertain.

(d) Additional grasp selected to display
uncertain surfaces. A very horizontal
grasp is chosen so that the bottom of the
object gets pointed towards the camera
during the display trajectory.

(e) The uncertainty
map after the addi-
tional grasp

Figure 6.2: Evolution of the object’s uncertainty map as we collect views. The
uncertainty maps of the object are visualized as red for higher confidence and gray for lower
confidence voxels. Due to slippage during the first (red in subfigure (a)) grasp, we do not
get a good view of the bottom of the object initially. An additional grasp is computed in
order to target collecting data of the unobserved bottom surface.
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(a) Bottom of reconstructed
mustard bottle using only
data from grasps 1 and 2

(b) Geometry of bottom of
reconstructed mustard bottle
using only data from grasps 1
and 2

(c) Bottom of reconstructed
mustard bottle using data
from grasps 1 and 2 and addi-
tional uncertainty based grasp

Figure 6.3: Reconstructions using data collected before and after additional uncertainty
based grasp from the scenario in Figure 6.2. These reconstructions were made from data
gathered in simulation as a proof of concept.

6.2 Reconstruction Results

Qualitative results are provided in Figures 6.4 and 6.5. Notably, Figure 6.5 highlights

our ability to reconstruct entire objects, including previously occluded regions such as the

bottom, which would be inaccessible without object interaction. We found BundleSDF

produces meshes with poor topology, including scattered boundary faces and non-manifold

vertices. These artifacts complicate rendering and may pose challenges for simulators that

require watertight meshes. One way to mitigate rendering issues is to use a high-quality

but slow renderer like Blender Cycles [62]. Alternatively, a higher-quality mesh can be

generated using a SOTA reconstruction method like Neuralangelo, following our geometric

reconstruction recipe from Section 5.2. Figure 6.6 presents a qualitative comparison between

BundleSDF and Neuralangelo, highlighting the rendering artifacts caused by poor topology.

Additional examples, including Nerfacto and Gaussian Frosting reconstructions, are available

on our project page. A dataset of 20 objects reconstructed through this pipeline can also be

found on the project page.
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Figure 6.4: Real-world objects (left) and their reconstructed counterparts (right).
Each object on the left was individually reconstructed using our pipeline. These assets
were then manually arranged in simulation to approximately match their real-world poses
and rendered to produce the image on the right. The strong visual similarity is notable,
especially given that the reconstructions are rendered triangle meshes rather than neural
renders.
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Figure 6.5: A selection of geometric reconstructions. The first two columns show
multiple views of the same object (a power inflator in the first column and a Lego block in
the second), demonstrating the completeness of our reconstructions. The last two columns
highlight close-up views of other objects, illustrating the accuracy of both geometric and
visual reconstruction, even for parts that were occluded during scanning. We provide
interactive 3D visualizations on our project page.
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Figure 6.6: Comparison of BundleSDF [27] and Neuralangelo [55] reconstructions
of a mustard bottle. Blue circles denote Blender [62] renders, while green diamonds
represent Meshlab [63] renders. The BundleSDF mesh appears best in Blender but worst
in Meshlab due to poor topology (e.g., scattered boundary faces), which requires a powerful
renderer to compensate. In contrast, the Neuralangelo mesh maintains consistent quality
across both renderers due to its well-structured topology. The effects of poor topology in
the BundleSDF mesh appear as black lines, which originate from the mesh itself rather than
the texture map. These artifacts are particularly noticeable at the top of the bottle’s body.

We assess reconstruction accuracy by computing the Chamfer distance between our

BundleSDF reconstructions of selected YCB [64] objects and their corresponding 3D scan-

ner models from the original YCB dataset. Our method achieves reconstruction errors of

0.93mm, 1.68mm, 5.58mm, and 0.80mm for the mustard bottle, potted meat can, bleach

cleanser, and gelatin box, respectively. These low errors indicate that our system produces

both accurate and complete object reconstructions. However, if the physical product dimen-

sions have changed since the YCB dataset’s release, the measured reconstruction error may

be artificially inflated.

6.3 Simulation Performance

Our pipeline produces simulatable assets that can be directly imported into physics simu-

lators such as Drake. However, individual simulation rollouts are highly sensitive to initial

conditions, making direct one-to-one comparisons with real-world rollouts challenging. A
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Figure 6.7: Our simulation experiments. The left column represents simulations, and
the right column represents their real-world counterparts. The first row is pick-and-place,
the second is knocking over, and the third is falling down a ramp. Different frames are
overlaid transparently to show motion, and videos are available on the project page.
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robust evaluation would require comparing the distributions of rollout trajectories rather

than individual instances. One approach to mitigate sensitivity to initial conditions is to

compute equation error metrics [65, Chapter 18] by resetting the simulation state to match

the real-world state at every timestep. However, this would require a precise state estimation

system, which is beyond the scope of this work. Instead, we focus on qualitative evaluation,

presenting interactive simulations and side-by-side comparisons of real-world and simulated

rollouts on our project page. See Figure 6.7 for an overview.
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Chapter 7

Conclusion

We developed an autonomous pipeline for creating simulatable assets from real objects,

integrated into a simple pick-and-place setup. Our work offers a stepping stone into bridging

the Sim2Real gap by providing a scalable, accessible method for bringing real objects into

simulation with high detail and accuracy.

7.1 Key Results

We found that with a standard pick and place setup with a 7-DOF robot arm, parallel finger

grippers, 2 bins, and a set of RGBD cameras, we can construct a pick and display trajectory

for an object of interest in the starting point with minimal (around 2) regrasps, to gather

observations of the full surface of the object, following the generalized grasping and display

strategies from Sections 4.2 and 4.3.

Additionally, we proposed a general recipe for reconstructing object-centric, dynamic

scenes with occlusion that can be extrapolated to arbitrary photometric reconstruction

methods and validated our recipe on 3 SOTA methods: Nerfacto, Guassian Frosting, and

Neuralangelo, and found the method to work with all three, with interactive results online.

7.2 Contributions

In summary, the key contributions of this work are:

• A fully automated pipeline that generates complete simulation assets (visual geome-

try, collision geometry, and physical properties) using pick-and-place setups without

hardware modifications or human intervention.

• A general recipe for obtaining object-centric triangle meshes from photometric recon-

struction methods such as NeRF for moving, partially occluded objects by employing
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alpha-transparent training and distinguishing foreground occlusions from background

subtraction.

• Extensive real-world experiments validating the effectiveness of the pipeline and its

individual components.

• A benchmark dataset of 20 assets generated by our pipeline, including raw sensor ob-

servations used in their creation. This dataset enables researchers to improve aspects of

our pipeline, such as object tracking, geometry reconstruction, and inertia estimation,

without requiring access to a robotic system.

7.3 Future Work

The immediate next step following this work would be to incorporate Method 2.5 from

Section 4.3.3 for additional regrasping based on uncertainty on hardware. This would ideally

involve integrating online, model-free object tracking such as with Any6D [52], and online

image segmentation.

Looking forward, while our pipeline works on common pick and place setups, it would be

interesting to collect data for reconstruction without disturbing the natural flow of the pick

and place setup. One situation where this could be useful could be in a warehouse scenario,

where multiple of the same object may be moved back and forth over the course of a day.

After enough repetitions of the same, a camera stationed at the setup could collect enough

data for 3D reconstruction. This would require keeping a constant data collection system

to identify and group images of the same type of object and store those images towards the

same reconstruction.
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