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Abstract— In this paper we explore using self-supervised
correspondence for improving the generalization performance and
sample efficiency of visuomotor policy learning. Prior work has
primarily used approaches such as autoencoding, pose-based losses,
and end-to-end policy optimization in order to train the visual
portion of visuomotor policies. We instead propose an approach
using self-supervised dense visual correspondence training, and
show this enables visuomotor policy learning with surprisingly high
generalization performance with modest amounts of data: using
imitation learning, we demonstrate extensive hardware validation
on challenging manipulation tasks with as few as 50 demonstrations.
Our learned policies can generalize across classes of objects, react
to deformable object configurations, and manipulate textureless
symmetrical objects in a variety of backgrounds, all with closed-
loop, real-time vision-based policies. Simulated imitation learning
experiments suggest that correspondence training offers sample
complexity and generalization benefits compared to autoencoding
and end-to-end training.

I. INTRODUCTION

To achieve general-purpose manipulation skills, robots will
need to use vision-based policies and learn new tasks in a scalable
fashion with limited human supervision. For visual training,
prior work has often used methods such as end-to-end training
[1], autoencoding [2], and pose-based losses [1], [3]. These
methods, however, have not benefitted from the rich sources of
self-supervision that may be provided by dense three-dimensional
computer vision techniques [4]–[6], for example correspondence
learning which robots can automate without human input [7].

Correspondence is fundamental in computer vision, and we
believe it has fundamental usefulness for robots learning complex
tasks requiring visual feedback. In this paper we introduce using
self-supervised correspondence for visuomotor policies, and our
results suggest this enables policy learning that is surprisingly capa-
ble. Our evaluations pair correspondence training with a simple im-
itation learning objective, and extensive hardware validation shows
that learned policies can address challenging scenarios: manipulat-
ing deformable objects, generalizing across a class of objects, and
visual challenges such as textureless objects, clutter, moderate oc-
clusion, and lighting variation (Fig 1). Additionally our simulation-
based comparisons empirically suggest that our method offers
significant generalization and sample complexity advantages com-
pared to existing methods for training visuomotor policies, while
requiring no additional human supervision. To bound our method’s
scope: while spatial correspondence alone cannot suffice for all
tasks (for example, it cannot discriminate when to be finished cook-

Video, source code, at: sites.google.com/view/visuomotor-correspondence
1All authors are with the Computer Science and Artificial Intelligence Labo-

ratory (CSAIL), Massachusetts Institute of Technology, 32 Vassar St., Cambridge,
MA, USA. {peteflo,manuelli,russt}@csail.mit.edu

Time Finish

Different configurations

TimeDifferent novel (unseen) instances

Time

Time

Time

(a)

(b)

(c)

(d)

(e)

(b)

Disturbances

DisturbancesDeformable object

Extrinsic dexterity

Fig. 1: Examples of autonomous policies, including a variety of non-prehensile,
class-general, and deformable manipulation. Table III details hardware results.

ing eggs), there is a wide set of tasks for which dense spatial corre-
spondence may be useful: essentially any spatial manipulation task.

Contributions. Our primary contribution is (i) a novel formula-
tion of visuomotor policy learning using self-supervised correspon-
dence. Through simulation experiments (ii) we measure that this
approach offers sample complexity and generalization benefits
compared to a variety of baselines, and (iii) we validate our method
in real world experiments. We believe that compared to the existing
state of the art in robotic manipulation, the abilities of our learned
policies represent exciting levels of performance, especially
the generalization across challenging scenarios (category-level
manipulation, deformable objects, visually challenging scenes) and
with limited data (between 50 and 150 demonstrations). We also
(iv) introduce a novel data augmentation technique for behavior
cloning, and (v) demonstrate a new technique for multi-camera
time-synchronized dense spatial correspondence learning.

II. RELATED WORK

We focus our related work review around two topics: visual
training methods for visuomotor policies, and approaches for
providing the policy learning signal. An overview of the broader

https://sites.google.com/view/visuomotor-correspondence


topic of robot learning in manipulation is provided in [8]. For
more related work in self-supervised robotic visual learning,
including correspondence learning, we refer to the reader to [7].

A. Visual Training Methods for Visuomotor Policies

There have been three primary methods used in the robot
learning literature to train the visual portion of visuomotor
policies. Often these methods are used together – for example
[1], [3] use pose-based losses together with end-to-end training.
(1) End-to-End training. This approach can be applied to any
learning signal that is formed as a consequence of a robot’s
actions, for example through imitation learning or reinforcement
learning. While often end-to-end training is complemented with
other learning signals, other works use purely end-to-end training.
(2) Autoencoders. Autoencoding can be applied to any data with
no supervision and is commonly used to aid visuomotor policy
learning [2], [9]–[13]. Sometimes polices are learned with a frozen
encoder [2], [9], [10], other times in conjunction with end-to-end
training [13]. (3) Pose-based losses. In [1], for example, a separate
dataset is collected of the robot holding objects, and assuming
that the objects are rigid and graspable, then using the robot’s
encoders and forward kinematics the visual model can be trained
to predict the object pose. In [3], pose-based auxiliary losses are
used regardless of whether or not objects are held – we wouldn’t
expect this to learn how to predict object configurations unless
they are also rigid and grasped. Simulation-based works [14] have
also used auxiliary losses for object and gripper positions.

In our comparison experimentation, we include end-to-end
training and autoencoding, but not pose-based losses, since they
are not applicable to deformable or un-graspable objects. While
the above are three of the most popular, other visual training
methods include: training observation dynamics models [15],
[16], using time-contrastive learning [17], or using no visual
training and instead using only generic pre-trained visual features
[18]. Relevant concurrent works include [19] which proposes
autoencoder-style visual training but with a reference image and
novel architecture, and [20] which proposes a graph-based reward
function using a fixed set of correspondences.

B. Methods for Learning Vision-Based Closed-Loop Policies

While the previous section discussed visual training methods, to
acquire policies they must be paired with a policy learning signal.
We are particularly interested in approaches that can (i) scalably
address a wide variety of tasks with potentially deformable and
unknown objects, (ii) use a small incremental amount of human
effort (on the order of 1 human-hour) per each new object or task,
and (iii) produce real-time vision-based closed-loop policies.

One source of policy learning signal may be from reinforcement
learning, which has demonstrated many compelling results.
A primary challenge, however, is the difficulty of measuring
rewards in the real world. Some tasks such as grasping can be
self-supervised [21], and other tasks can leverage assumptions
that objects are grasped and rigid in order to compute rewards [1],
but this only applies to a subset of tasks. A more generalizable
direction may be offered by unsupervised methods of obtaining
reward signals [2], [17], [18]. Another direction which has shown
promising results is using sim-to-real transfer [14], [22]–[24], but

our interest in a small amount of incremental human effort per new
task is challenging for these methods, since they currently require
significant engineering effort for each new simulation scenario.

Another powerful source of signal may come from imitation
learning from demonstration, which several recent works have
shown promise in using to produce real-time vision-based closed-
loop policies [3], [9], [10], [13], [17], [18], [25], [26]. We point the
reader to a number of existing reviews of learning from demon-
stration [27], [28]. Another direction may be to learn models from
observations and specify goals via observations [2], [15], [16], but
these may be limited to tasks for which autonomous exploration
has a reasonable chance of success. In terms of limitations of these
prior works, one primary challenge relates to reliability and sample
complexity – it is not clear how much data and training would be
required in order to achieve any given level of reliability. Relatedly,
a second limitation is that little work has characterized the distribu-
tions over which these methods should be trained and subsequently
expected to generalize. Third, like in many areas of robotics it is dif-
ficult to reproduce results and compare approaches on a common
set of metrics. While we believe hardware validation is critical,
we also believe that increased effort should be put into simulation-
based results that compare methods and can be reproduced.

III. VISUOMOTOR FORMULATION

First as preliminary we identify some primary attributes of exist-
ing approaches in visuomotor policy learning (Sec. III-A). We then
present our approach based on self-supervised correspondence
(Sec. III-B). The discussion of visuomotor policy learning in this
section is agnostic to the specific learning algorithm, i.e. reinforce-
ment learning, imitation learning, etc., and focuses on the model
structure and sets of trainable parameters. Sec. IV discusses the
application of our approach to a specific case of imitation learning.

A. Preliminary: Visuomotor Policies

We would like to have a policy at = πθ(o0:t), where
o0:t=(o0,o1,...ot) is the full sequence of the robot’s observations
during some episode up until time t, with each oi∈O, the robot’s
observation space. This sequence of observations is mapped by
πθ(·), the robot’s policy parameterized by θ, to the robot’s actions
a, each ∈A. In particular, we are interested in visuomotor policies
in which the observation space contains high-dimensional images
Oimage ⊂O, for example Oimage = RW×H×C for a C-channel,
width W , and height H image. The visual data is perhaps
complemented with additional lower-dimensional measurements
Orobot, such as produced from sensors like the robot’s encoders,
such thatOrobot×Oimage =O.

It is common for a visuomotor policy to have an architecture
that can factored as displayed in Fig. 2(a),

z=fθv(oimage):oimage∈Oimage, z∈RZ (1)

a=πθp(z,orobot):orobot∈Orobot, z∈RZ, a∈A (2)

in which a visual model fθv(·), parameterized by θv, processes
the high-dimensional oimage into a much smaller Z-dimensional
representation z. The policy model πθp(·) then combines
the output of the visual model with other observations
orobot. This is a practical modeling choice – images are
extremely high dimensional, i.e. in this work we use images



(b)(a)

W

H

C

+

W

H

C
W

H

D

Correspondence 
function

Descriptor setInitialization

Dense descriptor image

Corresponded
descriptors

Visuomotor policy model
(common architecture factorization)

+

Our model

oimage

orobot

z

a

z

a

{di}P
i=1

fC(·)

RD

4
Experim

ental

D
ata

C
ollection

and
Pre-Processing.The

m
inim

um
requirem

entforraw
data

is
to

collectan
R

G
B

D
video

ofan
objectorobjects.Figure

1
show

sourexperim
entalsetup;w

e
utilize

a
7-D

O
F

robotarm
(K

uka
IIW

A
LB

R
)w

ith
an

R
G

B
D

sensor(Prim
esense

C
arm

ine
1.09)m

ounted
atthe

end-effector.W
ith

the
robot

arm
,data

collection
can

be
highly

autom
ated,and

w
e

can
achieve

reliable
cam

era
posesby

using
forw

ard
kinem

atics
along

w
ith

know
ledge

ofthe
cam

era
extrinsic

calibration.
Fordense

reconstruction
w

e
use

TSD
F

fusion
[27]ofthe

depth
im

agesw
ith

cam
era

posesprovided
by

forw
ard

kinem
atics.A

n
alternative

route
to

collecting
data

w
hich

does
notrequire

a
calibrated

robotis
to

use
a

dense
SLA

M
m

ethod
(for

exam
ple,[28,29]).In

betw
een

collecting
RG

BD
videos,the

objectofinterestshould
be

m
oved

to
a

variety
ofconfigurations,and

the
lighting

can
be

changed
ifdesired.W

hile
form

any
ofourdata

collections
a

hum
an

m
oved

the
objectbetw

een
configurations,w

e
have

also
im

plem
ented

and
dem

onstrated
(see

our
video)the

robotautonom
ously

rearranging
the

objects,w
hich

highly
autom

atesthe
objectlearning

process.
W

e
em

ploy
a

Schunk
tw

o-fingergripperand
plan

grasps
directly

on
the

objectpointcloud
(A

ppendix
C

).Ifm
ultiple

differentobjectsare
used,currently

the
hum

an
m

uststillsw
itch

the
objectsforthe

robot
and

indicate
w

hich
scenescorrespond

to
w

hich
object,buteven

thisinform
ation

could
be

autom
ated

by
the

robotpicking
objectsfrom

an
auxiliary

bin.

Training
D

enseD
escriptors.Fortraining,ateach

iteration
w

e
random

ly
sam

ple
betw

een
som

e
subsetof

specified
im

age
com

parison
types(Single

O
bjectW

ithin
Scene,D

ifferentO
bjectA

crossScene,M
ultiO

b-
jectW

ithin
Scene,Synthetic

M
ultiO

bject),and
then

sam
ple

som
e

setofm
atchesand

non-m
atchesforeach.

In
thisw

ork,w
e

use
only

static-scene
reconstructions,so

pixelm
atchesbetw

een
im

agescan
be

easily
found

by
raycasting

and
reprojecting

againstthedense3D
reconstruction

m
odel,and

appropriately
checking

foroc-
clusionsand

field-of-view
constraints.Forthedensedescriptorm

apping
w

etrain
a34-layer,stride-8

ResN
et

pretrained
on

Im
ageN

et,butw
e

expectany
fully-convolutionalnetw

ork
(FCN

)thathasshow
n

effectiveness
on

sem
antic

segm
entation

tasksto
w

ork
w

ell.A
dditionaltraining

detailsare
contained

in
A

ppendix
D

.

5
R

esults

  

O
bjects used 

• 
47 objects total 

• 
275 scenes 

8 hats 
    15 shoes 
    15 m

ugs 
      9 additional objects 

Figure2:Learned
objectdescriptorscan

be
consistentacrosssignificantdeform

ation
(a)and,ifdesired,acrossobject

classes(b-d).Show
n

foreach
(a)and

(b-d)are
R

G
B

fram
es(top)and

corresponding
descriptorim

ages(bottom
)that

are
the

directoutputofa
feed-forw

ard
passthrough

a
trained

netw
ork.(e)-(f)show

sthatw
e

can
learn

descriptorsfor
low

texture
objects,w

ith
the

descriptorsm
asked

forclearvisualization.O
urobjectsetisalso

sum
m

arized
(right).

5.1
Single-O

bjectD
enseD

escriptors

W
e

observe
thatw

ith
ourtraining

procedures
described

in
Section

3.2,fora
w

ide
variety

ofobjects
w

e
can

acquire
dense

descriptorsthatare
invariantto

view
point,configuration,and

deform
ation.The

variety
ofobjectsincludesm

oderately
deform

able
objectssuch

assoftplush
toys,shoes,m

ugs,and
hats,and

can
include

very
low

-texture
objects(Figure

2).M
any

ofthese
objectsw

ere
justgrabbed

from
around

the
lab

(including
the

authors’and
labm

ates’shoesand
hats),and

dense
visualm

odelscan
be

reliably
trained

w
ith

5

W

H

D

f✓v
(·)

⇡✓p
(·)

⇡✓p
(·)

fdense
✓v

(·)

Fig. 2: Diagram of common visuomotor policy factorization (a), and our proposed model (b) using visual models trained on correspondence.

in R640×480×3 = R921,600, whereas our Orobot is at most R13.
A wide variety of works have employed a similar architecture
to [1], consisting of convolutional networks extracting features
from raw images into an approximately Z=32 to 100 bottleneck
representation of features, e.g. [2], [3], [11], [13], [25], [29]

B. Visual Correspondence Models for Visuomotor Policy Learning

The objective of the visual model is to produce a feature vector
z which serves as a suitable input for policy learning. In particular,
we are interested in deploying policies that can operate directly
on RGB images. Given the role that pose estimation has played
in traditional manipulation pipelines it seems valuable to encode
the configuration of objects of interest in the vector z. Pose
estimation, however, doesn’t extend to the cases of deformable or
unknown objects. Some of the prior works discussed in Sec. II-A,
for example [1], [2], have interpreted their learned feature
points z as encoding useful spatial information for the objects
and task. These feature points are learned via the supervisory
signals of end-to-end, pose-based, or autoencoding losses, and
don’t explicitly train for spatial correspondence. In contrast our
approach is to directly employ visual correspondence training,
building off the approach of [7] which can in a self-supervised
manner, learn pixel descriptors of objects that are effective in
finding correspondences between RGB images.

We introduce four different methods for how to employ dense
correspondence models as the visual basis of visuomotor policy
learning. The first three are based on the idea of a set of points on
the object(s) that are localized either in image-space or 3D space.
We represent these points as a set {di}Pi=1 of P descriptors, with
each di ∈ RD representing some vector in the D-dimensional
descriptor space produced by a dense descriptor model fdense

θv
(·).

This fdense
θv

(·), a deep CNN, maps a full-resolution RGB image,
RW×H×3, to a full-resolution descriptor image, RW×H×D. Let
us term fC(·) to be the non-parametric correspondence function
that, given one or more descriptors and a dense descriptor image
fdense
θv

(oimage), provides the predicted location of the descriptor(s):

z=fC
(
fdense
θv (oimage),{di}Pi=1

)
(3)

Specifically fC : RW×H×D×RP×D→RP×K, where K = 2
corresponds to: z is the predicted corresponding (u, v) pixel
coordinates of each descriptor in the image, whileK=3 is their

predicted 3D coordinates. All four methods optimize a generic
policy-based loss function, shown in Eq. (4), and vary only in the
set of learnable parameters Θ and how z is acquired (the first three
use Eq. 3). This loss function L is generic and could represent
any approach for learning the parameters of a visuomotor policy.

min
Θ
L
(
πθp
(
z,orobot

))
(4)

Fixed Descriptor Set. This method only optimizes the policy
parameters, Θ = {θp}. In this case both the set of descriptors
{di}Pi=1 and visual model fdense

θv
(·) are fixed. We use a simple

initialization scheme of sampling {di} from a single masked
reference descriptor image. While we have found this method to be
surprisingly effective, it is unsatisfying that the visual model’s rep-
resentation is not optimized after the random initialization process.

Descriptor Set Optimization. This method optimizes the
descriptor set {di}Pi=1 along with the policy parameters θp while
keeping the dense descriptor mapping fdenseθv

fixed. Intuitively
fdenseθv

has already been trained to perform correspondence, and
we are simply allowing the policy optimization to choose what to
correspond. We have observed that Descriptor Set Optimization
can improve validation error in some cases over a Fixed Descriptor
Set, and adds minimal computational cost and parameters.

End-to-End Dense Optimization. The third option is to train
the full model architecture end-to-end by including θv in the opti-
mization. While we may have expected this approach to allow the
visual model to more precisely focus its modeling ability on task-
critical parts of images, we so far have not observed a performance
advantage of this approach over Descriptor Set Optimization.

End-to-End with Correspondence Pretraining. The fourth
option is to directly apply a differentiable operation to a model
which was previously trained on dense correspondence. We can
apply any differentiable operation g(·) on top of fdense

θv
directly

to produce a representation z=g
(
fdenseθv

(oimage)
)
. For example,

we can apply non-parametric channel-wise spatial expectations
to each of the D channels of the dense descriptor images. The
optimization variables in this case are Θ={θp,θv}.

For our fdense
θv

we use a 34-layer ResNet, as in [7], which is a
powerful vision backbone. Accordingly, using either a fixed- or
optimized- descriptor set will significantly increase policy training
speed, since it does not require forward-backward optimizing

The specific form of fC(·) is defined by how the correspondence model
was trained. In our preferred model we compute a spatial-expectation using a
correspondence kernel, either in image-space or 3D. See [30], Chapter 4, for details.



through a very deep convolutional network in each step of policy
training, which in our case is 1 to 2 orders of magnitude faster.

IV. VISUAL IMITATION FORMULATION

We now propose how to use the general approach of Sec. III-B
for a specific type of imitation learning for robot manipulation.

A. Robot Observation and Action Spaces

At the lowest level our controller sends joint velocity
commands to the robot. For ease of providing demonstrations via
teleoperation, the operator commands relative-to-current desired
end-effector poses T∆,cmd. A low-level Jacobian based controller
then tracks these end-effector pose setpoints. Our learned policies
also output T∆,cmd. The teleoperator also commands a gripper
width setpoint which again is tracked by a low-level controller.
Thus the action space is a=(T∆,cmd,wgripper)∈A=SE(3)×R+.

Our orobot∈R13 is (i) three 3D points on the hand as in [1], (ii)
an axis-angle rotation relative to the task’s starting pose, and (iii)
the gripper width. As noted previously, oimage∈R921,600.

B. Imitation Learning Visuomotor Policies

To evaluate visual learning strategies for enabling visuomotor
policy learning, we use imitation learning via a simple behavioral
cloning [31] strategy, which a few recent works have demonstrated
to be viable for learning visuomotor manipulation policies [3], [13].
Optimizing a policy with parameters Θ on the behavioral cloning
objective, given a dataset of Ntrain trajectories of observation-
sequence-to-action pairs {(ot,a∗t )}Ti

t=0 can be written as:

min
Θ

1

Ntrain

Ntrain∑
i=1

Ti∑
t=0

LBC
(
a∗t ,πΘ(ot)

)
(5)

For our loss function we use a simple weighted sum of l1 and
l2 loss, LBC(·) = ||a∗−π(·)||22 +λ||a∗−π(·)||1 where we use
λ= 0.1. We scale a∗ to equalize 1.0m end-effector translation,
0.1 radians end-effector rotation, and 1.0m gripper translation.

C. Training for Feedback through Data Augmentation

We introduce a simple technique which we have found to be
effective in at least partially addressing a primary issue in imitation
learning: the issue of cascading errors [32]. While other works have
shown that injecting noise into the dynamics either during imitation
learning [33] or sim-to-real transfer [34] can alleviate cascading er-
rors, we provide a simple method based only on data augmentation.
This method does not address recovering from discrete changes
in the environment, but can address local feedback stabilization.

Consider the output of our policy in a global frame, a =
(Tcmd,wgripper), which we can acquire from T∆,cmd since we know
the end-effector pose. As previously mentioned a low-level con-
troller tracks these setpoints, thus our learned policies can stabilize
a trajectory by commanding the same global-frame setpoint a
in the face of small disturbances to the robot state. If we want
our policy to command the same setpoint in the face of a slightly
perturbed robot state õrobot we can simply use ((oimage,õrobot),a)
as an observation-action pair. These noise-augmented observation-
action pairs are generated on-the-fly during training. A remaining
question, of course, is what scale of noise is appropriate. In
practice given our robot’s scale and typical speeds we find õrobot∼

N (orobot,Iσ) with σi of 1mm, 1 degree, and 1cm works well
respectively for translational, rotational, and gripper components.

D. Multi-View Time-Synchronized Correspondence Training

Unlike in previous work which trained robotic-supervised
correspondence models only for static environments [7], we
now would like to train correspondence models with dynamic
environments. Other prior work [6] has used dynamic non-rigid
reconstruction [35] to address dynamic scenes. The approach we
demonstrate here instead is to correspond pixels between two
camera views with images that are approximately synchronized
in time, similar to the full-image-embedding training in [17], but
here for pixel-to-pixel correspondence.

For training, like the static-scene case, finding pixel
correspondences between images requires only depth images,
camera poses, and camera intrinsics. Autonomous object masking
can, similar to [7], be performed using 3D-based background
subtraction, using only the live depth sensors’ point clouds. Since
both (a) the time-synchronized technique can only correspond
between time-synchronized images rather than many different
static-scene views ( [7] used approximately 400]), and (b) the
time-synchronized technique does not have access to highly
accurate many-view-fused 3D geometry as used in [7], it was
unclear that our time-synchronized training would provide
as compelling results as shown in Sec. V-D. To encourage
generalization despite having using only two static views, we
add rotation, scale, and shear image augmentations, and to help
alleviate incorrect correspondences due to noisy depth images,
we add photometric-error-based rejection of correspondences.

E. Policy Models

We use two standard classes of policy models, Multi-Layer Per-
ceptrons (MLP) and Long Short-Term Memory (LSTM) recurrent
networks, which are familiar model classes to many different types
of machine learning problems and in particular have been demon-
strated to be viable for real-world visuomotor control [1], [3], [13].
In our evaluations the MLPs are only provided current observa-
tions, π(ot), whereas through recurrence the LSTMs use the full
observation sequence. The Appendix provides more model details.

V. RESULTS

Our experimentation sought to answer these primary questions:
(1) Is it possible to use self-supervised descriptors as successful
input to learned visuomotor policies? (2) How does visual
correspondence learning compare to the benchmarked methods
in terms of enabling effective policy learning, as measured by
generalization performance and sample complexity? We also
evaluate (3) the effect of noise augmentation, and (4) whether our
dynamic-scene visual training technique is capable of effective
correspondence learning. Simulation setup and results are detailed
in Sec. V-A, V-B, hardware setup and results are in Sec. V-C, V-D.

A. Simulation Experimental Setup

We use simulated imitation learning tasks (Fig. 3) to compare
the generalization performance of behavior-cloned policies
where the only difference is how the “visual representation” z is
acquired. The first two tasks involve reaching to an object whose
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Fig. 3: RGB images used for visuomotor control in each of the simulation tasks.
T=translation, R=rotation, see Appendix for task descriptions.

configuration varies between trials either in translation only, or
rotation as well. The additional two tasks are both pushing tasks,
which require feedback due to simulated external disturbances.
Expert demonstrations use simple hand-designed policies using
ground truth object state information. The compared methods are:

1) Ground truth 3D points (GT-3D): z is ground truth
world-frame 3D locations of points on the object.

2) Ground truth 2D image coordinates (GT-2D): z is similar
to the previous baseline, but the points are projected into
the camera using the ground truth camera parameters.

3) Autoencoder (AE): z is the encoding of a pre-trained
autoencoder, similar to the visual training in [2], [11].

4) End-to-End (E2E): z is the intermediate representation
from end-to-end training. This closely resembles the
visual training and models in [1], [3], but we do not also
add pose-based losses, in order to investigate end-to-end
learning without these auxiliary losses.

5) Ours, Dense descriptors (DD): z is the expected image-
space locations (DD-2D) or 3D-space locations (DD-3D) of
the descriptor set {d}i, where the visual model was trained
on dense correspondence.

Note that the two vision-based baselines AE and E2E share an
identical model architecture for producing z, and differ only in the
method used to train the parameters. The model is close to [1]–[3]
with the key architectural traits of having a few convolutional
layers followed by a channel-wise spatial expectation operation,
which has been widely used [10], [11], [25], [29], [36]–[38]. Most
methods we compare (AE, E2E, DD-2D) use only one RGB
camera stream as input to learned policies; DD-3D additionally
uses the depth image. DD methods use descriptor set optimization
(Sec. III-B) and use both views for the correspondence training,
before policy training.

See the Appendix for additional model and task details.

B. Simulation Results

Table I contains the results of the simulation experiments. Inter-
estingly we find that our method’s visual representation is capable
of enabling policy learning that is remarkably close in performance
to what can be achieved if the policy has access to ground truth
world state information. In contrast the performances of the end-
to-end (E2E) and autoencoder (AE) methods vary much more
across the different tasks. Since our method benefits from object

Reach Reach Push Push
Method / Task T only T + R box plate
Ground truth 3D points 100.0 100.0 100.0 90.5
Ground truth 2D image coord. 94.1 95.6 100.0 92.0
RGB policy input
Autoencoder, frozen 8.1 61.1 31.0 53.0
Autoencoder w/ mask, frozen 16.3 10.0 73.0 67.0
Autoencoder, then End-to-End 40.7 38.9 – 16.0
End-to-End 43.0 32.2 100.0 5.5
End-to-End (34-layer ResNet) – 3.3 – –
DD 2D image coord. (ours) 94.1 97.8 100.0 87.0
RGBD policy input
DD 3D coord. (ours) 100.0 100.0 – 98.0

TABLE I: Summary of simulation results (success rate, as %). DD = Dense
Descriptor. See Appendix for task success criteria and additional details.

mask information during visual training, we also experimented
with letting the autoencoder use this information by applying the
reconstruction loss on only the masked image. Additionally we
tried training the autoencoder end-to-end during behavior cloning.
Both of these yield mixed results, depending on the task.

Since the vision network in our method is a 34-layer ResNet,
we wanted to see if the end-to-end method would benefit from
using the same, deeper vision backbone. The deeper network
did not improve closed-loop performance (Table I) although it
did reduce behavior-cloning validation error. This suggests the
advantage of our method comes from the correspondence training
rather than the model capacity.

The binary success metrics of Table I, however, do not fully con-
vey the methods’ performances. We also experiment with varying
the number of demonstrations, and characterize the performance
distributions. By plotting the performance for the “Reach, T +
R” task over a projection of the sampled object configurations
(Figure 4), we learn that the few failures of our method occur
when the box position lies outside the convex hull of the training
data. Interestingly the GT-2D baseline also struggles with similar
failure modes, while the GT-3D method succeeds in more cases
outside the convex hull. This suggests that policies that consume
3D information are better able to extrapolate outside the training
distribution; our DD-3D method also provides better generalization
than DD-2D. The baseline vision-based methods do not generalize
as well; for example, the E2E performance distribution is shown in
Figure 4. On this task we find that with just 30 demonstrations our
method outperforms both AE and E2E with 200 demonstrations.

The pushing tasks are of particular interest since they demand
closed-loop visual feedback. Disturbances are applied to the object
both while collecting demonstrations and deploying the learned
policies. Since the “Push box” task used a dynamic state feedback
controller to provide demonstrations, we find that we need the
sequence model (LSTM) for the policy network to achieve the task,
even when the policy has access to ground truth object state. On
the other hand, the “Push plate” task employed a static feedback
controller to provide demonstrations, and so MLP models that
consume only the current observation, πθp(ot), are sufficient.

Interestingly a variety of methods performed well on the “Push
box” task while large differences were evident in the “Push plate”
task. We speculate that this is because higher precision is required
to accurately push the plate as compared to the box. Since the



30 demonstrations 200 demonstrations
Noise / Method GT-2D DD-2D GT-2D DD-2D
No noise 5.6 1.1 5.6 3.4
With noise 73.3 73.3 95.6 97.8

TABLE II: Comparison of using our feedback-training noise augmentation
technique or not (success rate, as %) on the “Reach, T + R” task. No noise uses
σi = 0.0, whereas With noise uses σtranslation = 1mm, σrotation = 1 degree. See
Section V-A for descriptions of GT-2D (ground truth) and DD-2D (our method).
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Fig. 4: Task success distribution plotted over the 2D projection of the varied box
configurations for the “Reach, T + R” task. The color of each point represents
the result of deploying the learned policy with the object at that θ,y. Specifically
the color encodes the distance to target threshold: min(0,−(∆translation +
∆rotation)+ε), where ε is the success threshold. The x coordinate is not shown
in order to plot in 2D. Dark blue corresponds to perfect performance on the task
with the object in that configuration, red is poor performance. Note that the color
scale cuts off at -2 in order to highlight differences in the range [-2,0]. Each gray
“x” in each subplot represents the configurations of the box in the training set, for
either (from top to bottom) 30, 50, or 200 demonstrations. The dashed gray line
shows the convex hull of the respective training sets.

rectangular robot finger experiences a patch contact with the box,
while only a point contact with the plate, there is more open loop
stability in pushing the box. On the harder “Push plate” task we
found that our DD-2D method performed almost as well as the GT-
2D baseline and significantly outperformed both the AE and E2E
approaches, and that DD-3D improved performance even further.

Additionally we find (Table II) our noise augmentation
technique (Sec. IV-C) has a marked effect on task success for
behavior-cloned policies. This applies to ground truth methods and
our method, with as few as 30 demonstrations or as many as 200.

C. Hardware Experimental Setup

We used a Kuka IIWA LBR robot with a Schunk WSG 50
parallel jaw gripper to perform imitation learning for the five tasks
detailed in Figure 1. RGBD sensing was provided by RealSense

Source Targets (overlaid with correspondence heatmap)

Fig. 5: Learned correspondences from demonstration data, depicted as
correspondence heatmaps between a source pixel (left, with the green reticle) and
target scenes (right, with red reticle as best predicted correspondence).

Source Target (heatmap)                     (image)

Train

Test

Fig. 6: Learned correspondences (left) between a standard-sized shoe and an
extra-tall boot. A small amount of movement near the top of the ankle on the shoe
(far left) corresponds to a “stretched-out” movement on the boot (right). Images
cropped for visualization. Also shown are shoe train and test instances (far right).

D415 cameras rigidly mounted offboard the robot and calibrated
to the robot’s coordinate frame. Note that for effective correspon-
dence learning between views, it is ideal to have views with some
overlap such that correspondences exist, but still maintain different-
enough views. All shown hardware results use only RGB input
for the trained policies (DD-2D, Sec. V-A) and use descriptor set
optimization (Sec. III-B). Human demonstrations were provided
by teleoperating the robot with a mouse and keyboard.

D. Hardware Results

We validate both our visual learning method and its use in
imitation learning in the real world. As in simulation, we only use
demonstration data for both visual training and policy learning; no
additional data collection is needed. While the simulation results
provide a controlled environment for comparisons, there are a
number of additional challenges in our real world experiments: (i)
visual complexity (textures, lighting, backgrounds, clutter), (ii) use
of human demonstrations rather than expert simulation controllers,
(iii) real physical contact, and (iv) imperfect correspondence
learning due to noisy depth sensors and calibration. Our
hardware experiments test all of these aspects. All real hardware
experiments use LSTM policy networks, since we suspect our
human demonstrators use dynamic internal state.

1) Learned Correspondences from Dynamic Scenes:
Fig. 5 displays visualizations of learned correspondences from



Trained Without disturbances With disturbances Demonstration data
Success with manual # # # # # time

Task criterion disturbances attempts success % attempts success % total (min.)
Push sugar box is< 3 cm yes 6 6 100.0 70 68 97.1 51 13.9
box from finish line
Flip shoe, shoe is no 43 42 97.7 40 35 87.5 50 6.5
single instance upright
Flip shoe,
class-general
previously seen shoe is no 43 38 88.4 – – – 146 17.5
shoes (14) upright
novel shoe is no 22 17 77.3 – – – 146 17.5
shoes (12) upright
Pick-then-hang hat is yes 50 42 84.0 41 28 68.3 52 11.5
hat on rack on the rack
Push-then- plate is yes 22 21 95.5 27 22 81.5 94 27.4
grab plate off the table
Total 186 178

TABLE III: Summary of task attempts and success rates for hardware validation experiments. Autonomous re-tries are counted as successes.

demonstration data. The results show that the learned visual
models, despite imperfect depth sensor noise, calibration, and
only time-synchronized image pairs, are capable of identifying
correspondences across a class of objects, for an object in different
deformable configurations, and for objects in a diversity of
backgrounds. Figure 6 displays class-general correspondences
for a particularly challenging instance with large shape variation.

2) Real-World Visuomotor Policies: Figure 1 displays
examples of autonomous hardware results, and Table III provides
a quantitative overview. To highlight a few results, several of the
tasks achieve over 95% reliability, including the “Push sugar
box” task with and without disturbances, and the “Flip shoe,
single instance” and “Push-then-grab plate” tasks without
disturbances. Each of the different tasks present significant
challenges, best appreciated in our video. Several of the tasks
include non-prehensile manipulation, including pushing the box
and plate, and flipping the shoes. In the “Pick-then-hang hat
on rack” task, the robot autonomously reacts to the deformable
configuration of the hat after disturbances. The “Push-then-grab
plate” task as well is highly challenging given the visual clutter,
the symmetry and lack of visual texture for the object, and
requires using “extrinsic dexterity” [39] via the wood block to
enable sliding the gripper into position to grasp the plate.

VI. CONCLUSION
Our experiments have shown self-supervised correspondence

training to enable efficient policy learning in the real world,
and our simulated imitation learning comparisons empirically
suggest that our method outperforms two vision-based baselines
in terms of generalization and sample complexity. While different
hyperparameters, model architectures, and other changes to
the baselines may increase their performance, our method is
already near the upper bound of what can be expected in the used
experimental setting: it achieves results comparable to baselines
using ground truth information. One reason our approach may
outperform the vision-based baselines is that it additionally uses a
fundamentally different source of supervision, provided by visual
correspondence training. Since our approach is self-supervised,
it does not entail additional human supervision.

Dense descriptor learning has shown to be an exciting route
for improving visuomotor policy learning. While this has enabled

the variety of tasks shown, there are many that are out of scope.
One current limitation is that our visual representation does
not explicitly address simultaneously viewing multiple object
instances of the same class. Future work could, similar to the
visual pipeline in [40], combine both instance-level segmentation
with intra-instance visual representations. Additionally, returning
to the cooking eggs example in the Introduction, it is interesting to
consider using spatial correspondence as part, but not the entirety,
of the visual representation of the world.

APPENDIX

Simulation Tasks. Our simulation environment was configured
to closely match our real hardware experimentation. Using Drake
[41], we simulate the 7-DOF robot arm, gripper, objects, and
multi-view RGBD sensing. “Reach T only”: goal is to move the
end-effector to a target position relative to the sugar box object;
success is within 1.2cm of target. The box pose only varies in
translation, not rotation; training positions drawn from a truncated
Gaussian (σx=5cm,σy=10cm), centered on the table, truncated
to a 40cm×10cm region. Test distribution drawn from uniform
over same region. “Reach T + R”: same as “Reach T only” but
now the box pose varies in rotation as well, drawn from a uniform
[-30,30] degrees; success is within 1.2cm and 2 degrees. “Push
box”: goal is to push the box object across the table, and the box
is subject to random external disturbances; success if translated
across table and final box orientation is within 2 degrees of target.

“Push plate”: goal is to push a plate across a table to a specific
goal location, and the plate is subject to external disturbances;
success if plate center is within 1cm of target position.

Policy Networks: All experiments using an “MLP” had a
two-layer network with 128 hidden units, 20% dropout, in each
layer and ReLU nonlinearities. Training was 75,000 steps with
RMSProp, α = 0.9, with a batch size of 16, and lr starting at
1e−4, and decaying by a factor of 0.5 every 10,000 steps. All
experiments using an “LSTM” had a single LSTM layer with
100 units preprocessed by two MLP layers of 100 units, 10%
dropout, and layer-normalized prior to the LSTM layer. Training
was 200,000 steps with RMSProp, α = 0.9, with lr starting
at 2e − 3, decaying 0.75 every 40,000 steps, with truncated
backpropagation of maximum 50 steps, and gradient clipping

https://sites.google.com/view/visuomotor-correspondence


of maximum magnitude 1.0. As recommended in [13] we train
LSTMs on downsampled trajectories, we use 5 Hz.

Vision Networks: Both “AE” and “E2E” methods used an
identical architecture, with the only difference being the additional
decoder used for the AE method during autoencoding. The
network is almost exactly as in [1] and [2], but we provided a
full-width image, 320×240. We used 16 2D feature points. “DD”
architecture is identical to [7]. DD-2D computes image-space
spatial expectation, DD-3D computes 3D-space spatial expectation
using the depth image, see [30] for details; both used 16 descriptors.
The “E2E (34-layer)” network is exactly the DD architecture but
withD=16 and channel-wise 2D spatial softmax to obtain z.
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